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Abstract. This paper presents the design of an embedded automated digital video surveillance system with

real-time performance. Hardware accelerators for video segmentation, morphological operations, labeling and

feature extraction are required to achieve the real-time performance while tracking will be handled in software

in an embedded processor. By implementing a complete embedded system, bottlenecks in computational

complexity and memory requirements can be identified and addressed. Accordingly, a memory reduction

scheme for the video segmentation unit, reducing bandwidth with more than 70%, and a low complexity

morphology architecture that only requires memory proportional to the input image width, have been developed.

On a system level, it is shown that a labeling unit based on a contour tracing technique does not require unique

labels, resulting in more than 50% memory reduction. The hardware accelerators provide the tracking software

with image objects properties, i.e. features, thereby decoupling the tracking algorithm from the image stream. A

prototype of the embedded system is running in real-time, 25 fps, on a field programmable gate array

development board. Furthermore, the system scalability for higher image resolution is evaluated.

Keywords: hardware, FPGA, real-time, surveillance, segmentation, morphology, labeling, tracking,

image features, embedded system, video processing

1. Introduction

The demands on video surveillance systems are

rapidly increasing regarding parameters such as

frame rate and resolution. Furthermore, with an ever

increasing data rate and number of video streams, an

automated process for extracting relevant informa-

tion is required. Due to the large amount of input

data and the computational complexity of the

algorithms, software implementations are not suffi-

cient to sustain real-time performance for a reason-

able resolution. In this paper we present an

automated digital surveillance system running on an

embedded platform in real-time. Algorithms that are

well suited for hardware implementation with

streamlined dataflow are chosen and dedicated

hardware accelerators have been developed. The

presented hardware platform has been developed

with the goal of presenting a proof of concept for the

surveillance system and to identify computational

and memory bottlenecks. Furthermore, when pro-

posing modifications to the original algorithms

extensive simulations are needed, especially if

long-term effects in the video sequences can be

envisioned. Utilizing a reconfigurable platform based

on a field programmable gate array (FPGA) reduces

the simulation and development time considerably.

A conceptual overview of the surveillance system

is shown in Fig. 1. The camera feeds the image

processing system with a real-time image stream of



25 frames per second (fps), Fig. 1a. A segmentation

algorithm, in this case based on a Gaussian Mixture

background Model (GMM), preprocesses the image

stream and produces a binary mask in which

background and foreground are separated, Fig. 1b.

In theory, only the moving parts of an image should

be distinguished as independent objects in the binary

mask. However, in reality the mask will be distorted

with noise and single objects are shattered. In order

to remove noise and reconnect split objects, mor-

phological operations are performed on the mask,

Fig. 1c. These morphological operations will pro-

duce a frame of connected clusters which have to be

identified, i.e. labeled. The labeled clusters together

with extracted cluster features, e.g. size and position,

are seen in Fig. 1d. Foreground objects, which have

been cut out from the original frame, with

corresponding color features is shown in Fig. 1e. In

the final image, tracked objects are identified by

uniquely colored Bounding Boxes (BB), Fig. 1f.

The main bottleneck of image processing algorithms,

are the high memory requirements that is imposed on

the hardware system both in terms of number of bits and

bits per second, i.e. size and bandwidth. In this work,

bandwidth reduction has primarily been addressed in

the segmentation unit, through wordlength reduction

and by identifying and removing redundant informa-

tion. The goal with the morphological unit has been to

create a data path unit that does not require any

intermediate storage of the image. Both decomposition

and simple Structuring Elements (SE) have been

explored to reach this goal. In the labeling unit, the

main issue has been to decrease the amount of data

stored on-chip. Here, both carefully choosing algorithm

and system level considerations have lead to a reduced

memory size. Finally, the dependency between image

resolution and memory requirements for all parts of the

system has been investigated in order to find the

constraints of a future higher resolution system.

Sections 2 to 5 present the individual blocks of the

system, as outlined in Fig. 1. Each block has been

implemented as a stand-alone block, but has been

verified using a software simulation model of the

complete system. Section 6 discusses how the

individual blocks have been integrated on an FPGA

board. Hardware utilization, system optimizations and

system bottlenecks are also discussed in this Section.

Finally our conclusions are drawn in Section 7.

Figure 1. Surveillance system, a original image, b binary motion mask, c morphologicaly filtered motion mask, d Labeled clusters and

cluster features, e detected objects and color features, and f tracking results. All tracked objects are marked with a uniquely colored frame as

long as the object is visible.
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1.1. Systems of Today

Intelligent surveillance is an expansive field which

can be seen from the increasing number of products

commercially available on the market. Both surveil-

lance cameras and larger systems with advanced

image analysis capabilities are emerging. Three of

the largest actors on the market are AXIS Commu-

nications, Sony and IBM.

AXIS Communications is one of the global market

leaders in network video products and have special-

ized in professional network video solutions for

remote monitoring and security surveillance [1].

Features of AXIS surveillance cameras include

built-in motion detectors and WLAN modules.

Several subsections of a scene can be specified for

motion detection, each with an individual sensitivity

level. However, the detection is as for most embed-

ded video motion detection algorithms, basic and

based on frame difference.

One of the most advanced surveillance cameras on

the market today is Sony_s SNC-CS50 [2]. Accord-

ing to the specifications both advanced motion

detection and unattended object detection can be

performed by the camera, however not simultaneous-

ly. The unattended object detector reacts if an object

is left in one place for more than a specified duration

and the motion detection is based on the last 15

frames in order to reduce noise sensitivity. However,

a live demonstration showed that the camera reacts

slowly to motion and is sensitive to light changes.

IBM has recently released the Smart Surveillance

System (S3) release-1 to end customers on a pilot basis.

Compared to the previously mentioned products, S3 is

by far the most advanced. However, S3 is not designed

to be used in an embedded camera but as a separate

software system to which several cameras are

connected. According to the homepage [3], the system

is capable of object detection that is insensible to light

and weather changes as well as camera shake.

