
International Journal of Computer Vision
https://doi.org/10.1007/s11263-024-02197-2

Compressed Event Sensing (CES) Volumes for Event Cameras

Songnan Lin1 · Ye Ma1 · Jing Chen2 · Bihan Wen1

Received: 3 June 2023 / Accepted: 18 July 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Deep learning has made significant progress in event-driven applications. But to match standard vision networks, most
approaches rely on aggregating events into grid-like representations, which obscure crucial temporal information and limit
overall performance. To address this issue, we propose a novel event representation called compressed event sensing (CES)
volumes. CES volumes preserve the high temporal resolution of event streams by leveraging the sparsity property of events and
theprinciples of compressed sensing theory.They effectively capture the frequency characteristics of events in low-dimensional
representations, which can be accurately decoded to raw high-dimensional event signals. In addition, our theoretical analysis
show that,when integratedwith a neural network,CESvolumes demonstrates greater expressive power under the neural tangent
kernel approximation. Through synthetic phantom validation on dense frame regression and two downstream applications
involving intensity-image reconstruction and object recognition tasks, we demonstrate the superior performance of CES
volumes compared to state-of-the-art event representations.

Keywords Event cameras · Data representation · Compressed sensing · Event-driven applications

1 Introduction

Event cameras are novel biologically-inspired sensors that
differ from conventional cameras. Rather than capturing
intensity frames at a fixed rate, event cameras respond
independently and asynchronously to intensity changes for
each pixel, resulting in streams of events that reflect spa-
tiotemporal coordinates and polarity (sign) of corresponding
brightness changes. Event cameras offer several promising
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properties, such as low power consumption, high temporal
resolution (in the order of microseconds), and high dynamic
range (up to 140 dB), making them a valuable alternative and
complementary sensor to conventional cameras in challeng-
ing scenarios (Gallego et al., 2020).

Since event cameras produce inherently sparse and asyn-
chronous output, it would be desirable to transform events
into representations compatible with existing computer
vision techniques. Spiking neural networks (SNNs) are well-
suited for event data due to their minimal latency and high
temporal resolution, but training them is challenging due
to the lack of efficient backpropagation, making them less
effective for event-driven applications (Dongsung & Ter-
rence, 2018). In contrast, modern deep learning architectures
such as convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) can easily handle event data
by aggregating sequences of events into grid-like representa-
tions. However, this approach has some limitations. First,
grid-like representations are constructed by merging and
stacking event data within a small time interval, sacrificing
temporal information and leading to irreversible and lossy
mapping, which limits the performance of computer vision
algorithms. Second, grid-like representations do not consider
the sparsity property of event data, which leads to redun-
dant computation and may fail to highlight details. Although
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Fig. 1 CES example generated from shapes_6dof in the Event Camera
Dataset (Mueggler et al., 2017). CES volumes are a low-loss represen-
tation that records the random frequency components of event signals

some active research areas (Yusuke et al., 2019; Jiancheng
et al., 2019; Simon et al., 2022; Baldwin et al., 2022) focus
on designing for sparse data, they introduce some negative
effects such as computational inefficiency (Jiancheng et al.,
2019; Baldwin et al., 2022) and failure to generalize to low-
level tasks in the image plane (Yusuke et al., 2019; Jiancheng
et al., 2019; Simon et al., 2022). (See Fig 1)

In this paper, we propose a novel event data representation
called compressed event sensing (CES) volumes. Motivated
by compressed sensing technique which can accurately rep-
resent a signal sparse in some domain with few samples, we
utilize the sparsity property of events and compressed sens-
ing scheme to compress event signals with a minimal loss
of information. Specifically, we model the events at each
pixel as a discrete-time signal. We construct the CES vol-
umes by mapping the event signal into the frequency domain
using Fourier transform and randomly selecting a subset of
frequency components. The resulting volumes can be easily
processed using existing computer vision algorithms while
retaining the high fidelity of the original event data. The
downstream applications with CES volumes reach superior
performances.

The main contributions of this paper are summarized as
follows:

• We propose CES volumes as an effective and efficient
representation of event data. Our CES volumes hinge on
the sparsity property of events and compressed sensing
scheme.

• A theoretical analysis is provided showing that the pro-
posed CES representation, integrated with a deep learn-
ing framework, demonstrates greater expressive power,
using the neural tangent kernel approximation.

• We show the merits of the proposed CES, including the
restricted isometry property of the sensingmatrix and the
high fidelity through raw event signal recovery, which are
verified by empirical evidence.

• Wequalitatively and quantitatively evaluate the proposed
CES representation on a phantom validation of dense
frame regression aswell as two downstream applications:
intensity-image reconstruction and object recognition.

2 RelatedWork

Event Representation
Owing to the asynchronous and sparse nature of event

data, event-driven processing differs considerably from tra-
ditional image-driven one. Event representation is the first
and critical step in the event-driven computer vision pipeline.
The rawevent data is transformed into an intermediary format
compatible with existing techniques that implement applica-
tions such as classification, image reconstruction, andmotion
tracking. A comparison of event-based representations and
their design choices is summarized in Table 1.

Existing algorithms designed for event cameras have
traded off high temporal resolution and prediction perfor-
mance. Prior approaches based on individual events gain
minimal latency and high temporal resolution, such as prob-
abilistic filters (Orchard et al., 2015; Lagorce et al., 2016)
and Spiking Neural Networks (SNNs) (Zhao et al., 2014;
Gehrig et al., 2020). Filter-based algorithms process events
sequentially by merging the information from past events
with the incoming one using a continuous-time model. How-
ever, as they hinge on handcrafted design and parameter
tuning, they are less effective on more complex high-level
tasks (Orchard et al., 2015; Amos et al., 2018). As for Spik-
ingNeural Networks (SNNs) (Zhao et al., 2014;Gehrig et al.,
2020), although they are more flexible by extending manual
filters in a data-driven fashion, they are difficult for con-
vergence because commercially available SNNs are still an
immature technique. Moreover, these representations based
on individual events are computationally intensive due to the
per-event update.

To efficiently and effectively aggregate information,much
attention has been paid to aggregating batches of events into
grid-like representations (Zhu et al., 2019; Rebecq et al.,
2019; Gehrig et al., 2019) which can be fed to traditional
computer vision algorithms designed for images. Each voxel
in the grid represents the accumulation of event information,
e.g. count and polarity, at a particular pixel and time inter-
val. According to the working principle of event cameras, the
grid-like representations intuitively interpret scenes, such as
brightness increment and edges. Moreover, they benefit from
their data structure compatible with computer vision algo-
rithms and fast inference on commodity graphics hardware.
Our work is highly related to the grid-like representations
above.

Recently, some efforts have been devoted to treating
batches of events as a set of spatiotemporal points and learn-
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Table 1 Comparison of various event representations used for event-driven applications

Representations Dimensions Description Characteristics

Event Frame (Rebecq et al., 2017) H × W Image of event polarities Discards temporal and
polarity information

Event Count Image (Ana et al., 2018; Zhu et al., 2018) H × W Image of event coundts Discards temporal
information

Graph-based (Bi et al., 2019; Simon et al., 2022) U × V Graph of edges and
vertices

Discards temporal and
spatial information

Voxel Grid (Rebecq et al., 2019) B × H × W Voxel grid summing
event polarities

Discards event polarities

Histogram of Time Surface (HATS) (Amos et al., 2018) 2 × H × W Histogram of average
time surfaces

Discards temporal
information

Time-Ordered Recent Event (TORE) (Baldwin et al., 2022) 2 × K × H × W 4D grid of last K
timestamps

Discards previous
timestamps

Event Spike Tensor (EST) (Gehrig et al., 2019) 2 × B × H × W 4D grid of convolutions Temporally quantizes
information in B bins

Compressed Event Sensing (CES) 2 × M × H × W 4D grid of M frequency
components

Compresses events with
a high fidelity

H and W denote the height and width dimensions. This table is expanded from Baldwin et al. (2022) to include new representations

ing features from sparse events directly using point-based
geometric processing methods, such as PointNet (Yusuke et
al., 2019), transformer (Jiancheng et al., 2019), and Graph
Neural Networks (GNNs) (Simon et al., 2022). These algo-
rithms preserve the sparsity and high temporal resolution of
events without redundancy, thus showing promising results
on several tasks, such as object classification and detection.
However, from the perspective of 3D space rather than 2D
spatial one, these algorithms are not suitable for low-level
tasks, such as intensity image reconstruction and optical flow
estimation.

