
Journal of VLSI Signal Processing 44, 135–152, 2006

c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11265-006-7512-7

Reconfigurable Coprocessor for Multimedia Application Domain

SALVATORE M. CARTA
DMI—Department of Mathematics and Computer Science, University of Cagliari, Palazzo delle Scienze,

Via Ospedale 72, 09124, Cagliari, Italy
e-mail: salvatore@unica.it

DANILO PANI
DIEE—Department of Electrical and Electronic Engineering, University of Cagliari, P.zza d’Armi,

09123, Cagliari, Italy
e-mail: pani@diee.unica.it

LUIGI RAFFO
DIEE—Department of Electrical and Electronic Engineering, University of Cagliari, P.zza d’Armi,

09123, Cagliari, Italy, and with INFM-S3
e-mail: raffo@unica.it

Published online: 27 May 2006

Abstract. A new reconfigurable architectural template is presented. Such a template is composed of coarse-
grained and fine-grained reconfigurable datapath and control to obtain performances at custom designed chip level.
To show the adaptability/performance of such architectural template, the architecture has been customized (i.e.
datapath and control features of the template have been properly sized) for multimedia application domain. To
evaluate complexity and maximum clock frequency of the proposed architecture, it has been synthesized using
Synopsys Design Compiler on a standard-cell 0.18 μm technology. Estimated number of transistors is 335 K, while
maximum allowable frequency is 460 MHz. Performances have been evaluated comparing the number of clock
cycles and the processing time required to process application domain dominant kernels with commercial devices:
we obtained up to 95% reduction with respect to ARM and up to 94% reduction with respect to TMS320C5510 in
terms of clock cycles.

Keywords: reconfigurable computing, digital signal processing, domain-specific architectures, multimedia

1. Introduction

Reconfigurable Computing Systems (RCSs), also
called adaptive computing systems, are processing sys-

Corresponding author: Salvatore M. Carta, DMI—University of

Cagliari, Palazzo delle Scienze, Via Ospedale, 72 - 09124, Cagliari,

Italy

e-mail: salvatore@unica.it

tems with redundant computational and connectivity
resources, able to change their functionality at run-
time, according to the task in execution in that mo-
ment. RCSs represent a trade-off between the maxi-
mum flexibility ensured by general purpose micropro-
cessor or digital signal processors and the maximum ef-
ficiency in terms of speed and power dissipation offered
by Application Specific Integrated Circuits (ASICs)
[1, 2]. The use of reconfigurable redundant hardware

136 Carta, Pani and Raffo

resources gives the possibility of: (i) maximizing ex-
ecution speed by the use of specialized parallel or
pipelined hardware architectures suited for the tar-
get application, (ii) minimizing power dissipation
switching-off unused hardware resources and exploit-
ing locality of computation.

We propose a new reconfigurable architectural tem-
plate (section 2) which exploits mixed coarse-grained
and fine-grained [3] reconfigurable datapath and
control elements to obtain performances at ASICs level
on computational tasks based on repetitive execution
of a reduced set of operations on multidimensional ar-
ray data (vectors or matrix). Such kind of tasks are
the core of very common algorithms for image and
voice processing and encryption, and since they are
usually computationally expensive, they normally rep-
resent the dominant kernels of them (i.e. kernels that de-
termine the time performance of the system for the task
considered) [4]. The architectural template determines:
(i) execution partitioning between a reconfigurable co-
processor in charge of execute dominant kernels and
a standard host processor in charge of execute not-
dominant kernels and control the system, (ii) processor-
coprocessor interaction. System integrability and scal-
ability is maximized by the use of memory mapping
for coprocessor/processor communications. In this way
coprocessor can be easily coupled with each kind of ex-
isting processor, and a cluster of coprocessors in paral-
lel can be used to implement thread-level parallelism.

These features are not in general a pure innovation:
other reconfigurable platforms in literature use one or
more of them. Algorithm partitioning between a host
processor and a reconfigurable customized coprocessor
is used in [5–7], and the use of reconfigurable coarse-
grained datapaths is common to many architectures
[5, 8–13], and also the use of memory mapping is very
common. The innovation introduced by our approach
substantially relies on reconfigurable coprocessor core
architecture. It is optimized for the execution of the tar-
get kind of kernels: four specialized sub-units are used
for data buffering, data processing, indexes and loops
signal generation, control. According to the specific
application domain considered, the coprocessing sub-
system is then customized in terms of: (i) number and
size of memory elements, (ii) number and functional-
ity of processing units, (iii) source, intermediate and
result data width, (iv) auxiliary control elements (such
as counters or address generators) number and func-
tionality, etc. The result is a reconfigurable coproces-
sor optimized for a specific application domain, able to

execute kernels with a high level of power/frequency
efficiency, avoiding extra cycles due to loops condi-
tion evaluation, to array indexes calculation and to data
fetching of standard Von Neumann or Very Long In-
struction Word (VLIW) computing architectures for
large classes of algorithms. Architectural power effi-
ciency of the proposed approach is ensured by: (i) sup-
ply voltage reduction made possible by the reduction of
the clock frequency required to real time execution of
dominant kernels, (ii) average capacitance reduction by
the use of small local memories instead of a large cen-
tralized memory (locality of reference exploitation),
(iii) average switching activity reduction by temporal
correlation exploitation ensured by the minimization of
hardware resources (time sharing) [5, 14]. To hide to
programmers all the architecture/coprocessor specific
issues and to allow continuous improvements a set of
high-level parametric C functions have been developed.

In this paper we customize our reconfigurable archi-
tectural template for multimedia application domain
(section 4). The system (standard host processor plus
reconfigurable coprocessor plus memory) has been
modelled and validated at Register Transfer Level
(RTL) using Verilog Hardware Description Language
(HDL), and the coprocessor has been synthesized at
gate level using commercial tools. The architecture
has been tested on a set of representative kernels of
multimedia application domain: auto-correlation and
cross-correlation filters, FIR filters, IIR filters, forward
DCT and inverse DCT. The control of the architecture
with a level of automation allowing the programmer
to ignore the detailed hardware structure, is a complex
task and cannot be fully explained in the pages of this
paper, nevertheless a short description of the solution
adopted is given.

Simulations show (section 5) the usefulness of the
proposed approach, through the comparison of its per-
formances with standard DSP and RISC processing
systems, in terms of number of cycles required and
processing time.

2. Architectural Template Definition

The classic general purpose processing scheme based
on the interaction between a standard processor and the
main data/program memory through standard data and
address buses often cannot comply with real-time con-
straint in common image/voice processing application.
In our architectural template (see Fig. 1) we propose
(according to the reconfigurable computing paradigm)

Reconfigurable Coprocessor for Multimedia Application Domain 137

MAIN
MEMORY

MAIN DATA BUS

RECONFIGURABLE COPROCESSOR

HOST
PROCESSOR

MAIN ADDRESSES BUS

CONFIGURATION
MEMORY

PIPELINED
DATAPATH

INTERFACE

INDEXES
ADDRESSES

UNIT EMBEDDED RAMs

CONTROL

INTERNAL DATA BUS

IN
T

E
R

N
A

L
A

D
D

R
 B

U
S

RECONFIGURABLE PROCESSING CORE

ADDR

D
A

T
A

C
O

N
T

R
O

L

Figure 1. Kernel oriented reconfigurable coprocessing system

template.

to connect a reconfigurable subsystem to the main bus.
Such subsystem is in charge of executing dominant
kernels (i.e. the most computational expensive tasks)
of the application, the rest of execution remains to the
general purpose processor. Reconfigurable paradigm
is used to better adapt processing core datapath and
control to exploit intrinsic algorithm parallelism. The
configuration of the subsystem is determined by a con-
figuration memory, whose content is set by the pro-
cessor according to the specific task required by the
program at the specific moment.