Detected objects can be both tracked and classified,

typical classification labels include, person, group,

and vehicle. In addition to real-time tracking and

classification, all detected events are stored alongside

the original data stream for fast event based searching

in the captured videos. Since no live demonstrator is

available and the current release is limited to a small

number of test users, it is not possible to evaluate the

claimed capability of the system.

From the above overview it is seen that there is a

huge gap between the capabilities of the embedded

surveillance cameras, AXIS and Sony, and the large

scale surveillance system, IBM. A similar trend can

be seen in academia, either large systems imple-

mented in software or isolated algorithms imple-

mented in dedicated hardware are published. For

example, W4 [4] is a system that, in addition to

motion detection and tracking of multiple people on

monocular gray-scale video, tries to detect activities

such as persons carrying objects and different body

postures. Other surveillance systems that both track

and classify objects are found in Stauffer and

Grimson [5] and Collins et al. [6]. The former focus

on classifying events like people and cars arriving

and leaving through a co-occurrence matrix and the

latter describes an attempt to monitor a complex area

using a distributed network of cameras. A more

recent system that track multiple humans in complex

situations is Zhao and Nevatia [7], were people are

tracked in 3D using an ellipsoid shape model. In

addition, motion modes, e.g. walking, running, and

standing, and body posture are estimated. For a more

extensive survey of visual surveillance we refer to

Hu et al. [8]. Common for all of these systems is that

they are, or need to be, executed on one or more

general purpose computers in order to reach real-time

performance with an image resolution of 320�240 or

more. Most published hardware implementations deal

with smaller parts of a surveillance system, e.g.

implementation of motion segmentation, image filter-

ing, or video codec. Some examples are Aguilar-

Ponce et al. [9] and Fahmy et al. [10] that describe the

implementation of a motion segmentation algorithm

and a high speed median filter, respectively. FPGA

implementations of video codecs for MPEG-4 and

H.264 are found in Schumacher et al. [11] and

Kordasiewicz et al. [12].

The proposed system, in this paper, is trying to

bridge this gap by taking some of the functionality

from the software system and move it into the

camera. To have the functionality inside the camera

instead of running it on a separate computer has

some obvious benefits. Most importantly, the amount

of data that has to be transmitted over the network

can be reduced, especially important if a wireless

scenario is considered. For larger installations this

could be critical, e.g. at airports where hundreds of

cameras are installed and the aggregated bandwidth
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becomes substantial. The output from each of these

cameras have to be routed to a security central, a

reduced bandwidth could then be the difference

between using the existing network or installing a

completely new one. To move all functionality of a

stand-alone software system into the camera will

probably never be feasible. However, if some of the

functionality is moved, the software system could be

redesigned to use the output from the smart cameras

instead of the raw image stream that is used today. In

larger security systems, all cameras would then be

connected through a system backbone to a central unit

with a coordinating functionality, whereas in smaller

systems it could be enough to install only smart

cameras. Recently, another embedded image system

has been presented by Philips Research labs. The

system is based on two processors, one for low level

image operations and one for higher level applications,

connected through a dual-port memory [13–15].

However, surveillance applications have yet to be

demonstrated on it and the amount of available

memory limits the possibility to process color images.

The proposed system is an early attempt to move a

complete hardware accelerated surveillance system

onto a stand-alone embedded system, consisting of

an image sensor, an FPGA with an embedded

processor, and some external memories.

2. Segmentation

Over the years, various video segmentation algorithms

have been proposed, e.g. frame difference, median

filters [16] and linear predictive filters [17]. However,

to achieve robustness in multi-modal background

scenarios, an algorithm based on GMM proposed in

Stauffer and Grimson [18] and Russo and Russo [19]

is chosen. A GMM is required for modeling repetitive

background object motion, e.g. swaying trees, reflec-

tions on a lake surface or a flickering monitor. A pixel

located in the region where repetitive motion occurs

will generally consist of two or more background

colors, i.e. the RGB value of that specific pixel

toggles over time. This would result in false fore-

ground object detection with most other adaptive

background estimation approaches.

The advantage of the GMM is achieved by using

several Gaussian distributions for each pixel. The

drawback is the imposed computational complexity

and high memory bandwidth that prohibits real-time

performance using a general purpose computer. In

our simulations, a frame rate of only 4–6 fps is

achieved for video sequences with a 320�240

resolution, on an AMD 4400+ dual core processor.

For a real-time video surveillance system with higher

resolution, hardware acceleration is required. The

rest of this section will present how the GMM can be

improved and efficiently implemented, for additional

information we refer to Jiang et al. [20].

2.1. Algorithm Formulation

The algorithm is briefly formulated as follows: In a

sequence of consecutive video frames, the values of

any pixel can be regarded as a Gaussian distribution.

Characterized by mean and variance values, the

distribution represents a location centered at its mean

values in the RGB color space. A pixel containing

several background object colors, e.g. a swaying leaf

on a tree in front of a road, can be modeled with a

mixture of Gaussian distributions with different

weights. The weight of each distribution indicates the

probability of matching a new incoming pixel. Amatch

is defined as the incoming pixel within a certain

deviation from the center. In this paper, J times the

standard deviation of the distribution is used as the

threshold [18]. The higher the weight, the more likely

the distribution belongs to the background. Mathe-

matically, the portion of the Gaussian distributions

belonging to the background is determined by

B ¼ argminb
Xb
k¼1

!k > H

 !
; ð1Þ

where b is the number of Gaussian distributions per

pixel, H is a predefined parameter and ! is the weight.

The mean, variance and weight factors are updated

frame by frame. If a match is found, the parameters of

the matched distribution are updated according to:

!k;t ¼ ð1� �Þ!k;t�1 þ �;

�t ¼ ð1� �Þ�t�1 þ �Xt

ð2Þ

�2
t ¼ ð1� �Þ�2

t�1 þ �ðXt � �tÞTðXt � �tÞ; ð3Þ
where � and �2 are the mean and variance, � and �

learning factors, and Xt is the pixel value. For those

unmatched, the weight is updated according to

!k;t ¼ ð1� �Þ!k;t�1; ð4Þ
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while the mean and the variance remain the same.