Compressed Sensing
Compressed sensing (CS) has gained tremendous interest

from academic and industrial communities. By exploiting the
sparsity prior, the CS scheme can reconstruct the underlying
signals from much fewer samples than the Shannon-Nyquist
rate (Nyquist, 1928), with the theoretical guarantee (Candès
et al., 2006; Donoho, 2006). Existing works exploit various
sparsity-imposing “norms”, e.g. l p or l1 norms, for sparse
coding and representation of the signals,while sensingdesign
is guided by the mutual coherence condition or Restricted
Isometry Property (RIP) (Nguyen et al., 2013). In practice,
many natural signals are found to be sparsifiable, such as
image (Basarab et al., 2013), geophysics data (Zhang et al.,
2013), biological data (Mohtashemi et al., 2010), and com-
munication (Bajwa et al., 2010; Eldar et al., 2012), thus CS
can be applied and deployed in the corresponding applica-
tions. However, no work to date has investigated the CS of
event cameras and data representation, or proposed any prac-
tical event CS schemes.

3 Methodology

In this section, we provide the problem statement of event
representation, followed by the formulation of the proposed
compressed event sensing (CES) method.

3.1 Event Data

Event cameras trigger an event once they detect a log-
intensity change within a pixel above a preset threshold.
Within a time interval, a stream of events is recorded as a
set of tuples:

� = {ek}Kk=1 = {(uk, tk, pk)}Kk=1, (1)

where ek denotes the kth event, uk = (uk, vk) and tk are
the spatiotemporal coordinates, pk ∈ {−1, 1} indicates the
direction (decrease or increase) of the log-intensity change.

As mentioned above, to utilize the high learning capac-
ity of convolutional neural networks (CNNs), it is necessary
to convert the event set into a grid-like representation. Ide-
ally, this mapping should preserve the event stream’s spatial
structure and high temporal resolution.

3.2 Discrete-Time Event Signals

Intuitively, an event set can be viewed as several points in
a four-dimensional manifold spanned by polarity and spa-
tiotemporal coordinates. Since event cameras record events
independently for each pixel, we consider an event subset�u

at a specific pixel u. Within a time interval [0, T ], the subset
�u can be modeled as a discrete-time signal sampled with
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Fig. 2 Sensing matrixes � of the existing grid-like event representa-
tion. Existingworks aremostly based on varied slidingwindow schemes
to compress event data, such as (a) direct sum (Songnan et al., 2020; Lin
et al., 2019; Song et al., 2020; Zhu et al., 2018; Anton et al., 2019), (b)
fixedweighted sum (Zhu et al., 2019; Rebecq et al., 2019), and (c) learnt
weighted sum (Gehrig et al., 2019). The� in (c) is recorded by generat-

ing the look-up table from the mapping learnt in the object recognition
task. Our representation (d) transforms events to the frequency domain
with more temporal information preserved. The real part (cosine wave)
is denoted by a solid line, and the imaginary part (sinewave) by a dashed
line. M = 5, N = 10 in this example

time resolution τ :

eu(t) =
N−1∑

n=0

xu(nτ)δ(t − nτ), (2)

where N = T
τ
denotes the sample length, δ(·) is Dirac pulse,

and xu(nτ) is a function defined on the domain of events:

xu(nτ) =
{
xk i f ek appear at (u, nτ),

0 i f no events at (u, nτ),
(3)

where xk denotes a measurement to event ek . This model is
used in various representations in the literature. Examples of
such measurements are the event polarity (Lin et al., 2019;
Songnan et al., 2020; Song et al., 2020) xk = pk , the event
count (Zhu et al., 2018; Anton et al., 2019; Zhu et al., 2019;
Rebecq et al., 2019) xk = 1, and the normalized timestamp
(Mitrokhin et al., 2018; Alonso & Murillo, 2019; Gehrig et
al., 2019) xk = tk/T . We use xk = pk in this work.

A simple approach to representing event data is to con-
struct a 3D grid with dimensions N × H ×W , where H and
W denote the spatial resolution of the event camera, and N
is set as the number of channels in the grid. However, due
to the high temporal resolution of event cameras (τ ≈ 1μs),
the resulting number of channels can be extremely large, and
the sparse storage of events can lead to inefficiencies in both
storage and processing. Therefore, it is desirable to compress
event signals into a representationwith fewer channels, while
ensuring minimal loss of information.

3.3 Compressed Event Sensing

Given an event stream �xu ∈ R
N which is the vector format

of xu, event compression can be summarized as a matrix
multiplication:

�yu = �T �xu, (4)

in which �yu ∈ R
M is the compressed result and � =

[ψ0 ψ1 ... ψM−1] ∈ R
N×M is a sensing matrix, M � N .

Previous works mainly adopt varied sliding window tech-
niques to compress event data. One common approach
(Songnan et al., 2020; Lin et al., 2019; Song et al., 2020; Zhu
et al., 2018;Anton et al., 2019) divides an event stream intoM
equal-scale portions, and sums up the event measurements
to form an M-channel grid, whose sensing matrix is illus-
trated in Fig. 2 (a). To maintain more temporal information,
some methods (Zhu et al., 2019; Rebecq et al., 2019) merge
events using linearly weighted summation similar to bilin-
ear interpolation, as shown in Fig. 2 (b). Gehrig et al. (2019)
further utilize a data-driven multilayer perceptron (MLP) to
directly learn the best weights end-to-end for event com-
pression. However, as shown in Fig. 2 (c), it tends to predict a
simplemapping from event timestamps to weights, similar to
Fig. 2 (b), and thus fails to make full use of the MLP’s model
capacity. Overall, according to Nyquist-Shannon sampling
theorem (Nyquist, 1928), the above event compressions in the
time domain inevitably discard too much temporal informa-
tion, making neural networks less effective for event-driven
applications.

In practice, event signals are highly sparse in the original
time domain, i.e. ‖ �xu‖0 � N . Hence, compressed sens-
ing can be utilized to compress event signals compactly
while ensuring minimal information loss with an appropriate
sensing matrix �. In this study, we employ random Fourier
transform to generate the sensing matrix �, which is widely
used in natural signal processing, such as geophysical data
analysis (Zhang et al., 2013), communications (Bajwa et al.,
2010), and medical image processing (Basarab et al., 2013).
Specifically, the Fourier transform matrix � maps an input
event signal �xu ∈ R

N into a set of compressive measure-
ments �yu ∈ R

M at M random frequencies { fm}M−1
m=0 . Each

column of � is defined as ψm = (e−i2π fmnτ )Tn=0,...,N−1, or
equivalently:

ψm = [1 �m � 2
m � 3

m · · · � N−1
m ]T, (5)

where �m = e−i2π fmτ . To avoid complex operations in fol-
lowing neural networks, we split the complex �yu into its
real and imaginary terms and obtain the compressed result
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Fig. 3 Visualization on power spectral density of event data on
“shapes_6dof" data (Mueggler et al., 2017). Before statistical spectral
analysis, the event streams between two adjacent frames are first dis-
cretized to 1000 (N = 1000). Event signals show a strong structure in
the frequency domain

�zu ∈ R
C , where C denotes the channel of representation and

C = 2M . Therefore, the cth element in the representation �zuc
is calculated by:

�zuc =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N−1∑

n=0

xu(nτ)cos(2π fmnτ) i f c = 2m,

N−1∑

n=0

xu(nτ)sin(−2π fmnτ) i f c = 2m + 1.

(6)

Because random Fourier transform satisfies the Restricted
Isometry Property (RIP), it ensures unique and stable full sig-
nal reconstruction from fewer samples (Nguyen et al., 2013),
and thus can retain much temporal information of event data.

Moreover, the frequencies can be tuned to match down-
stream tasks. As shown in Fig. 3, the power spectral density
of event streams on “shapes_6dof" (Mueggler et al., 2017)
exhibits typical characteristics of event data in the frequency
domain, suggesting that the sparsely-sampled frequency
components have the potential to represent events effectively.
Besides, it is noteworthy that although low frequency com-
ponents exhibit high energy, high frequency onesmay benefit
downstream tasks as well, which are not considered in the
previous works (Songnan et al., 2020; Lin et al., 2019; Song
et al., 2020; Zhu et al., 2018; Anton et al., 2019). Instead, our
method provides greater flexibility by manually designing
frequencies.