In Fig. 2 the processor-coprocessor iteration is
depicted. During standard elaboration (step a) copro-
cessor is switched off. Each time a dominant kernel
execution is required, the host processor activates the
coprocessor, and its configuration memory is filled in
with specific configuration bits (not all configuration
memory locations need to be written) (step b). In step
c, kernel input data are copied from main data memory
to the proper coprocessor embedded RAMs. During
step d, coprocessor performs kernel processing. At the
end of step d, kernel processing results are moved to
main data memory during step e. All data movement
(configuration bits from main memory to coprocessor
configuration memory, source data from main memory

to embedded coprocessor RAMs and result data from
coprocessor embedded RAMs to main data memory)
are performed using standard load or store processor
instructions. Alternatively a DMA technique can be
used to reduce host processor overhead. To simplify
the treatment we refer to the former solution.
Reconfigurable Coprocessor is partitioned in three
main modules (see Fig. 1): a Reconfigurable Process-
ing Core, a Configuration Memory and an Interface.

2.1. Interface

The Interface has two roles: to connect internal data and
address buses with main data and address buses, and
to synchronize coprocessor and host processor when
switching from one to another of the processing steps
listed above. The latter functionality can be imple-
mented using a simple Finite State Machine (FSM),
while the former using three-state or multiplexer logic,
depending on the host system bus implementation.
Template specification doesn’t imply any specific in-
terface standard, so the designer is free to chose the
most suited one (AMBA, OCP, VCI, etc.).

2.2. Configuration Memory

Configuration Memory stores the bit stream that de-
fines coprocessor configuration. It is based on an array
of registers whose outputs are permanently connected
to: (i) control inputs of switches and/or pass transistors
determining data routing in reconfigurable processing
modules and interconnection networks; (ii) input ports
of parametric processing elements (i.e. input which de-
termines the max counting value of a counter).

2.3. Reconfigurable Processing Core

Reconfigurable Processing Core is composed of (see
Fig. 3): (i) Embedded RAMs, (ii) Pipelined Datapath,
(iii) Addresses/Indexes Unit (iv) Control Unit and (v)
Interconnection Network.

2.3.1. Embedded RAMs. Unit functionality is kernel
data storage. The implementation is based on a cluster
of multiple memory elements (RAMs) to store source
and result data arrays. RAMs addresses streams come
from the Indexes/Addresses Unit, RAMs control
signals come from Control Unit, whereas kernel
data are exchanged with Pipelined Datapath through
internal Pipelined Datapath multi-bus reconfigurable
network. Embedded RAMs exchange data with

