
Journal of VLSI Signal Processing 47, 15–31, 2007

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-006-0017-6

The Erlangen Slot Machine: A Dynamically Reconfigurable

FPGA-based Computer

MATEUSZ MAJER AND JÜRGEN TEICH

Hardware-Software-Co-Design, University of Erlangen-Nuremberg, Am Weichselgarten 3,
91058 Erlangen, Germany

ALI AHMADINIA

School of Engineering and Electronics, Mayfield Rd, Edinburgh EH9 3JL, Scotland, UK

CHRISTOPHE BOBDA

Self-Organizing Embedded Systems, University of Kaiserslautern, P.O. Box 3049,
67653 Kaiserlautern, Germany

Received: 1 February 2006; Revised: 13 November 2006; Accepted: 15 November 2006

Abstract. Computer architects have been studying the dynamically reconfigurable computer (Schaumont,

Verbauwhede, Keutzer, and Sarrafzadeh, BA Quick Safari through the Reconfiguration Jungle,^ in Proc. of the
38th Design Automation Conference, Las Vegas, pp. 127–177, 2001) for a number of years. New capabilities

such as on-demand computing power, self-adaptiveness and self-optimization capabilities by restructuring the

hardware on the fly at run-time is seen as a driving technology factor for current research initiatives such as

autonomic (Kephart and Chess, Computer, 36:41–52, 2003; IBM Autonomic Computing Initiative, (http://

www.research.ibm.com/autonomic/)) and organic computing (Müller-Schloer, von der Malsburg, and Würtz,

Inform.-Spektrum, 27:332–336, 2004; The Organic Computing Page, (http://www.organic-computing.org)).

Much research work is currently devoted to models for partial hardware module relocation (SPP1148

Reconfigurable Computing Priority Program, (http://www12.informatik.uni-erlangen.de/spprr/)) and dynami-

cally reconfigurable hardware reconfiguration on e.g., FPGA-based platforms. However, there are many

physical restrictions and technical problems limiting the scope or applicability of these approaches. This led us

to the development of a new FPGA-based reconfigurable computer called the Erlangen Slot Machine. The

architecture overcomes many architectural constraints of existing platforms and allows a user to partially

reconfigure hardware modules arranged in so-called slots. The uniqueness of this computer stems from (a) a new

slot-oriented hardware architecture, (b) a set of novel inter-module communication paradigms, and (c) concepts

for dynamic and partial reconfiguration management.

Keywords: partiall dynamic reconfiguration, FPGA-based computer, platform, ESM,

rekonfiguration manager, relocation

1. Introduction

Growing capacities provided by FPGAs as well as

their partial reconfiguration capabilities have made

NO60017; No. of Pages 17

Supported in part by the German Research Foundation (DFG),

SPP 1148 (Rekonfigurierbare Rechensysteme) under contract

TE163/14-2 and by Xilinx Inc.

http://www.research.ibm.com/autonomic/
http://www.research.ibm.com/autonomic/
http://www.organic-computing.org
http://www12.informatik.uni-erlangen.de/spprr/

them the ultimate choice for reconfigurable comput-

ing platforms. Partial reconfiguration is useful a) to

increase the flexibility in computation and b) for

efficiency reasons by time-sharing the resources on

the device. It requires run-time loadable modules

that are typically pre-compiled and stored as bit-

streams, which will then be used to reconfigure the

device, i.e., allocate space for the subsequent

execution the module. Several models and algo-

rithms for on-line placement have been developed in

the past, see e.g., [6–8]. However, these algorithms

are limited by two main factors. First of all, the

model assumptions are often not realistic enough for

implementation on real hardware or require very

tedious processes. Second, the development process

of modules is subject to many restrictions that make

a systematic development process for partial recon-

figuration difficult.

Until now, no FPGA-based platform on the market

provides a solution to the problems of design automa-

tion for dynamically reconfigurable hardware modules

and their efficient and flexible relocation. The purpose

of the Erlangen Slot Machine (ESM) [9–12] is to

overcome many of the deficiencies of existing FPGA-

based reconfigurable computers by providing:

– A new flexible FPGA-based reconfigurable plat-

form that supports relocatable hardware modules

arranged in so-called slots.

– Tool support for the development of run-time

reconfigurable computation and communication

modules using new inter-module communication

paradigms.

– A powerful reconfiguration manager which ena-

bles various preprocessing stages for fast bitstream

manipulation. We call the preprocessing stages

plug-ins. For example, a relocation plug-in can be

selectively activated before a bitstream is uploaded

to the FPGA.

Reconfiguration times in the range of seconds [13]

are not sufficient for applications that require a fast

reaction to external events. Our hardware reconfig-

uration manager described in this paper is the

foundation for reconfiguration times in the range of

milliseconds. For example, these fast reconfiguration

times will allow a seamless switching of video filters

in a video pipeline processing architecture.

This paper is organized as follows: In Section 2, we

summarize the major problems of today_s reconfig-

urable computers with respect to allowing partial

reconfiguration and unrestricted module relocation.

Section 3 provides an overview of the Erlangen Slot

Machine. Moreover, we show the advantages of our

platform in comparison to related work in this area

and give an overview of target application domains

for this platform. One major issue still solved

unsatisfactorily is inter-module communication. In

Section 4, we therefore provide different new para-

digms for inter-module communication of relocatable

hardware modules. Section 5 presents application

domains for the Erlangen Slot Machine, such as video

and audio streaming. In Section 6, we present the

concept of our reconfiguration manager as well as

different workload scenarios. These scenarios show

the enhanced flexibility of our concept for different

application domains. In Section 7, we conclude our

work and provide an outlook of future work.

2. Drawbacks of Existing Systems

Despite the announcement made by several compa-

nies in the last couple of years about the design and

production of new and mostly coarse-grained recon-

figurable chips [14–18], the dominant part of today_s
reconfigurable computing platforms are still fine-

grained and FPGA-based. The growing capacities

provided by FPGAs as well as their partial reconfig-

uration capabilities have made them the ultimate

choice. Xilinx FPGAs [19] combine the advantages

of large capacity and the ability to support partial

reconfiguration. The Virtex series offers enough

logic for efficiently implementing applications with

high demand of resources, e.g., arising in video,

audio and signal processing as well as in other fields

like automotive applications.