3.4 CES Implementation

After introducing our CES framework, we provide some
strategies for effective and efficient implementation.

Asmentioned above, the event representationwith Fourier
transform is tunable for downstream tasks. By choosing the
frequency sampling in terms of distribution, numbers, and
sampling range, it is possible to dramatically change the per-
formance of the resulting networks. Gaussian distribution
shows good flexibility by adjusting the variance σ 2, and thus
we adopt Gaussian in the downstream applications:
• Gaussian:Randomly sampleM frequencies usingGaus-
sian distribution fm ∼ N (0, σ 2).

In principle, users can choose other distributions commonly
used in the compressed sensing field (Candès et al., 2006;
Nguyen et al., 2013), such as:

• Naive FFT: Select the first M low-order Fourier basis.
• Uniform: Random sample M frequencies using uniform
distribution fm ∼ U[0, N ], where N is the length of the
event vectors.

Sect. 5 will provide thorough discussion on frequency sam-
pling.

To perform the Fourier transform efficiently, we imple-
ment it using CUDA, which enables parallel computation of
each pixel. Specifically, when a new event ek = (uk, tk, pk)
arrives, we assign it to the corresponding thread based on its
spatial coordinate uk . We then update the representation �zuc
by adding the term δ �zuc as follows:

δ �zuc =
{
xkcos(2π fmtk) i f c = 2m,

xksin(−2π fmtk) i f c = 2m + 1,
(7)

where xk = pk . This update incorporates the new event into
the Fourier transform representations, and enables efficient
processing of large event streams.

3.5 Theoretical Analysis

The proposed CES generates measurements that retain
more information from the raw event streams. However, it is
unclear whether these measurements lead to more effective
representations when integrated with a deep learning frame-
work for downstream tasks. In this section, we provide a
theoretical analysis showing that CES offers greater expres-
sive power in deep learning by analyzing its Reproducing
Kernel Hilbert Space using Neural Tangent Kernel approxi-
mation.

Problem Formulation Given a distinct event dataset X =
{ �xi }Ii=1, deep learning methods first represent events using a
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sensing matrix� and then infer using a learnable network g.
Equivalently, this process is an end-to-end network p whose
first layer is a fixed-weight linear transformationwithout acti-
vation. The output of an event input �x can be formulated as

p(�x) = g(�T �x). (8)

Given a network g with a fixed architecture, the expressive
power of the whole network p is fully determined by the
expressive power of the chosen �. Thus, the objective is
to measure the function space of p, as an indicator of the
expressive power of �. Since p involves highly complex
embedding using neural network g, we first revisit the recent
neural tangent kernel (NTK) methods (Jacot et al., 2018;
Tancik et al., 2020) as the tool for model simplification.

Neural Tangent Kernel (NTK)
Recent works (Jacot et al., 2018; Tancik et al., 2020; Arora

et al., 2019; Bietti et al., 2019; Chen et al., 2020; Liu et al.,
2023) show that, under the infinitewidth assumption, a neural
network can be approximated as a kernel regression using
NTK. Specifically, we assume that g is a fully-connected
deep network with its parameters initialized from a Gaussian
distribution N . When the width of the layers in g tends to
infinity, g can be approximated by kernel regression (Jacot
et al., 2018). We denote its NTK function as Kg(·, ·).

Since the whole network p is essentially network g with
the linear-transformed inputs {�T �xi }Ii=1, the NTK function
of p can be obtained by:

K ( �xi , �x j ) = Kg(�
T �xi , �T �x j ). (9)

And thus, p can also be approximated by kernel regression.
According toBernhard et al. (2002); Seeger (2004); Saitoh

et al. (2016), the reproducing kernel Hilbert space (RKHS)
of a positive definite kernel encompasses a set of functions
learned by kernel regression, and thus, RKHS can be used
to characterise the expressive power of NTK (Chen et al.,
2020). Similarly, when fixing the architecture of the network
g, we propose to evaluate the expressive power of sensing
matrix � by comparing the RKHS of NTK corresponding to
the whole network p. Formally, we introduce the following
definition:
Definition 1 (Expressive Power) Given a distinct dataset
X = { �xi }Ii=1, let Ha and Hb be the RKHS associated with
the NTK of a certain network with �T

a �x , and �T
b �x as input.

When

Hb � Ha, (10)

we call the sensing matrix �a is more expressive than �b.

Comparing Reproducing Kernel Hilbert Space (RKHS)
The proposed event representation is based on compressed

sensing and can satisfy the Restricted Isometry Property

(RIP) with a proper sensing matrix. Therefore, for any dis-
tinct event vector pairs �xi , �x j ∈ X, our compressed results
are also distinct, that is

�xi �= �x j ⇔ �T
ces �xi �= �T

ces �x j . (11)

We refer to this property as the non-degenerate property of
the sensing matrix �T

ces on X. Based on this observation, we
prove the following theorem:

Theorem 1 Given a non-zero distinct s-sparse dataset X =
{ �xi }Ii=1, letHa andHb be the RKHS associated with the NTK
of same-architecture fully-connected network with�T

a �x, and
�T

b �x as input, where �a holds the non-degenerate property
while �b does not, the following subset inclusion relation
hold:

Hb � Ha . (12)

Please refer to the appendix 7 for detailed proof.

The proposed CES has the non-degenerate property, while
the existing grid-like representations do not. According to
Theorem 1, under the NTK assumption, the neural networks
with CES can reach a larger RKHS compared with other
representations. And thus, based on Definition 1, we can
conclude that our CES exhibits greater expressive power.

4 Fidelity of CES Volumes

Theexisting representations of event data often suffer froman
irreversible loss of temporal information. In contrast, our pro-
posed compressed event sensing (CES) approach can encode
the full temporal information of the event data with minimal
loss. This section discuss on the quality of the sensing matri-
ces of existing event representations and further evaluate our
high fidelity by recovering raw event signals from our pro-
posed CES volumes.

4.1 Quality of SensingMatrix

According to the theory of compressed sensing (Simon &
Holger, 2013), restricted isometry property (RIP) is a fine
measure of the quality of a measurement matrix. The sth
restricted isometry constant δs = δs(�

T ) of the sensing
matrix �T is the smallest δ ≥ 0 such that

(1 − δ)‖ �xu‖22 ≤ ‖�T �xu‖22 ≤ (1 + δ)‖ �xu‖22, (13)

for all s-sparse event vector �xu ∈ R
N . Equivalently, it is

given by:

δs = maxS⊆[N ],card(S)≤s‖�S�
T
S − IN‖2→2. (14)
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Table 2 Comparison on the
quality of the sensing matrix �T

with different representations in
terms of restricted isometry
constant δs for sparse vectors
with s = 2 sparse and
N = 1000 length

Channel number 4 8 16 32 64

Voxel Grid (Rebecq et al., 2019) 1.000 1.000 1.000 1.000 1.000

EST (Gehrig et al., 2019) 1.000 1.000 1.000 1.000 1.000

Ours 0.991 0.834 0.607 0.452 0.304

The lower δs , the higher quality of the sensing matrix. The sensing matrix of the proposed CES obtains lower
δs under different channel numbers, demonstrating its effectiveness on event representation

If δs is small for reasonably large s, the sensing matrix satis-
fies the RIP and ensures a stable and unique sparse recovery.

Table 2 compares the δs for N-length s-sparse event vec-
tors (N = 1000, s = 2) among the sensing matrices �T

of different representations. Compared with existing repre-
sentations, our method achieves lowest restricted isometry
constants for all numbers of frequencies M . And thus, it
exhibits high probability of success to recover sparse signal
via algorithms.

Moreover, we observed that the quality of our sens-
ing matrix improves as the number of sampled frequencies
increases. According to Candès et al. (2006), the number of
sampled frequencies required for accurate recovery via l1
minimization should satisfy: M ≥ CM · logN · ‖ �xu‖0, for
some constant CM > 0. Therefore, it would be necessary to
design a suitable channel number of representations based
on the sparsity of the event signal s = ‖ �xu‖0 and the desired
temporal resolution N .

