
Journal of VLSI Signal Processing 40, 143–152, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Reviewing 4-to-2 Adders for Multi-Operand Addition∗

PETER KORNERUP
Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

Received August 15, 2003; Revised January 16, 2004; Accepted March 4, 2004

Abstract. Recently there has been quite a number of papers discussing the use of redundant 4-to-2 adders for
the accumulation of partial products in multipliers, claiming one type to be superior to other types. This paper
analyses a recent proposal of various 3- and 4-element redundant digit sets for radix 2, signed and unsigned, and
compare their implementations using various encodings of the digits and carries. It is shown that theoretically they
are equivalent, and differences in their implementations need only be very marginal. Another recent proposal for
the use of the digit-set {0, 1, 2, 3}, with a special 3-bit encoding of digits, is analyzed and some optimizations are
shown, including the possibility of using a 2-bit encoding, with a quite significant saving in the wiring of a multiplier
tree. All these proposed designs are shown to be equivalent to a standard 4-to-2, carry-save adder, except possibly
for a few signal inversions.

Keywords: redundant adders, digit sets, digit encodings, multiplier trees

1. Introduction

When implementing fast multipliers in VLSI, a major
part of area and time is spent on accumulating partial
products using some kind of tree structures. Originally
these were based on the use of full-adders (and occa-
sionally some half-adders), reducing the sum of three
rows of bits to the sum of two, using either the Wallace-
[1] or Dadda-organizations [2] of the tree structure.
As these structures are not very regular to lay out due
to the 3-to-2 structure, it was suggested to use 4-to-2
adders which allow the use of binary tree structures.
Weinberger [3] seems to be the first to propose their
use, based on the carry-save representation, where two
addends are considered an encoding of a single operand
represented using the redundant digit-set {0, 1, 2}. Thus
the 4-to-2 adder can be considered an adder taking two
such operands and adding them to produce the result
in the same representation. This addition can be per-
formed in digit parallel, and thus in constant time, us-
ing an array of such digit adders. Radix 2 signed-digits

∗This work was supported by the Danish Natural Science Research
Council, grant no. 21-00-0679.

for 4-to-2 adders over the digit-set {−1, 0, 1} were then
later proposed in [4, 5]. Recently [6] proposed using the
digit-set {0, 1, 2, 3} with a special 3-bit encoding of the
digits, and most recently [7] compared various 3- and
4-element digit sets using some particular encodings,
claiming significant differences in the implementation
of these. Other publications discussing multiplier or-
ganizations are [8–15], and plenty more.

After an introduction in Section 2 on the standard
carry-save 4-to-2 adder, and some results on the use of
signals with negative weights, Section 3 goes through
a detailed review of a series of 4-to-2 adders recently
presented in [7]. These are all based on digit codings of
the form d = ±2dh ± dl for redundant digit-sets with
3 or 4 elements, and using a special technique denoted
equal-weight grouping, or EWG. Here columns of bits
of the same weight are accumulated, but producing a
sum represented in the various digit-sets. Results from
simulations on the designs were presented, whereupon
the authors then state some claims on the relative per-
formances when using the investigated digit-sets.

The following Section 4 then shows that all these
designs can be implemented using the very same basic
4-to-2 carry-save adder, just using alternative external



144 Kornerup

connections and possibly a few inverters. Hence there
are no principal differences between the use of the var-
ious digit sets, as opposed to the claims of the paper,
nor to the use of the digit encodings proposed or the
4-element digit-sets.

Section 5 reviews some other recent results from [6],
where the use of the digit-set {0, 1, 2, 3} and a special 3-
bit encoding of that digit-set is employed. The authors
claim to achieve fairly significant speed-ups by this
encoding. By a detailed analysis and identification of
some basic building blocks, it is shown that it is not
necessary to use the particular 3-bit encoding to obtain
the same effect, there is an equivalent 2-bit encoding. It
is found that a saving in the wiring of a multiplier tree
can be obtained by reorganizing the building blocks.
Finally it is shown that this design is also equivalent to
one based on the standard 4-to-2 carry-save adder. In
Section 6 conclusions are drawn.