If none of the distributions match, the one with the

lowest weight is replaced by a distribution with the

incoming pixel value as its mean, a low weight and a

large variance.

2.2. Color Space Transformation

In theory, multi-modal situations only occur when

repetitive background objects are present in the

scene. However, this is not always true in practice.

Consider an indoor environment where the illumina-

tion comes from a fluorescence lamp. A video

sequence of such an environment was taken from

our lab and 5 pixels picked evenly from the scene

were measured over time. Their RGB value distri-

butions are drawn in Fig. 2a and it can be seen that

instead of 5 sphere like pixel distributions, the

shapes of the pixel clusters are rather cylindrical.

Pixel values tend to jump around more in one

direction than another in the presence of illumination

variations caused by the fluorescence lamp and

camera jitter. This should be distinguished from the

situation where one sphere distribution is moving

slowly towards one direction due to slight daylight

changes. Such a case is handled by updating the

corresponding mean values in the original back-

ground model. Without an upper bound for the

variance, the sphere describing the distribution will

grow until it covers nearly every pixel in the most

distributed direction, thus taking up a large space

such that most of it does not belong to the

distribution (A in Fig. 2b). A simple solution to

work around this problem is to set an upper limit for

the variance, e.g. the maximum value of the variance

in the least distributed direction. The result is multi-

modal distributions represented as a series of smaller

spheres (B–E also in Fig. 2b). Although a back-

Figure 2. a Five distributions in the RGB color space. b A closer look at the 2 Gaussian distributions on the bottom in a. c Sphere

distributions in the YCbCr space. d Unpredictable distributions in the HSV space.
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ground pixel distribution is modeled more precisely

by such method, several Gaussian distributions are

inferred which are hardware costly in terms of extra

parameter updating and storage.

To be able to model background pixels using a

single distribution without much hardware overhead,

color space transformation is employed. Both HSV

and YCbCr space have been investigated and their

corresponding distributions are shown in Fig. 2c,d.

Transforming RGB into YCb Cr space results in

nearly independent color components. Accordingly,

in a varying illumination environment, only the Y

component (intensity) varies, leaving Cb and Cr

components (chromaticity) more or less independent.

In Kristensen et al. [21], this feature is utilized for

shadow reduction. Consequently, values of the three

independent components in the YCbCr color space

tends to spread equally and as shown in Fig. 2c most

pixel distributions are transformed from cylinders

back to spheres, capable of being modeled with a

single distribution. The transformation from RGB to

YCbCr is linear, and can be calculated with a low

increase in computational complexity, see Section 6.

On the other hand, HSV color space is no better than

RGB if not worse. Unpredictable pixel clusters

appeared occasionally which is hard to model using

Gaussian distributions, Fig. 2d.

2.3. Segmentation Architecture

Maintaining a mixture of Gaussian distributions for

each pixel is costly in terms of both calculation

capacity and memory storage, especially at high

resolution. To manage the RGB data from a video

camera in real time, a dedicated hardware architec-

ture is developed with a streaming data flow. The

hardware architecture as shown in Fig. 3 is presented

in Jiang et al. [20] and briefly explained as follows:

A pixel value is read into the matching logic block

from the sensor together with all the parameters for

the mixture of Gaussian distribution from an off-chip

memory and a match is calculated. In case an

incoming pixel matches several Gaussian distribu-

tions, only the one with highest weight is selected as

the matching one.

After the updated Gaussian parameters have been

sorted, foreground detection is achieved by simply

summing up the weights of all the Gaussian

distributions that have a higher likelihood than the

updated one. By comparing the sum with a prede-

fined parameter H, a sequence of binary data

indicating background and foreground is streamed

out to the morphology block. The main bottleneck of

the architecture is the high bandwidth to the off-chip

memory, which will be addressed in the following.

2.4. Wordlength Reduction

Slow background updating requires large dynamic

range for each parameter in the distributions, since

parameter values are changed slightly between

frames but could accumulate over time. According

to Eqs. 2 and 3, the mean and variance of a Gaussian

distribution is updated using a learning factor �. The
difference of mean and variance between current and

previous frames is derived from the equation as

D� ¼ �t � �t�1 ¼ �ðXt � �t�1Þ and

D� 2 ¼ �2
t � �2

t�1 ¼ �ððXt � �tÞTðXt � �tÞ � �2
t�1Þ:

ð5Þ

Figure 3. The architecture of the segmentation unit.
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Given a small value of � , e.g. 0:0001 , a unit

difference between the incoming pixel and the

current mean value results in a value of 0:0001 for

D� . To be able to record this slight change, 22 bits

have to be used for the mean value, where 14 bits

accounts for the fractional part. Empirical results

have shown that the Gaussian distributions usually

are spheres with a diameter less than 10 and in this

study, as well as in Stauffer and Grimson [18], J ¼
2:5. Therefore, an upper bound for the variance is set

to 16 and a maximum value of D� becomes �� J �
� ¼ 0:0001� 2:5� ffiffiffiffiffi

16
p ¼ 0:001 , which can be

represented by 10 bits. Using a wordlength lower

than that, no changes would ever be recorded. In

practice, the bits for the fractional parts should be

somewhere in between 10–14 bits and 7–14 for the

mean and variance, respectively. Together with 16

bits weight and integer parts of the mean and the

variance, 81–100 bits are needed for a single

Gaussian distribution. To reduce this number, a

wordlength reduction scheme was proposed in Jiang

et al. [20]. From Eq. 5, a small positive or negative

number is derived depending on whether the incom-

ing pixel is above or below the current mean. Instead

of adding a small positive or negative fractional

number to the current mean, a value of 1 or �1 is

added. The overshooting caused by such coarse

adjustment could be compensated by the update in

the next frame. The result is that without illumination

variation, the mean value will fluctuate with a

magnitude of 1 which is negligible since the diameter

of the Gaussian distribution is usually more than 10.