4.2 Raw Event Signal Recovery

We conduct an experiment on the “shapes_6dof" dataset
(Mueggler et al., 2017) captured by DAVIS240C. Each event
stream between two adjacent frames with a duration of
approximately 40 ms is compressed by CES volume and
then reconstructed by a conventional sparse recovery algo-
rithm. However, due to the high temporal resolution of event
cameras (τ ≈ 1μs), the vector format of event streams is
very lengthy (N ≈ 40, 000), which poses computational
challenges for the conventional sparse recovery algorithms.
To address this problem, we conduct a rough evaluation
experiment by shortening event signal N as an alternative.
Specifically, we normalize the timestamps of event data to a
range of [0, 1] and discretize them into N=1000 intervals.We
randomly sampleM = 4, 8, 16, 32, 64 frequencies { fm}M−1

m=0
from a uniform distribution over the interval [0, N ], and cal-
culate corresponding frequency components at each pixel
to form a grid-like representation. Then, we feed the repre-
sentations into the iteratively re-weighted l1 minimization
(Candes et al., 2008). Through examining the quality of the
reconstructed signals, we can evaluate the fidelity of our rep-
resentation.

We evaluate the averagePSNRbetween the original events
and the reconstructed ones as shown in Table 3. We also

Table 3 Raw event signal recovery from the proposed CES volumes
with different numbers of frequencies M on “shapes_6dof” dataset
(Mueggler et al., 2017)

Frequency number 4 8 16 32 64

PSNR ↑ 46.65 49.37 59.26 212.04 221.87

Compared with existing representations suffering from irreversible
losses, CES volumes preserve more temporal information and enable
the raw event signal recovery

provide qualitative results in Fig. 4, where the decompressed
event data are highlighted in panels (b), (c), and (d) using a
threshold of 0.5 for the absolute values of signal intensities.

The results demonstrate that our proposed representation,
which relies on the compressed sensing scheme, excels in
reconstructing realistic events with remarkable fidelity. Fur-
thermore, we observed that the performance of our method
improves as the number of sampled frequencies increases,
which is consistent with the observation in Table 2. When
M is small, such as in Fig. 4 (b), the insufficient number of
frequencies causes missing and misaligned signals during
sparse recovery. However, when a sufficient number of fre-
quencies are sampled, as in Fig. 4 (c) and (d), the restored
events closely resemble the original ones.

However, in practice, downstream applications may not
rely on temporal information as heavily as the raw event
signal recovery does. The detailed discussion on frequency
numbers will be given in Sect. 5.

5 Experimental Results

In this section, we first investigate the advantage of CES
volumes on preservingmuch temporal information by a chal-
lenging case: dense frame regression test on a synthetic
phantom dataset. Then, we demonstrate the effectiveness
of our proposed CES volume on two event-driven applica-
tions: intensity-image reconstruction and object classifica-
tion. Finally, we compare the running time of the existing
representations.
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Fig. 4 Visualization on the reversibility of the proposed CES volumes
on “shapes_6dof" data (Mueggler et al., 2017). Different from existing
event representations suffering from irreversible losses, the proposed
CES can be used to accurately recover the raw event signals. (a) denotes
an original event signal between two adjacent frames. (b)(c)(d) show
the recovered event signals by feeding our representations with the fre-
quency number M = 4, 16, 64 into a conventional sparse recovery

algorithm (Candes et al., 2008) and illustrating the points where the
absolute values of signal intensities are above a threshold 0.5. The
recovered results ensemble the original event signal and reach PSNR
of 46.45, 62.20 and 219.38, respectively. The experiment shows the
reversible recovery ability of the proposed CES volumes and demon-
strates its powerful representational capability

5.1 Dense Frame Regression Test

To better understand the proposed method’s advantage of
keeping high temporal resolution, we regress dense frames
from a starting frame and the subsequent events on a
simulated phantom dataset. Preserving more temporal infor-
mation should result in better reconstruction of dense frames.

Given a starting intensity zu0 ∈ R at a pixel u and the sub-
sequent event stream �xu ∈ R

N , dense frame regression aims
to output corresponding frames [zu1 , zu2 , ..., zuZ−1] ∈ R

Z−1.
This procedure can be formulated as

[zu1 , zu2 , ..., zuZ−1] = zu0 + f ( �yu; θ) = zu0 + f (�T �xu; θ)

(15)

in which f (·) is a fully-connected networks (also called mul-
tilayer perceptrons or MLPs) with weights θ , � ∈ R

N×M is
a sensing matrix and �yu ∈ R

M is the compressed represen-
tation. The pipeline of dense frame regression is illustrated
in Fig. 5 (a).

Specifically, we compare the proposed CES volumes with
the state-of-the-art representations, including fixed weighted
sum-based Voxel Grid (Zhu et al., 2019; Rebecq et al., 2019)
and learnt weighted sum-based Event Spike Tensor (EST)
(Gehrig et al., 2019). The timestamps of events are normal-
ized to a range of [0, 1]. As for our CES volumes, we sample
the frequencies from aGaussian distribution fm ∼ N (0, σ 2)

similar to (Tancik et al., 2020), and form the volumes with
corresponding frequency components. For a fair comparison,
we set the same number of channels of each representation
C = 16.

The network f (·) contains 8 fully-connected (FC) layers.
The channel number of the last layer is set as Z − 1, where
Z = 50 in this experiment. Other layers are designed as 256
channels and followed by GELU activations (Hendrycks et

al., 2016).We implement the network using PyTorch (Paszke
et al., 2017) and use ADAM (Diederi amb Jimmy, 2014)
with a learning rate of 0.001. The networks are trained with
the mean squared error (MSE) loss for 50 epochs (937,500
iterations) with a batch size of 16.

Datasets To obtain the phantom dataset, we first gener-
ate several video sequences by rendering a brighter rectangle
with the size of 50×100, on a darker backgroundwith the size
of 100 × 100. The rectangle starts at the center of the back-
ground, and moves horizontally for 3 key times with various
and random step lengths, otherwise keeps stationary. Each
sample contains Z frames. Figure5 (b)-(e) show an example
in which the rectangle moves at 21st, 47th, and 49th frames.
After obtaining video sequences, we feed them into an event
simulator, Vid2E (Gehrig et al., 2020), to generate an event
stream. The dataset contains 300,000 video samples and cor-
responding events. We select 225,000 pairs for training and
75,000 pairs for testing.

Results and Discussion Figure 6 provides the conver-
gence of existing event representations. Existing represen-
tations converge rapidly but show limited power in frame
regression. Based on compressed sensing theory, the pro-
posed CES volumes capture frequency characteristics of
events and encodemuch temporal information, and thus have
potential to distinguish frames in dense timestamps. It shows
good learning capacity of dense frame regression.

Table 4 compares the mean squared error (MSE) and
structural similarity (SSIM) (Zhou et al., 2004) of regres-
sion results. Voxel Grid (Rebecq et al., 2019) and EST
(Gehrig et al., 2019) utilize a sliding window approach,
which fuses a large number of events within each window,
leading to blurred temporal information and limited ability
to recover high time resolution. In contrast, the proposed
method utilizes compressed sensing scheme to preservemore
temporal information, thereby overcoming the “temporal
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Fig. 5 Pipeline and dataset synthesis of dense frame regression test.
Given a starting frame zu0 at a pixel u and its subsequent event stream
�xu, dense frame regression aims to predict corresponding subsequent
frames [zu1 , zu2 , ..., zuZ−1]. The event data �xu is first represented as �yu
using different sensingmatrices�T , and then fed into a fully-connected
network. As for the synthetic phantom dataset, we generate video
sequences by rendering a brighter rectangle moving on a darker back-
ground, and simulating event data using Vid2E (Gehrig et al., 2020).
Please see manuscripts for more details

bias” observed when training networks with sliding window.
It allows for the distinction of dense timestamps and results
in high regression performance.

Actually, it comes as no surprise to learn that our fre-
quency domain representation performs favorably. Previous
work (Tancik et al., 2020) has demonstrated on a vari-
ety of regression tasks relevant to the computer vision and
graphics communities that Fourier featuremapping can over-
come the spectral bias of coordinate-based MLPs towards
low frequencies by allowing them to learn much higher
frequencies.