2. A Basic Building Block

We will start by looking at the basic functionality of a
4-to-2 adder, whose purpose in a multiplier (and other
multi-operand addition problems) is reducing the sum
of four binary operands to the sum of two. The operands
can be partial products as generated and delivered in
parallel at the leaves of the tree, or at the internal nodes
of the tree they can be the result delivered as pairs of
operands, forming the result of other 4-to-2 adders. In
general we shall assume that such operands and results,
at a specific position in the tree, can have a specific pos-
itive or negative weight (is to be added or subtracted).

But let us start with the functionality of a full-adder in
this context. It takes three bits of equal positive weight
and delivers the sum of these as a two-bit number, the
carry shifted one position over. An array of such full-
adders (3-to-2 adders/compressors) then reduces the
sum of three binary numbers into the sum of two:

where the last row represents the carries not being as-
similated. The result is represented in the form of the
last two rows of bits, hence the name carry-save repre-
sentation. Pairing a column of two bits as indicated at
the right in the figure, these can be interpreted as a digit

in the set {0, 1, 2}, the carry-save digit-set, employing
the carry-save encoding:

0 ∼ 00

1 ∼ 01 or 10 (1)

2 ∼ 11

where it may be noted that the digit value 1 has two
encodings.

Usually the 4-to-2 adder is considered an adder tak-
ing two such carry-save operands, and delivering the
sum of these in the same carry-save representation.
But alternatively interpreted at the digit level, it may
also be considered a digit-set converter from the digit-
set {0, 1, 2} + {0, 1, 2} = {0, 1, 2, 3, 4} into the set
{0, 1, 2}, where such a conversion can be described by
a two-level conversion diagram [16]:

Each level shows the emission of a carry (the left-
most, slanted arrow) and absorption of an incoming
carry (the right-most, slanted arrow), together with the
involved digit sets.

The converter or 4-to-2 adder can be realized by a
combination of two full adders as in Fig. 1, where the
tuples (i1, i2) and (i3, i4) are carry-save encodings of
the operands, and (o1, o2) encodes the result. Note that
carries (c′

in, c′′
in) similarly constitutes a carry-save en-

coding of the incoming “double” carry, and (c′
out, c′′

out)
of the outgoing carry, corresponding to the previous
conversion diagram.

Figure 1. A 4-to-2 carry-save adder composed from two full adders.



Reviewing 4-to-2 Adders for Multi-Operand Addition 145

Figure 2. 4-to-2 carry-save adder built of multiplexers.

A particularly efficient realization of this 4-to-2
adder was shown in [11], as illustrated in Fig. 2,
where the XOR-gates were implemented using pass-
transistors.

Note that the addition of the carry c′′
in is obtained

at no cost in Figs. 1 and 2, corresponding to the sec-
ond conversion (addition of the incoming carry) in the
conversion diagram above being without cost in logic.

For the following discussion we will use the simpli-
fied Fig. 3, not being concerned with the actual imple-
mentation of the logic of the carry-save 4-to-2 adder.

In Figs. 1–3, and according to the carry-save repre-
sentation, the signals i1, i2, i3, i4, c′

in, c′′
in, o1 and o2 all

have the weight 1, while c′
out and c′′

out have weight 2,
corresponding to the equation

2(c′
out + c′′

out) + (o1 + o2)

= i1 + i2 + i3 + i4 + c′
in + c′′

in. (2)

We will in the following assume that o2 = c′′
in, since

this allows c′′
in to be added in at no cost. Thus we have

the following defining equations

o1 = (i1 + i2 + i3 + i4 + c′
in) mod 2

Figure 3. The 4-to-2 carry-save box.

o2 = c′′
in (3)

c′
out + c′′

out = (i1 + i2 + i3 + i4 + c′
in) div 2,

where the pair c′
out, c′′

out provides a carry-save encoding
of the combined carry in {0, 1, 2}.