In a relatively fast illumination varying environ-

ment, fast adaptation to new lighting conditions is

also enabled by adding or subtracting ones in

consecutive frames. Figure 4a shows the experimen-

tal results of the coarse updating in a room with

varying lighting conditions. The parameter updating

Figure 4. Parameter updating schemes comparison in fast light changing environment. One color value (solid line) of a RGB pixel are

drawn over frames together with updated Gaussian RGB mean value (blue diamond line). The zoomed in area of a and b is shown in c and d,

respectively.
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scheme specified in the original algorithm is also

drawn in Fig. 4b for comparison. A closer look at the

two schemes is shown in Fig. 4c and d. From Fig. 4b

and d, it is seen that parameter updating (diamond

line in the figure) of the original algorithm does not

work well in the presence of fast light changes. The

Gaussian distribution will not keep track of the pixel

value changes and Gaussian distribution replacement

takes place instead of parameter updating. On the

other hand, the coarse updating scheme handles such

situations with only parameter updating.

With coarse updating, only integers are needed for

mean specification, which effectively reduce the

wordlength from 18–22 down to 8 bits. A similar

approach can be applied to the variance, resulting in a

wordlength of 6 bits, with 2 fractional ones. Together

with the weight, the wordlength of a single Gaussian

distribution can be reduced from 81–100 to only 44

bits, over 45% reduction is accomplished. In addition,

less hardware complexity is achieved since multiplica-

tion with the learning factor of � is no longer needed.

2.5. Pixel Locality

In addition to wordlength reduction, a data compression

scheme for further bandwidth reduction is proposed by

utilizing pixel locality for Gaussian distributions in

adjacent areas. Consecutive pixels often have similar

colors and hence have similar distributions. We classify

Bsimilar^ Gaussian distributions in the following way:

from the definition of a matching process, each

Gaussian distribution can be simplified as a cube,

where the center is the YCbCr mean value and the

border to the center is specified as J times the variance.

One way to measure the similarity between two

distributions is to check the overlap of the two cubes.

If the overlap takes up a certain percentage of both

Gaussian cubes, they are regarded as Bsimilar^. The
overlap is a threshold parameter that can be set to

different values for different scenarios.

In the architecture, two similar distributions are

treated as equivalent and by only saving non over-

lapping distributions together with the number of

equivalent succeeding distributions, memory band-

width is reduced. Various threshold values are

selected to evaluate the efficiency for memory

bandwidth reduction. With a low threshold value

more savings could be achieved but at the same time

more noise is generated due to increasing mismatches.

Fortunately, such noise is found to be non-accumulating

and can therefore be reduced by morphological

filtering presented in Section 3. Figure 5 shows the

memory bandwidth savings over frames with various

threshold values. It can be seen that memory band-

width savings tend to stabilize (around 50% –75%

depending on threshold value) after initialization. The

quality of segmentation results before and after

morphology is shown in Fig. 6 where it is clear that

memory reduction comes at the cost of segmentation

quality. Too low threshold value results in clustered

noise that would not be filtered out by the morpho-

logical filtering, Fig. 6c.

3. Morphology

As seen in the previous section, the generated binary

mask needs to be filtered to reduce noise and reconnect

split objects. This is accomplished by applying mathe-

matical morphology. Erosion (") and dilation (�) are the
two foundations in mathematical morphology, from

Figure 5. Memory bandwidth reduction over frames for different thresholds is shown to the left and memory bandwidth reduction versus

threshold is shown to the right.
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which many other extended operations are derived

[22], e.g. opening, closing, and gradient. Mathematical

morphology applies to many image representations

[23], but only binary " and � is required in our system.

In an effort to make the binary morphological

processing effective, a low complexity and low

memory requirement architecture was proposed in

Hedberg et al. [24]. This architecture has several

properties and benefits which are of special interest for

our application in order to easily incorporate the unit

into the system. First, pixels are processed sequentially

from first to last pixel. Since each operation is completed

in a single image scan, a short execution time is ensured

and no extra memory handling is invoked. This allows

for several " and � units to be placed in series or parallel
with only a small FIFO in between the blocks, to

account for stall-cycles due to inserted boundary pixels

(padding). Another property of the architecture is that

the size of the SE can be changed for each frame

during run-time. With a flexible SE size comes the

ability to compensate for different types of noise and to

sort out certain types of clusters, e.g. high and thin

objects (standing humans) or wide and low objects

(side view of cars).

Let Ib represent the binary input image and SE the

structuring element. If SE is both reflection invariant

and decomposable, i.e. SE ¼ cSE and SE ¼ SE1 � SE2,

the following two equations for " and � can be derived

" Ib; SEð Þ ¼ Ib � SE1 � SE2ð Þ
¼ Ib � SE1ð Þ � SE2; ð6Þ

� Ib; SEð Þ ¼ Ib � SE1ð Þ � SE2

¼ I
0
b � SE1

� �
� SE2

� �0
; ð7Þ

where 0 is bit inversion. Comparing Eqs. 7 and 8, it

can be seen that both " and � can be expressed as an

erosion (or as a dilation). This property is known as

the duality principle. With a decomposed SE, the

number of comparisons per output is decreased from

the number of ones in the SE to the number of ones

in SE1 plus SE2. However, finding decompositions to

an arbitrary SE is a difficult problem and not always

possible [25, 26]. In addition, for an SE to be

reflection invariant it has to be symmetric in respect

to both x and y axes, e.g. an ellipse. However, a

common class of SEs that is both decomposable and

reflection invariant is rectangles of ones. This type of

SE is well suited for operations such as opening and

closing, which are needed in this system. An

example of " with a decomposed SE is shown in

Fig. 7, were the SE is decomposed into SE1 and SE2,

see Eq. 6. The input is first eroded by SE1 and then

by SE2 and the number of comparisons per output is

reduced from 15 to 8.