Fig. 6 Convergence of dense frame regression. Compared with exist-
ing representations, the proposed compressed sensing-based method
preserves more temporal information of events, showing good learning
ability on regressing and distinguishing dense frames

5.2 Intensity-Image Reconstruction

Intensity-image reconstruction aims to generate high-quality
video frames from sparse event data, allowing for the use
of off-the-shelf computer vision techniques designed for
conventional cameras. Ideally, benefiting from the pleasing
properties of events, the reconstructed intensity images can
exhibit a significantly larger dynamic range, shaper edges,
and reduced motion blur compared to conventional cameras.

However, there are several challenges associated with
reconstructing high-quality images from event data. First,
events are unevenly distributed in both space and time, with
the number of events being highly dependent on the move-
ment in the scene. In the presence of large movements, the
captured events can be massive, posing difficulties in event
representation, as essential information may be lost, result-
ing in blurry reconstructed images. On the other hand, small
movements can lead to sparser events, requiring event repre-
sentation methods to effectively highlight the relevant details
without sacrificing important information.

Furthermore, the imbalance in the amounts of events
introduced by different object motions adds another layer
of complexity to the design of data representation meth-
ods. Finding a suitable event representation approach that

Table 4 Dense frame regression
performance on the synthetic
phantom dataset in terms of
mean squared error (MSE) and
structural similarity (SSIM)
(Zhou et al., 2004)

Methods Voxel Grid (Rebecq et al., 2019) EST (Gehrig et al., 2019) Ours

MSE ↓ 0.0032 0.0022 0.0020

SSIM ↑ 0.8309 0.8879 0.8952

The proposed method, based on compressed sensing theory, preserves more temporal information of events,
allowing it to distinguish dense frames and achieve high regression performance
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can capture both large and small movements while pre-
serving the essential details poses a significant challenge in
intensity-image reconstruction from event data. Addressing
these challenges is crucial to achieving high-quality image
reconstruction from event data and unlocking the full poten-
tial of event cameras in computer vision applications.

In this section, we conduct an evaluation on a state-of-
the-art high-pass filter-based non-deep method (Cedric et
al., 2018) as well as a deep learning-based method E2VID
(Rebecq et al., 2019) integrating various representations,
including fixed weighted sum-based Voxel Grid (Zhu et al.,
2019; Rebecq et al., 2019), learnt weighted sum-based Event
Spike Tensor (EST) (Gehrig et al., 2019), TORE (Baldwin
et al., 2022) and our compressed event sensing method. To
ensure a fair comparison, we set the number of channels for
each representation to be the same, with C = 8. These rep-
resentations are then fed into the same base network, E2VID
(Rebecq et al., 2019), for further processing.

We implemented the networks using PyTorch (Paszke et
al., 2017) and adopted ADAM (Diederi amb Jimmy, 2014)
as the optimization algorithm, with a learning rate of 0.0001.
The networks were trained for 20 epochs, corresponding to
56,540 iterations, with a batch size of 2.

Datasets In our experiments, we utilize the slow subset of
theBlur-DVSdataset (Jiang et al., 2020) for both training and
validation. The slow Blur-DVS dataset was captured using
a DAVIS240C event camera with slow and stable camera
movement, capturing relatively static scenes. As a result, this
dataset provides sharp intensity frames as ground truths and
corresponding event streams as inputs, which are suitable for
training our model. The dataset is split into 11,308 pairs for
training and 3,700 pairs for validation.

To further assess the generalization ability of the represen-
tations, we also conducted experiments on the Event Camera
Dataset (Mueggler et al., 2017). This dataset presents a dif-
ferent set of scenes and events compared to the Blur-DVS
dataset.

Results and Discussion We report mean squared error
(MSE), structural similarity (SSIM) (Zhou et al., 2004),
and the learned perceptual image patch similarity (LPIPS)
(Richard et al., 2018) in Table 5. On Blur-DVS dataset, the
proposed representation method demonstrates superior per-
formance with an 8% decrease in MSE, a 3% increase in
SSIM, and a 2% decrease in LPIPS. Our method exhibits
better generalization capability across almost all scenes, as
indicated by improvements in MSE (1% decrease), SSIM
(4% increase) and LPIPS (5% decrease).

We provide visual examples from the validation and test-
ing sets in Figs. 7 and 8, respectively. Voxel Grid (Rebecq et
al., 2019), which relies on a fixed weighted sum, sacrifices
temporal information and is less effective in handling sig-
nificant camera movement, resulting in noticeable ringing
artifacts. Event Spike Tensor (EST) (Gehrig et al., 2019),

which uses learnable weights for event data embedding,
exhibits limited learning ability, and the learnable weights
are similar to the fixed weights in Voxel Grid (see Fig. 2),
leading to blurry intensity images. In contrast, our proposed
representation method leverages the frequency characteris-
tics and sparsity of events to encode data using a compressed
sensing scheme, resulting in reconstructed images with finer
details and fewer visual artifacts.

Effect of Frequency Number
According to the compressed sensing theory, our proposed

CES volumes can retain extensive temporal information
when a sufficient number of frequencies are sampled. Nev-
ertheless, in event-driven applications, preserving accurate
temporal resolution with numerous frequencies may not
always be unnecessary. To further explore this, we carry
out an experiment where we vary the number of chan-
nels in the representations representations, setting them to
C = 8, 16, 32, 64, and evaluate their performance on an
intensity-image reconstruction task, as shown in Fig. 9. We
compare our method with Voxel Grid (Rebecq et al., 2019)
and Event Spike Tensor (EST) (Gehrig et al., 2019).

We observe that the accuracy of all methods gener-
ally increase with the number of channels. However, our
method exhibits greater robustness to the number of channels
and consistently achieves superior performance across all
channel levels. These findings suggest that intensity-image
reconstruction may be less sensitive to temporal informa-
tion compared to event signal reconstruction, and satisfactory
performance can be achieved with a limited number of fre-
quencies using in our proposed method. This makes our
method valuable in scenarios where computation or storage
constraint exists.

Effect of Frequency Sampling Range
The tunable nature of the proposed representation allows

for manipulation of frequency settings to optimize down-
stream network performance. To investigate the effects of
frequency sampling range on the intensity-image reconstruc-
tion task, we conduct an experiment where the frequency
number is set as 4, 8, 16, 32, 64 and the frequencies are sam-
pled from a Gaussian distribution with variance σ 2 ranging
from 1 to 25.

Figure 10 illustrates the interaction on intensity-image
reconstruction in terms of (a)MSE, (b) SSIM, and (c) LPIPS.
We note that given a fixed channel number of event represen-
tations, the image reconstruction accuracy initially improves
and then declines with an increase in sampling variance.
Moreover, as the channel number increases, the inflection
point occurs later and the reconstruction network obtains
higher accuracy.

The observation may stem from 2 reasons. 1) Low-
frequency components reflect the overall trend of event
streams, which is crucial and necessary in the intensity-
image reconstruction application. Gaussian distribution with

123



International Journal of Computer Vision

Ta
bl
e
5

In
te
ns
ity

-i
m
ag
e
re
co
ns
tr
uc
tio

n
pe
rf
or
m
an
ce

co
m
pa
re
d
w
ith

ex
is
tin

g
gr
id
-l
ik
e
re
pr
es
en
ta
tio

ns
an
d
st
at
e-
of
-t
he
-a
rt
re
co
ns
tr
uc
tio

n
m
et
ho
ds

on
th
e
B
lu
r-
D
V
S
(J
ia
ng

et
al
.,
20
20
)
an
d
E
ve
nt

C
am

er
a
D
at
as
et
(M

ue
gg

le
r

et
al
.,
20
17
)
in

te
rm

s
of

m
ea
n
sq
ua
re
d
er
ro
r
(M

SE
),
st
ru
ct
ur
al
si
m
ila
ri
ty

(S
SI
M
)
(Z
ho
u
et
al
.,
20
04
),
an
d
th
e
le
ar
ne
d
pe
rc
ep
tu
al
im

ag
e
pa
tc
h
si
m
ila

ri
ty

(L
PI
PS

)
(R

ic
ha
rd

et
al
.,
20
18
)

M
SE

↓
SS

IM
↑

L
PI
PS

↓
H
F

(C
ed
ri
c

et
al
.,
20
18
)

V
ox
el

G
ri
d

(R
eb
ec
q

et
al
.,
20
19
)

E
ST

(G
eh
ri
g

et
al
.,
20
19
)

T
O
R
E

(B
al
dw

in
et

al
.,
20
22
)

O
ur
s

H
F

(C
ed
ri
c

et
al
.,
20
18
)