138 Carta, Pani and Raffo

RECONFIGURABLE COPROCESSOR

MAIN
MEMORY

MAIN DATA BUS

HOST
PROCESSOR

MAIN ADDRESSES BUS

MAIN
MEMORY

MAIN DATA BUS

RECONFIGURABLE COPROCESSOR

HOST
PROCESSOR

MAIN ADDRESSES BUS

CONFIGURATION
MEMORY

INTERFACE

INTERNAL DATA BUS

IN
T

E
R

N
A

L
A

D
D

R
 B

U
S

MAIN
MEMORY

MAIN DATA BUS

HOST
PROCESSOR

MAIN ADDRESSES BUS

INTERFACE

INTERNAL DATA BUS

IN
T

E
R

N
A

L
A

D
D

R
 B

U
S

RECONFIGURABLE PROCESSING CORE

RAM B RAM A

A) STANDARD PROCESSING B) SOURCE DATA DOWNLOAD
FROM MAIN MEMORY

C) SOURCE DATA DOWNLOAD
FROM MAIN MEMORY

RECONFIGURABLE COPROCESSOR

ADDRESSES

INDEXES

UNITS

CONTROL

IN
T

E
R

N
A

L
A

D
D

R
 B

U
S

ADDR

C
O

N
T

R
O

L

RECONFIGURABLE PROCESSING CORE

RAM ARAM BRAM C

MAC ALU

RECONFIGURABLE COPROCESSOR

MAIN
MEMORY

MAIN DATA BUS

HOST
PROCESSOR

MAIN ADDRESSES BUS

INTERFACE

INTERNAL DATA BUS

IN
T

E
R

N
A

L
A

D
D

R
 B

U
S

RECONFIGURABLE PROCESSING CORE

RAM C

FIONFICONECORECRERRREECCOONFI LEBLEABLRABURAIGURIIGURRAABBLLE ROPROOPRCOPCE CE CCOPPRRO ORSORSSOCESSOCEOOCCESSSOOR

NONECON

I

REC

AD

RE

A

IIN
T

INN
T

N
T

N
T

NI

A

REECONN LEBLERABLURA

S

IGUR

DDRESSES

INDEXES

UNITS

NFIG

DDRE

ND

SE

EX

U

S

ES

NIT

NF

S

IGURRABLLE GING

EM

SSIN

EM

CESS

E

OCEPROC

D

 PR

ADDR

D
A

T
A

DDR

P

T
A

PR

D

OC

E

CE

EM

SSING

D

RE

ED

ORE

DDED

COR

MBEDD

G CO

C
O

M

C

MBEED

G

DD

CO

ED

OR

D

RE

sRAMsRRAMs

TT
E

R
T

E
R

N
E

RR
N

A
L

R
N

AA
L

A
L

AA
D

AA
D

D
R

A
D

DD
R

D
R

D
R

D
A

D
AA

A
L

A
R

N
R

E
R

T

PA
N

APA
LIN

ATAP
PELI

DAT
PIPEL
DA
PIP
D

PEL
DA

LI
AT

N
APPA

A

NED
ATH
NEED
ATHH

O
N

T

O

N
T

R
O

TRO

R
O

L

CONTR

L

CONTTR

L

O

R
O

N
T

OLOL

RRR
 B B

U
S

B
UU

S
U

S
U

S
U

 B
R

ME
I

ME
NFI

M
CONFCONNFI

MME
NGURATION

EMORY
GUR
E

RA
M

TI
OR

ON
RY

N

TEINTE

CE

IN

INTERFACEINTE FACE

INTE BUA BUATA

E

ERNAL DATRNALL DATA BUUSS

ACEFACRFATERNTEINIINTERFAACEEE

GFIG

UNI

ONFI

DE

UN

CON

DRE

INDE

RECO

ADDR

IN

RE

AD

R

AD

R

DR

IN

RE

DE

CO

UN

ONFIG R PRE PBLE

D

ABL

ADD

URAB

A
ESSES

EXES

ITS

GUR

ES ES

XES

TS

GUURAB

A

BL

D

E PR CG C

BE

NG C

MBE

SSING

EMB

ESSI

EM

OCESROC

DR

D
A

T
A

DR

A

ROOC

EM

ES

MB

SSI

BE

NGG CC

ARARA

E

ED

RE

EDDED

CORE

C
OO

EDDDE

CO

ED

REE

RAAAMsAMMs

TH
D

ATH
NED

APAT
INE

TAPA
PIPELIN
DATA
PIPE
D

EL
AT

IN
TA

NE
APA

D
ATTH

AA

D
H
D
H

A O
N

OL

O
N

T
R

CONTROL

T
R

O
L

COONNTRO

O
L

OL

T
R

O
N

S

ES

NITS

SES

EXES

UNIT

RESSE

NDEX

U

DDRE

IND

ADDADDRE

ND

SE

EX

U

ES

NITS

RDDRADD
SS

DDR

A
T

A
D

AA
T

A
D

DA
PI
DA
PI
D
PPPI
DDA HTH

ED
PATH

IPELINED
ATAPA
IPPEL
A

LI
AT

NE
AP

ED
PATHH

A

OR
RA

MOR
URA

EMO
CONFIGUR

MEM
COONFIGU

M
UR

EM
RA

MOOR
ATION
RY
ATI
R

ON
Y

N

R
O

R
O

L

COCOCCCO

R
O

LONTROLONTTROL

EMMEMMEMEEM YRYMORYMORYY
GUFIGUONFICONCOCOONFIGU ONTIONATIO

N

URAT

ERN

UR

INTERINNT

UR

ER

AT

N

TIOON

USNAL DATA BUSNAAL DATAA BUS

INININ ECEFACERFATERFNTERNNTTERRFFACEE

CEOCE
HO

ROC
HO

PRO
H

PR
HO

ROOCCE

MM

R
OST
ESSOR
OSST
EESSSOORR

M BUA BUATA DATIN DAAINMAIMAIIN DAATA BU

O
I

MO
AI

MEM

US

MAI
MEM

US

MMA
M

U

AI
MEM

US

I
MO

N
ORY

N
ORRYY

N AIN MAIMMAIN S BSES BESSERESDDREADDADDDREESSES B SBUSBBUS

ITS

EX

UNIT

NDEX

UN

INDIINDEX

UNIT

DDRAD
ES

S

ES
D

ESDRESADDRADADDRES
DDRADDA

HTH

SES

PIPELINED
DATAPATH

SE

I
D

E
DA

L
TA

N
AP

D
ATTH

SE

H

ADD

A
T

D
AA

T
AAA

A
T

DNEDLINEELINIPEL

MO

PIP

MEMO

P

MEMO

PIPELLINNED

ORYRY
U

EMO
GU

MEM
FIGU
ME

ONFIGCONCOCCCOONFIGGU
ME

U
EM

ONTION
RY
ATIO

ORY
RAT
O
RAT
O

TIO
RY

ON
O

LL

CCC LOLROLNTROONTCONCONNTROOLL

NNNNNNN

D) KERNEL DATA PROCESSING E) RESULT DATA UPLOAD
TO MAIN MEMORY

Figure 2. Kernel oriented reconfigurable coprocessing system main steps.

Pipelined Datapath (during kernels processing, step
d in Fig. 2) or with host system memory through
Interface (during kernels data download and upload,
steps c and e in Fig. 2).

2.3.2. Pipelined Datapath. Unit functionality is ker-
nel source data processing to generate kernel result
data. The implementation is based on a cluster of
mixed-grained high level processing units (integer
Arithmetic Logic Units (ALUs), integer multipliers
(MULs), Field Programmable Gate Arrays (FPGAs),
shifters, etc.) and on a set of pipelined registers. Pro-
cessing elements and pipeline registers can be con-

nected according to specific kernel in execution using
a fully reconfigurable multi-bus connection network.

2.3.3. Addresses/Indexes Unit. Unit functionality is
twofold: generation of addresses streams for embed-
ded RAMs and generation of loops-end signals used
by Control Unit to generate control signals. The im-
plementation is based on a cluster of programmable
counters connectible through a reconfigurable network
to generate loop indexes signals. The counter dedicated
to outermost loop control receives start signal from
top level control module. A set of processing units
(ALUs, MULs, etc), customized using configuration

Reconfigurable Coprocessor for Multimedia Application Domain 139

PIPELINE
REGISTERS

DATA
MULTI-BUS

RECONFIGURABLE
NETWORK

ALU
PIPELINED
DATAPATH ALU MUL MUL

SHIF
TER

SHIF
TER

LOOPS
BOUNDARIES

MULTI-BUS
NETWORK

PROGRA
MMABLE
COUNTER

PROGRA
MMABLE
COUNTER

PROGRA
MMABLE
COUNTER

CONTROL UNIT

DELAY
LINES

RECONFIGURABLE
GENERIC FUNCTION

GENERATOR

ADDRESSES
RECONFIGURABLE

MULTI-BUS
NETWORK

ALU ALU MULTIPLIERLOOPS
INDEXES

RAMS
ADDRESSES RECONFIGURABLE RAMS ADDRESSES

DISPATCHING NETWORK

EMBEDDED
RAMS

ADDRESSES / INDEXES UNIT

MULTIPLIER

LOOPS
END

SIGNALS

CONTROL
SIGNALS

ARRAY
DATA

ELEMENTS

RAMRAM RAM

SOURCE
CONTROL

BITS

Figure 3. Reconfigurable processing core architectural template.

memory and connected through a reconfigurable net-
work, processes indexes streams to generate addresses
streams for embedded RAMs.

2.3.4. Control Unit. This unit processes loop-end sig-
nals to generate control signals (RAMs and pipeline
registers write enables) for Pipelined Datapath and Em-
bedded RAMs. The irregular structure of the task per-
formed requires a full programmable implementation,
using a generic reconfigurable combinatorial function
generator and delay lines.

2.3.5. Reconfigurable Interconnection Networks.
Reconfigurable Interconnection Networks have been
implemented adopting an irregular mesh technique

S-BOX

N
SWITCHES

N-BIT
BUS

B

N-BIT
BUS

D

N-BIT
BUS

C

N-BIT
BUS

A

C-BOX

N
SWITCHES

N-BIT
PORT

N-BIT
BUS A

N
SWITCHES

N-BIT
BUS BN

SWITCHES

N
SW

IT
C

H
E

S

N
SW

IT
C

H
E

S

Figure 4. S-box and C-box implementation.

[15]. This technique is derived from FPGAs ar-
chitectures and is based on sets of buses con-
nected to logic or memory modules through Con-
nect Boxes (C-Box). Each segment of a bus can be
connected to neighbour segments of the same bus
or to segments of other buses through Switch Boxes
(S-Box).

Fig. 4 shows the implementation of a 4-port single-
bus S-Box and of a 5-port double-bus C-box, based
on the use of single switches. Each single switch can
be implemented using pass-transistors or a couple of
three-state non-inverting buffers. An m-port S-box se-
lectively connects m different segments of the same
bus using m arrays of n-switches, where n is the num-
ber of bit-lines of the bus. An S-box connecting p

140 Carta, Pani and Raffo

PROCESSING
MODULE

2 C

S

PROCESSING
MODULE

4

C

C

PROCESSING
MODULE

3 C

S

S

S

S

CCS

C

S

S

C

PROCESSING
MODULE

1

Figure 5. Example of irregular-mesh connected network of

modules.

buses is implemented simply replying p-times this
structure. A C-Box selectively connects the port of
a processing module to one or more buses using a
number of arrays of switches equal to the number of
buses.

Fig. 5 shows an example of triple-bus connected,
reconfigurable, irregular-mesh. C-Boxes are placed on
the sides of modules (each C-box corresponding to one
of the ports), whereas S-Boxes are placed on the corners
of each module.

3. Template Customization and Optimization

The described template is very general. It must be cus-
tomized for a specific application domain to have an
efficient processing system both in terms of perfor-
mance and used resources/area. The customization pro-
cess can be subdivided into three main tasks: (i) target
application domain kernel identification, (ii) coproces-
sor customization; (iii) support library development

3.1. Dominant Kernel Identification

A representative set of applications in the domain con-
sidered is selected, and dominant kernels are identified
performing applications profiling by standard software
development tools. As an example we defined a set of

applications representative of multimedia domain (the
ones identified in section 4).

3.2. Coprocessor Customization

Reconfigurable Coprocessor architectural template
customization consists in the quantitative definition of
all coprocessor internal modules (how many counters,
how many ALUs, how many RAMs, data size, etc). The
activity of such hardware resources are scheduled to op-
timize the execution of the task. The limit on hardware
resources leads to the definition of a set of constraints
on kernels to be executed (maximum number of loops
handled, maximum data size, overall maximum num-
ber of data, etc). To optimize the number of resources
(taking into account both area/complexity and perfor-
mances) the architecture is customized for a specific
application domain. Each dominant kernel defined in
3.1 have to be mapped on a generic architectural tem-
plate, composed of an unlimited number of modules.
The exact number of ALUs and MULs in the Recon-
figurable Datapath and in the Addresses/Indexes Unit,
the exact number of Embedded RAMs, data granular-
ity, etc. are defined considering the worst case of the
mapping process for the whole set of dominant ker-
nels. This approach ensures hardware resources min-
imization, while reconfigurability guarantees an ade-
quate level of flexibility. Other features to define at
customization time, according to implementation re-
lated issues, are interface protocol and Configuration
Memory physical implementation.

