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Abstract
Semantic understanding of roadways is a key enabling factor for safe autonomous driving. However, existing autonomous
driving datasets providewell-structured urban roadswhile ignoring unstructured roadways containing distress, potholes, water
puddles, and various kinds of road patches i.e., earthen, gravel etc. To this end, we introduce Road Region Segmentation
dataset (R2S100K)—a large-scale dataset and benchmark for training and evaluation of road segmentation in aforementioned
challengingunstructured roadways.R2S100Kcomprises 100K images extracted froma large anddiverse set of video sequences
coveringmore than 1000kmof roadways. Out of these 100Kprivacy respecting images, 14,000 images have fine pixel-labeling
of road regions, with 86,000 unlabeled images that can be leveraged through semi-supervised learning methods. Alongside,
we present an Efficient Data Sampling based self-training framework to improve learning by leveraging unlabeled data.
Our experimental results demonstrate that the proposed method significantly improves learning methods in generalizability
and reduces the labeling cost for semantic segmentation tasks. Our benchmark will be publicly available to facilitate future
research at https://r2s100k.github.io/.
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1 Introduction

Visual perception for recognizing objects, obstacles, and
pedestrians is a core building block for efficient autonomous
driving. Semantic segmentation has emerged as an efficient
perceptionmethod that aims to determine the semantic labels
for each pixel of an image (Siam et al., 2018). Thanks to the
availability of rich scene segmentation datasets (discussed
in Fig. 2), significant technical progress has been made in
this direction. However, several formidable challenges still
remain on the path to efficient autonomous driving in the
wild.

Firstly, existing autonomous driving datasets (Brostow et
al., 2009; Caesar et al., 2020; Cordts et al., 2016; Geiger
et al., 2012; Sun et al., 2020; Yu et al., 2020) are not
generalized; they cover well-paved urban roads of devel-
oped countries which represents 3.7% road infrastructure
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of the world (Schwab, 2019) and barely serve 17% of
the total world’s population (Gaigbe-Togbe et al., 2022).
More recently, Segment Anything (Kirillov et al., 2023)—
the largest segmentation dataset with more than one billion
masks for 11 million images has been released to perform
general purpose segmentation tasks. However, despite being
the largest in size, it only covers 0.9% of data samples from
low-income countries. Therefore, these datasets have scant
coverage of unstructured roadways containing hazardous
road patches (i.e., distress, earthen, gravel) that are common
in the developing world, as shown in Fig. 1. Such ambigu-
ous road regions pose an enormous hazard to human drivers
and lead to severe road accidents and fatalities. According
to World Health Organization (WHO), 1.3 million people
die every year due to road accidents (WHO, 2020) with
93% of causalities occurring in low- and middle-income
countries. The global road safety report points out that non-
standard road infrastructure is a key reason for higher road
accident rates in these countries (WHO, 2019). Therefore,
the under-representation of such challenging data in existing
datasets is a critical omission for research on autonomous
driving and an indication of the need for a benchmark
to improve autonomous driving in such challenging road
scenarios.

Secondly, pixel-level annotation of images is excessively
expensive—for cityscapes, labeling an image took an hour
on average (Cordts et al., 2016)—leading to smaller seg-
mentation datasets than in other domains (Deng et al., 2009;
Lin et al., 2014), consequently limiting the generalizability
of the trained models. Although semi-supervised learning
methods (Abdalla et al., 2019; He et al., 2019; Huang et
al., 2018; Yu et al., 2022) have been proposed that lever-
age unlabeled data to improve learning, these methods suffer
limitations because (i) segmentation datasets are often highly
imbalanced in terms of pixel counts corresponding to each
class (Rezaei et al., 2020), and different physical scenarios in
which the dataset is collected. Therefore, the resulting model
performs significantly worse in physical scenarios that are
not common (e.g. rare weather conditions and unstructured
roads),which can be lethal in autonomous driving; (ii) Biased
predictions caused by the data imbalance in early semi-
supervised training phase (He et al., 2019) lead to a higher
misclassification rate during inference; (iii) self-training seg-
mentation models are computationally very expensive due to
a large number of pseudo labels (Wei et al., 2018). In this
regard, there is a need for an efficient method to improve
performance while considering accuracy-energy trade-offs.
To address these challenges, we have made the following
contributions:

1. We introduce Road Region Segmentation (R2S100K)
dataset for autonomous driving comprising 100K diverse

set of road images, covering 1000+ KMs of challenging
roadways, as shown in Fig. 1. R2S100K dataset cov-
ers more challenging road categories and scenarios than
existing datasets. Moreover, R2S100K serves as an ini-
tial step in representing unstructured roads prevalent in
low-income countries, allowing for a more comprehen-
sive stress-testing of foundational segmentation models
for autonomous driving.

2. We propose an unsupervised Efficient Data Sampling
(EDS) method to sample a subset from the unlabelled
training data, which offers three benefits: (i) EDS notably
alleviates the data imbalance in the physical scenarios,
(ii) improves the performance of supervised (0.71–6.72%
MIoU) and semi-supervised (0.26–1.84%MIoU)models,
and (iii) significantly reduces the annotation and training
costs (75% fewer pseudo-labels and 79% decrease in the
training time).

3. The EDS is compatible with multiple learning frame-
works (supervised, semi-supervised) and model architec-
tures. It can be integratedwith datasets such asCityscapes,
CamVid, and BDD100K due to a similar labeling schema.

The rest of the paper is organized as follows. Section2
presents the relatedwork of autonomous driving benchmarks
and datasets for 2Dvisual object detection and scene segmen-
tation, and semi-supervised methods to perform the afore-
mentioned tasks. Section3 presents our proposed R2S100K
and the Efficient Data Sampling (EDS) enabled novel self-
training method for drivable road region segmentation to
distinguish safe and hazardous road regions. In Sect. 4, sev-
eral state-of-the-art segmentation methods are evaluated to
present a comprehensive benchmark study alongside the
effectiveness of our EDS-based self-training settings. Lastly,
concluding remarks are summarized in Sect. 6.