V
ox
el

G
ri
d

(R
eb
ec
q

et
al
.,
20
19
)

E
ST

(G
eh
ri
g

et
al
.,
20
19
)

T
O
R
E

(B
al
dw

in
et

al
.,
20
22
)

O
ur
s

H
F

(C
ed
ri
c

et
al
.,
20
18
)

V
ox
el

G
ri
d

(R
eb
ec
q

et
al
.,
20
19
)

E
ST

(G
eh
ri
g

et
al
.,
20
19
)

T
O
R
E

(B
al
dw

in
et

al
.,
20
22
)

O
ur
s

B
lu
r-
D
V
S

0.
10
2

0.
03
9

0.
03
7

0.
06
1

0.
03
4

0.
42
6

0.
70
5

0.
72
4

0.
36
8

0.
74
3

0.
64

8
0.
48

0
0.
46

5
0.
65

3
0.
45
5

bo
x_
6d
of

0.
15
7

0.
06
1

0.
06
2

0.
04
4

0.
05
7

0.
35
0

0.
62
0

0.
64
5

0.
39
3

0.
67
4

0.
67

5
0.
49

1
0.
47

5
0.
62

7
0.
45
3

ca
lib

ra
tio

n
0.
18

9
0.
06
4

0.
06
7

0.
06
5

0.
06
8

0.
38
2

0.
65
9

0.
63
6

0.
31
1

0.
67
3

0.
75

8
0.
48

9
0.
51

5
0.
69

1
0.
48
3

dy
na
m
ic
_6
do
f

0.
25
2

0.
12
8

0.
13
6

0.
09
6

0.
13
0

0.
21
9

0.
33
4

0.
36
9

0.
19
5

0.
35

4
0.
67

4
0.
52

8
0.
49
7

0.
59

8
0.
50

3

of
fic

e_
zi
gz
ag

0.
14

5
0.
06

1
0.
07

0
0.
06

0
0.
06
0

0.
37
4

0.
58
6

0.
54
1

0.
24
2

0.
59
6

0.
71

6
0.
54

2
0.
53

2
0.
66

5
0.
49
9

po
st
er
_6
do
f

0.
21
9

0.
10
7

0.
11
2

0.
07
4

0.
10
5

0.
22
9

0.
46
8

0.
51
3

0.
32
2

0.
52
6

0.
61

9
0.
42

0
0.
39

1
0.
56

9
0.
36
9

sh
ap
es
_6
do
f

0.
15
2

0.
06
5

0.
05
4

0.
02
4

0.
06
3

0.
55
3

0.
56
5

0.
50
1

0.
53
1

0.
53

7
0.
63

7
0.
49
0

0.
54

6
0.
64

7
0.
50

3

sl
id
in
g_
de
pt
h

0.
16
4

0.
07
7

0.
06
6

0.
04
9

0.
07
1

0.
36
9

0.
48
2

0.
56
6

0.
34
0

0.
55

4
0.
73

0
0.
59

9
0.
52

5
0.
63

2
0.
51
9

m
ea
n

0.
18

9
0.
08

3
0.
08

4
0.
06
0

0.
08
2

0.
35
1

0.
53
5

0.
53
6

0.
34
4

0.
55
8

0.
67

8
0.
49

0
0.
49

9
0.
63

0
0.
46
6

Fo
r
a
fa
ir
co
m
pa
ri
so
n,
th
e
gr
id
-l
ik
e
re
pr
es
en
ta
tio

ns
ha
ve

th
e
sa
m
e
ch
an
ne
ls
C

=
8
an
d
ar
e
fe
d
in
to

th
e
sa
m
e
E
2V

ID
(R

eb
ec
q
et
al
.,
20
19
)
ne
tw
or
k

123



International Journal of Computer Vision

Fig. 7 Visual comparisons on
intensity-image reconstruction
on Blur-DVS (Jiang et al.,
2020). The reconstructed images
from Voxel Grid (Rebecq et al.,
2019), EST (Gehrig et al.,
2019), and our representation as
well as ground truth are shown
in the odd rows, while the center
channel of each representation
and input event data are shown
in the even rows. The network
designed with our representation
generates more details with
fewer artifacts

small variances guarantees the existence of low frequency
components, while high variances does not. Therefore, the
accuracy decreaseswith the increase of sampling variance. 2)
The richness of the sampled frequencies is crucial. When the
channel is large but the variance is small, the generated fre-
quencies becomes redundant, leading to limited expressive
capacity in the representation and a loss of detailed infor-
mation. Therefore, the accuracy improves initially with an
increase in sampling variance. It also explains why the inflec-

tion point in 2D plots occurs later with an increase in channel
number.

Effect of Frequency Sampling Distribution
We have discussed the effect of frequency sampling range

usingGaussian distribution above, and in this section, we fur-
ther investigate the impact of different frequency sampling
distributions. We conduct an experiment on uniform distri-
bution as well as “naive FFT" which selects the first a few
low-order Fourier basis instead of random set of basis.
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Fig. 8 Visual comparisons on
intensity-image reconstruction
on Event Camera Dataset
(Mueggler et al., 2017). The
reconstructed images from
Voxel Grid (Rebecq et al.,
2019), EST (Gehrig et al.,
2019), and our representation as
well as ground truth are shown
in the odd rows, while the center
channel of each representation
and input event data are shown
in the even rows. The network
designed with our representation
generates more details with
fewer artifacts

Figure 11 illustrates the comparison results. The “naive
FFT" ensures the existence of low-frequency components
and the richness of frequencies similar to Gaussian distri-
bution, and thus obtain comparable reconstruction results
with Gaussian distribution with suitable variances. However,
given a limited of frequency number, uniform distribution
cannot ensure the inclusion of enough low-frequency com-
ponents and thus presents poor reconstruction performance.

Actually, determining the optimal sampling distribution
is challenging and there is no theoretical justification or
guarantees. Different applications may have varying require-
ments of frequencies on event representation. Moreover, the
complexity and intrinsic characteristics of event stream may
influence the optimal frequency sampling as well.
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Fig. 9 Effects of channel numbers of representations on intensity-image reconstruction on Blur-DVS (Jiang et al., 2020). The proposed method
achieves the highest performance under all numbers of channels. It can perform favorably with few channels, resulting in efficient representation

Fig. 10 Comprehensive analysis on the interaction between channel
numbers and sampling variances on intensity-image reconstruction on
Blur-DVS (Jiang et al., 2020). Voxel Grid (Rebecq et al., 2019), EST
(Gehrig et al., 2019), and the proposed method are highlighted as blue,
cyan, and red, specifically. The 3D surface plots illustrate the interaction
on (a)MSE, (b) SSIM, and (c) LPIPS. The channel numbers are set as 8,

16, 32, 64; while frequencies are sampled from a Gaussian distribution
with variance σ 2 ranging from 1 to 25. The 2D line plots in (a)(b)(c)
show the performance with changes in sampling variance when channel
numbers are 8, 16, 64 from top to bottom. The overall trend of different
line plots is similar; however, the inflection points and ranges differ

Fig. 11 Effect of frequency sampling distribution on intensity-image
reconstruction on Blur-DVS (Jiang et al., 2020). Uniform distribution,
“Naive FFT" and Gaussian distribution are highlighted as green, black
and red, specifically. The 3D surface plots illustrate the performance,

including (a) MSE, (b) SSIM, and (c) LPIPS, with different channel
numbers and variances of representations. The “naive FFT" and the
Gaussian distribution can obtain comparable reconstruction results, but
uniform distribution presents poor reconstruction accuracy
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Table 6 Object recognition
accuracy compared to existing
grid-like representations and
state-of-the-art classification
algorithms on the N-Cars (Amos
et al., 2018) and N-Caltech101
(Orchard et al., 2015)

Algorithm Classifier N-Cars N-Caltech101

HOTS (Lagorce et al., 2016) SVM 0.624 0.210

HATS (Amos et al., 2018) SVM 0.902 0.642

HATS (Amos et al., 2018; Gehrig et al., 2019) CNN 0.909 0.691

H-First (Orchard et al., 2015) SNN 0.561 0.054

Gabor (Jun Haeng et al., 2016; Neil et al., 2016) SNN 0.789 0.196

AEGNN (Simon et al., 2022) GNN 0.945 0.668

Voxel Grid (Rebecq et al., 2019) CNN 0.933 0.826

EST (Gehrig et al., 2019) CNN 0.925 0.813

Ours CNN 0.945 0.847

For a fair comparison, the grid-like representations, including Voxel Grid (Rebecq et al., 2019), EST (Gehrig
et al., 2019) and the proposed method, have the same channels C = 4 and are fed into the same ResNet-34
(He et al., 2016) network

5.3 Object Recognition

In recent years, event-based classification has gained signif-
icant attention for challenging scenarios where conventional
cameras may struggle, such as low light conditions and fast
object motion. In this section, we use object classification as
an example to investigate the performance of the proposed
compressed event sensing (CES) volumes on inference tasks.