There are, however, many open problems con-

cerning module relocation: One particular problem

is, for example, in order to connect a module to other

modules and/or pins, signals are often required to

pass through other modules. We call those signals

used by a given module and crossing other modules

feed-through signals. Using feed-through lines to

access resources has, however, two negative con-

sequences, as illustrated in Fig. 1:

– Difficulty of design automation: Each module must

be implemented with all possible feed-through

channels needed by other modules. Because we only

know at run-time which module needs to feed

16 Majer et al.

through a signal, many channels reserved for a

possible feed-through become redundant.

– Relocation of modules: Modules accessing exter-

nal pins are no longer relocatable, because they are

compiled for fixed locations where a direct signal

line to these pins is established.

Many FPGA-based reconfigurable platforms such

as [20–25] offer various interfaces for audio, video

capturing and rendering and for communication.

However, each interface is connected to the FPGA

using dedicated pins at fixed locations. Modules with

access to a given interface such as a VGA (video

graphics adapter, see Fig. 2) must be placed in the

area of the chip where the FPGA signals are

connected, thus making a relocation impossible.

Until now, no platforms on the market provide a

solution to these problems.

Before we present in detail the architecture of the

Erlangen Slot Machine and some required factors for

innovation, we summarize most of the important

problems limiting the use of partial and dynamic

reconfiguration on current existing FPGA-based

reconfigurable computers:

1. Limitation of partial reconfiguration support on
actual FPGAs: Very few FPGAs allowing partial

reconfiguration exist on the market. These few

FPGAs, like the Virtex series by Xilinx [19],

impose nonetheless some restrictions on the least

amount of resources that can be reconfigured at a

time, for example column-wise reconfiguration.

2. I/O-pin dilemma: Most of the existing platforms

include I/O peripherals like video, RAMs, audio,

ADC (analog to digital converter) and DAC (digital

to analog converter) connected at fixed pins of the

device. As a consequence of these pin constraints,

reconfiguration may be difficult or even impossible.

Another problem related to pins is that the pins

belonging to a given logical group like video, and

audio interfaces are not situated closely to each

other. On many platforms, they are spread around

the device. A module accessing a device will have

to feed many lines through many different compo-

nents. This situation is illustrated in Fig. 2: Two

modules (one of which is a VGA module) are

implemented. The VGA module uses a large

number of pins at the bottom part of the device

and also on the right hand side. Implementing a

module without feed-through lines is only possible

on the two first columns on the left hand side. The

effort needed for implementing a reconfigurable

module on more than two columns together with the

VGA module is very high. Celoxica [20], XESS

[21], Nallatech [22], and Alpha boards [23] all

exhibit the same limitations. On the XF-Board [24,

25] from ETH Zurich, the peripherals are connected

to one side of the device. Each module accesses I/

Os through an operating system (OS) layer imple-

mented on the left and right part of the device.

Many other existing platforms like the RAPTOR

board [26], Celoxica RC1000 and RC2000 [20] are

PCI systems that require a workstation for opera-

Figure 1. The feed-through line problem with relocatable

modules. Placing a new module B into slot two requires that the

new module provides all feed-through lines needed by slot one and

three. This fact disables any module relocation and makes it

impossible to place modules with different feed-through require-

ments into the other slots.

Figure 2. Pin distribution of a VGA module on the RC200

platform. It can be seen that the VGA Module occupies pins on the

bottom and right FPGA borders. In consequence, only a narrow part

on the left side is available for dynamic module reconfiguration.

ESM: A Dynamically Reconfigurable FPGA-based Computer 17

tion. The use in stand-alone systems as needed in

many embedded systems is not possible.

3. Inter-module communication dilemma: Modules

placed at run-time on the device typically need to

exchange data among each other. Such a request for

communication is dynamic due to run-time module

placement. Dynamically routing signal lines on the

hardware is a very cumbersome task. For efficiency

reasons, new communications paradigms must be

investigated to support such dynamic connection

requests, for example packet-based DyNoCs [27] or

principles of self-circuit routing.

4. Local memory dilemma: Modules requiring large

amounts of local memory cannot be implemented

since a module can only occupy the memory

inside its physical slot boundary. Storing data in

off-chip memories is therefore the only solution.

However, existing FPGA-based platforms often

have only one or two external memory banks and

their pin connections are spread loosely over the

borders of the FPGA.

With these limitations in mind, we designed a new

FPGA-based reconfigurable computer called the

Erlangen Slot Machine (ESM). Its architecture

circumvents all of the above problems and will be

described next.

3. The Erlangen Slot Machine

The main idea of the Erlangen Slot Machine (ESM)

architecture is to accelerate application development

as well as research in the area of partially reconfig-

urable hardware. The advantage of the ESM platform

is its unique slot-based architecture which allows the

slots to be used independently of each other by

delivering peripheral data through a separate cross-

bar switch as shown in Fig. 3. We decided to spend

an off-chip crossbar in order to have as many

resources free on the FPGA for partially reconfig-

urable modules. The ESM architecture is based on

the flexible decoupling of the FPGA I/O-pins from a

direct connection to an interface chip. This flexibility

allows the independent placement of application

modules in any available slot at run-time. As a

result, run-time placement is not constrained by

physical I/O-pin locations as the the I/O-pin routing

M1 M2 M3

F
P

G
A

Crossbar

SRAM SRAM SRAM

BabyBoard

solves memory dilemma

solves
I/O-Pin dilemma

Peripherals

solves inter-module
communication
dilemma

PowerPC

Reconfiguration
Manager

Flash

MotherBoard

Figure 3. ESM Architecture overview. The architecture of the BabyBoard is refined in Fig. 4. The MotherBoard is shown in Fig. 5.

18 Majer et al.

is done automatically in the crossbar, and the I/O pin

dilemma is thus solved in hardware.

3.1. Architecture Overview

The ESM platform (see Fig. 3) is centered around an

FPGA serving the main reconfigurable engine and an

FPGA realizing the crossbar switch. They were

separated into two physical boards (see Fig. 12)

called BabyBoard and MotherBoard and are imple-

mented using a Xilinx Virtex-II 6000 and a Xilinx

Spartan-II 600 FPGA. Figure 3 shows the slot-based

architecture of the ESM consisting of the Virtex-II

FPGA, local SRAM memories, configuration memo-

ry and a reconfiguration manager. The top pins in the

north of the FPGA connect to local SRAM banks.

These SRAM banks thus solve the problem of

restricted intra-module memory, in the case of video

applications, for example. The bottom pins in the

south connect to the crossbar switch. Therefore, a

module can be placed in any free slot and have its own

peripheral I/O-links together with dedicated local

external memory. Each slot of up to 6 slots can access

each a local SRAM bank.