2 Background

2.1 Autonomous Driving Datasets

In the past couple of years, several datasets have been
released to accelerate the development of visual percep-
tion algorithms. These datasets can be categorized into two
major groups: (i) object detection—which focuses on 2D/3D
objects (Caesar et al., 2020; Dollár et al., 2009; Geiger et al.,
2012; Huang et al., 2019; Sun et al., 2020; Xiao et al., 2021;
Zhang et al., 2017); and (ii) scene segmentation—which
focuses on semantic segmentation for scene understanding.
We present a detailed comparison of these state-of-the-art
datasets in Fig. 2, highlighting their key attributes, such as
image resolution, the number of images, and the diversity of
regions and road types, while also emphasizing the unique
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Fig. 1 Examples of our dataset images covering a wide array of road-
ways, varying across different lighting and weather conditions. Instead
of considering the whole paved road region as one class, we distinguish
safe asphalt road region and its associated atypical classes found on

unstructured roads such as distress, wet surface, gravel, boggy, vegeta-
tionmisc., crag-stone, road grime, drainage grate, earthen,water puddle,
misc., speed breakers, and concrete road patches

differences between the state-of-the-art datasets alongside
the comprehensive nature of our R2S100K dataset in terms
of diversity and applicability to unstructured roadways. Here
we discuss some important characteristics of these datasets.
Object Detection Datasets: KITTI (Geiger et al., 2012) is
one of the most widely used vision benchmark suites for
object detection on urban roads and highwayswhich contains
15k images alongwith 200k annotations. Later,Waymo open
dataset (Sun et al., 2020) presented more than 23 million
2D and 3D bounding boxes annotations of 1150 inter-cities
urban scene segments. The nuScenes (Caesar et al., 2020)

dataset presented 1.4million 3Dbounding box annotations of
1000 urban and suburban road scenes for 23 classes. In 2019,
ApolloScape dataset (Huang et al., 2019) has been released
with comprises 70k3Dannotations alongwith 160k semantic
mask annotations of urban roads and highways under varying
weather conditions. Similarly, Pandaset (Xiao et al., 2021)
presented 1 million 3D bounding box annotations for object
detection in urban traffic scenarios. Other than these, various
other datasets (Caesar et al., 2020; Dollár et al., 2009; Zhang
et al., 2017) have been proposed, which played an important
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Fig. 2 Comparison of dataset statistics with existing driving datasets
i.e., KITTI (Geiger et al., 2012), CamVid (Brostow et al., 2009), CARL-
D (Butt & Riaz, 2022), IDD (Varma et al., 2019), Cityscapes (Cordts
et al., 2016), A2D2 (Geyer et al., 2020), BDD100K (Yu et al.,
2020), nuScenes (Caesar et al., 2020), Waymo (Sun et al., 2020),

MVD (Neuhold et al., 2017), and Wilddash (Zendel et al., 2018). Our
R2S100K covers more diverse road infrastructure and challenging sce-
narios than the existing benchmarks. Therefore, our dataset can be used
to develop more robust and generalized road segmentation methods for
autonomous driving

role in developing efficient object detection and recognition
algorithms.
Semantic Segmentation Datasets: CamVid (Brostow et al.,
2009) is considered among the pioneer scene segmentation
datasets—comprising 700 fine annotations for 32 classes. In
2016, Cityscapes (Cordts et al., 2016) was released, which
contains 5000 fine and 20,000 coarse annotations for urban
roads. In 2017, Mapillary Dataset (Neuhold et al., 2017)
comprising 25K fine annotations of inter-continental urban
scenes was presented. Later on, BDD100K (Yu et al., 2020)
is released in 2020, which provides 10K fine annotations of
urban roadways. MVD (Neuhold et al., 2017) contains 25K
images covering diverse yet urban roadways.

Though these datasets provide enriched information on
urban scenes for scene segmentation tasks, they do not cover
unstructured road conditions and hazardous road patches,
commonly encountered in developing countries. Therefore,
models trained on these datasets cannot be generalized to the
challenging roadways. Besides urban driving, a few datasets
have been released for visual perception in off-road driving
scenarios. OFFSEG (Viswanath et al., 2021) framework cov-
ers RELLIS-3D (Jiang et al., 2021) containing 6235 images,
andRUGD (Wigness et al., 2019) comprising of 7546 images
of outdoor off-road driving scenes. Wilddash-v2 contains
4256 images (Zendel et al., 2018) and covers unstructured
road classes like distress and gravel patches. However, they
label these classes under single Road class rather than dis-
tinguishing them as safe and hazardous regions. Recently,
CARL-D (Butt & Riaz, 2022; Rasib et al., 2021), and
IDD (Varma et al., 2019) datasets have also been released
which provide annotations of urban and rural roads, how-
ever, they still lack aforementioned hazardous road patches

that can highly influence the performance of autonomous
driving models.

2.2 Scene SegmentationMethods

Fully Supervised Learning: Since the pioneering work
of FCN (Long et al., 2015), significant progress has been
made in developing deeper neural networks for semantic
segmentation tasks. The semantic segmentation model aims
to predict the semantic category of each pixel from a given
label set and segment the input image according to seman-
tic information—suggested by Long et al. (2015). The FCN
outperforms conventional approaches by 20% on the Pascal
VOC dataset. The U-net is an idea by Ronneberger et al.
(2015) for segmenting biological images. U-net has a spatial
path to maintain spatial information and a context path to
learn context knowledge.

Later, various supervised methods (Badrinarayanan et al.,
2017; Chen et al., 2014, 2017a, b, 2018; Noh et al., 2015;
Romera et al., 2017; Yu et al., 2018; Zhao et al., 2017, 2018;
Zhang et al., 2022) have been proposed to perform segmen-
tation tasks efficiently. However, these methods employ deep
CNNs as backbone networks, which require an immense
amount of time to annotate large-scale data, limiting the
model’s capacity to adapt and further improve segmentation
performance.
Semi supervised Learning: Recently, semi-supervised
learning methods have demonstrated better applicability in
several segmentation domains. Thesemethods have achieved
state-of-the-art performance on several segmentation tasks
by leveraging a huge amount of unlabeled data. In literature,
several techniques such as video label propagation (Budvytis
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et al., 2017;Luc et al., 2017;Mustikovela et al., 2016), knowl-
edgedistillation (Xie et al., 2018;Liu et al., 2020), adversarial
learning (Huang et al., 2018; Souly et al., 2017), and consis-
tency regularization (Mittal et al., 2019) are employed to
perform semi-supervised segmentation.

Recently, (Chen et al., 2021a) proposed a consistency reg-
ularization method named Cross Pseudo Supervision, which
enforces consistency between two perturbed networks with
different initialization, effectively expanding training data
using unlabeled data with pseudo labels. In another research
work, Ouali et al. (2020) proposed a cross-consistency-
based semi-supervised training method that enforces con-
sistency between the main decoder predictions and auxiliary
decoders’ outputs that ultimately enhances the encoder’s rep-
resentations and thus leads to the improved results on SOTA
datasets.