To allow changes in the weights for other digit sets,
following [17] we note this lemma:

Lemma 1. Let a signal b ∈ {0, 1} have associated
weight w, so that the value of the signal is v = w b.
Inverting the signal into 1 − b, while at the same time
negating the sign of the weight, changes its value into
v′ = v − w, i.e., the value is being biased by the
amount −w.

Proof: Trivial since v′ = (−w)(1 − b) = wb − w =
v − w.

When changing the interpretation of input signals as
representation of values, it is then necessary to perform
equivalent changes in the interpretation of the output
signals. E.g., when the the total domain of input to
an adder or a digit-set conversion is being biased, the
output must be equivalently biased.

Now consider the base 2 digit-set {−1, 0, 1} using
the signed-digit encoding (also denoted borrow-save),
where two bit strings are considered a string of digits:

obtained by pairing bits using the digit encoding:

−1 ∼ 10

0 ∼ 00 or 11 (4)

1 ∼ 01,

where the left-most bit has negative weight. The con-
version diagram for the addition of two signed-digit
operands is then:



146 Kornerup

Figure 4. A 4-to-2 signed-digit adder obtained from a carry-save
adder.

If in Fig. 3 we change the input so that (i1, i2) and
(i3, i4) represent signed-digits, with i1 and i3 having
negative weight, and the signals thus are delivered in-
verted, then the input is being biased by −2. The output
must then according to Eq. (2) be equivalently biased,
which is possible by changing the sign of c′

out by invert-
ing its signal value. But then c′

in must also change sign,
which changes the bias in the input to −3. Finally, to
compensate we can change the sign of the weight of o1,
corresponding to the output (o1, o2) now representing
a signed-digit, hence the signals must now satisfy the
following equations:

2((1 − c′
out) + c′′

out) + ((1 − o1) + o2)

= (1 − i1) + i2 + (1 − i3) + i4 + (1 − c′
in) + c′′

in

or

2(−c′
out + c′′

out) + (−oi + o2)

= −i1 + i2 − i3 + i4 − c′
in + c′′

in

and the equivalent defining equations derived from (3).
Inverting the signals appropriately in Fig. 3 we obtain
Fig. 4.

Theorem 2. In a computational model where inver-
sion is without cost in area and time, radix 2 signed-
digit addition can be realized at exactly the same cost
as carry-save addition.

The transistor implementation of the XOR-gates in
Fig. 2 from [11] uses a “dual-rail” representation of
signals, these being provided and used in true as well
as in inverted form. This implies that inversion of a
signal here can be realized by “twisting wires”, and
thus at no significant cost in time and area. Also, in
many implementations some signals are produced in
complemented form anyway, thus some inversions may
actually be avoided.

Observe that if an array of such adders are connected
(here vertically) to form an n-digit adder, then no inver-
sions are needed between the individual adders. Sim-
ilarly if a tree of such arrays are formed to perform
multi-operand addition, then all the inversions inter-
nally in the tree can be eliminated. We have thus shown
the following:

Theorem 3. Multi-operand addition of radix 2
signed-digit operands can be implemented by an array
or tree of carry-save adders, by inverting all negatively
weighted signals on input, as well as on output from
the array/tree, but with no internal changes.