3.1. Morphology Architecture

By using a rectangular SE containing only ones, "
can be performed as a summation followed by a

comparison. The " is performed by keeping track of

the bits in Ib that is currently covered by the SE and

are compared to its size in both the x and y direction.
By decomposing the SE, the summation can be

broken up into two stages. The first stage compares

the number of consecutive ones in Ib to the width SE1

and outputs a one if this condition is fulfilled. The

second stage sums the result from the first stage for

each column and compares it to the height of SE2. If

both these conditions are fulfilled, the output at the

coordinate of the SE origin is set to one, else zero.

Figure 6. The result before and after morphological filtering for different thresholds, a original result, b with 0:8, and c with 0:4 threshold.
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The proposed architecture is based on the obser-

vations above and is shown in Fig. 8 with

corresponding wordlength in each stage. Taking

advantage of the duality property, the same inner

kernel is used for both � and "; to perform � on a "
unit simply invert the input Ib and the result,

performed in Stage-0 and 3. Each pixel in Ib is used
once to update the sum, stored in the flip-flop in

stage-1, that records the number of consecutive ones

to the left of the currently processed pixel. When the

input is one, the sum is increased, else reset to zero.

Each time the sum plus the input equals the width of

SE1 , stage-1 outputs a one to stage-2 and the

previous sum is kept. The same principle is used in

stage-2 but instead of a flip-flop, a row memory is

used to store the number of ones from stage-1 in the

vertical direction for each column in Ib. In addition,

omitted from the figure, a controller is required to

handle padding and to determine the operation to be

performed, i.e. " or � . How, and why, padding is

inserted around the boundary of an image is

discussed in Hedberg et al. [24].

The wordlength in Stage-0 and 3 is a single bit

whereas the wordlengths in stage-1 and 2 are

proportional to the maximum supported size of the

SE, i.e. dlog2ðSEwidthÞe and dlog2ðSEheightÞe, respec-
tively. Thus, the total amount of required memory to

perform " or � is

memtot ¼ dlog2ðSEwidthÞe þ dlog2ðSEheightÞeIb;col bits;
where the first part is the flip-flop in stage-1 and

second part is the row memory in stage-2. As an

example, with a resolution of 320� 240 and a SE size

of 15� 15 , the required amount of memory is

dlog2ð15Þe þ dlog2ð15Þe � 320 ¼ 1:28 kbits. The de-

lay line implementations in Fejes and Vajda [27] and

Velten and Kummert [28], with the same resolution

and SE size would require SEwidth þ ðSEheight � 1Þ
Ib;col¼4:50 kbits of memory, which is� 3.5 times more.

The primary morphological operation used in this

system is an opening, i.e. an " followed by a �. Due
to the pipelined nature of the architecture, the

opening operation can be performed directly on the

output stream from the segmentation by placing two

Figure 8. Architecture of the datapath in the erosion and dilation unit with corresponding wordlength (WL) in each stage.

Figure 7. Input and output to an erosion were a SE of size 3� 5 is decomposed into SE1 ¼ 1� 5 and SE2 ¼ 3� 1.
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units in series. This will not increase the execution

time but only add latency of a few clock cycles.

Examples of filtered segmentation results are shown

in Fig. 6. An opening operation is performed and the

image is first eroded with an SE size of 5�3 and then

dilated with a 7�5 SE.

4. Labeling

After the morphological operation the binary frame

contains connected clusters of pixels that represent

different objects of interest which should be tracked

and classified. However, the system needs to be able

to separate and distinguish between these clusters.

Labeling has the goal of assigning a unique label to

each cluster, transforming the frame into a symbolic

object mask with the possibility to tie features to

each cluster. Thus, labeling can be seen as the link

between the clusters and their corresponding fea-

tures. Labeling algorithms dates back to the early

days of image processing [29] and applies to many

image representations [30]. Various algorithms have

been proposed over the years and a survey can be

found in Kesheng et al. [31]. The algorithms can be

placed into two major categories, namely

& Sequential local operations (SLO), and

& Contour tracing (CT).

The remainder of this section describes a comparison

between these two types of algorithms in terms of mem-

ory requirements and which features they can extract.

In SLO based algorithms [32], a label is assigned

based upon the pixels above and to the left of the

current pixel which comes natural when working on

streaming data. However, this type of algorithms

have to solve possible label collisions. A typical

label collision occurs if a u-shaped object is

encountered. Scanning the image, the pillars will be

assigned different labels since there is no momentary

information that they are part of the same cluster.

Reaching the lower middle part of the u, an ambiguity

in which label to assign will occur, referred to as a

label collision. A common way to solve this is to write

the label collisions into an equivalence table during an

initial scan and resolve them during a second. The

number of label collisions per frame depends on the

complexity of the cluster contours.

CT based algorithms traces and labels the contour

of each cluster [33]. Labeling the contour will avoid

label collisions since if a previously labeled cluster

(contour) is encountered, the scan proceeds without

modification. The algorithm requires a global mem-

ory scan together with additional random accesses

for the CT procedure in order to label all clusters in a

frame. In order to avoid pitfalls like tracing contours

of possible holes inside clusters a reserved label is

written on each side of the cluster. Based on this

reserved label, the algorithm keeps track of whether

it is currently inside a cluster or not. In the same

manner, when reading the labeled result, pixels

between two reserved labels can be considered part

of the same cluster regardless of the pixel value.

Thus, holes inside clusters can be filled which is

beneficial in our application.

Both types of algorithms need a memory to store

the labeled image result, memlabel . Due to the

physical limitations of this memory, an upper bound

is placed on the number of clusters that can be

labeled in a frame, cmax . In SLO based algorithms

each label collision will occupy a temporary label

during the initial scan, the memory size is deter-

mined by a combination of cmax and the maximum

number of label collisions, lmax;c . Thus, a memory

overhead is introduced. In CT based algorithms the

memory size is directly proportional to the image

resolution and cmax. The memory requirement for the

SLO and CT based algorithms can be written as

memslo ¼ log 2 cmax þ lmax;c þ 1
� �� � � N bits; ð8Þ

memCT ¼ log 2 cmax þ 3ð Þd e � N bits; ð9Þ

where N is the number of pixels in an image andþ1

and þ3 comes from the number of preoccupied labels.