3.2. The BabyBoard

3.2.1. Computation and Reconfigurable Engine. The

reconfigurable engine of the ESM computer is a

printed circuit board that features a Xilinx Virtex II-

6000 FPGA from Xilinx, several SRAMs and a

reconfiguration manager implemented on another

FPGA. Due to the restriction1 in the reconfiguration

of Virtex-II FPGAs, we adapted our architecture to

match the following properties:

– Solving the I/O-pin dilemma: Run-time placement

of modules on a reconfigurable device, in this case

the FPGA, is done by downloading a partial

bitstream that implements the module on the

FPGA. This requires a relocation that places a

module in a location different from the one for

which it was synthesized. Relocation can be done

only if all the resources are available and struc-

tured in the same way in the designated placement

area at compile-time. This includes also the I/O-

pins used by the module. For example, a module

compiled for slot 0 might then be allocated to slot

3 at run-time. We solved the I/O-pin dilemma on

the ESM by avoiding fixed connections of periph-

erals to the FPGA. As shown in Fig. 4, all the

bottom pins from the FPGA are connected to an

interface controller realizing a crossbar and imple-

mented itself using a Xilinx Spartan-II FPGA. At

run-time, it connects FPGA pins to peripherals

automatically based on the slot position of a placed

module. This I/O-pin rerouting principle is done

without reconfiguration of the crossbar FPGA.

This makes it possible to establish any connection

from one module to peripherals dynamically.

– Solving the memory dilemma: Memory is very

important in applications like video streaming in

which a given module must exclusively access a

picture at a time for computation. However, as we

mentioned earlier, the capacity of the available

BlockRAMs in FPGAs is limited. External SRAM

memory is therefore added to allow storage of

large amounts of data by each module. To allow a

module to exclusively access its external memory

bank, six SRAM banks are connected at the north

border of the FPGA. In this way, a module will

connect to peripherals from the south, while the

north will be used for temporally storing compu-

tation data. According to the six memory banks

which can be connected on the top, the device is

divided into a set of elementary slots called micro-
slots A–V (see Fig. 4). In order to use an SRAM

bank in the north, a module must have at least a

width of three micro-slots (creating slots S1 to S6).

The Erlangen Slot Machine owes its name from

this arrangement of reconfigurable slots. This

modular organization of the device simplifies the

relocation, primary condition for a viable partially

reconfigurable computing system. Each module

moved from one slot to another will encounter

equal resources. The architecture of the BabyBoard

is illustrated in more detail in Fig. 4.

3.2.2. The Reconfiguration Manager. Apart from

the main FPGA, the BabyBoard also contains the

configuration circuitry. This consists of a CPLD, a

configuration FPGA (a small Spartan II FPGA) imple-

menting the reconfiguration management (Section 6)

and a Flash, see Fig. 4.

– The CPLD is used to download the Spartan-II

configuration from the Flash upon power-up. It

also contains board initialization routines for the

on-board PLL and the Flash.

ESM: A Dynamically Reconfigurable FPGA-based Computer 19

– The reconfiguration management is implemented

on the Spartan-II FPGA. This device contains a

circuit to perform module relocation while loading a

new partial module bitstream. Its architecture and

functionality will be described in details in Section

6.

– The Flash provides a capacity of 64 MB, thus

enabling the storage of up to 32 full configurations

or of a few hundred partial module bitstreams.

3.2.3. Memory. Six SRAM banks of size 2 MB each

are attached to the board on the north of the device, thus

providing memory space to the six macro-slots (denoted

as S1 to S6 in Fig. 4) for temporal data storage. The

SRAMs can be also used for shared memory commu-

nication between neighbor modules, e.g., for streaming

applications. They are connected to the FPGA in such a

way that the reconfiguration of a given module will not

affect the access to other modules.

3.2.4. Debug Lines. Debugging capabilities are

offered through general purpose I/O provided at

regular distances between the micro-slots. A JTAG

port provides debug capabilities for the main FPGA,

the CPLD and the Spartan-II.

3.3. The MotherBoard

The MotherBoard provides programmable links

from the FPGA to all peripherals for multimedia

and communication such as IEEE1394, USB,

Ethernet, PCMCIA, Video and Audio-I/Os, as

shown in Fig. 5. The physical connections are

established at run-time through a programmable

crossbar implemented statically on a Spartan-II

chip on the MotherBoard. Video capture and

rendering interfaces as well as high speed commu-

nication links also exist on the MotherBoard on

which the BabyBoard is mounted through four

connectors (see Fig. 12). A PowerPC processor

(MPC875) is the core of the MotherBoard. It is used

to control the complete ESM. In particular, it

manages the dataflow on the MotherBoard as well

as the interfaces to the external world, e.g., Ethernet

and USB. Upon start-up, one can log-in into the

ESM just as for a full Linux-based computer

Figure 4. Architecture of the ESM BabyBoard. Slots A–V
denote micro-slots that provide the module and reconfigura-

tion granularity. Three consecutive micro-slots define a macro-

slot. Each macro-slot (S1 to S6) can access one full external

SRAM bank. In terms of slice count, a micro slot occupies

1,536 slices (four CLB columns) on the FPGA. Slots A, K, L

and V are special micro-slots as slots A and V interface external

pins and slot K, L contain BlockRAM.

20 Majer et al.

system. The PowerPC of the ESM is used for

application development or for testing and control-

ling the dynamic reconfiguration, e.g., operating

system functions for module management.

3.4. Tool Flow

For an automated generation of partial reconfigura-

ble modules and their communication infrastructure

we are developing SlotComposer.

This tool is used for an automated communication

and synthesis flow infrastructure generation for

partially reconfigurable hardware modules. Using

the existing Xilinx PR Tool Flow our SlotComposer

inserts slice-based bus macros between adjacent

modules. Based on designers specification SlotCom-

poser connects partially reconfigurable modules to

the Reconfigurable Multiple Bus (RMB) communi-

cation infrastructure or the crossbar. At the same

time it generates all necessary constraint files and

optimizes the usage and placement of bus macros

and instantiates all intermediate communication

signals. Moreover, all required scripts for the PR

Flow are generated.