3 Methodology

In this section, we describe the R2S100K dataset and our
proposed efficient self-training method for semantic seg-
mentation tasks. Figure2 compares our dataset with existing
datasets. This section introduces a benchmark suite for our
proposed Road Region Segmentation Dataset (R2S100K).
Firstly, we describe R2S100K in terms of the methodol-
ogy adopted for data collection, frame selection, labeling,
and distribution. Secondly, we discuss the categorization of
supervised/ semi-supervised learning methods to develop a
benchmark suite for our proposed dataset. In the later section,
we discuss our proposed EDS-enabled teacher-student-based
efficient self-training approach to solving the data imbalance
problem for semantic segmentation tasks.

3.1 R2S100K

We present a large-scale R2S100K dataset to train and evalu-
ate supervised/semi-supervised methods in challenging road
scenarios. Our dataset can be distinguished from existing
datasets in the following three major aspects:
Distribution Shift: R2S100K dataset covers unique and
undesiring urban and rural road conditions—described in
Table 1 which are commonly encountered while driv-
ing, especially in developing countries. Whereas, existing
datasets such as KITTI (Geiger et al., 2012), CamVid (Bros-
towet al., 2009),Cityscapes (Cordts et al., 2016),A2D2 (Geyer
et al., 2020), MVD (Neuhold et al., 2017), BDD100K (Yu et
al., 2020), nuScenes (Caesar et al., 2020),Waymo (Sun et al.,
2020) represent well developed urban roadways, as depicted
in Fig. 3. IDD though covers distressed and muddy road
regions, however, it only distinguishes themud class from the
road and covers damaged road patches under one road class.
Moreover, OFFSEG (Viswanath et al., 2021) The framework

primarily covers off-road driving scenes, which significantly
differ from unstructured roadways regarding representation.
Similarly, Wildash (Zendel et al., 2018) covers distress and
gravel patches under a single Road class rather than distin-
guishing them as safe and hazardous regions.
Diversity: R2S100K is constructed over road sequences—
captured from 1000+KMs roadways of Pakistan considering
diverse terrain, infrastructural features, and environmental
attributes as shown in Fig. 4. To ensure diversity in data,
we primarily focus on including motorways, highways, and
urban traffic roads from Punjab, the largest province of Pak-
istan in terms of population (approximately 127.474million).
Additionally, we extend our coverage to encompass the rural
and hilly areas of Khyber-Pakhtunkhwa, the second-largest
province by population (approximately 35.53 million), oper-
ating under diverse illumination and weather conditions.
Generalizability: R2S100K covers a diverse range of road
infrastructure, including well-paved asphalt roads alongwith
associated unique hazardous road regions which are catego-
rized as atypical classes, enlisted in Table 1. However, we
assigned distinct labels for our anomalous road classes and
used similar labeling schema for asphalt class as cityscapes
and BDD100K to ensure the integration of datasets for
domain adaptation and semi-supervised learning.

3.1.1 Data Acquisition

Driving Platform Setup: A camera is mounted over the
dashboard of a standard van with a height of 1.4 m from
the ground and configured to an aspect ratio of 16:9 to cap-
ture the ultimate width of the road. A camera stabilizer is
also installed to reduce the vibration effects of the vehicle.
Road Video Collection: We carefully followed the travel
advisory issued by the government to identify diverse road-
ways. Based on the analysis, we defined a route plan to cover
diverse infrastructure for data collection (as shown in Fig. 4)
to ensure the inclusion of highways, expressways, and gen-
eral roads of urban cities, rural and hilly areas.
Data Quality Control: We performed pre- and post-
collection quality control (QC) to ensure high-quality data
collection. In pre-collection QC, the data engineer must set
up and monitor the camera’s data stream while recording.
Post-collectionQC required data engineers tomanually iden-
tify and remove the distorted/over-exposed/unclear video
sequences. In our post-collection QC process, our data engi-
neers meticulously apply multi-step checks to identify and
exclude distorted, blurry, and unclear sequences from our
dataset. Our quality check criteria encompass various fac-
tors, including but not limited to:
Ensuring Clarity: Firstly, we assess the sharpness of images
using Structural Similarity Index and Gradient Magnitude
to measure the sharpness of individual frames within each
sequence quantitatively. Frames with low sharpness scores,

123



International Journal of Computer Vision

Fig. 3 Examples of road types covered in existing autonomous driving
datasets for visual scene segmentation. R2S100K coversmore challeng-
ing/hazardous roads in both—the urban and rural areas. While most of

the existing datasets focus on thewell-paved road infrastructure of urban
areas and do not distinguish between safe and hazardous road region

Fig. 4 Statistical analysis demonstrating the diversity of R2S100K
Dataset. (Left) Google Maps of routes covered for data collection.
(Right) Different environmental and infrastructural characteristics: (1)
timestamp, (2) weather conditions, and (3) road hierarchy. We cover

over 1000 KMs of roadways of Pakistan—carefully considering the
inclusion of motorways, highways, general inter-city and intra-city
roads, as well as the rural and hilly areas, under different illumination
and weather conditions

Fig. 5 Distribution of road
classes in R2S100K. Asphalt
and concrete regions represent
the safe drivable road regions
with the higher representation
among the other hazardous road
patches

123



International Journal of Computer Vision

Table 1 List of classes along with their definitions

Class Definition

Asphalt Road pavement constructed using aggregates
(crushed rocks, sand, and coal tar)

Distress Longitudinal and transverse cracks occurred due
to lack of maintenance

Gravel Unpaved surface with loose aggregation of
variable-sized fragments of rocks

Boggy Unpaved road surface filled with mud

Vegetation Misc Naturally occurring vegetation (other than trees)
adjacent to the road

Crag-stone Hilltop stones—dropped over road surface in
mountainous areas

Wet Surface Slightly watered road surface; can be damp due
to snow or cold weather

Road Grime Dirt ingrained on the road

Drainage Grate An elongated cover with holes in it or a grating
used to cover a water drain