Following the settings used in Gehrig et al. (2019), we use
a pre-trained ResNet-34 (He et al., 2016) as the base network
for object prediction. To ensure a fair comparison, events are
represented with the same number of channels C = 4 using
various presentations, including fixed weighted sum-based
Voxel Grid (Zhu et al., 2019; Rebecq et al., 2019), learnt
weighted sum-based Event Spike Tensor (EST) (Gehrig et
al., 2019), and the proposed CES volumes. The networks
are implemented using PyTorch (Paszke et al., 2017), and
trained using the cross-entropy loss with the ADAM opti-
mizer (Diederi amb Jimmy, 2014) with an initial learning
rate of 0.0001, which is halved every 10,000 iterations. The
training is conducted for 50 epochs (192,800 and 54,450 iter-
ations for N-Cars and N-Caltech101 datasets, respectively)
with a batch size of 4.

Furthermore, we conduct additional comparisons with
several state-of-the-art classification algorithms, including
two handcrafted representations: HOTS (Lagorce et al.,
2016) and HATS (Amos et al., 2018); two baseline imple-
mentations of spiking neural networks (SNNs): H-First
(Orchard et al., 2015) and Gabor (Jun Haeng et al., 2016;
Neil et al., 2016); and one event-based graph neural network
(GNN) method: AEGNN (Simon et al., 2022).

Datasets We utilize two public datasets: N-Cars (Amos
et al., 2018) and N-Caltech101 (Orchard et al., 2015). The
N-Cars dataset is used for the binary classification and con-
tains 12,336 car samples and 11,693 non-cars samples. The
event data is recorded by an ATIS event camera (Posch et al.,
2010) with a length of 100ms per sample. The N-Caltech101

dataset is an event-based version of the frame-based Cal-
tech101 dataset (Fei-Fei et al., 2006). It mounts an ATIS
sensor on a motorized pan-tilt unit, focuses the ATIS on
an LCD monitor displaying the original Caltech101 data,
and records events as the sensor moves. The N-Caltech101
dataset contains 6,968 samples with 100 object classes plus
a background class. We split the training and testing datasets
as suggested in Gehrig et al. (2019).

Results and Discussion
Table 6 shows the classification results of our proposed

CES volumes compared to other grid-like representations
with the same channel number, as well as state-of-the-art
methods, on N-Cars and N-Caltech101 datasets.

Compared to Voxel Grid (Rebecq et al., 2019) and EST
(Gehrig et al., 2019), our CES volumes outperform them by
1.3%, 2.2% inN-Cars and 2.5%, 4.2% inN-Caltech101. This
improvement is attributed to the minimal information loss in
our compressed sensing-based approach.

Furthermore, our proposed CES volumes perform favor-
ably against the state-of-the-art classification methods on
both datasets. HOTS (Lagorce et al., 2016) andHATS (Amos
et al., 2018) which cluster recent events to form a time sur-
face, and thus obscure much temporal information and show
less effectiveness for object classification. H-First (Orchard
et al., 2015) and Gabor (Jun Haeng et al., 2016; Neil et
al., 2016) which feed events into spiking neural networks
(SNNs), gain minimal latency but are limited by the learning
ability of SNN. The recent event-based GNNmethod (Simon
et al., 2022) preserves the high temporal resolution of events
but discards the spatial structure, which limits its effective-
ness. In contrast, the proposed CES method can maintain the
high temporal information via a compressed sensing scheme
and fully exploit the capacity of the convolutional neural net-
workmodel, resulting in state-of-the-art performance on both
N-Cars and N-Caltech101 datasets.
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Fig. 12 Effects of channel numbers of representations on object recog-
nition on N-Caltech101 (Orchard et al., 2015). The channel numbers C
are set from 4 to 64. The proposed method achieves the highest perfor-
mance under all numbers of channels and it can perform favorably with
few channels, resulting in efficient representation

Effect of Frequency Number
We further investigate the sensitivity of the frequency

numbers on the inference task. We conduct an experiment
by setting the number of channels of representations C to
different values, specifically C = 4, 8, 16, 32, 64, and com-
pare the results with Voxel Grid (Rebecq et al., 2019) and
EST (Gehrig et al., 2019) in Fig. 12.

Our method performs favorably across all numbers of
channels and the accuracy generally increases with the num-
ber of channels. However, we observed that the improvement
of accuracy becomes less significant whenC ≥ 16, or equiv-
alently, M ≥ 8. This suggests that it is not necessary for
object recognition tasks to preserve as much accurate tem-
poral information as the event signal reconstruction does.
A smaller number of channels are sufficient for achiev-
ing good performance, leading to more efficient event data
compression. This can be valuable in practical event-driven
applicationswhere reducingdata size andprocessing require-
ments are important considerations.

Effect of Frequency Sampling Range
In our proposed representation, the frequencies for the

Fourier transform are tunable. We investigate the effects of
the frequency range on the inference task. In this experiment,
we set frequency number as 4, 8, 16, 32, 64 and sample
frequencies from a Gaussian distribution with variance σ 2

ranging from 1 to 25. The representations are fed into the
prediction network and the prediction results are shown in
Fig. 13.

Figure 13 illustrates the interaction on object recogni-
tion in terms of classification accuracy. We observe that
under different channel numbers, the classification accuracy

Fig. 13 Comprehensive analysis on the interaction between channel
numbers and sampling variances on object recognition onN-Caltech101
(Orchard et al., 2015). Voxel Grid (Rebecq et al., 2019), EST (Gehrig
et al., 2019), and the proposed method are highlighted as blue, cyan,
and red, specifically. The 3D surface plot illustrate the interaction on
accuracy. The channel numbers are set as 4, 8, 16, 32, 64; while fre-
quencies are sampled from a Gaussian distribution with variance σ 2

ranging from 1 to 25. The 2D line plots show the performance with
changes in sampling variance when channel numbers are 4, 32, 64 from
top to bottom. The overall trend and inflection points of different line
plots are similar; however, the ranges differ

initially improves and then declines with an increase in sam-
pling variance, similar to the results in the intensity-image
reconstruction application. However, the inflection points
are roughly the same different from the drift appearance in
intensity-image reconstruction. One possible reason is that
for some low-level computer vision tasks, such as intensity-
image reconstruction, dynamic and temporal information
play an important role, so that incorporating reasonably high
frequency components benefit reconstruction;while for some
high-level computer vision tasks, such as object recognition,
the structure in spatial domain may be important and high
frequency components may disturb and confuse the spatial
structure, leading to poor recognition performance.

Effect of Frequency Sampling Distribution
We have discussed the effect of frequency sampling range

usingGaussian distribution above, and in this section, we fur-
ther investigate the impact of different frequency sampling
distributions. We conduct an experiment on uniform distri-
bution as well as “naive FFT" which selects the first a few
low-order Fourier basis instead of random set of basis.

Figure 14 illustrates the comparison results. As discussed
in the effect of frequency sampling range, object recognition
ismore dependent on lower frequencies andmaybe disturbed
by higher ones. The “naive FFT"methodwith fixed sampling
strategy retains more high frequency information, and thus,
exhibits limited improvement with an increase of channel
number, and performs less effectively with the large channel
number. Uniform distribution cannot ensure the inclusion of
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Fig. 14 Effect of Frequency Sampling Distribution on object recog-
nition on N-Caltech101 (Orchard et al., 2015). Uniform distribution,
“Naive FFT" and Gaussian distribution are highlighted as green, black
and red, specifically. The 3D surface plots illustrate the prediction
accuracy with different channel numbers and variances of representa-
tions. Gaussian distribution performs favourably with a small sampling
variance throughout all channel numbers and gets a stable and large
improvement with an increase of channel numbers

enough low-frequency components and thus presents poor
classification performance. Instead, Gaussian distribution is
more flexible and effective. We find that Gaussian distri-
bution performs favourably with a small sampling variance
throughout different channel numbers and get a stable and
high accuracy under the large channel numbers. Therefore,
we adopt Gaussian distribution throughout the paper.