3. Codings of the Form ±2dh ± dl

Recently in [7] various radix 2 redundant digit-sets,
with encodings of the form (dh, dl) with

d = ±2dh ± dl ,

were suggested and analyzed, employing a particular
way of implementation denoted equal-weight grouping
or EWG, to be described below. The digit-sets investi-
gated were

D(SD) = {−1, 0, 1} D(C S2) = {0, 1, 2}
D(SD3(−)) = {−2, −1, 0, 1} D(C S3) = {0, 1, 2, 3}
D(SD3(+)) = {−1, 0, 1, 2}. (5)

The digit-sets D(SD) and D(SD3(−)) are coded as d =
−2dh + dl , corresponding to a 2’s complement en-
coding of the digit d . Since the digit-set D(SD) does not
include −2, the bit-pattern (dh, dl) = (1, 0) is not valid
in the SD representation. The set D(SD3(+)) is realized
by changing the sign of both components, i.e., d =
2dh − dl . The D(C S3) and D(C S2) digit-sets are coded
with d = 2dh + dl , where the bit-pattern (dh, dl) =
(1, 1) is invalid in the D(C S2) representations.

Since the encodings employ weights differing by a
factor of 2, neighboring digits di and di−1 in a radix
representation overlap one another, i.e., dl

i has the same
weight as dh

i−1,

but accumulation of several bit-vectors from the encod-
ing of digit vectors can still be performed in vertical



Reviewing 4-to-2 Adders for Multi-Operand Addition 147

columns. This is what the authors of [7] denote equal-
weight grouping or EWG-form.

Normally redundant adders are used to reduce the
sum of two digit-vectors to a single redundant digit-
vector, absorbing and emitting suitable carries. With
additions of the form D + D → D, where D is one of
the above listed C S digit sets, e.g., with D = D(C S3),
then D+D = {0, 1, 2, 3, 4, 5, 6}. But with EWG, bits
from the encoding of two neighboring positions are
added, the summation taking bits in a column and form-
ing a sum in {0, 1, 2, 3, 4}, but producing the resulting
digit inD(C S3) = {0, 1, 2, 3}, as shown in the following
diagram (without the carries).

The coding used for D(C S2) and D(C S3) is d = 2dh +
dl . Since the bit-vectors all have positive weight, it is
a digit-set conversion of the form:

for the case of addition in D(C S3), where using EWG
the conversion is from {0, 1, 2, 3, 4} back intoD(C S3) =
{0, 1, 2, 3}. When the coding is d = −2dh +dl , two of
the bit-vectors have negative weight, and by EWG the
mapping is from {−2, −1, 0, 1, 2} to {−1, 0, 1}.

For comparison the authors consider the following
four cases:

1. SD + SD → SD:1 Here they employ the signed-
digit, 4-to-2 adder from [5] using the encoding
−1 ∼ 11, 0 ∼ 00 and 1 ∼ 01, corresponding to
2’s complement (but it could also be interpreted
as a sign-magnitude) encoding. The carry-set is
C(SD) = {−1, 0, 1}.

2. SD3(−) + SD3(−) → SD3(−): The carry-set used
is C(SD(−)) = {−1, 0, 1}, despite the fact that {0, 1}
is sufficient, as can be seen from this conversion
diagram:

The signals in their mux-based design have weights
as shown in the diagram:

It is noted that the addition SD3(+) + SD3(+) →
SD3(+) = {−1, 0, 1, 2} can be realized by inter-
changing the positive and negative inputs.

3. C S2 + C S2 → C S2: The carry-set here is proven
to be C(C S2) = {0, 1}, as the two outgoing carries in
the diagram is shown never simultaneously to be 1.
Another special mux-based design is used in [7]:

4. C S3 + C S3 → C S3: The carry-set is again
C(C S3) = {0, 1}, hence a simplified conversion is
sufficient. To implement the adder they employ the
4-to-2 compressor (carry-save based) from [11]
as here described in Fig. 2, but using the digit
encoding d = 2dh + dl :



148 Kornerup

Table 1. TSMC SCN025 0.25 micron technology
design timings from [7].

Adder cell Critical path delay (ns)

SD 0.78750

SD3(−) 0.96025

C S2 0.66100

C S3 0.46580

where the lower right-hand connectors are not used
(they are anyway just connected by a “jumper”.)

Note that for all four designs above, input is pro-
vided in the EWG-form by combining signals (bits of
the same absolute value weight) from two neighbor-
ing digit positions, but output is delivered in the proper
encoding for the particular digit-set.