Earthen Unpaved roads with compacted layers of
stabilized soil

Water Puddle Small pool of water over the road

Misc An unclear object dropped over the road

Concrete Binders such as rough and fine aggregates

Speed Breaker Concrete speed bumps, speed humps, and speed
cushions over the road surface

indicative of blurriness, are flagged for visual/manual evalu-
ation.
Detecting Distortion and Blur: Secondly, we analyze the
contrast and exposure levels of frames to identify instances
of distortion or motion blur. Histogram analysis is utilized
to evaluate the distribution of pixel intensities and detect
anomalies related to over-exposure or under-exposure.
Assessing Relevance and Consistency: We prioritize frames
that best represent diverse road conditions and scenarios to
ensure the relevance and representativeness of our dataset
while striving for uniformity among the images to maintain
consistency across the dataset. Our team conducted rigorous
visual inspections of each video sequence. Trained evalua-
tors assessed the overall clarity, distortion, and visual fidelity
of the frames, considering factors such as motion blur, lens
aberrations, and compression artifacts.
Data Distribution: After data collection under different
illumination andweather conditions from1000+KMof road-
ways, distorted/blurry/unclear sequences are excluded, and
frames are selected from the remaining video with a 10s
difference to avoid redundancy. The vehicle is moving at
varying speeds [120km/h (motorway), 60–100km/h (high-
way), 20–60km/h (within city)]. Therefore, speed variation,
blurry sequence exclusion, and 10s difference are key to
avoiding data redundancy. Lastly, EDS further minimizes the
chances of sequential frames in the data. We aligned video

sequences to extract the frames to distribute the diverse road
scenarios equally. To achieve better diversity, 10 frames are
selected after every 10s per frame. Therefore, 100K images
of R2S100K dataset are sampled out of 10 million images.

3.1.2 Data Statistics

Labeled Data: The labeled set consists of 14,700 images
with fine-layered polygonal annotations which are realized
in-house to ensure the highest level of quality. Firstly, anno-
tators were provided with extensive training sessions to
familiarize them with the data categorization, classes, and
annotation tool to ensure consistency and accuracy. During
training, similar data samples were distributed to the data
annotators to allow for cross-verification, and the labeling
strategy has been refined through iterative Inter-Annotator
Agreement considering the definitions of the road classes.
Secondly, to avoid void spacing and erroneous class over-
lapping, images are labeled back to front so that no class
boundary is dual-labeled. Due to the diversity in data, we
categorized road regions into 14 distinct classes as described
in Table 1. Additionally, to further facilitate the annotators,
we use (SuperAnnotate AI Inc., 2024) for labeling which is a
user-friendly tool especially for autonomous driving tasks. In
the post annotation phase, a random sampling and expert val-
idation has been performed by the experts to cross-evaluate
the quality of annotations, and to identify and address the
errors, ensuring the correctness and reliability of R2S100K
dataset.
Unlabeled Data: The unlabeled set of our dataset con-
tains 86,000 images, covering diverse road infrastructure.
As shown in Fig. 4, our unlabeled set is collected under vary-
ing weather conditions and time periods to ensure diversity
regarding downstream autonomous driving tasks.

3.2 Training Fully Supervised Baseline Models

To analyze the effectiveness of R2S100K, we fine-tuned
SoTA segmentation networks to leverage the representa-
tions from pre-trained weights learned from large-scale
datasets, enhancing the generalizability of models to our
road region segmentation tasks. These models include FCN
(Long et al., 2015), PSPNet (Zhao et al., 2017), FPN (Lin
et al., 2017), LinkNet (Chaurasia & Culurciello, 2017),
Deeplabv3+ (Chen et al., 2018), and LRASPP (Howard
et al., 2019), MaskFormer (Cheng et al., 2021b), and
SegFromer (Xie et al., 2021) along with various backbone
networks to perform road region segmentation tasks. These
methods are trained using a set of human-labeled images
(x, y) where x ∈ RH×W×3 is a 3-channel RGB image, and
y ∈ RH×W×C is a respective segmentation mask where H
andW refers to height and width of the mask, and C indicate
classes present in that mask. Following common practices
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Fig. 6 Our Efficient Data Sampling (EDS) based self-training frame-
work. Firstly, raw data samples are clustered based on similarity in road
classes among image encodings (shown in Fig. 7)—generated by an
encoder. Then, a small subset is uniformly formed from all clusters for

annotation to train the teacher model. After training, pseudo-labels of
the unlabeled set are generated using the teacher model, and the stu-
dent model is trained on real and pseudo-labeled sets to achieve better
generalization

Fig. 7 Visualizing examples of clusters (twelve clusters representing three images in each) using our EDS. Our EDS efficiently clusters images
concerning the similarities in road texture, luminous conditions, and road scenarios

(Zhu et al., 2019), model M is trained using cross-entropy
loss, and IoU is used as a performance metric.

3.3 Improving Self-Training Using Unlabeled Data

Recently, a surge of interest has been observed in utilizing
unlabeled data to scale up the adaptation of deep models in
various segmentation tasks. Leveraging many unlabeled sets
from our R2S100K, we carefully employ semi-supervised

123



International Journal of Computer Vision

training methods to study the generalizability of these mod-
els. We take inspiration from Zhu et al. (2019) and employ a
teacher-student-based self-training framework for road seg-
mentation. The student-teacher framework offers a structured
approach to transfer rich representations and intricate spatial
relationships from the teacher to the student. This guidance is
particularly beneficial in tasks like road region segmentation,
where precise delineation of spatial boundaries is crucial.
Unlike directly using a pre-trained CNN/transformer model,
which may overlook the nuanced insights captured by the
teacher, the teacher-student framework facilitates focused
knowledge transfer, leading to improved performance and
more accurate segmentation results in complex real-world
road scenarios.

Teacher-student-based self-training refers to an approach
inwhich a largeDLmodel (called the teacher) is trained using
real labeled data. Then, a set of unlabeled images is given
as input to the trained teacher model for inference, and the
teacher model’s output is considered a pseudo-label for the
corresponding input image. Finally, data with both—the real
and pseudo-labels are combined to train a small/different DL
model (called student model) to learn representations from
whole data. The purpose of training the teacher model on
real data is to guarantee its performance in generating pseudo
labels. Therefore, we utilize a small labeled set along with
a large unlabeled set to increase the accuracy of the trained
model while mitigating the human effort in producing labels
at scale. Similar to the practices in supervised learning, we
fine-tuned these models to leverage the already learned rep-
resentations from large-scale datasets for faster convergence.