Overall, determining the optimal sampling distribution is
challenging and there is no theoretical justification or guaran-
tees. The optimal frequency sampling may be influenced by
different applications as well as the complexity and intrinsic
characteristics of event stream.

5.4 Running Time and Latency

One of the key advantages of event cameras is their low
latency and high update rate, which makes them suitable for
high-speed predictions. To meet the computational demands
of event-driven applications, the efficiency of event represen-
tations is critical.

We evaluate the computational time of different event rep-
resentations on the N-Cars testing dataset (Amos et al., 2018)
and report the number of processed events per second and
the total time used to process a sample of 100ms in Table
7. All representations run on an RTX A5000 GPU. Our pro-
posed CES shares the same computational complexity with

other representations. However, due to the efficient imple-
mentation using CUDA as stated in Eq. (7), it exhibits more
efficiency and is sufficient for most high-speed applications.

5.5 Limitations

“Sim-to-real gap" refers to a degradation in performance
when a neural network is trained on simulated data and
tested on real data. Currently, there are significant differences
between simulated and real events because existing simu-
lators adopt approximate and simple models which cannot
comprehensively involves the noise and dynamic effects of
event cameras. The frequency properties and distributions of
simulated and real events are different. However, our CES
operates on frequency domain and encodes more temporal
information of the training data. Therefore, in this situation,
our advantages may turn into disadvantages.

We conduct an experiment to investigate the influence of
“sim-to-real gap" in our proposedCESvolumes. Specifically,
we focus on the intensity-image reconstruction task. The
training dataset is obtained by a simulator ESIM (Rebecq
et al., 2018) similar to Rebecq et al. (2019), and the testing
dataset is the real Event Camera Dataset (Mueggler et al.,
2017).

The results are shown in Table 8. The existing methods,
which merge and stack the events into grid-like representa-
tions, obscure much temporal information but instead show
more robustness to the “sim-to-real gap". Unfortunately, the
proposed CES method hinges on frequency domain and
encodes more temporal information based on compressed
sensing theory. Therefore, the neural networks integrating
ourCES and trained on simulated data learns the bias towards
simulated distribution, resulting in less effectiveness on real
data.

It should be emphasized that when the neural networks
are trained and tested both on real datasets, our CES takes
advantage of its powerful representational capability, result-
ing in favorable performance against state-of-the-art event
representations, as well as high generalization ability across
different real datasets. (see Table 5)

6 Conclusion and FutureWork

We leverage the sparsity property of events and compressed
sensing scheme to show that compressed event sensing
(CES) volumes can encode more temporal information of
event data, thereby improving event-driven applications. We
experimentally show that CES preserves high fidelity and
reversibly achieves accurate event reconstruction. We pro-
vide theoretical analysis on the expressive power of CES in
the deep learning framework. We validate the advantage of
CES on a challenging case: dense frame regression test on a

123



International Journal of Computer Vision

Table 7 Running time for 100ms of event data and number of events processed per second on N-Cars testing dataset (Amos et al., 2018)

Algorithm Voxel Grid (Rebecq et al., 2019) EST (Gehrig et al., 2019) Ours

Running time (ms) ↓ 1.19 1.53 0.68

Speed (kEv/s) ↑ 3415.5 2660.8 5974.7

Table 8 Limitation of CES volumes to the sim-to-real gap. The
intensity-image reconstruction algorithms are trained on the simulated
event data generated by ESIM (Rebecq et al., 2018) and tested on the
real Event Camera Dataset (Mueggler et al., 2017). The existing rep-

resentations obscure much temporal information and thus are robust to
the sim-to-real gap. Unfortunately, the proposed CES volumes, which
encode more temporal information, learn the bias towards simulated
trainingdistribution, resulting in less effectiveness on real testing dataset

Algorithm Voxel Grid (Rebecq et al., 2019) EST (Gehrig et al., 2019) Ours

Training loss ↓ 0.0191 0.0187 0.0183

Testing MSE ↓ 0.0270 0.0261 0.0276

Testing SSIM ↑ 0.5346 0.5312 0.5267

Testing LPIPS ↓ 0.5302 0.5463 0.5390

synthetic phantom data. The intensity-image reconstruction
and object recognition applications demonstrate that the pro-
posed representation achieves superior performance against
the existing representations. Moreover, we thoroughly ana-
lyze the effects of Fourier mapping in terms of frequency
numbers and frequency selection.

7 Proof of Theorem 1

Theorem 1 Given a non-zero distinct s-sparse dataset X =
{ �xi }Ii=1, letHa andHb be the RKHS associated with the NTK
of same-architecture fully-connected network with�T

a �x, and
�T

b �x as input, where �a holds the non-degenerate property
while �b does not, the following subset inclusion relation
hold:

Hb � Ha . (16)

We first introduce two key ingredients of the proof:

Lemma 1 (Theorem2.17 inSaitoh et al. (2016)) Let Ka, KbE×
E → C be two positive semi-definite kernels. Then the fol-
lowing two statements are equivalent:

1. The Hilbert space Hb is a subset of Ha

2. There exist γ > 0, such that

Kb � γ 2Ka . (17)

Lemma 2 (Proposition 2 in Jacot et al. (2018), Theorem 6 in
Luís et al. (2024)) For a fully-connected network adopting
a non-polynomial Lipschitz nonlinearity activation function
σ , for any input dimension n0, the limiting NTK is strictly
positive definite if the number of layer L ≥ 2.

Proof of Theorem 1 According to Lemma 1, to obtain Hb �

Ha ,we require proof thatγ 2Ka−Kb is a positive semidefinite
kernel for some γ > 0, whereas γ 2Kb − Ka is not a positive
semidefinite kernel for all γ > 0.

Consider arbitrary non-empty subset of X, { �xi }ri=1 ⊂ X,
for 1 ≤ r ≤ I , the NTK matrix K with size r × r could be
constructed for kernel Ka and Kb, whose entries are

Ki, j
a = Ka( �xi , �x j ); Ki, j

b = Kb( �xi , �x j ). (18)

As introduced in the proposed NTK model, deep learning
methods first represent events using sensing matrix �, and
then feed the representation into a neural network g.We refer
to the NTK of the network g as Kg(·, ·). Therefore, for two
different sensing matrices �a and �b, the NTK of the whole
networks can be represented as

Ka( �xi , �x j ) = Kg(�
T
a �xi , �T

a �x j )
Kb( �xi , �x j ) = Kg(�

T
b �xi , �T

b �x j ).
(19)

According to Lemma 2, when we adopt the same network
settings to Jacot et al. (2018), we obtain that the NTK of the
network Kg is a strictly positive definite for distinct network
inputs.

Since �a holds the non-degenerate property as described
in Equation (11), the compressed representations �T

a �xi are
distinct. Therefore, the NTK matrix Ka is positive definite
with eigenvalues λia > 0. Whereas, �b does not hold this
property, i.e., there might exist “degenerate" vector pairs �xi
and �x j such that �T

b �xi = �T
b �x j , leading to identical values

in i th and j th rows of the NTK matrix Kb. And thus, the
eigenvalues λib ≥ 0.
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Therefore, for each non-empty subset { �xi }ri=1 of X,
γ 2Ka − Kb is positive semidefinite when

γ =
√
maxi λib
mini λia

. (20)

Here, let the γmax be the maximum of γ respective to all the
non-empty subsets of X. Based on the definition of positive
semidefinite kernels (see Definition 12.6 in Martin (2019)),
γ 2
max Ka − Kb is a positive semidefinite kernel on X. This

enables us to apply Lemma 1 to obtain that

Hb ⊆ Ha, (21)

Conversely, since the eigenvalues of Kb contains zero in
the degenerate case, for all γ > 0, γ 2Kb −Ka is not positive
semidefinite. Thus, for all γ > 0, the kernel function γ 2Kb−
Ka is not positive semidefinite. According to Lemma 1, Ha

is not a subset of Hb. Combining Hb ⊆ Ha , we can come to
Ha �= Hb, thereby concluding the proof. ��
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