The authors of [7] performed SPICE simulations of
the four designs above, yielding Table 1 (their Table 8):

On page 1276 of [7] it is stated:

“multipliers based on C S3 can be expected to out-
perform multipliers based on other redundant rep-
resentations”

and furthermore using arguments on digit-set cardinal-
ities:

“Therefore, cells such as 1 and 3 from [the listing
above] are fundamentally more complex, hence, big-
ger and slower.”

4. Alternative Implementations

Using the results of Section 2, and contrary to the above
statements, we shall now show that all the four adder
cases presented above can be implemented by the same
hardware (e.g., the efficient design from [11] as used
in Fig. 2 and case C S3 above), just using alternative
interconnections. It will then also be apparent that there
are no advantages in using the particular codings of the
form ±2dh ± dl , as opposed to the form dh ± dl , tradi-
tionally used for carry-save and signed-digit encodings.

We will do this by showing that in all of the above
four cases there exist alternative implementations, us-
ing any generic 4-to-2 carry-save adder. In particular we
may employ the mux-based design from [11], where it
is possible at no cost in transistor count to add properly

placed signal inversions. This was the design found in
[7] to be the fastest, the one listed in Table 1 as C S3.

1. SD + SD → SD: Can be realized by the circuit:

where the lower right-hand connectors are not used
(they are anyway just connected by a “jumper”.)

2. SD3(−) + SD3(−) → SD3(−): Obviously the dia-
gram above can also be used here, since it delivers
a result in {−1, 0, 1} ⊂ SD3(−) = {−2, −1, 0, 1}.

3. C S2+C S2 → C S2: The standard carry-save adder
can directly be used, just using different output con-
nections to deliver the result in the 2dh + dl encod-
ing.

4. C S3 + C S3 → C S3: The very same 4-to-2, carry-
save adder as above can be used since {0, 1, 2} ⊂
D(SD3) = {0, 1, 2, 3}. Note that this was also the
solution used in [7].

Observe again, that in a tree-structure of arrays of
such adders (e.g., in a multiplier tree), there is no need
for inversions internally in the tree. We can thus con-
clude that it is possible to implement addition in these
five digit-sets with the same logic, except possibly for
a few inversions, which may even be trivially realized
at no cost in logic.

5. Another Example Using the Digit-Set
{0, 1, 2, 3}

In [6] another implementation was proposed employing
the digit-set {0, 1, 2, 3}, albeit with a 3-bit encoding of



Reviewing 4-to-2 Adders for Multi-Operand Addition 149

Figure 5. Mapping from (d, e, f ) into (t, w).

digits, where the value of the code can be obtained by
adding the values of the three bits (d, e, f ) for all the
valid combinations, v = d + e + f , where (e, f ) �=
(1, 0). Internally a unique 2-bit coding (t, w) was also
used:

Value 0 1 – 2 1 2 – 3

d, e, f 000 001 010 011 100 101 110 111
t, w 00 01 – 10 01 10 – 11

Observe that (t, w) is the same encoding as used in
[7] for the digit-sets D(C S2) = {0, 1, 2} and D(C S3) =
{0, 1, 2, 3}, with digit value d = 2dh + dl . Mapping
from (d, e, f ) into (t, w) is performed by the logic in
Fig. 5 (slightly reorganized from [6], here using exclu-
sively AND, OR and XOR gates), shown together with
a simplified block symbol of it.

This logic is functionally equivalent to a full-adder,
except for the restrictions on the input (d, e, f ) (which
we will denote the def-encoding), and coding of the
output in the (t, w)-form (denoted the tw-encoding).
Ercegovac and Lang [6] then describes various adders
for combinations of operands in the redundant def-
encoding and ordinary binary, with output in def-
encoding. We shall only go into details with two of
these. The first we describe in Fig. 6 is an adder tak-
ing four ordinary binary operands, and delivering their
sum in the def-encoding, again slightly modified from
[6].