4. Inter-module Communication

One of the central limiting factors for the wide use of

partial dynamic reconfiguration yet not addressed is

the problem of inter-module communication. Each

module that is placed on one or more slots on the

device must be able to communicate with other

modules. For the ESM, we provide four main

paradigms for communication among different mod-

ules (see Fig. 6): The first one is a direct commu-

nication using bus-macros [28] between adjacently

placed modules (see Fig. 6a). Secondly, shared

memory communication using SRAMs or Block-

RAMs is possible (see Fig. 6b). However, only

adjacent modules can use these two communication

modes. For modules placed in non-adjacent slots, we

provide a dynamic signal switching communication

architecture called reconfigurable multiple bus

(RMB) [29] (see Fig. 6c). In [30] we have presented

an ILP model for minimizing the communication

cost for RMB slot modules. Finally, the communi-

cation between two different modules can also be

realized through the external crossbar (see Fig. 6d).

4.1. Communication between Adjacent Modules

On the ESM, bus-macros are used to realize a direct

communication between adjacently placed modules,

providing fixed communication channels that help to

keep the signal integrity upon reconfiguration.

Because eight signals can be passed for each bus-

macro, the number of bus-macros needed for

connecting a set of n signals between two placed

modules is n=8.

4.2. Communication via Shared Memory

Communication between two neighboring modules

can be done in two different ways using shared

memory: First, dual-ported BlockRAMs can be used

for implementing communication among two neigh-

bor modules working in two different clock domains.

The sender writes on one side, while the receiver

reads the data on the other side. The second

possibility uses external RAM. This is particular

useful in applications in which each module must

process a large amount of data and then sends the

processed data to the next module, as it is the case in

video streaming. On the ESM, each SRAM bank can

be accessed by the module placed below as well as

those neighbors placed right and left. A controller is

used to manage the SRAM access. Depending on the

application, the user may set the priority of accessing

the SRAM for the three modules. In Section 5, we

will present a video streaming case study that uses

this way of communication.

Figure 5. Architecture of the ESM MotherBoard. The PowerPC

is them main controller of the ESM system and running Linux. Its

memory bus is connected directly to the crossbar for memory-

mapped communication with the reconfiguration manager on the

BabyBoard.

ESM: A Dynamically Reconfigurable FPGA-based Computer 21

4.3. Communication via RMB

In its basic definition, the Reconfigurable Multiple

Bus (RMB) architecture [31–33] consists of a set of

processing elements or modules, each possessing an

access to a set of switched bus connections to other

processing elements. The switches are controlled by

connection requests between individual modules.

The RMB is a one-dimensional arrangement of

switches between N slots (see Fig. 7). In our FPGA

implementation, the horizontal arrangement of par-

allel switched bus line segments allows for the

communication among modules placed in the indi-

vidual slots. The request for a new connection is

done in a wormhole fashion, where the sender (a

module in slot Sk) sends a request for communication

Figure 6. Inter-module communication possibilities on the ESM: a bus-macro, b shared memory, c reconfigurable multiple bus (RMB), d

external crossbar.

22 Majer et al.

to its neighbor (slot Skþ1) in the direction of the

receiver. Slot Skþ1 sends the request to slot Skþ2, etc.,

until the receiver receives the request and returns an

acknowledgment. The acknowledgment is then sent

back in the same way to the sender. Each module

that receives an acknowledgment sets its switch to

connect two line segments. Upon receiving the

acknowledgment, the sender can start the communi-

cation (circuit routing). The wired and latency-free

connection is then active until an explicit release

signal is issued by the sender module. The concept of

an RMB was first presented in [32] and extended

later in [31] with a compaction mechanism for

quickly finding a free segment. However, it has

never been implemented in real hardware.

Also, in our implementation [33] of the RMB on

Xilinx Virtex FPGAs, we separated the RMB

switches from the modules. In this way, we provide

a uniform interface to designers for connecting

modules to the multiple line switches. The imple-

mentation of the RMB structure on an FPGA Virtex

II 6000 with four processors and four parallel 16 bit

lines reveals an area overhead of 4% with a

frequency of 120 MHz on the controller [29]. In

[29], we have summarized area and data speed

numbers in terms of (a) different numbers of

modules, (b) different numbers of parallel bus seg-

ments, and (c) bitwidths of each bus segment. As

shown on Fig. 7, bus-macros are used at the

boundary of modules and controllers to insure a

correct operation upon reconfiguration.

We were able to show that a module reconfigura-

tion can take place column-wise at the same time

that other modules are communicating on the chip

without any signal interference. This is possible by

storing the states of the RMB switches in regions of

BlockRAM that are physically unaffected by partial

reconfiguration.

4.4. Communication via the Crossbar

Another possibility of establishing a communication

among modules is to use the crossbar. Because all the

modules are connected to the crossbar via the pins at

the south of the FPGA, the communication among

two modules can be set in the crossbar as well.

4.5. Communication Costs

The ESM platform supports four different commu-

nication schemes. Each approach has its own proper-

ties, such as maximum bandwidth, signal delay and

setup latency. The RMB is the only scheme that has a

varying setup latency that is the product of the number

of RMB elements to destination and the setup time of

four clock cycles. Using bus macros for communica-

tion is the preferred choice, but it only works for

adjacent modules. The maximum bandwidth in all

communication schemes is a factor of clock speed and

data bandwidth. In our experiments we assume for the

ESM a global clock speed of 50 MHz. All properties

are listed in Table 1.

5. Case Study: Video and Audio Streaming

Video streaming can be defined as the process of

performing computations on video data streams. Many

video algorithms process the data stream picture-

by-picture. Usually, a picture frame is transmitted

pixel-by-pixel and therefore can be processed on a

pixel-by-pixel basis. However, since a lot of algorithms

require the neighborhood of a pixel, e.g., for filtering,

often at least one complete frame must be stored and

processed before the next one can be accessed.

Capturing the neighborhood of a pixel is often done

Figure 7. FPGA implementation of the RMB for partial

reconfiguration.

Table 1. Communication bandwidth and signal delay.

Scheme Data bandwidth Delay Setup

Bus-macro 19.2 Gbits/s 2 ns None

RMB 6.4 Gbits/s 3 ns * CP 4 cycles * CP

Crossbar 1.8 Gbits/s 15 ns 18 cycles

SRAM 0.4 Gbits/s 20 ns 2 cycles

ESM: A Dynamically Reconfigurable FPGA-based Computer 23

using a sliding window [11] the size of which varies

according to the size of a neighbor region. A given set

of buffers (FIFO) is used to update the window. The

number of FIFOs varies according to the size of the

window. In each step, a pixel is read from the memory

and placed in the lower left cell of the window. Up to

the upper right pixel which is disposed, i.e., output, all

the pixels in the right part of the window are placed at

the queue of the FIFO one level higher.