3.3.1 Efficient Data Sampling (EDS)

In semi-supervised segmentation, dealing with the data
imbalance problem is highly challenging. In street scene
segmentation problem, two key factors cause data imbal-
ance; (i) class imbalance, which includes class-wise pixel
imbalance—a typical image is largely occupied by sky and
road, while other classes like humans and bicycles repre-
sent far fewer pixels—and class object confusion—some
classes, e.g., bicycles, aremore challenging to segment due to
their complex shapes, occlusions, and faded representations
(Brostow et al., 2009; Cordts et al., 2016); and (ii) imbalance
in physical scenarios, as highlighted in Fig. 4. Although both
imbalances are equally important to address, class imbal-
ance is a post-annotation issue that mainly depends on the
underlying task, and is generally easily detected, e.g., by
computing the confusion matrix of each class. On the con-
trary, an imbalance in physical scenarios is a pre-annotation
issue inherent to the (unlabeled) images. Further, physical
scenarios under-represented in the training set are also usu-
ally equally under-represented in the test set. Thus, detecting
imbalances in physical scenarios is significantly challeng-

Fig. 8 KL divergence between both—the EDS and Random sampling-
based data distributions

ing, let alone alleviating them. We identify a dire need for an
efficient method to detect/alleviate data imbalances in phys-
ical scenarios at the pre-annotation stage to produce more
balanced models on semantic segmentation tasks. The Fig. 8
shows the KL-divergence from the uniform distribution of
physical scenarios in two subsets from the original dataset -
(i) the randomly sampled subset; and (ii) the EDS sampled
subset. Ideally, the sampled subset should represent different
physical scenarios equally, resulting in a uniform distribu-
tion. For example, in the sampled datasets, all the times
(Morning, Noon, Afternoon, and Evening) should be uni-
formly represented. Therefore, a lower KL divergence of the
sampled subset from the uniform distribution indicates a bet-
ter sampling strategy. EDS notably improves the imbalance
in different physical scenarios, as illustrated by the reduced
KL-divergence in Fig. 8, and consistently better performance
of the models in Fig. 11, respectively.

To address these issues, we propose EDS, as depicted in
Fig. 6. We aim to equally represent different physical sce-
narios in the training data. In this regard, our EDS approach
has two main stages: (i) data categorization, and (ii) data
selection.
Data Categorization: Firstly, given an unlabeled dataset,
Dx , for each x ∈ Dx , we extract region-of-interest (ROI)
mainly comprising salient road features, sidewalks, and
pedestrians, while ignoring background, e.g. sky. The
extracted image ROI(x) is then processed through an off-the-
shelf encoder network e(·) to get encodings e(ROI(x)). We
use a U-Net model, built upon VGG-16 Imagenet encoder,
e : R512×512×3 → R32×32×512, as backbone. Due to the
prevalent data imbalance problem in segmentation datasets,
inherent biases in datasets are also reflected in trained mod-
els.Whereas, models trained on Imagenet learnmore generic
features spanning over 1000 classes, and can be used for
multiple downstream tasks. We feel using a biased encoder
(trained on street scene dataset) in EDS to mitigate biases in
R2S100K is counter-intuitive.
Data Selection: Secondly, encodings e(ROI(x)) of unla-
beled train set are fed to k-means to get k data clusters {Ci }ki=1
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Fig. 9 Demonstrating the effect of change in k on data imbalance
regarding physical scenarios

based on similarities in road surface. Finally, to maintain
equal distribution along all types of road representations, we
uniformly sample n data instances from each cluster, Ci , so
that our final dataset, D∗

x has n × k data samples. In typi-
cal settings, we choose n × k = 3000 to have a comparable
dataset size as the Cityscapes dataset. Formally,

D∗
x = ∪k

i=1{x j ∼ Ci }nj=1 (1)

We choose k = 15 × 20 = 300. Although k is a hyper-
parameter, our goal for choosing k = 300 is to allow each
of the 15 classes to be captured in 2(sun/no sun) × 2(rain/no
rain) × 5(road areas) = 20 clusters representing different
scenarios. In Fig. 9, we demonstrate the analysis regarding
the influence of change in K on the average sampling. It
can be seen that the change in K does not influence the
sampling pattern. Therefore, setting k = 300 ensures the bal-
anced sampling of physical road scenarios while keeping
weather conditions and road classes in view. To compare
EDSwith random sampling, we sample 500 images from the
original dataset using each method and compute the prob-
ability density of each physical scenario in Fig. 8 based on
two sampled subsets. Ideally, all labels should have a uni-
form density, signifying equal representation in the dataset.
Therefore, we compute KL-divergence between probability
density and uniform distribution in Fig. 8. Results show that
EDS significantly improves data imbalance as compared to
random sampling.

3.3.2 Student–Teacher Method for Segmentation Task

Our self training framework is illustrated in Fig. 6. Based on
better performance in supervised learning, bestperforming
model is selected as teacher model T which is used to gener-
ate pseudo labels of our unlabeled set of images. The teacher
model is used to generate pseudo labels y of our unlabeled set
of images x . Similar to supervised learning, one-hot encod-
ing of the class labels is sampled from the pT (x) as given in

equation.

LT = −
N∑

i=1

yi log(pT (xi )), (2)

where N denotes the number of labeled samples. yi is the one-
hot encoding of class labels, while pT represents softmax
predictions from the teacher model containing class proba-
bilities.

We demonstrate various examples of our teacher-
generated pseudo labels in Fig. 10. Thanks to our well-
performing teacher model, the quality of our teacher-
generated pseudo labels x over the unlabeled set is closer to
human-annotated labels despite a large domain gap. There-
fore, we combine pseudo and real labeled sets to train the
student model S. Therefore, we combined pseudo and real
labeled sets to train the student model S. Thanks to the
generalizability of our proposed self-training pipeline, any
DL-based segmentationmodel can be used as a studentmodel
irrespective of their network architectures (briefly explained
In Sect. 4.6). Following the practice—adopted in supervised
learning, the focus is set to minimize the cross-entropy, given
in Eq. 3.

LS = −
N∑

i=1

yi log(pT (xi)) −
M∑

j=1

y′
j log(pS(x

′
j)) (3)

M denotes the number of unlabeled samples. pS represents
softmax predictions from the student model containing the
class probabilities. The predicted class probabilities of the
student model will be near one-hot by training on hard
pseudo-labels generated by the teacher model. Therefore, the
entropy of unlabeled data is minimized with cross-entropy
loss.