3.3. Support Library Development

Considering dominant kernels defined in 3.1, a li-
brary of parametric C-callable functions are developed.
Functions embed all coprocessor-specific issues (con-
figurations, data movement, etc.), so the programmer
can ignore the great part of reconfigurable architec-
ture details. The approach is similar to the one used
for high performance VLIW DSPs to exploit all pro-
cessing capabilities of the processor without the need
of a deep architecture knowledge. Each function, writ-
ten in C-code, performs four sub-tasks (correspond-
ing to host processor activities described in Fig. 2): (i)
copies coprocessor configuration from main memory
to Configuration Memory (optional); (ii) copies kernel
source data from main memory to coprocessor Em-
bedded RAMs; (iii) starts coprocessor processing; (iv)
copies kernel result data from coprocessor Embedded

Reconfigurable Coprocessor for Multimedia Application Domain 141

RAMs to main memory (after coprocessor acknowl-
edge).

4. Customization for Multimedia
Application Domain

The target application domain considered is voice and
video processing. To represent the application domain
the following list of kernels extracted from three GSM
codecs (full-rate RPE-LTP [16, 17]; half-rate VSELP
[18, 19]; enhanced full-rate ACELP [20, 21]), and
MPEG [22–24] standards have been chosen:

i) two kinds of FIR filtering from GSM voice coding.
ii) IIR filtering from GSM voice coding

iii) 8 × 8 inverse DCT from MPEG
iv) 8 × 8 forward DCT from MPEG
v) vectors cross-correlation from GSM voice coding

vi) vectors auto-correlation from GSM voice coding
vii) convolution from GSM voice coding

4.1. Reconfigurable Processing Core Architecture

Reconfigurable Processing Core architecture descends
from architectural template described in Fig. 3. All un-
defined features of the template have been sized basing
on the kernels listed above.

4.1.1. Pipelined Datapath. Processing modules are:
(i) one 16-bit inputs, 32-bit output MUL, (ii) one 16-bit
ALU performing a reduced set of operations (sum, sub-
tract, logical operations), (ii) one 40-bit ALU perform-

2 40-bit

1 32-bit

1 16-bit

pipeline

registers

RECONFIGURABLE

INTERCONNECTION

NETWORK

40-bit

ALU

16-bit

ALU

40-bit

BARREL

SHIFTER

32-bit

PIPE
MUL

EMBEDDED RAMS

PIPELINED
DATAPATH

Figure 6. Pipelined datapath block diagram.

ing a reduced set of operations (sum, subtract, logical
operations), (iii) one 40-bit barrel shifter (performing
n-positions shift left, n-positions shift right, n-positions
rotate left, n-positions rotate right). Pipeline registers
are two 32-bit registers and two 40-bit registers. Recon-
figurable Interconnection Network is based on a double
bus, two 16-bit and one 8-bit. Bus segments are con-
nected using: 64 16-bit 3-port S-boxes, 16 8-bit 3-port
S-boxes, 10 16-bit C-boxes, 6 32-bit C-boxes, 5 40-bit
C-boxes. The architecture is depicted in Fig. 6.

4.1.2. Embedded RAMs. Unit block diagram is de-
picted in Fig. 7. The unit is based on four 16-bit embed-
ded RAMs, two having 256 locations and two having
512 locations. Four address channels coming from Ad-
dresses/Indexes Unit are dispatched to the 8 RAM ad-
dresses inputs (4 inputs for read addresses and 4 inputs
for write addresses) through reconfigurable network.
Reconfigurable Interconnection Network is based on a
double 9-bit bus. Bus segments are connected using:
16 9-bit 3-port S-boxes, 8 9-bit C-boxes.

4.1.3. Indexes/Addresses Unit. Unit block diagram is
showed in Fig. 8. The architecture is based on four 9-
bit up-down counters, four 9-bit multipliers, four 9-bit
simplified ALUs and two reconfigurable Interconnec-
tion Networks. Each counter generates synchronized
streams of 9-bit indexes and has configurable start and
stop index bounds coming from configuration regis-
ters or from another counter of the cascade through
Reconfigurable Interconnection Network. ALUs and
multipliers generate addresses starting from indexes
and from constant data coming from configuration reg-
isters. Count-signals Reconfigurable Interconnection

142 Carta, Pani and Raffo

EMBEDDED RAMS

double 9 bit
NETWORK

16-BIT
256 LOCATIONS

RAM MODULE

PIPELINED DATAPATH

16-BIT
256 LOCATIONS

RAM MODULE

16-BIT
512 LOCATIONS

RAM MODULE

16-BIT
512 LOCATIONS

RAM MODULE

INDEXES/
ADDRESSES

UNIT

INTERFACE

FROM
HOST

ADDRESSES
BUS

TO / FROM
HOST
DATA
BUS

Figure 7. Embedded RAMs block diagram.

INDEXES / ADDRESSES UNIT

RECONFIGURABLE
ADDRESSES NETWORK

9-BIT
MUL

9-BIT
MUL

9-BIT
MUL

9-BIT
MUL

9-BIT
ALU

9-BIT
ALU

9-BIT
ALU

9-BIT
ALU

EMDEDDED
RAMS

ADDR 0

ADDR 1

ADDR 2

ADDR 3

9-BIT
COUNTER

RECONF .
COUNT

SIGNALS
NETWORK

INDEX 0

INDEX 1

INDEX 2

INDEX 39-BIT
COUNTER

9-BIT
COUNTER

9-BIT
COUNTER

PULSE 0

END 0

PULSE 1

END 1

PULSE 2

END 2

PULSE 3

END 3

CONTROL

INTERFACE

KERNEL
PROCESSING

START

KERNEL
PROCESSING

END

LOOP END 0

LOOP END 3

Figure 8. Indexes/Addresses unit block diagram.

Network is based on a double 1-bit, bus. Bus seg-
ments are connected using: 20 1-bit 3-port S-boxes;
10 1-bit C-boxes. Reconfigurable Addresses Intercon-
nection Network is based on a double, 9-bit bus. Bus
segments are connected using: 36 9-bit 3-port S-boxes;
20 9-bit C-boxes.

4.1.4. Control Unit. Control Unit processes 4 loops-
end signals coming from cascaded counters of
Indexes/Addresses Unit to generate 8 write enable sig-
nals for the 4 pipeline registers of the Pipelined Datap-
ath and for the 4 RAMs. Each signal could be delayed
up to two cycles using a dedicated delay line. For each

Reconfigurable Coprocessor for Multimedia Application Domain 143

CONTROL

RECONFIG.
SIGNALS

SELECTOR

INDEXES
ADDRESSES

UNIT

DELAY
LINE

PIPELINEREGS
AND RAMS

WRITE ENABLE
SIGNALS

LOOP
 END

SIGNALS

CONFIG.
BITS

DELAY
LINE

DELAY
LINE

DELAY
LINE

SOURCE
CONTROL

BITS

RECONFIG.
GENERIC

FUNCTION
GENERATOR

Figure 9. Control unit block diagram.

kernel the write enable signals needed are a function of
4 of the 24 resulting signals (4 in input and 8 delayed).
Pre-selection module and generic combinatorial func-
tion generator are configured depending on the kernel.
Generic combinatorial function generator is based on
a programmable Look-Up Table (LUT) implemented
using an 8-bit – 16 locations RAM. Reconfigurable Sig-
nals Selector is implemented using four 24 × 1 1-bit
multiplexers. Block diagram is shown in Fig. 9.

4.2. Interface

Interface protocol is not strictly related to the appli-
cation domain chosen. Interface has been designed to

Figure 10. Example of a kernel (C code).

support AMBA 32-bit bus interfacing, so its implemen-
tation is similar to a standard AMBA slave interface
augmented with some features needed to synchronize
host processor and core processing unit.

4.3. Kernel Processing Example

To explain Reconfigurable Processing Core behaviour
we consider, as an example, the execution of a cross-
correlation between two vectors of 16-bit data, with
40-bit accumulation. Kernel code is presented in
Fig. 10.