In the field of video compression, the processing is

usually done in a block-by-block basis, different

from the sliding window concept. However, the

overall structure is almost the same.

As shown in Fig. 8, the architecture of a video

streaming system is usually built on a modular basis.

The first module buffers with the image captured

from an image source. This can be a camera or a

network module which collects the picture data

through a network channel, or any other source.

The frames are alternately written to the SRAM

banks RAM1 and RAM2 by the capture module. The

second module collects the picture from RAM1 or

RAM2 if this RAM module is not in use by the first

module, builds the sliding windows and passes it to

the third module which processes the pixel and saves

it in its own memory or directly passes it to the next

module. This architecture presents a pipelined

computation in which the computational blocks are

the modules that process the image frames. RAMs

are used to temporally store frames between two

modules, thus allowing a frame to stream from RAM

to RAM and the processed pictures to the output.

An adaptive video streaming system is character-

ized by its ability to optimize the computation

performed on the video stream according to chang-

ing environmental conditions. In most cases, only

one module on the computation chain must be

changed while the other keep running. The video

capture module, for example, can be changed if we

want to optimize the conversion of pixels to match

the current brightness or the current landscape. It is

also possible to change the video source from camera

to a new one with different characteristics. In an

adaptive system, the functionality of a module on the

computation path should be changed very fast

without affecting the rest of the system. This can

Figure 8. A modular architecture for video streaming as implemented onto the slot-based structure of the ESM.

24 Majer et al.

be done by providing some parameters to the module

to instruct it to switch from one algorithm to the next

one. However, the structures of the basic algorithms

are not always the same. A Sobel filter [34], for

example, cannot be changed into a Laplace filter by

just changing the parameters. This is also true for a

Median-operator which cannot be replaced by a

Gauss-operator by just changing parameters. Net-

work and camera require two different algorithms for

capturing the pixels. In many cases, the complete

module should be replaced by a module of the same

size, but different in its structure while the rest of the

system keeps running.

Our architecture fulfills the prerequisites for a

modular pipelined and adaptive system for video

streaming. In the system architecture presented

before, we divided the device into slots, which each

of them can implement a given module. RAMs are

provided to the north of the device while the

southern pins can be used by modules to communi-

cate with the rest of the environment.

6. Reconfiguration Manager

The ESM computer requires an operating system for

the initialization of executable application modules

and their run-time supervision. The main tasks of

such an operating system are (a) scheduling of

application modules, (b) management of free slots

including slot segmentation and partitoning, (c)

loading, unloading and relocation of application

modules into slots, (d) configuration of peripheral

devices, (e) configuration of the crossbar, and (f)

bitstream management.

In our view, the most-time critical operations must

be executed in hardware in order to keep the

reconfiguration time to a minimum. We consider the

loading, unloading and relocation of modules to be the

most time-critical tasks which will be therefore

implemented in a dedicated hardware reconfiguration

manager. All other system tasks can implemented in C

and executed on the PowerPC embedded processor

(see Fig. 3) belonging to the ESM MotherBoard.

These two parts of the operating system are linked via

a simple communication bus as shown in Fig. 3. This

hardware/software interface is realized through a set

of elementary reconfiguration instructions passed

from the PowerPC to the reconfiguration manager on

the BabyBoard using Memory-Mapped I/O. The

reconfiguration manager must implement the follow-

ing minimal set of elementary instructions2:

– LOAD (load bitstreams to their pre-compiled

position)

– UNLOAD (unload bitstreams to deactivate a

running module)

– RELOCATE_AND_LOAD (relocate bitstreams to

a different slot position before loading)

Therefore, the reconfiguration manager was built

in hardware and located in a Spartan-II 400 FPGA

which is connected to the main FPGA via the

SelectMAP interface.

During normal operation, the bitstream data

will be loaded from the flash memory located on

the BabyBoard (see Fig. 4). However, bitstreams

must be first downloaded and stored into the flash

memory. Here, two methods are supported. The

first method uses a parallel port interface imple-

mented directly in the reconfiguration manager to

download the configuration data from a host PC to

the flash memory. The second method uses the

Ethernet port of the PowerPC processor on the

MotherBoard to download bitstreams from a re-

mote host. In order to support these and also many

other reconfiguration scenarios, we developed a

very flexible, plug-in based reconfiguration man-

ager architecture.

6.1. Flexible Plug-in Architecture

Our first implementation had a data block-oriented

reconfiguration manager and consisted of a simple

state machine which controlled all interfaces and

operated on byte blocks. These data blocks of size

512 bytes each correspond to the page size of the

flash memory device. For each primitive operation

on a data block, an instruction had to be processed.

When one data block was written from flash into the

Virtex-II SelectMAP interface, two instructions had

to be processed. First, the data block was read in 512

cycles from the flash device and written to an

internal scratch pad. Then, the second instruction

was read and the data block from the scratch pad was

written to the SelectMAP interface. As all instruc-

tions were executed sequentially, the maximum

upload speed of a bitstream to the FPGA was slowed

down by factor two, due to the exclusive access to

the scratch pad.

ESM: A Dynamically Reconfigurable FPGA-based Computer 25

However, the main problem with this architec-

ture arose when more plug-ins and extensions

were to be added to the reconfiguration manager.

If for example, an error correcting code (ECC)

plug-in and a decompression plug-in are used

additionally, then the speed degradation will

increase to a factor of six, because four addi-

tional instructions are needed for reading and

writing the scratch pad. This initial scenario is

illustrated in Fig. 9b. An additional maintenance

issue is the global finite state machine itself. Its

code base had to be changed every time a new

plug-in was added or removed.

Clearly, this first data block-oriented architecture

is not suitable for a high performance solution, since

the throughput decreases with every new attached

plug-in. The main bottleneck is not the flash

interface but the scratch pad-oriented data flow

combined with the sequential execution of the

instructions.

Based on these consolidated findings, we

propose a novel architecture for the reconfigura-

tion manager here which can upload the bit-

streams into the FPGA at the speed of the flash

interface. The central scratch pad was eliminated

and replaced by a pipelined data flow architec-

ture. Moreover, a) the finite state machine was

replaced by a MicroBlaze microcontroller [19],

and b) a data crossbar switch is employed between the

plug-ins. This new architecture is depicted in Fig. 10.

The crossbar plug-in shown in this figure connects the

reconfiguration manager control implemented now in

software on the MicroBlaze to the ESM MotherBoard

in order to establish the communication link to the

PowerPC shown in Fig. 3.