It is worth noting that the teacher model may gener-
ate noisy or incorrect pseudo-labels against rare/challenging
scenes, which can significantly impact the training process
of student models and ultimately hinder the overall perfor-
mance. Therefore, we adopted a feedback-based training and
evaluation approach to achieve maximum accuracy. The stu-
dent model is first trained with real and pseudo-labeled data
and then evaluated on the real validation set, which is com-
mon for both the teacher and student models. In the second
step, the data engineers perform error analysis based on the
IoU and confidence thresholding on the validation set to iden-
tify the source ofmisclassification.After completing the error
analysis, the training set is regularized usingEDS,where data
samples of the identified class are augmented to improve con-
vergence.
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Fig. 10 Demonstration of our
teacher-generation
pseudo-labels over diverse
roads. Our teacher model can
provide reasonable
segmentation predictions

Table 2 Evaluation of baseline
segmentation methods by
training using different numbers
of randomly sampled sets from
the actual train set of R2S100K
dataset for supervised learning

Model Backbone MIoU

1K 3K 5K 7K 9K

FCN ResNet-101 41.07 54.48 54.21 54.02 53.62

PSPNet ResNet-101 39.83 53.03 52.96 52.43 52.14

LRASPP MobileNet-v3 36.31 56.54 56.19 56.10 55.93

FPN ResNet-101 44.26 55.65 54.27 54.23 54.18

LinkNet ResNet-101 43.50 56.14 55.71 55.06 54.84

SegFormer – 49.77 57.86 57.60 57.48 57.21

MaskFormer – 51.35 57.98 56.37 57.72 57.05

Deeplab-v3+ ResNet-101 45.97 58.02 57.36 55.89 55.37

4 Experiments and Results

Firstly,webrieflydescribe the implementation details regard-
ing hyper-parameter selection for training and evaluating
supervised and semi-supervised learning methods. We cat-
egorize our experiments into five sections. In Sect. 4.1, we
analyze the performance of supervised learning methods
and compare the results between random data sampling and
our proposed EDS method. Section4.2 evaluates the per-
formance of semi-supervised learning-based standard self-
training methods leveraging our unlabeled data. In Sect. 4.3,
we select the best-performing semi-supervised model as
the teacher method and evaluate its efficacy of the student
model with different ratios of unlabeled data samples. In
Sect. 4.4, we analyze the generalization of other studentmod-
els irrespective of different network architectures. Lastly,
we evaluate the cross-domain generalization with the same
categories on state-of-the-art autonomous driving datasets,
including Cityscapes, CamVid, IDD, and CARL-D.

4.1 Basic Settings

Following the training practices from the Cityscapes and
BDD100K, the learning rate is set to 0.0001 for fine-tuning

with SGD as an optimizer. As per conventional practice (Liu
et al., 2015), a polynomial learning rate is used to smooth
learning, and batch size,momentum, andweight decay are set
to 8, 0.9, and 0.0001, respectively. Nvidia RTX 3060 is used
to perform experiments. The number of training epochs is set
to 200 with validation patience of 10 epochs. In R2S100K,
each class is divided into three portions: 60% for training,
30% for validation, and 10% for testing to ensure a balanced
representation of classes across the training, validation, and
test sets, facilitating fair model evaluation and performance
comparison. Evaluation is done using pixel accuracy, preci-
sion, recall, F1-score, and standard Jaccard index (shown in
Eq. 4), where FP, TP, and FN refer to the number of false
positive, true positive, and false negative pixels, determined
over the test set.

IoU = T P

(T P + FP + T N )
(4)

4.2 Performance of Supervised Learning with EDS

We employed FCN (Long et al., 2015), PSPNet (Zhao
et al., 2017), FPN (Lin et al., 2017), LinkNet (Chaurasia &
Culurciello, 2017),Deeplabv3+ (Chen et al., 2018), LRASPP
(Howard et al., 2019) MaskFormer (Cheng et al., 2021b),
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Fig. 11 Comparative analysis of
baseline segmentation methods
using standard data sampling
(STDS) and our EDS. Our
efficient data sampling method
significantly improves
supervised learning for semantic
segmentation tasks
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and SegFormer (Xie et al., 2021) with various backbones
on R2S100K. We analyze baseline segmentation methods
over many labeled subsets (1k, 3k, 5k, 7k, and 9k), randomly
sampled from actual 9000 train images. The primary motiva-
tion for adopting this training scheme is that in autonomous
driving, the cameras aremounted in the center-straight orien-
tation on the front (similar in Cityscapes, KITTI, BDD100K,
IDD, and CARL-D) to capture the frontal view. Resultantly,
the data, either in the form of video or frames, is sequen-
tial in nature with the static frame structure, i.e., the road
in the lower-center, buildings, or trees on the left and right,
while the sky covers the top-center part of the image. Sec-
ondly, the major part of the road is the asphalt and concrete
regionwith the chunks of the other hazardous classes, defined
in Table 1, and demonstrated in Fig. 1. In Fig. 5, it can be
observed that asphalt and concrete road regions cover 39%
of the labeled pixels in the dataset, which leads to highly
unbalanced data. Considering these important factors, we
hypothesize that using such unbalanced data may cause
overfitting, ultimately hindering the model’s generalization
performance. From Table 2, it can be seen that employed
models—trained over 1k images experience the worst per-
formance due to under-fitting. However, their performance
significantly improves with the 3K train set. Interestingly,
the employed models start saturating while training on large
train sets, i.e., 5k, 7k, and 9k samples, and do not further
improve learning because of the similarity in road pavement
across training samples.

We further analyze the performance of employed models
using two data sampling methods, i.e., the standard training
data selection (STDS) method—in which the data samples
are randomly selected based on their occurrence, and our pro-
posed EDSmethod. It is clear fromTable 2 that segmentation
methods perform well with a 3k training set. Therefore, we
randomly select 3000 labeled images from the train set in

STDS based on the frequent occurrence. On the other hand,
using our EDS, we first clustered all images based on their
representation similarities, shown in Fig. 6. Then, we uni-
formly sampled 3000 labeled images fromall clusters to form
a representative sub-training set.

The results illustrated inFig. 11 show that ourEDSmethod
significantly improves learning in segmentation tasks. For
instance, Deeplab-v3 with ResNet-101 achieved a compar-
atively highest mIoU, i.e., 62.86% using our EDS method
which is 6.72% higher than its baseline trained using the
STDSmethod. A major reason for this performance increase
is that most of the informative data samples are ignored dur-
ing random selection, due to which, training data becomes
highly unbalanced which ultimately leads to inefficient train-
ing and poor generalization. Consequently, the resultant
model does not achieve better performance on test data. In
our EDS method, training samples are uniformly selected
based on their class representations. Therefore, the network
efficiently learns an equal distribution of features from each
class, boosting the performance of trained models over test
data. A class-wise comparison of state-of-the-art segmenta-
tion models is shown in Table 3.