Table 1 compiles three simulations that show the

number of clusters with corresponding label colli-

sions per frame. Sequence 1 is captured in our

research laboratory, Sequence 2 is captured outdoors

covering a traffic crossing, and sequence 3 is taken

from the PETS database [34]. Using Eqs. 8 and 9 and

figures from Table 1, SLO based algorithms would

require 6, 7, 8 bits per pixel compared to CT based

algorithms which would require 4, 6, 7 to handle the

worst case scenario for sequence 1 to 3, respectively.

Hence, CT based algorithms requires less total

memory compared to SLO based algorithms to be

able to label the same number of clusters.
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From a system perspective, it is desirable to

extract features where they have low requirements

in terms of execution time and hardware complexity.

Since the clusters are scanned during the labeling

process, many binary features are advantageously

extracted by this unit, e.g. coordinates which are

used to create a BB around each cluster. The

extraction procedure of many features is the same

for both types of algorithms. However, a unique

property of CT based algorithms is the possibility to

use discrete Green_s theorem during the CT phase.

Green_s theorem gives the relationship between a

closed contour (curve) and a double integral over this

cluster (plane region), enabling calculation of

moments [35]. Moments can in turn be used to

calculate area and center of gravity (CoG) which are

important properties in this particular application,

e.g. used by the tracking unit to handle occlusion.

Summarizing the comparison between the two

types of algorithms, a common property is that they

impose a high bandwidth together with large mem-

ory requirements. Since memory issues are the major

concern in our application, arithmetic complexity in

the algorithms will be traded for memory resources.

Therefore, the CT based algorithm was found more

suitable in our particular application and chosen for

implementation, due to the following properties:

& CT based algorithms require less memory and

can guarantee labeling of a predefined number

of clusters.

& Both types of algorithms have the same upper

bound on execution time, texe � 3 � ðimheight �
imwidthÞ [36].

& CT based algorithms have the possibility to add

Green_s formula and thereby extract CoG,

& and have the ability to fill holes inside a cluster.

4.1. Labeling Architecture

An overview of the CT based architecture imple-

mented in Hedberg et al. [36], is illustrated in Fig. 9.

A FIFO is located at the input in order to stall the

data stream as a frame is being labeled. The CT finite

state machine (CTFSM ) first writes the complete

frame into memlabel. The first and last pixel equal to

1 for this frame is marked as global start and end

point respectively. After that, a second memory scan

starts from the global start pixel, now also marked as

local starting pixel for this particular cluster. The

CTFSM traces the contour of the cluster, and writes

the label into memlabel . The CT of this cluster is

completed when the local starting pixel is reached a

second time. The global scan then continuous until a

new cluster or the global end point is reached.

During the CT phase, the feature extraction blocks

calculate, X and Y-coordinates, height, width, size,

and CoG, for every cluster and stores them in the

feature memory, i.e. memfeat. To maximize the time

the embedded SW (tracking algorithm) can access

this result, a dual memory structure is used. Hence,

Figure 9. Overview of the implemented CT based architecture.

Table 1. Three simulations on independent sequences showing

the number of clusters and corresponding label collisions.

Sequence Seq. 1 Seq. 2 Seq. 3

Mean clusters per frame 4:4 19:9 7:2

Mean labelcol per frame 13:9 19:6 15:3

Max clusters in a frame (cmax) 13 36 87

Max labelcol in a frame (lmax;c) 27 36 100

Number of frames in the seq. 700 900 2500
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as the algorithm is labeling frame f in one memory

pair, the tracking algorithm has access to the result of

frame f � 1 in the other memory pair. An example of

a binary frame together with corresponding labeled

output from the implemented architecture can be

seen in Fig. 10.

Some applications do not require unique labels

and binary features are sufficient. In such applica-

tion, the CT based algorithm allows the label

memory to be reduced to 2 bits per pixel, still

maintaining correct binary feature extraction, since

each cluster will get a separate entry in the feature

memory. This observation is further discussed in

Section 6.

5. Tracking

The goal of the surveillance system is to track

persons while they remain in view of one stationary

camera. Each person in view should be given a

unique identity that should remain fixed even though

people change place and/or disappears shortly from

view. In the following text persons or things that are

tracked, i.e. given a unique identity, are referred to as

objects whereas objects detected by the motion

detector is referred to as clusters.

Tracking of non-rigid objects, e.g. humans, is

complicated and becomes even harder when it has to

be performed on an embedded system with limited

resources. An initial decision is hardware/software

partitioning where software has the benefits of

flexibility and shorter design time and the hardware

has the advantage of high throughput. To take

advantage of both these properties, the system is

partitioned so that tasks that have to be executed

directly on the image stream are implemented in

hardware, while bookkeeping and conditional tasks

are performed in software. The result is that tracking

is performed in software and all preprocessing and

calculations on the image stream are performed in

hardware. The interface between hardware and

software is features.

A feature is a property extracted from an object in

the image, e.g. size, color, texture, or shape, that can

separate different objects or recognize a certain

object class. A good feature describes each object

with a unique and compact code and does not change

if the object is scaled, rotated, or enters an area with

different lighting. This is necessary to be able to

track an object through different environments, e.g.

track a person standing under a lamp close to the

camera who moves away towards a darker corner.

In this system there are three feature classes that

are acquired from different parts of the system, at

different times and during various conditions. First,

cluster features acquired from the binary motion

mask in the label unit. These features are calculated

for each labeled cluster and for each frame. Second-

ly, color features are calculated if an occlusion

between two objects is detected. The third feature

class is prediction features that are used to make an

initial guess about which objects from previous

frame corresponds to which objects in the current

frame. Table 2 summarize the different feature

classes.