All plug-in modules are connected to two com-

munication interfaces: The control bus connects

plug-ins to the MicroBlaze for initialization and

control. The data crossbar connects to the data input

and output ports of each plug-in and its connection

setup is also controlled by the MicroBlaze which is

programmed in assembly language.

In order to upload a hardware module from flash

to the FPGA, the following sequence of steps has to

be performed:

– Command is sent to the MicroBlaze to upload a

bitstream to the FPGA without the use of any other

plug-ins.

– Program running on the MicroBlaze connects the

output of the flash plug-in to the Virtex-II plug-in

input through a write into the configuration reg-

ister of the data crossbar.

– Next, this program initializes the flash plug-in

with the start address and length of the bitstream.

– Then, the program enables the SelectMAP inter-

face in the Virtex-II plug-in.

– Finally, the flash plug-in is enabled and starts to

read the bitstream.

– The flash plug-in sends the bitstream to the Virtex-

II plug-in byte by byte as long as its ready signal is

true (if not, the flash plug-in has to wait).

– While the flash and the Virtex-II plug-in are

running in parallel, the MicroBlaze checks period-

ically if any of the plug-ins has finished its

operation.

MicroBlaze

ECC

Virtex2

Relocator

Crossbar

Flash

Control Bus Data Crossbar

External I/O

External I/O

External I/O

Figure 10. Architecture of the ESM reconfiguration manager

with plug-ins such as Flash, ECC, module relocator and other

possible plug-ins.

State
Machine,

Scratch Pad

Virtex2

RelocatorECC

Flash
a

State
Machine,

Scratch Pad

Virtex2

Flash
b

Figure 9. Simple reconfiguration manager architecture.

26 Majer et al.

– Only if after finishing one command, the Micro-

Blaze can execute a new command, and, for

example, reinitializes the plug-ins and the data

crossbar.

If one load command has been executed and

another load follows, then the procedure starts from

second step, because the data crossbar has already

been set. The addition of plug-ins to the reconfigu-

ration manager is simple. Any new module must

have a fixed control bus interface and a fixed data

crossbar interface. With these standard interfaces, the

plug-in can be directly controlled through the Micro-

Blaze assembly program. The data crossbar uses a

parametrized HDL description which can be config-

ured at design-time to the number of actually

instantiated plug-ins.

Micro
Blaze

ECC

Virtex2

Relocator

Crossbar

Flash

Control Bus Data Crossbar

a

Micro
Blaze

ECC

Virtex2

Relocator

Crossbar

Flash

Control Bus Data Crossbar

b

Micro
Blaze

ECC

Virtex2

Relocator

Crossbar

Flash

Control Bus Data Crossbar

c

Micro
Blaze

ECC

Virtex2

Relocator

Crossbar

Flash

Control Bus Data Crossbar

d

Figure 11. Four different workload scenarios for the reconfiguration manager.

ESM: A Dynamically Reconfigurable FPGA-based Computer 27

6.2. Workload Scenarios

Depending on the operating system requirements,

different operations need to be performed on each

bitstream. Before the bitstream is uploaded to the

FPGA, it can pass through any number of additional

plug-ins. The order in which a bitstream passes the

plug-ins is configurable at run-time through the setup

of the data crossbar switch. This allows a flexible pre-

processing of the bitstream prior to being loaded. Only

the number of available plug-ins in the reconfiguration

manager has to be determined at design-time.

Based on the introduced reconfiguration manager

architecture from Fig. 10, several flows are possible.

Some of these are depicted in Fig. 11. In the first

scenario, only a basic upload of a bitstream is

performed. Therefore, the data flows from the flash

plug-in output directly through the data crossbar to

the Virtex-II plug-in input. If an error-correction is

needed, then the flash output data can be sent to the

ECC plug-in before going to the Virtex-II plug-in.

This case is shown in Fig. 11b. In the third scenario,

the bitstream is read from the flash, error-corrected

and relocated before being sent to the Virtex-II plug-

in for upload (see Fig. 11c). Here, the crossbar is

configured by the microprozessor in such a way that

the output of each plug-in is connected to the input of

its neighboring plug-in. The fourth scenario depicted

in Fig. 11d shows how the bitstream data is delivered

by the PowerPC through the MotherBoard crossbar.

The bitstream is subsequently error-corrected and

relocated prior to its upload.

The plug-ins that are currently implemented for

the reconfiguration manager are: ECC plug-in,

decompression plug-in and a relocator plug-in which

can translate a bitstream on the fly to any slot

location on the FPGA by directly manipulating the

address offsets in the bitstream at load-time.

6.3. Implementation Results

The reconfiguration manager was implemented and

consists of the MicroBlaze microcontroller, parallel

port interface plug-in, flash memory interface plug-

in, VirtexII SelectMAP plug-in, an OPB (on-chip

peripheral bus) interface implementing the control

bus and the data crossbar. The control bus is a 32 bit

OPB bus, while the data crossbar is an 8 bit full

duplex crossbar.

The flash plug-in interface is able to sustain a data

rate of 10 MB/s in a conservative and tested timing

setup. As the SelectMAP interface can upload bit-

streams at a rate of 50 MB/s, an additional decom-

pression plug-in would accelerate the reconfiguration

time when used on compressed bitstreams.

The final board implementation of the BabyBoard and

MotherBoard is shown in Fig. 12. The reconfiguration

manager is implemented in the Spartan-II 400 FPGA

which is located close to the 64 MB flash device and

the main Virtex-II 6000 FPGA. Technical data sheets

as well as software, primer applications, and user

information is available at http://www.r-space.de.

The separation of BabyBoard and MotherBoard

was made in order to customize the ESM architecture

to other application domains such as automotive. In

order to do so, a new MotherBoard could be designed

to have different peripherals such as CAN, LIN,

FlexRay controllers, and A/D and D/A converters.

7. Conclusions

We have presented a new dynamically reconfigu-

rable computer architecture called Erlangen Slot

Machine (ESM) that was built for reasons that many

brilliant ideas for reconfigurable computers and for

dynamic resource management cannot be efficiently

and directly transfered using currently available

technology, mainly because of I/O-pins, memory,

and inter-module communication panaceas. The

ESM is a stand-alone reconfigurable computer trying

to bridge this gap by providing (a) new architectural

concepts to avoid the above physical problems and

restrictions, (b) new inter-module communication

Reconfiguration
Manager FPGA

Crossbar FPGA PowerPC
MPC875Main FPGA

Figure 12. Implementation of the ESM BabyBoard and Mother-

Board. Technical data sheets are available at http://www.r-space.de.