4.3 Effectiveness of Student–Teacher Self-Training

Based on higher performance in supervised learning, we
select DeepLabV3+ with ResNet101 as a teacher model to
initiate self-training. Firstly, we generate pseudo labels of an
unlabeled set with several subsets, as shown in Table 4. Then,
a student model, i.e., PSPNet, is trained on real and pseudo-
labeled sets. From Table 4, it can be observed that utilizing
pseudo labels significantly improves segmentation models,
which indicates that segmentation models can be improved
using pseudo labels without large-scale labeled data.
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Table 4 Evaluation of EDS-ST on R2S100K with different subsets of real and pseudo-labeled data

Model Real Pseudo w/o EDS w/EDS

Accuracy Precision Recall F1-score MIoU Accuracy Precision Recall F1-Score MIoU

Teacher 3K – 58.32 62.34 55.45 58.62 56.14 63.23 68.45 57.32 62.49 62.86

Student 3K 2K 59.76 61.32 58.79 60.04 59.87 64.45 69.78 58.23 63.39 63.15

Student 3K 4K 62.29 66.67 59.81 63.09 62.24 66.12 70.18 62.14 66.02 65.82

Student 3K 8K 64.87 69.75 61.12 66.37 63.50 66.95 71.23 65.45 68.23 66.03

Student 3K 16K 62.59 67.32 59.84 63.18 62.41 66.83 69.67 62.22 65.76 66.91

Student 3K 32K 62.68 68.93 57.34 64.67 62.33 67.43 69.78 65.21 67.43 67.40

The bold values indicates the best Mean IoU

4.4 Effectiveness of EDS-Based Self-Training

Following supervised learning, we used STDS and EDS to
analyze the efficient training and its impact on the infer-
ence of student models. The results are summarized in Table
4, and we have several observations. Firstly, EDS signifi-
cantly improves student models with an average increase of
4% MIoU. Therefore, using EDS for training segmentation
models is better than not using it. Secondly, EDS can be
used as a generic approach to train teacher methods effi-
ciently. From Fig. 11, it is clear that EDS improves teacher
method by 4%. Thirdly, EDS is necessary to achieve better
results when pseudo labels dominate the training set such
as the 16k/32k set, otherwise, the performance of the models
starts declining. For instance, student models trained without
EDS over 16k, and 32k pseudo labeled sets dropped by 0.8%
because of redundant training samples which contribute bias
towards classes with more pixels against classes with lesser
ones. Whereas EDS efficiently handles data imbalance, thus
it improves the performance of student models as compared
to the STDS approach, as shown in Fig. 12.

In addition, studentmodelswithmore pseudo labels (16K,
32K) marginally improve compared to models with lesser
pseudo labels (2K/4K). With fewer pseudo labels, the model
learns more informative features as variable data samples are
clustered based on similar representations by EDS. However,
in the case of more pseudo labels, a vast range of sequential
data samples is selected from each cluster, which causes the
model to start saturating instead of learning new information.
On the other hand, EDS ensures the selection of distinct sam-
pling and helps the model refinemask boundaries, ultimately
benefitting dense tasks.

4.5 Comparison with Related Self-TrainingMethods
on R2S100K, Cityscapes, and CamVid

Here we describe a comparative analysis of existing self-
trainingmethods. As shown in Table 5, our EDS outperforms
other self-training methods (Abdalla et al., 2019; Lee et al.,
2013; Wang et al., 2022; Zhao et al., 2023; Zou et al., 2019,

2018) on R2100K, as well as on cityscapes and CamVid. On
R2100K, consistency regularization achieved 53.70% mIoU
i.e., considerably worse than all of the self-training meth-
ods, as the model is learning from inaccurate predictions
in the first stage of training, leading to inaccurate inference
on test data. Similarly, in the case of teacher fine-tuning,
we observe that the model gets stuck at minima at an early
stage of fine-tuning. Resultantly, the model starts overfitting
instead of learning new information. Similarly, we notice
that Wang et al. (2022) struggles to distinguish hazardous
road regions in R2S100K due to higher textural similarities
among classes, leading to a higher misclassification rate. We
first efficiently select training data samples using the EDS
approach to train a teacher model with considerable accuracy
and use it to produce pseudo labels of our unlabeled data.
Therefore, its performance consistently improves through-
out the training process. Our framework is purely generic;
using our approach, a teacher model can train any student
model irrespective of their architectural differences, show-
ing its generalization capability. The performance of EDS is
shown in Table 6.

4.6 Generalization to Other Student Methods

Another benefit of EDS-based self-training is that teacher
and student models do not need the same architectures. Our
framework is a generic pipeline that clusters data based on
representations. Then, data samples are uniformly selected
to ensure data balance for training a teacher model—used
to generate pseudo labels which are utilized in improv-
ing the accuracy of the student model. In particular, we
used DeepLabV3+ with ResNet101 as a teacher model
and trained several student models including BiSeNet,
PSPNet, LRASPP, LinkNet, FeedFormer, SegNeXt, and U-
MixFormer with different backbone networks. These models
are selected after analyzing their wide adaptation to seg-
mentation tasks. The results in Table 7 demonstrate that
EDS-based self-training can significantly improve student
models irrespective of their architectures. Comparatively,
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Fig. 12 Visualizing the
comparison of best-performing
student methods on R2S100K.
Results demonstrate that
EDS-based self-training is a
better approach to effectively
handle class confusion in
complex road scenarios. The
labels are the same as in Fig. 1

Table 5 Evaluation of
self-training methods on
R2S100K

Methods Model MIoU

Teacher Fine-tuning (Abdalla et al., 2019) Single Model 59.21

Consistency Regularization (Zou et al., 2018) Single Model 53.70

Model Regularizer (Zou et al., 2019) Student + Teacher 57.64

Pseudo-labels (Lee et al., 2013) Student + Teacher 61.05

U2PL (Wang et al., 2022) Student + Teacher 64.29

iMAS (Zhao et al., 2023) Student + Teacher 66.42

EDS (Our method) Student + Teacher 67.40

VThe bold values indicates the best Mean IoU

Table 6 Analyzing semi-supervised methods on R2S100K

Methods Venue/Year R2S100K CamVid Cityscapes

w/o EDS w EDS w/o EDS w EDS w/o EDS w/EDS

Baseline (Chen et al., 2018) CVPR 18 62.91 64.27 60.82 64.44 62.21 64.73

CRST (Zou et al., 2019) ICCV 19 63.42 63.79 59.37 59.66 60.57 63.86

HLCon (Mittal et al., 2019) TPAMI 19 66.38 66.91 62.13 63.71 63.94 64.18

CCT (Ouali et al., 2020) CVPR 20 65.14 65.40 63.73 66.10 63.75 65.43

PseudoSeg (Zou et al., 2020) ICLR 21 64.89 66.73 63.58 64.35 64.60 65.98

PSPNet with ResNet101 outperformed other segmentation
networks using the EDS approach.