Observe here that the left-most part of Fig. 6, com-
puting (tout, d), is a standard full-adder, and the right-
most part is a recoding where arithmetically e + f =
i +t , but assures that only legal combinations of d, e, f
are produced ((e, f ) �= (1, 0)). This is the logic needed
at the first level of a multiplier tree, the critical path

Figure 6. Adder taking four binary signals into (d, e, f ) encoding.

here is through two XOR gates, and the authors claim
a speedup compared to an ordinary 4-to-2 adder.

For the case of two redundant operands the critical
path is two XORs, plus an AND and an OR gate, where
the authors also found a speedup. The following con-
version diagram shows how the addition is performed:

Figure 7, reproduced with the same kind of slight
modifications from [6], shows their implementation,
using a carry in {0, 1, 2} in carry-save representation
(t1, t2), plus another carry u in {0, 1}.

Observe that the dot-framed part is again a standard
full-adder, and the logic producing e and f is again the
recoding assuring (e, f ) �= (1, 0). Thus Fig. 7 can also
be described in a simplified way by the block-diagram
in Fig. 8.

Now note that instead of using the def-coding at input
and output, we may as well remove the two FAtw adders
at the top, and add one at the bottom, thus using the tw-
coding on input and output, as illustrated in Fig. 9.

We have thus shown that it is not necessary to use
the def-encoding at the external interface to the adder,
and that the 4-to-2 adder in tw-encoding can be imple-
mented with only about two thirds of the logic needed
for the adder using de f -encoding, as presented in [6].

We finally need the adder-type to use at the first level
of an adder tree, i.e., taking four binary signals and



150 Kornerup

Figure 7. Adder with two redundant operands.

Figure 8. Block diagram of Fig. 7.

Figure 9. Reorganized 4-to-2 tw-adder.

Figure 10. (A) First level adder for tw-encoded result. (B) Root
conversion.

producing their sum in tw-encoding, and a recoding
to use at the root of the adder tree. Both of these are
trivially found as shown in Fig. 10.

However, the simplifications of the nodes do not
help in an adder tree, since there still is a def- to tw-
conversion between each level in the tree, and at the
first level an extra similar conversion is needed now as
seen in Fig. 10(A). Note though that at the root of the
tree, only the simple re-wiring in Fig. 10(B) is needed
to deliver the ordinary carry-save representation of the
result. Thus the critical path is unchanged.

But much more important, the wiring of the tree is
now significantly reduced, since only two signals in-
stead of three are needed in each connection of the
adder tree.

Now observe that in all places where signals e, f
are fed into an FAtw-adder, there is a recoding taking
place, to assure that the pattern (e, f ) �= (1, 0). If the
logic of that recoding is combined with the logic of
the FAtw-adder, it appears that the result is an ordinary
full-adder.

Just consider Fig. 9 with input (d, w, u) to the com-
bination of a recoder and FAtw-adder, with output de-
noted (t ′, w′), then from the combined logic in Fig. 11
we find

t ′ = dw + du + wu

w′ = d ⊕ w ⊕ u,

which is the functionality of a standard full-adder.
When used in an adder tree, we have thus shown

that the proposed adder is equivalent to the standard
carry-save, 4-to-2 adder based on the digit-set {0, 1, 2},
and the speed differences observed are due to different
implementations of the full-adder-equivalent circuits
used.



Reviewing 4-to-2 Adders for Multi-Operand Addition 151

Figure 11. A “hidden” full adder.

6. Conclusions

Using some trivial results on signal weights it has been
shown that there are no fundamental differences be-
tween the redundant, radix 2, 4-to-2 adders based on
carry-save, and those based on signed-digit representa-
tions, i.e., digit sets {0, 1, 2} and {−1, 0, 1} with their
usual encodings. There need only be very small differ-
ences between implementations, as only the addition or
removal of a few inverters is needed to change one type
of adder into the other. In a computational model where
inversion is without cost in area and time, signed-digit
arithmetic can be performed at exactly the same cost
as carry-save.