28 Majer et al.

http://www.r-space.de
http://www.r-space.de

concepts, as well as (c) an intelligent module recon-

figuration management.

We expect this architecture to serve as a prototyp-

ing platform for reconfigurable hardware develop-

ment with respect to application-development and

operating system implementation for reconfigurable

module management (i.e., placement and schedul-

ing). A small series of 15 systems is currently

manufactured to serve projects in the German

Priority Program SPP1148 sponsored by the German

Science Foundation as a prototyping platform.

Acknowledgments

Josef Angermeier, Jan Grembler, Felix Reimann,

Thomas Haller, André Linarth, Peter Asemann,

Christian Freiberger, Christoph Lauer and Dirk Koch

have all helped with the design and implementation

of the ESM hardware and software.

Notes

1. The reconfiguration can be done only in chunks of full

columns.

2. The detailed and full instruction set syntax and syntax will be

described in a forthcoming publication.

References

1. P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh,

BA Quick Safari through the Reconfiguration Jungle,^ in Proc.

of the 38th Design Automation Conference, Las Vegas, 2001,

pp. 127–177.

2. J. O. Kephart and D. M. Chess, BThe Vision of Autonomic

Computing,^ Computer, vol. 36, 2003, pp. 41–52.

3. IBM Autonomic Computing Initiative, (http://www.research.

ibm.com/autonomic/).

4. C. Müller-Schloer, C. von der Malsburg, and R. P. Würtz,

BOrganic Computing,^ Inform.-Spektrum, vol. 27, 2004, pp.

332—336.

5. The Organic Computing Page, (http://www.organic-computing.

org).

6. SPP1148 Reconfigurable Computing Priority Program, (http://

www12.informatik.uni-erlangen.de/spprr/).

7. A. Ahmadinia, C. Bobda, S. Fekete, J. Teich, and J. van der

Veen, BOptimal Routing-conscious Dynamic Placement for

Reconfigurable Devices,^ in Proc. of International Confer-
ence on Field-Programmable Logic and Applications. Lecture

Notes in Computer Science (LNCS), vol. 3203, Antwerp,

Belgium, Springer, 2004, pp. 847–851.

8. K. Bazargan, R. Kastner, and M. Sarrafzadeh, BFast Template

Placement for Reconfigurable Computing Systems,^ IEEE

Des. Test Comput., vol. 17, 2000, pp. 68–83.

9. M. Majer, J. Teich, and C. Bobda, BESM – the Erlangen Slot

Machine,^ (http://www.r-space.de).

10. C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth,

J. Teich, S. P. Fekete, and J. van der Veen, BThe Erlangen Slot

Machine: A Highly Flexible FPGA-based Reconfigurable

Platform,^ in Proc. IEEE Symposium on Field-Programmable

Custom Computing Machines, 2005, pp. 319-320.

11. C. Bobda, A. Ahmadinia, M. Majer, J. Ding, and J. Teich,

BModular Video Streaming on a Reconfigurable Platform,^ in

Proc. of the IFIP International Conference on Very Large
Scale Integration, Perth, Australia, 2005, pp. 103–108.

12. C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and

J. Teich, BIncreasing the Flexibility in FPGA-based Reconfig-

urable Platforms: The Erlangen Slot Machine,^ in Proc. IEEE

Conference on Field-Programmable Technology, Singapore,

Singapore, 2005, pp. 37–42.

13. Y. Krasteva, A. Jimeno, E. Torre, and T. Riesgo, BStraight

Method for Reallocation of Complex Cores by Dynamic

Reconfiguration in Virtex II FPGAs,^ in Proc. of the 16th
IEEE International Workshop on Rapid System Prototyping,

Montreal, Canada, 2005, pp. 77–83.

14. V. Baumgarte, F. May, A. Nückel, M. Vorbach, and M.

Weinhardt, BPACT XPP – a Self-reconfigurable Data Pro-

cessing Architecture,^ in ERSA, Las Vegas, Nevada, 2001,

pp. 167–184.

15. Silicon Hive, (http://www.siliconhive.com).

16. PicoChip, (http://www.picochip.com).

17. Elixent Ltd., (http://www.elixent.com).

18. NEC DRP Project, (http://www.necel.com/en/techhighlights/drp/).

19. Xilinx, Inc., (http://www.xilinx.com).

20. Celoxica Ltd., RC2000 Development Board, 2004.

21. Xess Corp., (http://www.xess.com).

22. Nallatech, Inc., (http://www.nallatech.com).

23. Alpha Data Ltd., ADM-XRC-II Xilinx Virtex-II PMC, 2002.

24. M. Platzner and L. Thiele, XFORCES – executives for Reconfig-

urable Embedded Systems, (http://www.ee.ethz.ch/~platzner).

25. C. Steiger, H. Walder, M. Platzner, and L. Thiele, BOnline

Scheduling and Placement of Real-time Tasks to Partially

Reconfigurable Devices,^ in Proc. of the 24th International

Real-Time Systems Symposium, Cancun, Mexico, 2003, pp.

224–235.

26. H. Kalte, M. Porrmann, and U. Rückert, BA Prototyping

Platform for Dynamically Reconfigurable System on Chip

Designs,^ in Proc. IEEE Workshop Heterogeneous reconfig-
urable Systems on Chip (SoC), Hamburg, Germany, 2002.

27. C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J.

van der Veen, BDyNoC: A Dynamic Infrastructure for Com-

munication in Dynamically Reconfigurable Devices,^ in Proc.
of the International Conference on Field-Programmable Logic

and Applications, Tampere, Finland, 2005, pp. 153–158.

28. P. Lysaght, B. Blodge, J. Mason, J. Young, and B. Bridgeford,

BEnhanced Architectures, Design Methodologies and Cad Tools

for Dynamic Reconfiguration of Xilinx FPGAs,^ in Proc. of 16th

International Conference on Field Programmable Logic and

Applications (FPL06), Madrid, Spain, 2006.

29. A. Ahmadinia, J. Ding, C. Bobda, and J. Teich, BDesign and

Implementation of Reconfigurable Multiple Bus on Chip

(RMBoC),^ Technical Report 02-2004, University of Erlan-

gen-Nuremberg, Department of CS 12, Hardware-Software-

Co-Design, 2004.