Execution flow is based on the three inner loops, con-
trolled by i, j and k indexes. Inside these loops body, the

144 Carta, Pani and Raffo

C[128 *i+ j]

RAM

 0

BARREL

SHIFTER

RAM

 1

RAM

 2

40-BIT

ADD

32-BIT

PIPE

MUL

40
 *

 i
+

k

40
 *

 i
+

k
+

j

12
8

*
i +

j

COUNTER 1
{0 - 127}

COUNTER 2
{0 - 39}

COUNTER 0
{0 - 3}

A[40*i +k]

B[40*i +k+j]

ALU 0
[adder]

ALU 1
[adder]

ALU 2
[adder]

MUL 0
[40]

MUL 1
[128]

i

k

j

reg 1

ALU

reg

reg

INDEXES / ADDRESSES UNIT

PIPELINED DATAPATH

EMBEDDED

 RAMS
RAM

MUL 2 MUL 3

ALU 3

COUNTER 3

reg 0

CONTROL

Figure 11. Reconfigurable processing core configured for cross-correlation.

elements of vectors A and B are multiplied and accu-
mulated into vector C. Reconfigurable Processing Core
configured for the execution of this kernel is shown in
Fig. 11.

This dedicated architecture implements four pipeline
stages (with throughput of 1 clock cycle): (i) operands
and results addresses computation, (ii) operands fetch-
ing from embedded RAMs 0 and 1 (vectors A and B),
(iii) 16-bit operands one stage pipelined multiplication
and 32-bit result storage in register 0, (iv) 32-bit sum
with 40-bit partial result sum and storage in register 1.
At the end of each internal loop the 16 most significant
bits of the final accumulated result are saved in RAM
2 (vector C) using the barrel shifter, which was prop-
erly configured depending on the accumulation maxi-
mum value. Configured cascaded counters generate i,
j and k indexes with the correct synchronization and
boundaries. Indexes are sent in input to the Addresses
Unit where the network of configured constant adders
and constant multipliers manipulate them to generate
three synchronized streams of addresses for the three
RAMs used. Output data ports of the two RAMs con-
taining source vectors are connected to multiplier in-
puts, whereas accumulation register (reg 1) output is
connected the barrel shifter which is connected to the
input port of RAM used to store results vector.

The number of cycles required for cross-correlation
example kernel processing on the Reconfigurable Co-
processing Subsystem is about 20,500. The number of
cycles required for other, not mandatory tasks (data
I/O and configuration), is about 5,000. The same piece
of algorithm is executed by ARM9 processor in about
400,000 cycles, by TMS320C5510 TI DSP (no assem-
bly optimisations were used) in about 105,000 cycles.

The substantial reduction of clock cycles (about 94%
for RISC processor and about 76% for DSP) is due
to the fact that the architecture depicted in Fig. 11
(after configuration) is optimized as much as a ded-
icated architecture. The implementation exploits the
inner parallel/pipelined structure of nested loops al-
gorithms. Processors (RISC or DSP) spend cycles ex-
ecuting: (i) loop conditions evaluation (ii) addresses
calculation, (iv) data fetching and processing. Recon-
figurable coprocessor cuts off the most part of this
cycles: (i) loop conditions evaluations are performed
in zero cycles, due to counters connected to control
logic; (ii) addresses calculation is also performed in
zero cycles due to counters, adders and multipliers of
Addresses/Indexes Unit; (iii) data fetching and process-
ing is performed using embedded RAMs and recon-
figurable datapath connected in pipeline, with no wait
states, leading to a further cycles saving.

Reconfigurable Coprocessor for Multimedia Application Domain 145

5. Modeling and Evaluation of Reconfigurable
Coprocessor for Multimedia

To evaluate our approach we have performed the fol-
lowing steps: (i) Reconfigurable Coprocessor for mul-
timedia has been modelled using a standard HDL
language and an RTL-behavioural description style;
(ii) coprocessor has been validated coupling it with
a standard general purpose processing system (host-
processor plus memory) also modelled in HDL; stan-
dard development tools have been used to program the
host-processor and HDL simulation to execute effec-
tive processing, (iii) Reconfigurable Coprocessor was
implemented at the gate-level (embedded RAMs ex-
cluded) using standard synthesis tools (Reconfigurable
Interconnection Networks switches were implemented
using three-state buffers, Configuration Memory were
implemented using an array of 32-bit registers, all
C-Boxes and S-Boxes considered in this paper are
single bus), (iv) a set of parametric functions imple-
menting multimedia dominant kernels were coded us-
ing ansi-C language; (v) cycle level performances of
the system have been compared to standard processing
platforms (a RISC processor and a fixed point DSP).

5.1. Modeling and Validation

The whole system has been modelled using Verilog
HDL. Coprocessor functionality has been validated

SYNOPSYS VCS

SIMULATION

ENVIROMENT

INSTR

ADDR
BUS

ALGORITHMS
C CODE

BINARY
CODE

CONVERSION TO
VERILOG READABLE

FORMAT

ARM 9TM
(BEHAVIORAL

MODEL)

DATA
MEMORY

(BEHAVIORAL
MODEL)

INSTRUCTION
MEMORY

(BEHAVIORAL
MODEL)

RECONFIGURABLE
COPROCESSOR

(SYNTHETIZABLE
BEHAVIORAL

MODEL)

INSTR

ADDR BUS

INSTR

BUS

DATA

BUS

ARM SDT
ENVIROMENT
(COMPILER;
ASSEMBLER;

 LINKER)

Figure 12. Coprocessor verification flow.

through Verilog simulation, performed using Synop-
sys VCS simulation environment [25]. A graphical
description of simulation framework is depicted in
Fig. 12.

To model the host-processor, a Verilog cycle level
compliant version of ARM9TM processor [26] has
been used. Data and instruction memories have been
also modelled using Verilog behavioral description. Al-
gorithms code has been compiled using ARM SDT
[27] and the output binary code has been converted
in a Verilog readable form and loaded into Instruction
Memory.

5.2. Evaluation

To evaluate coprocessor basic figures of merit two anal-
ysis have been performed: (i) gate level implementa-
tion, (ii) dominant kernel execution comparison.

5.2.1. Gate-level Implementation Results. The re-
configurable coprocessor has been synthesized using
Synopsys Design Compiler [25] on CMOS 0.18 μm
technology library (UMC18μ1P6M) [28], with the
only exception of embedded RAMs. Transistor count
of synthesizable part of the coprocessor were esti-
mated using synthesis reports, while for embedded
RAMs we considered 6 transistors for each memory
cell (bit) and a 1.2 coefficient to consider auxiliary logic
(sense amplifiers, decoders, etc.) [29]. Computational

146 Carta, Pani and Raffo

and control elements of Reconfigurable Processing
Core (ALUs, MULs, Counters, control delay lines,
etc.) require 10.53 K equivalent gates (42.12 K tran-
sistors); Reconfigurable Interconnection Networks re-
quire 23.62 K equivalent gates, (94.48 K transistors);
embedded RAMs require 24.5 K bits (176.9 K tran-
sistors); Configuration Memory was implemented us-
ing 29 32-bit registers (928 bits), requiring 5.92 K
equivalent gates, (23.68 K transistors); Interface re-
quires 3.24 K equivalent gates (12.96 K transistors).
The overall gate level implementation requires 40.07
K equivalent gates (160.28 K transistors) and 24.5 K
bits of memory (176.4 K transistors) for a total amount
of 335.68 K transistors. It is worth to note that a large
percentage of standard-cells (more than 58%) is dedi-
cated to Reconfigurable Interconnection Networks, i.e.
to standard-cell implemented three-state buffers used
to realize switches in C-boxes and S-boxes. The in-
cidence of this kind of feature to overall area can be
substantially reduced using custom pass-transistors in-
stead of standard-cell three-state buffers to implement
switches (for a single switch, area reduction is up to
70%). The intrinsic regularity of the architecture and
the use of pipelined computational elements in datap-
ath and control allow a very high computational speed:
estimated maximum allowable frequency is 460 MHz.

5.2.2. Dominant Kernels Compared Execution Re-
sults. Table 1 shows the comparison of cycles and
processing time required for specific tasks on: (i) RCS
(reconfigurable coprocessor plus host processor), (ii) a
32-bit RISC processor (ARM9TM), (iii) a 16-bit fixed-
point Digital Signal Processor (Texas Instruments
TMS320C5510) [30]. Since different technologies lead
to difference operative frequencies the most significant
comparison is in terms of clock cycles because it can
be considered technology independent

Results have been obtained using respectively: the
simulation framework depicted in Fig. 12, ARM stan-
dard development tools [27], simulator and profiler,
Texas Instruments Code Composer Studio Develop-
ment Tools (TMDSCCS5000-1) [31], simulator and
profiler.