Cluster features includes minimum X and Y

coordinates, height and width of the cluster, the

number of pixels in a cluster (size), and CoG

coordinates. These features are used as initial data

to the tracking algorithm, which starts with a

reconstruction phase. In this phase, objects from

previous frame are reconstructed from the detected

clusters. This is necessary since objects can consist

of more than one cluster due to imperfect segmen-

Figure 10. a A fragment of a typical binary input frame to the label unit, b corresponding labeled output. The result includes BB around

each object with their CoG marked as an x. Notice rl on each side of the cluster line segment which corresponds to the reserved label.
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tation and occlusions. The reconstruction is based on

the predicted position of an objects CoG and size.

When two or more clusters are used to reconstruct an

object, new cluster features are calculated as the

weighted mean of the used clusters. Cluster features

are often enough to track non-occluded objects in the

video stream.

During the reconstruction phase, merges and splits

are also detected. A merge occurs when two objects

touch each other and become one object, i.e. an

object–object occlusion, and a split is when one

object becomes two objects. Both events are detected

in a similar way, based on CoG coordinates and BB.

The BB is defined as the minimum rectangle that

completely surrounds an object or cluster and it is

created with the cluster features width, height, and

minimum coordinates. A merge is detected if the

CoG of two tracked objects are found inside the BB

of one new cluster, and a split is detected if two

cluster CoG are found inside the BB of one object.

An example is shown in Fig. 11.

Color features include color-mean, variance, and

histogram of an object. These features have been

chosen since they can be calculated from streaming

data without any reordering of the pixels and

produce a small number of data, i.e. minimum

processing time and memory requirements. In addi-

tion, color features are size invariant and with the

right color space also lighting invariant [21].

If the predicted position of an objects BB in the

next frame is overlapping the predicted position of

another object, i.e. an occlusion is imminent, color

features are extracted and stored as a reference.

During the rest of the occlusion two sets of features

are extracted for each participating object, one set

assumes that the object is to the right of the other

object and the other set assumes that it is to the left.

For example, if object A and B merge and form

object C, Fig. 12 shows which parts of C that is used

to calculate the feature sets for both object A and B.
The four feature sets are then matched against the

two stored reference sets and a left–right (LR) score

is stored for each object. Depending on, if an object

is best matched with the right, left or no feature set

the LR score is adjusted according to

LRðf Þ ¼
LRðf � 1Þ�þ K if a right match;
LRðf � 1Þ� if a no match;
LRðf � 1Þ�� K if a left match;

8<
:

where � < 1 and K are constants, and f is the

frame number. The larger the jLRj, the stronger the

evidence that the object is to either right or left side,

the final decision on which object is which is not

taken until a split event is detected. The main

advantages of this method are that no motion

prediction is used to estimate the outcome and that

it easily scales to more than two objects. Since no

motion estimation is used, the system will not be

confused if a person moves behind another person,

stops, turns around and move back the same way she

entered. Finally, the tracking algorithm calculates

prediction features, such as motion and size predic-

tions. Size prediction corresponds to motion predic-

tion in the direction towards or away from the

camera or an object that enters or exits the scene.

The prediction is based on g� h tracking [37].

Experiments to use Kalman filtering instead were

Table 2. The feature classes, features part of the class, and when

they are calculated.

Class Features Calculation

Cluster Size, min coordinates, height,

width, CoG coordinates

For every cluster

and frame

Color Mean, variance, histogram If occlusion is

detected

Prediction d_CoG, d_width, d_height,
d_size

For every tracked

object and frame

Figure 11. BBs around tracked objects are shown with solid lines and around new clusters with dashed, xmarks the CoG. a Shows a merge

event and b a split event.
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done, but the performance increase did not justify the

complexity increase.

6. System Implementation and Performance

A prototype of the system is implemented on a

Xilinx Virtex II pro vp30 FPGA development board,

with two FPGA embedded Power PCs and a 256 MB

off-chip DDR SDRAM. A KODAKKAC-9648 CMOS

sensor is attached directly onto the board and is used to

capture color images at 25 fps with a resolution of

320�240. The development board is shown in Fig. 13.

The architecture of the prototype is shown in

Fig. 14, where black indicates custom made logic,

light blue is memories and red is of-the-shelf

components. The architecture is modular in the sense

that each block can be replaced with other algo-

rithms without changing the overall architecture.

Modularity is achieved with independent clock

domains and asynchronous FIFOs in between all

major blocks. Communication between feature mem-

ories and the PPC is performed with software

addressable registers and is initialized with an

interrupt signal from the label unit. A custom made

VGA controller makes it possible to superimpose BB

around the detected clusters on the output from any

block. The output image can also be frozen in order

to observe details. Typical outputs from the proto-

type are shown in Fig. 15 and example videos can be

found on the project homepage [38].

No color features are extracted in the current

version of the prototype, since the memory is not big

Figure 12. a Object A and B in frame f � 1 and f . Object C is object A and B merged. b The two feature sets of A extracted from C. c The

two feature sets of B extracted from C.

Figure 13. Xilinx XUP Virtex-II Pro FPGA development board with attached sensor.
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enough to store a color image and the software

memory is not sufficient for the complete tracking

code. Current tracking software reads in all cluster

features of all labeled clusters in order to draw the

corresponding BB. To free on-chip memory and to

be able to include color feature extraction, two

additional external memories could be added to the

board. One memory will contain the software and the

other a complete color image.

The prototype delivers 25 fps with an image

resolution of 320� 240 pixels. Three Gaussian

distributions per pixel, stored in an off-chip

SDRAM, are used to perform color image segmen-

tation. The morphology unit performs an opening

with a flexible SE that can be of any size up to 15�
15. As default, the SEs are set to 3� 5 and 5� 7, in

the erosion and dilation block, respectively. The

labeling unit extracts cluster features on up to 61

clusters per frame. The most important parameters of

the different blocks are controlled with dip-switches

on the board.