For multi-operand addition, as in multiplication, it
is shown that inversions are only needed on appropri-
ate input and output signals to/from the adder tree or
array, no changes are necessary internally to the tree or
array structure. Any single, or two or more alternating,
optimal adder design(s) may thus be used internally in
a tree or array structure. Only at the external interface
to the array will it be necessary to add or remove in-
verters, adapting to the digit set used in the external
environment.

After a review of some redundant adder designs from
[7] for a variety of digit-sets (3- and 4-element), for
which claims were made about principal differences
and relative speeds, it was shown that they can in fact
all be implemented by the same basic adder, just using
some other interface wiring to the environment. Hence
there is no principal difference between the use of, say,
the digit-sets {0, 1, 2, 3} and {0, 1, 2}, the difference is
just a question of interpretation of which signal pairs
constitute digit encodings.

Finally another proposal in [6] to use a radix-
2, 4-element digit-set with a 3-bit digit encoding,
has been reviewed. It was shown that this design

is only marginally different from the adder in [7]
also employing the digit-set {0, 1, 2, 3}, and thus can
also be interpreted as a normal 4-to-2, carry-save
adder. It was furthermore shown that the 3-bit en-
coding is not necessary, a standard 2-bit encoding
can be used, thus significantly reducing the com-
plexity of the wiring of an adder tree. Actually, the
difference is only in the interpretation of where the
boundaries between the levels in a multiplier tree are
positioned.

All the proposed 4-to-2 adder designs, employ-
ing digit or carry encodings of the form d ′ ± d ′′ or
±2d ′ ± d ′′ (including also the sign-magnitude encod-
ing), have thus been shown to be equivalent to a 4-to-2,
carry-save adder over the standard carry-save digit-set
{0, 1, 2} with encoding d ′ + d ′′, except possibly for a
few signal inversions. It is conjectured that there are no
other fundamentally different digit encodings that will
allow for faster implementations.

Note

1. This is the notation used in [7], note that due to EWG this is not
set addition.

References

1. C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans-
actions on Electronic Computers, vol. EC-13, 1964, pp. 14–17.
Reprinted in [18].

2. L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Freq.,
vol. 34, 1965, pp. 349–356. Reprinted in [18].

3. A. Weinberger, “4-2 Carry-Save Adder Module,” IBM Technical
Disclosure Bulletin, vol. 23, 1981.

4. N. Takagi, H. Yasuura, and S. Yajima, “High-Speed VLSI
Multiplication Algorithm with a Redundant Binary Addition
Tree,” IEEE Transactions on Computers, vol. C-34, no. 9, 1985,
pp. 789–796.

5. S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and
N. Takagi, “Design of High Speed MOS Multiplier and Divider
Using Redundant Binary Representation,” in Proc. 8th IEEE
Symposium on Computer Arithmetic, IEEE Computer Society,
1987, pp. 80–86.

6. M.D. Ercegovac and T. Lang, “Effective Coding for Fast Re-
dundant Adders using the Radix-2 Digit Set {0, 1, 2, 3},” in
Proc. 31st Asilomar Conf. Signals Systems and Computers,
pp. 1163–1167, 1997.

7. D.S. Phatak, T. Goff, and I. Koren, “Constant-Time Addition and
Simultaneous Format Conversion Based on Redundant Binary
Representations,” IEEE Transactions on Computers, vol. 50,
no. 11, 2001, pp. 1267–1278.

8. J. Vuillemin, “A Very Fast Multiplication Algorithm for VLSI
Implementation,” INTEGRATION, the VLSI Journal, vol. 1,
1983, pp. 39–52. Reprinted in [19].



152 Kornerup

9. M.R. Santoro and M.R. Horowitz, “A Pipelined 64 × 64b Iter-
ative Array Multiplier,” in Proc. IEEE International Solid-State
Circuit Conference, 1988, pp. 36–37.