The profiling has been executed on optimized C
source code from [19, 21, 24] and from TI proces-
sors’ benchmarks (for MPEG FDCT and IDCT). For
both processors we have set the highest level of opti-
mization in the C compiler. The same code has been
analyzed to create the configuration for our reconfig-
urable coprocessor.

Table 1 is organized in eight columns. First column
shows kernel description, columns 2 and 3 show the
number of clock cycles and the processing time re-
quired for kernel execution respectively on ARM9TM
RISC (200MHz) processor and on TMS320C5510
DSP (200MHz). Column 4 shows the overall number
of clock cycles and processing time required for ker-
nel execution on Reconfigurable Coprocessing System.
The number of clock cycles is the sum of 3 contributes:
cycles spent for configuration step (worst case), for data
I/O and for processing. These quantities are showed in
the fifth column in disaggregate form. Column 6 and
7 shows the percentage reduction in clock cycles and
in processing time obtained comparing reconfigurable
coprocessing system with respect to ARM9TM and
TM320C5510 processors.

To better evaluate the potentiality of our approach
we defined two additional tables. Table 2 gives a quan-
titative description of kernel operators. It presents the
types of operators involved in the computation of each
kernel, and for each operator, how many times it is
used. Operators are classified in data processing opera-
tors and vectors/matrix addresses processing operators.
Table 3 shows coprocessor resources utilization dur-
ing each kernel processing. Resources are classified in
datapath resources and Indexes/Addresses Unit (IAU)
resources. Since the IAU resources are combinatorial
(with the only exception of counters) the percentage of
utilization corresponds to the percentage of allocated
units for the generation of addresses and control signals
for every kernel.

5.2.3. Comparison with Previous Works. Many re-
configurable architectures have been presented in sci-
entific literature to address specific issues related to
hardware accelerators. Trying to compare our approach
with these previous works, it is worth to consider both
the philosophy and the architectural structure. From
a structural point of view, reconfigurable architectures
can be classified according to their granularity and kind
of interconnection network. Since the interconnection
network is a secondary issue, primarily we can distin-
guish between coarse-grained, fine-grained and mixed-
grained architectures.

Fine-grained reconfigurable systems are closest to
FPGAs: they exploit the fine granularity to build up
datapaths with different data widths in the most flex-
ible way. Examples of such architectures are GARP
[7] and CHESS [32]. This kind of fine-grained ap-
proach involves however some pitfalls. Reconfigurable

Table 1. Comparison result.

Rec. Coproc.

Configuration

ARM9TM C5510 data I/O Red. vs RISC Red. vs DSP

Kernel cycles cycles Cycles processing cycles % cycles%

description time [μs] time [μs] time [μs] — time % time %

500

IIR Filter I 7370 2463 1340 450 82 46

(VSELP) 390

36.85 12.31 2.91 — 92 76

500

IIR Filter II 7559 2526 1350 450 82 47

(VSELP) 400

37.79 12.63 2.93 — 92 77

500

FIR Filter 7200 2467 1350 450 81 45

(VSELP) 400

36 12.33 2.93 — 92 76

500

Auto Corr. I 26743 7720 5140 3200 81 33

(VSELP) 1440

133.71 38.6 11.17 — 92 71

500

Auto Corr. II 1502879 332567 72900 8400 95 78

(ACELP) 64000

7514.39 1662.63 158.47 — 98 90

500

Auto Corr. III 46996 13061 5330 2245 89 59

(ACELP) 2585

234.98 65.3 11.58 — 95 82

500

Cross Corr. I 396307 105285 25380 4400 94 76

(VSELP) 20480

1981.53 526.42 55.17 — 97 90

500

Cross Corr.II 15233 4544 1920 600 87 58

(ACELP) 820

76.16 22.72 4.17 — 95 82

500

Synth Filter I 7584 2407 1350 450 82 44

(ACELP) 400

37.92 12.03 2.93 — 92 76

500

Synth Filter II 64464 43576 2600 1140 96 94

(RPE-LPT) 960

322.32 217.88 5.65 — 98 97

500

Convolution 15162 4504 1920 600 87 57

(ACELP) 820

75.81 22.52 4.17 — 94 81

500

Rest Eval 11860 2570 1590 650 87 38

(ACELP) 440

59.3 12.85 3.45 — 94 73

500

Search 60919 17586 4170 430 93 76

(RPE-LTP) 3240

304.59 87.93 9.06 — 97 90

500

FDCT 6716 1498 1032 128 85 31

(MPEG2) 1024

33.58 7.49 2.24 — 93 70

500

IDCT 16136 3159 1032 128 94 67

(MPEG2) 1024

80.68 15.79 2.24 — 97 86

148 Carta, Pani and Raffo

Table 2. Number and kind of operators applied to data and indexes for kernel execution.

Data operators Addresses operators

Kernel description sums/subs Muls Shifts sums/subs Muls

IIR Filter I (VSELP) 390 390 39 429 0

IIR Filter II (VSELP) 400 400 40 440 0

FIR Filter (VSELP) 400 400 40 440 0

Auto Corr. I (VSELP) 1440 1440 1440 2952 2916

Auto Corr. II (ACELP) 0 64000 0 320000 1600

Auto Corr. III (ACELP) 0 2585 45 2585 0

Cross Corr. I (VSELP) 20480 20480 20480 61952 20992

Cross Corr. II (ACELP) 820 820 0 820 0

Synth. Filter I (ACELP) 440 400 40 400 0

Synth. Filter II (RPE-LPT) 1920 960 960 120 0

Convolution (ACELP) 0 820 40 820 0

Rest Eval (ACELP) 440 440 40 880 0

Search (RPE-LTP) 3320 3240 3240 6480 0

FDCT (MPEG2) 576 512 0 1152 1152

IDCT (MPEG2) 576 512 0 1152 1152

Table 3. Hardware percentage utilization.

Datapath resources IAU resources

Kernel description ALUs Mul Shifter Counters ALUs Mul

IIR Filter I (VSELP) 50% 100% 100% 50% 50% 0%

IIR Filter II (VSELP) 50% 100% 100% 50% 50% 0%

FIR Filter (VSELP) 50% 100% 100% 50% 50% 0%

Auto Corr. I (VSELP) 50% 100% 100% 75% 50% 75%

Auto Corr. II (ACELP) 0% 100% 100% 75% 100% 25%

Auto Corr. III (ACELP) 0% 100% 2% 50% 25% 0%

Cross Corr. I (VSELP) 50% 100% 100% 75% 100% 50%

Cross Corr. II (ACELP) 50% 100% 0% 50% 25% 0%

Synth. Filter I (ACELP) 60% 100% 100% 50% 25% 0%

Synth. Filter II (RPE-LPT) 100% 100% 100% 50% 25% 0%

Convolution (ACELP) 0% 100% 20% 50% 25% 0%

Rest Eval (ACELP) 50% 100% 10% 50% 50% 0%

Search (RPE-LTP) 54% 100% 100% 50% 50% 0%

FDCT (MPEG2) 62% 50% 0% 100% 100% 100%

IDCT (MPEG2) 62% 50% 0% 100% 100% 100%

platforms have been conceived to overcome the slow-
ness in configuration of traditional FPGAs due to the
high amount of configurable elements and serial config-
uration interfaces, and the relatively low performances
of such substrates in terms of computational speed and
power consumption. As a matter of fact, FPGA rep-
resent the most flexible substrate for the implemen-

tation of any design but pay this flexibility with lim-
ited performances. If a reconfigurable platform is com-
posed of reconfigurable elements with fine granular-
ity (2-4 bits) all the limits of FPGAs arise again: a
huge interconnection network that occupies the great-
est part of the chip area, an intrinsic slowness in terms
of clock frequency and a poor exploitation of the

Reconfigurable Coprocessor for Multimedia Application Domain 149

properties of multimedia algorithms to deal with large
data words.