5 Discussion and Future Direction

The annual report of the World Economic Forum (WEF,
2019) indicates that the quality of road infrastructure of

Pakistan achieved a 4 road quality index, which is similar
or comparable with many high-, middle-, and low-income
countries. This list includes but is not limited to India, Rus-
sia, Kuwait, Romania, Indonesia, Bulgaria, Brazil, Malta,
Iceland, Hungary, Czechia, Slovakia, Ukraine, Moldova,
Georgia, Jordan, andVenezuela. These statistics indicate that
models trained on R2S100K can be generalized to the road
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Table 7 Generalizability of student methods irrespective of different backbone network architectures on R2100K

Model Backbone Val Test

MIoU Accuracy Precision Recall F1-Score MIoU

BiSeNet (Yu et al., 2018) ResNet-50 62.32 63.45 68.95 56.23 62.01 63.17

BiSeNet (Yu et al., 2018) w/EDS ResNet-50 64.40 65.33 69.75 60.82 65.17 64.93

PSPNet (Zhao et al., 2017) ResNet-101 62.77 64.43 68.78 59.46 63.82 64.51

PSPNet (Zhao et al., 2017) w/EDS ResNet-101 65.82 67.56 69.98 61.87 65.76 67.23

LRASPP (Howard et al., 2019) MobileNet-v3 59.11 60.53 62.21 58.45 60.24 59.87

LRASPP (Howard et al., 2019) w/EDS MobileNet-v3 60.56 61.45 59.57 63.12 61.23 61.38

LinkNet (Chaurasia & Culurciello, 2017) ResNet-101 62.48 63.62 68.59 57.83 62.78 63.59

LinkNet (Chaurasia & Culurciello, 2017) w/EDS ResNet-101 64.25 64.87 70.23 62.45 66.12 64.72

FeedFormer (Shim et al., 2023) – 63.27 67.56 70.32 62.89 67.23 64.17

FeedFormer (Shim et al., 2023) w/EDS – 64.53 66.92 68.54 65.78 67.13 65.97

SegNeXt (Guo et al., 2022) – 62.98 64.53 67.24 60.32 63.89 64.52

SegNeXt (Guo et al., 2022) w/EDS – 64.21 65.83 69.87 62.45 66.02 65.87

U-MixFormer (Yeom & von Klitzing, 2023) – 63.52 65.22 69.64 61.12 65.19 64.03

U-MixFormer (Yeom & von Klitzing, 2023) w/EDS – 65.98 67.85 67.52 64.23 65.85 65.91

Fig. 13 Comparison between our method, Segment Anything Model and DINOv2. The colors of labels in R2S100K examples are the same as in
Fig. 1

infrastructure of the aforementioned and other countries with
similar road quality indexes. According to the Global Status
Report on Road Safety 2023 (WHO, 2023), reporting coun-
tries collectively account for nearly 68 million km of roads,
of which 4.5 million km are paved expressways; 47 mil-
lion km are paved interurban roads; and 10 million km are
unpaved inter-urban roads. Among these, 80% of the roads
of the reporting countries do not meet a minimum 3-star rat-
ing for user safety due to non-standard road infrastructure.

Consequently, 92% of deaths due to road fatalities occur in
low- andmiddle-income countrieswhich share similar socio-
economic status.

The R2S100K dataset provides a diverse set of road
images covering challenging roadways, including hazardous
road patches that are common in developing countries. This
diversity enhances the utility of the dataset for training and
evaluating autonomous driving perception systems. By dis-
tinguishing safe asphalt road regions from hazardous road
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regions, the dataset offers finer-grained semantic segmen-
tation labels, which can improve the accuracy of percep-
tion models in distinguishing between different types of
road surfaces. Moreover, R2S100K addresses the under-
representation of challenging road scenarios in existing
datasets, thereby improving the efficiency of autonomous
driving research by providing a more comprehensive bench-
mark for evaluating perception models.

The R2S100K is a first attempt at providing the label-
ing for semantic road region segmentation tasks. The current
version of R2S100K contains one hundred thousand images,
including 15K labeled and 85K unlabeled images. It is
well-known that pixel-by-pixel image labeling is costly and
time-consuming; this research gap is addressed using our
EDS-based self-training method. With the recent advances
in computer vision, in particular with the release of founda-
tion segmentation models, i.e., Segment Anything (Kirillov
et al., 2023), DINOV2 (Oquab et al., 2023), and Internim-
age (Wang et al., 2023) are being adopted by the community
for auto-labeling. Though these models have achieved sig-
nificant performance on well-known classes, However, these
models under-perform on R2S100K, and cannot segment the
classes in R2S100K, as shown in Fig. 13, due to the under-
representation of such data in SA-dataset: it only covers 0.9%
of data samples from low-income countries (Kirillov et al.,
2023). Therefore, we manually labeled the data utilizing our
data engineers’ expertise and proposed an EDS-based self-
training method to efficiently utilize the unlabeled data in
improving the model. In the future, we aim to integrate addi-
tional information modalities like odometry and Lidar point
clouds into the dataset.

6 Conclusions

In this paper,wepresentedR2S100K to performdrivable road
region segmentation on unstructured roadways. We also pre-
sented a self-training framework to improve semi-supervised
learning for segmentation tasks. Results demonstrate that our
proposedmethod can be utilized to improve supervised/semi-
supervised learning for semantic segmentation due to its
effective class confusion handling in complex road envi-
ronments. Our training framework will facilitate research
in various ML applications where generating labeled data
is critical. In the future, we will extend the annotations to
encompass lane markings, the surrounding environment and
infrastructure, and vehicles.
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