ESM: A Dynamically Reconfigurable FPGA-based Computer 29

http://www.research.ibm.com/autonomic/
http://www.research.ibm.com/autonomic/
http://www.organic-computing.org
http://www.organic-computing.org
http://www12.informatik.uni-erlangen.de/spprr/
http://www12.informatik.uni-erlangen.de/spprr/
http://www.r-space.de
http://www.siliconhive.com
http://www.picochip.com
http://www.elixent.com
http://www.necel.com/en/techhighlights/drp/
http://www.xilinx.com
http://www.xess.com
http://www.nallatech.com
http://www.ee.ethz.ch/

30. S. Fekete, J. van der Veen, M. Majer, and J. Teich,

BMinimizing Communication Cost for Reconfigurable Slot

Modules,^ in Proceedings of 16th International Conference on
Field Programmable Logic and Applications (FPL06),

Madrid, Spain, 2006.

31. H. A. ElGindy, A. K. Somani, H. Schröder, H. Schmeck, and

A. Spray, BRMB – a Reconfigurable Multiple Bus Network,^
in Proc. of the Second International Symposium on High-

Performance Computer Architecture (HPCA-2), San Jose,

California, 1996, pp. 108–117.

32. R. Vaidyanathan and J. L. Trahan, Dynamic Reconfiguration:
Architectures and Algorithms, IEEE Computer Society, 2003.

33. A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich,

S. Fekete, and J. van der Veen, BA Practical Approach for

Circuit Routing on Dynamic Reconfigurable Devices,^ in

Proc. of the 16th IEEE International Workshop on Rapid

System Prototyping, Montreal, Canada, 2005, pp. 84–90.

34. R. Gonzalez and R. Woods, Digital Image Processing,
Prentice Hall, 2002.

Mateusz Majer received his diploma degree (Dipl.-Ing.) in

Electrical Engineering from Darmstadt University of Tech-

nology, Germany, in October 2003. His special interests are

run-time reconfigurable systems and reconfigurable applica-

tions. He is now in the final year of his PhD studies at the

Hardware/Software Co-Design Chair of the University of

Erlangen-Nuremberg.

Jürgen Teich received his masters degree (Dipl.-Ing.) from

the University of Kaiserslautern (with honors), in 1989. From

1989 to 1993, he was a PhD student at the University of

Saarland, Saarbrücken, Germany, from where he received his

PhD degree (summa cum laude). His PhD thesis entitled BA

Compiler for Application-Specific Processor Arrays’’ summa-

rizes his work on extending techniques for mapping compu-

tation intensive algorithms onto dedicated VLSI processor

arrays. In 1994, he joined the DSP design group of Prof. E. A.

Lee and D. G. Messerschmitt in the Department of Electrical

Engineering and Computer Sciences (EECS) at UC Berkeley,

where he was working in the Ptolemy project (PostDoc). From

1995-1998, he held a position at Institute of Computer

Engineering and Communications Networks Laboratory

(TIK) at ETH Zürich, Switzlerland, finishing his habilitation

entitled BSynthesis and Optimization of Digital Hardware/

Software Systems’’, in 1996. From 1998-2002, he was a full

professor in the Electrical Engineering and Information

Technology department of the University of Paderborn,

Germany, holding a chair in Computer Engineering. Since

2003, he is appointed as a full professor in the Computer

Science Institute of the University Erlangen-Nuremberg,

holding the new chair in Hardware-Software-Co-Design.

Mr. Teich has been a member of multiple program

committees of well-known conferences such as the DATE

(Design, Automation, and Test in Europe) as well as editor of

several books. Prof. Teich coordinates the German priority

program 1148 (DFG) on reconfigurable computing. Since

2004, Prof. Teich is also elected reviewer of the German

Research Foundation (DFG) for the area of Computer

Architectures and Embedded Systems. His special interests

are massive parallelism, embedded systems, hardware/soft-

ware codesign, and computer architecture.

Ali Ahmadinia received the B.Sc. degree in Computer

Engineering in 2000 from Tehran Polytechnics University, and

his M.Sc. degree in 2002 from Sharif University of Technology.

He finished his PhD entitled BOptimization Algorithms for

Dynamically Reconfigurable Embedded Systems’’ in Depart-

ment of Computer Science at the University of Erlangen-

Nuremberg, Germany. In 2004 and 2005, he was a research staff

in electronic imaging group at the Fraunhofer Institute for

Integrated Circuits (IIS), Erlangen, Germany. Since 2006, he is

working as a research fellow in School of Engineering and

Electronics at the University of Edinburgh, UK. His research

interests are system-on-chip architectures, reconfigurable com-

puting, and DSP applications on embedded systems.

30 Majer et al.

Christophe Bobda is the leader of the new created

working group Self-Organizing Embedded Systems in the

department of computer science at the Kaiserslautern

University of Technology. He received the Licence in

mathematics from the university of Yaounde, Cameroon,

in 1992, the diploma of computer science and the PhD

degree (with honors) in computer science from the

university of Paderborn in Germany in 1999 and 2003,

respectively. In June 2003, he joined the department of

computer science at the University of Erlangen-Nuremberg

in Germany as post doc. Dr. Bobda received the best

dissertation award 2003 from the university of Paderborn

for his work on synthesis of reconfigurable systems using

temporal partitioning and temporal placement.

Dr. Bobda is a member of The IEEE Computer

Society, the ACM and the GI. He is also in the program

committee of several conferences (FPT, RAW, RSP,

ERSA, DRS), the DATE executive committee as proceed-

ings chair (2004, 2005, 2006). He served as a reviewer of

several journals (IEEE TC, IEEE TVLSI, Elsevier Journal

of Microprocessor and Microsystems, Integration the

VLSI Journal) and conferences (DAC, DATE, FPL, FPT,

SBCCI, RAW, RSP, ERSA).

ESM: A Dynamically Reconfigurable FPGA-based Computer 31

	The Erlangen Slot Machine: A Dynamically Reconfigurable FPGA-based Computer
	Abstract
	Introduction
	Drawbacks of Existing Systems
	The Erlangen Slot Machine
	Architecture Overview
	The BabyBoard
	Computation and Reconfigurable Engine
	The Reconfiguration Manager
	Memory
	Debug Lines

	The MotherBoard
	Tool Flow

	Inter-module Communication
	Communication between Adjacent Modules
	Communication via Shared Memory
	Communication via RMB
	Communication via the Crossbar
	Communication Costs

	Case Study: Video and Audio Streaming
	Reconfiguration Manager
	Flexible Plug-in Architecture
	Workload Scenarios
	Implementation Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