To overcome these limits, coarse-grained architec-
tures like PipeRench [8], MorphoSys [9], DReAM [10],
KressArray [11], MATRIX [13] adopt reconfigurable
units with a larger data word. In this manner the in-
terconnection network can be kept simpler and also
the speed of a large reconfigurable unit is higher than
that of an equivalent block that could descend from
the interconnection of finer units in a fine-grained ar-
chitecture. At the same time such architectures are not
flexible enough to deal with variable data width. Other
examples of coarse-grained architectures but where ev-
ery functional unit is a small processor are RAW [12]
and REMARC [6].

Our approach belongs to the category of mixed-
grained architectures since the granularity of the el-
ements is quite different into the array, allowing the
presence of heterogeneous elements like FPGA blocks,
barrel shifters, ALUs, multipliers with different data
width and so on. A similar approach has been exploited
in the Pleiades [3] template, even if the Maia [5] chip
that descends from the same template doesn’t contain
multigranular elements.

It should be noted that this is only a raw classifi-
cation because some of the architectures cited above,
like [5, 8], and the one presented in this paper, have
a granularity specifiable at synthesis time and take all
the advantages of the other two approaches. Another
key aspect briefly introduced above is the homogeneity
of the processing elements. Undifferentiated cells are
very common in this type of architectures [6–13, 32]
because the most general approach is to create a fab-
ric of identical cells able to perform any arbitrary task.
This choice limits the ability to create domain-specific
instances of the architecture able to obtain the highest
performances for that particular application domain.
Our heterogeneous model shows better performance
with respect to bit-byte-word level architectures based
on absolutely identical “tiles”.

The two works that are closer to our reconfigurable
coprocessors are [5] and [10]. In [5] a reconfigurable
coprocessor based on the Pleiades templates is
presented. The Maia architecture is a reconfigurable
coprocessor for CELP speech coding, and it aims
to speed-up computational kernels by means of the
application-specific datapath, reducing also the power
consumption. The greatest difference compared to
our work is that Maia is a self-timed asynchronous
implementation with all circuit blocks (including

the top level design of the chip) designed using a
full-custom design methodology. This is because
the self-timed data-driven approach is not suited for
automated synthesis due to its intrinsically difficult
timing verification. All this characteristics make the
instantiation of a coprocessor from the Pleiades tem-
plate not very straightforward compared to standard
cell synchronous design approaches exploited in our
work. Furthermore the data-driven approach requires
an handshake protocol that represents an overhead
in communication time. Finally, the control part of
Maia is based on two Address Generation Processors
(AGPs) that works on sequential codes to perform the
addresses generation, whereas our control part is less
complex and doesn’t require any micro-code routine
but only some parameters for the cascaded counters
that are the basis of the address generation units.

The DReAM architecture [10] is based on an array
of undifferentiated functional units. These units have
fixed data width of 8 bits, that is quite narrow for today’s
applications. Every unit also presents a look-up table
based multiplier, hence its scalability is reduced by the
look-up tables sizes limits. In our approach multipliers
are standard pipeline structures which can be easily op-
timized by means of synthesis tools. The adoption of
undifferentiated cells allows a greater flexibility of the
system compared to our approach. Nevertheless, this
advantage is overcome by the higher hardware redun-
dancy that is a slightly inefficient solution with respect
to hardware usage considering that the authors stress
the domain specific approach. In our reconfigurable
architecture hardware redundancies have been limited
dimensioning the structure considering all the main
kernel types identifiable in the considered domain. Fi-
nally, in DReAM the adoption of a regular mesh with
hierarchical interconnection structure avoids specific
optimizations so that the advantages in terms of gener-
ality aren’t balanced by the efficiency of the network. It
should be noted that DReAM, like also the largest part
of the mentioned previous works, is not a customizable
template but a specific architecture. From this point of
view all the mentioned drawbacks highlighted for this
last previous work are common to the other similar not
customizable reconfigurable architectures.

6. Discussion and Conclusions

A new reconfigurable architectural template for exe-
cution acceleration of a wide class of dominant ker-
nels is proposed. Dominant kernels considered are

150 Carta, Pani and Raffo

based on repetitive execution of a reduced set of oper-
ations on multidimensional arrays (vectors or matrix).
Our approach uses reconfigurable computing paradigm
to accelerate execution: (i) cycles required for loops
conditions calculation and evaluation were eliminated
by the use of a reconfigurable dedicated processing-
scheduling units; (ii) cycles required for array indexes
calculation and array data fetching were eliminated by
the use of dedicated reconfigurable processing units
and reconfigurable Embedded RAM clusters; (iii) the
number of cycles required for array data processing
was minimized by the use of high parallel-pipelined
reconfigurable datapath.

The system is based on a reconfigurable coprocessor
coupled to a host processor. Being based on a classic
memory mapped communication scheme and on a sim-
ple interrupt-based signalling technique, coprocessor is
intrinsically conceived to be easily coupled with each
kind of processor. More coprocessors can be also eas-
ily clustered in the same system to allow thread level
parallelism. System functionality can be sized to the
chosen application domain simply tuning the number
of resources (i.e. to handle up to N nested loops, N
counters are needed in Loops Unit, to process floating
point data is sufficient to add one or more floating point
units to replace or support ALUs and multipliers in the
Pipelined Datapath, etc.), without redesigning the sys-
tem for each new application domain. The benefits of
our approach increase proportionally to the number of
iterations of the loops, because the overhead of cycles
needed for system reconfiguration is fixed, whereas the
number of cycles saved for (i), (ii) and (iii) increases
with the iterations.

Many reconfigurable architectures are available in
scientific literature. Trying to relate our architecture
to the state of the art, they can be mainly classified
according to their granularity. Primarily we can distin-
guish between coarse-grained, fine-grained and mixed-
grained architectures. Fine-grained ones are closest to
FPGAs: they exploit the fine granularity to build up
datapaths with different data widths in the most flex-
ible way [7, 32]. Using such a fine-grained approach
may cause on one hand an excessive overhead in re-
configuration and on the other hand does not exploit
the properties of multimedia algorithms to deal with
large data words. Coarse-grained architectures [5, 8–
11, 13] are often not enough flexible to deal with vari-
able data width. This is only a raw classification be-
cause some of the architectures cited above, like the
one presented in this paper, have a granularity specifi-

able at synthesis time [5, 8] and take all the advantages
of the other two approaches. Undifferentiated cells are
very common in this type of architectures [6–13, 32]
because the most general approach is to create a fab-
ric of identical cells able to perform any arbitrary task.
This choice limits the ability to create domain-specific
instances of the architecture able to obtain the highest
performances for that particular application domain.
Our model shows a mixed-grained architecture that in-
cludes coarse-grained modules like multipliers, adders
and shifters, and fine-grained FPGA modules obtaining
better performance with respect to bit-byte-word level
architecture based on absolutely identical “tiles” (i.e.
[12]). Moreover, with respect to similar works (i.e. [5])
our system is a standard synchronous architecture syn-
thesized from a Verilog RTL code, without any hand-
made optimization and no microprocessor unit for data
address generation and internal control is required.

To validate our approach an instance of the proposed
reconfigurable coprocessing template customized for
multimedia application domain has been modelled us-
ing Verilog HDL, synthesized at the gate level and
tested on dominant kernel extracted from standard mul-
timedia algorithms. A library of parametric C func-
tions implementing multimedia dominant kernels al-
lows high level programmers to ignore the complex
inner structure of the architecture. Results show a re-
duction of the number of cycles for dominant kernels
processing from 81% (Auto Corr I extracted from GSM
VSELP) up to 96% (Synth. Filter II extracted from
GSM RPE-LTP) compared to a standard 32-bit RISC
processor (ARM9TM), whereas a reduction from 31%
to 94% compared to top class fixed point DSP (TI
TMS320C5510), for the same kernels. The software
profiling, architectural and hardware design and sim-
ulation methodology has been presented as a general
approach easily portable to other application domains.

Acknowledgment

The authors wish to thank Oreste Villa and Romolo
Camplani for the development of part of the code,
Massimo Barbaro for useful suggestions and support.