10. Z.J. Mou and F. Jutand, “‘Overturned-Stairs’ Adder Trees and
Multiplier Design,” IEEE Transactions on Computers, vol. 41,
no. 8, 1992, pp. 940–948.

11. N. Ohkubo, M. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki,
and Y. Nakagome, “A 4.4 ns CMOS 54 × 54-b Mul-
tiplier Using Pass Transistor Multiplexer,” IEEE Journal
of Solid State Circuits, vol. 30, no. 3, 1995, pp. 251–
257.

12. V.G. Oklobdzija and D. Villeger, “Improving Multiplier Design
by Using Improved Column Compression Tree and Optimized
Final Adder in CMOS Technology,” IEEE Transactions on VLSI,
vol. 3, no. 2, 1995, pp. 292–301.

13. V.G. Oklobdzija, D. Villeger, and S.S Liu, “A Method for Speed
Optimized Partial Product Reduction and Generation of Fast
Parallel Multipliers Using an Algorithmic Approach,” IEEE
Transactions on Computers, vol. 45, no. 3, 1996, pp. 294–
306.

14. P.F. Stelling, C.U. Martel, V.G. Oklobdzija, and R. Ravi,
“Optimal Circuits for Parallel Multipliers,” IEEE Trans-
actions on Computers, vol. 47, no. 3, 1998, pp. 273–
285.

15. W.-C. Yeh and C.-W Jen, “High-Speed Booth Encoded Parallel
Multiplier Design,” IEEE Transactions on Computers, vol. 49,
no. 7, 2000, pp. 692–701.

16. P. Kornerup, “Digit-Set Conversions: Generalizations and Ap-
plications,” IEEE Transactions on Computers, vol. C-43, no. 6,
1994, pp. 622–629.

17. T. Aoki, Y. Sawada, and T. Higuchi, “Signed-Weight Arith-
metic and its Application to a Field-Programmable Digital Fil-
ter Architecture,” IEICE Trans. Electron., vol. E82, no. 9, 1999,
pp. 1687–1698.

18. Earl E. Swartzlander (Ed.), Computer Arithmetic, Vol I. Dowden,
Hutchinson and Ross, Inc., 1980. Reprinted by IEEE Computer
Society Press, 1990.

19. Earl E. Swartzlander (Ed.), Computer Arithmetic, Vol II. IEEE
Computer Society Press, 1990.

Peter Kornerup was born in Aarhus, Denmark, 1939. He received
the mag.scient. degree in mathematics from Aarhus University,
Denmark, in 1967. After a period with the University Computing
Center, from 1969 involved in establishing the computer science
curriculum at Aarhus University, where he helped found the Com-
puter Science Department in 1971. Through most of the 70’s and 80’s
he served as Chairman of that department. He spent a leave during
1975/76 with the University of Southwestern Louisiana, Lafayette,
LA, four months in 1979 and shorter stays in many other years with
Southern Methodist University, Dallas, TX, one month with Uni-
versité de Provence i Marseille in 1996 and two months with Ecole
Normale Supérieure de Lyon i 2001. Since 1988 he has been Pro-
fessor of Computer Science at Odense University, now University of
Southern Denmark, where he has also served a period as the Chair-
man of this department. His interests include compiler construction,
microprogramming, computer networks and computer architecture,
but in particular his research has been in computer arithmetic and
number representations, with applications in cryptology and digital
signal processing.

Prof. Kornerup has served on the program committees for numer-
ous IEEE, ACM and other meetings, in particular he has been on the
Program Committees for the 4th through the 16th IEEE Symposium
on Computer Arithmetic, and served as Program Co-Chair for these
symposia in 1983, 1991 and 1999. He has been guest editor for a
number of journal special issues, and also served as an associate ed-
itor of the IEEE Transactions on Computers during 1991–95. He is
a member of the IEEE.
kornerup@imada.sdu.dk