The chosen maximum number of labeled clusters

per frame, 61, is based on SW simulations. This

number together with Eq. 9 and the system environ-

ment, would with unique labels result in a total

memory requirement of memtot ¼ FIFOþ 2�
ðmemCT þmemfeat:Þ � 1:06 Mbit, where the factor

2 is due to the dual memory structure [36]. However,

in our application a single label can be used without

system performance degradation. Using one unique

label will neither affect cluster nor color feature

extraction. Cluster features are extracted during CT

Figure 14. System architecture of the prototype, where black indicates custom made logic, light blue (light grey) is memories and red (dark

grey) is of-the-shelf components.

Figure 15. Typical results from the different units, a segmentation result, b the output from the morphological unit after an opening has

been performed, c labeled output, d original video. The BB shown in c and d are generated from the PPC and can be applied to any of the

outputs.
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and color features are extracted on single objects

even before the BB of another object overlap, i.e. in

either case label ambiguity is avoided. The result is

that the label memory only uses two bits per pixel

and the complete label unit requires 438 kbit instead

of 1.06 Mbit.

There are two main purposes of the prototype

apart from verifying functionality; one is to perform

high speed testing of different configurations, set-

tings and long-term effects of the individual blocks.

Software simulation of long-term effects can be

extremely time consuming whereas Bsimulations^
with the prototype is performed in real-time. To

facilitate repeatability, the sensor is disconnected and

input is read from file instead. The second purpose of

the prototype is to find system bottlenecks. The

required hardware resources are shown in Table 3

together with the speed of all blocks. Lookup tables

(LUTs) shows how much logic that is required and

the 18� 18 multipliers are hard macro multipliers

in the FPGA. Internal and external memory refers to

the on-chip block memories and the off-chip

SDRAM, respectively. The speed required to reach

system performance of 25 fps is shown as operating

frequency and the standalone speed of a block is

shown as maximum frequency. It is seen that the

morphology block is very small compared to the

other parts of the system and that RGB to YCbCr

conversion does not add significant amount of

resources to the segmentation unit. The performance

of the system is to a large extent dependent on the

segmentation quality. Hence, the great attention on

segmentation improvements such as the right color

space and reduced wordlengths and memory band-

widths. Despite the improvements, measured in

LUTs, multipliers, and external memory, the seg-

mentation unit still requires most hardware. Howev-

er, none of these resources are critical on a system

level and will not be critical even when the color

feature block is added. On a system level, internal

memory is critical. Almost 75% is used and most of

it is due to the grey-scale image that is stored in the

VGA-controller. To extend the system to store and

display color images, off-chip memory is required.

6.1. Bottlenecks

The presented system uses a resolution of 320�240,

which is rather low compared to modern digital

video cameras. This resolution is used due to the

limited amount of resources, especially memory, on

the FPGA. However, future surveillance systems will

most likely require higher resolution. Therefore it is

of interest to study system bottlenecks and how they

react to an increased resolution while maintaining

real-time performance. For example, if the resolution

increases to 640�480, i.e. four times as many pixels

per image, and the frame rate remains 25 fps. How

will this affect the different parts of the system and

what can be done to decrease the impact of an

increased resolution?

The segmentation algorithm scales linearly, i.e. the

critical memory bandwidth increases to 4.3 Gbit/s

with the straight forward implementation and to 0.82

Gbit/s with the presented memory reduction scheme.

To reduce the bandwidth further the approach

presented in Magee [39] could be used, where the

distributions are not updated every frame. The

morphology unit is much less affected by a resolu-

tion increase, since the memory is only dependent on

Table 3. Hardware resources and utilization of the different parts of the prototype.

System part

RGB to

YCbCr Segmentation Morphology Label

Color

feature Track

VGA

Ctrl

Total

use

FPGA

board

LUTs 0.8% 12.4% 0.6% 8.1% 14.8% 0% 1.2% 39% 27392

18�18 mult 2.2% 5.2% 0% 1.5% 6.6% 0% 0% 24% 136

Memint [kbit] 0% 9.6% 1.5% 20% 0% 11.8% 32% 74.9% 2176

Memext [Mbit] 0% 0.5% 0% 0% 0% 0% 0% 0.5% 2048

PowerPC 0% 0% 0% 0% 0% 50% 0% 50% 2

foperational [MHz] 8 8 9 67 N.A. 100% 25 – –

fmax [MHz] N.A. 83 146 70 100 300% N.A. – –

Figures for the segmentation block includes sensor control logic, and the VGA controller includes both result and image memory. Color

feature extraction is currently not part of the prototype but is included for comparison.
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the width of the image. If the SE is increased to

match the higher resolution, i.e. to 31�31 pixels,

only 2.5 times more memory is required in the data

path and the intermediate FIFOs are unaffected. In

the label unit, both label memories increase with a

factor of 4. One way to reduce this could be to only

keep one label memory used by the CT algorithm,

and compress the resulting labeled image into a

smaller memory using a compression scheme, e.g.

run length encoding or JBIG [40]. In terms of

memory, feature extraction is unaffected by the

resolution increase, since it only works on streaming

data and only stores the result. However, it will

require 4 times as many clock cycles to execute; this

is true for all previous blocks as well. The only part

totally unaffected by the resolution increase is the

tracking part. Neither the number of objects nor the

number of features per object is affected by a

resolution increase.

7. Conclusions

In this paper, an embedded automated digital

surveillance system with real-time performance is

presented. The system has been developed in order

to identify and propose solutions to computational

and memory bottlenecks. Due to the real-time

processing, it also substantially reduces analysis of

long terms effects due to changes in the algorithms

and to parametric changes.

The main bottleneck of image processing algo-

rithms is the high memory requirements. Therefore,

a new memory scheme in video segmentation using

wordlength reduction and pixel locality is proposed,

reducing memory bandwidth with more than 70%. A

morphological datapath unit with a memory require-

ment that only scales with image width is presented.

It is also shown that in our application, the labeling

memory can be reduced with more than 50% if a CT

algorithm is used. On a system level, it is shown that

on-chip memory is the main bottleneck. A system

prototype has been implemented and is running in 25

fps on an FPGA development board.
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