References

1. R. Tessier, W. Burleson, “Reconfigurable Computing for Digital

Signal Processing: A Survey,” Journal of VLSI Signal Process-
ing, no. 28, 2001, pp. 7–27.

Reconfigurable Coprocessor for Multimedia Application Domain 151

2. K. Compton, S. Hauck, “Reconfigurable Computing: A Survey

of Systems and Software,” ACM Computing Surveys, vol. 34,

No. 2, June 2002, pp. 171–210.

3. J. M. Rabaey, “Reconfigurable Computing: The Solution to Low

Power Programmable DSP,” Proceedings 1997 ICASSP Confer-
ence, Munich, April 1997.

4. R. Sueyoshi, M. Iida, “Configurable and Reconfigurable Com-

puting for Digital Signal Processing,” IEICE Transactions on
Fundamentals, vol. E85-A, No. 3, March 2002, pp. 591–599.

5. A. Abnous, “Low-Power Domain-Specific Processors for Digi-

tal Signal Processing,” PhD thesis, Dept. of EECS, UC Berkeley,

CA, USA, 2001.

6. T. Miyamori, K. Olukotun, “REMARC: Reconfigurable Mul-

timedia Array Coprocessor,” IEICE Trans. on Information and
Systems, vol. E82-D, No. 2, February 1999, pp. 389–397.

7. J. H. Hauser, “Augmenting a Microprocessor with Reconfig-

urable Hardware,” PhD thesis, Dept. of EECS, UC Berkeley,

CA, USA, 2000.

8. S.C. Goldstein, H. Schmith, M. Moe, M.Budiu, S. Cadambi, R.R.

Taylor, R. Laufer, “PipeRench: A Coprocessor for Streaming

Multimedia Acceleration,” Proc. of The 26th Annual Internation
Symposium on Computer Architecture, Atlanta, Georgia, May

1999.

9. H. Sing, M. Lee, F.J. Kurday, N. Bagherzadeh, E.M. Chaves

Filho, “MorphoSys: an Integrated Configurable System for

Data-Parallel and Computation Intensive Applications,” IEEE
Transactions on Computer, vol. 49, no. 5, May 2000, pp. 465–

481.

10. J. Becker, M. Glesner, A. Alsolaim, J. Starzyk, “Architecture

and Application of a Dynamically Reconfigurable Hardware

Array for Future Mobile Communication Systems,” Proceed-
ings of IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM’00), Napa, CA, USA, April 17–19,

2000.

11. R. Hartenstein, R. Kress, “A Datapath Synthesis System for the

Reconfigurable Datapath Architecture,” Asia and South Pacific
Design Automation Conference, ASP-DAC ’95, August 1995.

12. E. Waingold, M. Taylor, D. Srikrishna, V. Sakar, W. Lee, V. Lee,

J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe,

A. Agarwal, “Baring It All to Sofware: Raw Machines,” IEEE
Computer, September 1997, pp. 86–93.

13. E. Mirsky, A. DeHon, “MATRIX: A Reconfigurable Computing

Architecture with Configurable Instruction Distribution and De-

ployable Resources,” FCCM ’96 - IEEE Symposium on FPGAs
for Custom Computing Machines, Napa, CA, April 1996.

14. K. Murakami, H. Magoshi, “Trends in High-Performance, Low-

Power Processor Architectures,” IEICE Transactions on Elec-
tronics, vol. E84-C, no. 2, February 2001, pp. 131–138.

15. A. Varma, C. S. Raghavendra, “Interconnection Networks for

Multiprocessors and Multicomputers: Theory and Practice,”

IEEE Computer Society Press, 1994.

16. E.T.S.I., “Full Rate speech transcoding—Digital cellular

telecommunication system (Phase 2+)—GSM 06.10 version

8.0.2,” http://www.etsi.org, 1999.

17. J. Degener, C. Bormann, “Source code for the GSM Full

Rate speech codec,” http://kbs.cs.tu-berlin.de/∼jutta/toast.html,

Technische Universitaet Berlin.

18. E.T.S.I., “Half rate speech transcoding—Digital cellu-

lar telecommunication system—GSM 06.20 version 8.0.1,”

http://www.etsi.org, 1999.

19. E.T.S.I., “ANSI-C code for the GSM half rate speech codec –

Digital cellular telecommunication system—GSM 06.06 ver-

sion 8.0.1,” http://www.etsi.org, 1999.

20. E.T.S.I., “Enhanced Full Rate (EFR) speech transcoding—

Digital cellular telecommunication system (Phase 2+)—GSM

06.60 version 8.0.1,” http://www.etsi.org, 1999.

21. E.T.S.I., “ANSI-C code for the GSM Enhanced Full Rate

speech codec—Digital cellular telecommunication system—

GSM0 6.53 version 8.0.1,” http://www.etsi.org, 1999.

22. ISO/IEC JTC1/SC29/WG11, “ISO/IEC DIS 13818-1 Informa-

tion technology—-Generic coding of moving pictures and asso-

ciated audio information: Systems,” July 1996.

23. ISO/IEC JTC1/SC29/WG11, “ISO/IEC DIS 13818-2 Informa-

tion technology—Generic coding of moving pictures and asso-

ciated audio information: Video,” July 1996.

24. C. Lee, M. Potkonjak, W. H. Mangione-Smith, “Media-

Bench: A Tool for Evaluating and Synthesizing Multimedia

and Communications Systems,” Department of Computer Sci-
ence and Electrical Engineering, University of California at

Los Angeles, July 1996.

25. Synopsys Inc., http://www.synopsys.com.

26. ARM Limited, http://www.arm.com.

27. ARM Corporation, “ARM Software Development Toolkit: Ver-

sion 2.50,” Reference Guide, ARM DUI 0041C, Nov. 1998.

28. UMC, http://www.umc.com.

29. J.M. Rabaey, A. Chandrakasan and B. Nicolic, “Digital Inte-

grated circuits—a Design Perspective, second edition,” Prentice
Hall Electronics and VLSI Series, 2003.

30. Texas Instruments Inc., http://www.ti.com.

31. TMS320C55x Instruction Set Simulator Technical Overview,

Texas Instruments Inc., SPRU599A, July 2002.

32. A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B.

Hutchings, “A Reconfigurable Arithmetic Array for Multimedia

Applications,” Proceedings 7th ACM International Symposium
on Field-Programmable Gate Arrays, Monterey (CA), February

1999, pp. 135–143.

Salvatore M. Carta (1997 Electronic Eng. Master. 2002 Electron-

ics and Computer Science PhD) joined the Department of Electrical

and Electronics Engineering of the University of Cagliari, Italy in

1998 as PhD student. From 2005 he has been assistant professor in

Department of Mathematics and Computer Science of the Univer-

sity of Cagliari. His research interests focus mainly on architectures,

software and tools for embedded and portable computing, with par-

ticular emphasis on: languages, architectures and compilers for re-

configurable and parallel computing; Networks-on-chip; Operating

systems for multiprocessor-systems-on-chip; low power real-time

scheduling algorithms.

salvatore@unica.it

152 Carta, Pani and Raffo

Danilo Pani (2002 Electronic Eng. Master, 2006 Electronics and

Computer Science PhD) joined the Department of Electrical and

Electronics engineering of the University of Cagliari, Italy in

2002 as Electronics and Computer Science PhD student. His pri-

mary research interests are in the area of Digital Signal Process-

ing architectures and systems, Biomedical Engineering, Reconfig-

urable Systems and Cooperative VLSI architectures for distributed

computing.

pani@diee.unica.it

Luigi Raffo (1989 Master, 1994 Electronics and Computer Science

PhD) joined Department of Electrical and Electronics Engineering

of the University of Cagliari, Italy in 1994 as assistant professor.

From 1998 he has been professor of Digital System Design, Inte-

grated Systems Architectures and Microelectronics at the same De-

partment. His research activity is mainly in the design of low-power

analog and digital architectures/chips. He has been project manager

of many local and international projects. He is author of more than

50 international papers in the field.

raffo@unica.it

