
International Journal of Computer Vision
https://doi.org/10.1007/s11263-024-02191-8

FADE: A Task-Agnostic Upsampling Operator for Encoder–Decoder
Architectures

Hao Lu1 ·Wenze Liu1 · Hongtao Fu1 · Zhiguo Cao1

Received: 26 June 2023 / Accepted: 14 July 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The goal of this work is to develop a task-agnostic feature upsampling operator for dense prediction where the operator
is required to facilitate not only region-sensitive tasks like semantic segmentation but also detail-sensitive tasks such as
image matting. Prior upsampling operators often can work well in either type of the tasks, but not both. We argue that task-
agnostic upsampling should dynamically trade off between semantic preservation and detail delineation, instead of having
a bias between the two properties. In this paper, we present FADE, a novel, plug-and-play, lightweight, and task-agnostic
upsampling operator by fusing the assets of decoder and encoder features at three levels: (i) considering both the encoder and
decoder feature in upsampling kernel generation; (ii) controlling the per-point contribution of the encoder/decoder feature in
upsampling kernels with an efficient semi-shift convolutional operator; and (iii) enabling the selective pass of encoder features
with a decoder-dependent gating mechanism for compensating details. To improve the practicality of FADE, we additionally
study parameter- and memory-efficient implementations of semi-shift convolution. We analyze the upsampling behavior
of FADE on toy data and show through large-scale experiments that FADE is task-agnostic with consistent performance
improvement on a number of dense prediction tasks with little extra cost. For the first time, we demonstrate robust feature
upsampling on both region- and detail-sensitive tasks successfully. Code is made available at: https://github.com/poppinace/
fade

Keywords Feature upsampling · Dense prediction · Semantic segmentation · Image matting · Object detection · Instance
segmentation · Depth estimation

1 Introduction

Feature quality, being an important yet hard-to-quantify indi-
cator, significantly influences the performance of a vision
system (Girshick et al., 2014). This is particularly true for

Communicated by Wanli Ouyang.

B Zhiguo Cao
zgcao@hust.edu.cn

Hao Lu
hlu@hust.edu.cn

Wenze Liu
wzliu@hust.edu.cn

Hongtao Fu
htfu@hust.edu.cn

1 The Key Laboratory of Image Processing and Intelligent
Control, Ministry of Education, School of Artificial
Intelligence and Automation, Huazhong University of
Science and Technology, Wuhan 430074, China

dense prediction tasks such as semantic segmentation (Long
et al., 2015) and object detection (Ren et al., 2015), where
the predictions highly correlate with the responses of feature
maps (Zhou et al., 2016). Prior art has proposed various ways
to enhance the feature quality by operating features, includ-
ing, but not limited to, spatial pooling (Chen et al., 2018;Zhao
et al., 2017), feature pyramid fusion (Lin et al., 2017b; Liu et
al., 2018), attention manipulation (Wang et al., 2018), con-
text aggregation (Yuan et al., 2021), and feature alignment (Li
et al., 2020b; Huang et al., 2021). Yet, the most famous seg-
mentationmodel (Kirillov et al., 2023) so far still struggles to
generate accurate boundary predictions, which suggests fea-
ture quality remains unsatisfactory. In this work, we delve
into an easily overlooked yet fundamental component that
closely relates to feature quality—feature upsampling.

Feature upsampling, which aims to recover the spatial
resolution of features, is an indispensable stage in most
dense prediction models (Ronneberger et al., 2015; Badri-
narayanan et al., 2017; Xiao et al., 2018; Wang et al., 2020;

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02191-8&domain=pdf
http://orcid.org/0000-0003-3854-8664
http://orcid.org/0000-0002-1510-6196
http://orcid.org/0000-0002-6692-0913
http://orcid.org/0000-0002-9223-1863
https://github.com/poppinace/fade
https://github.com/poppinace/fade


International Journal of Computer Vision

Zheng et al., 2021; Xie et al., 2021) as almost all dense
prediction tasks prefer high-res predictions. Since feature
upsampling is often close to the prediction head, the qual-
ity of upsampled features can provide a direct implication of
the prediction quality. A good upsampling operator would
therefore contribute to improved feature quality and predic-
tion. Yet, conventional upsampling operators, such as nearest
neighbor (NN) or bilinear interpolation (Lin et al., 2017a),
deconvolution (Zeiler and Fergus, 2014), max unpooling
(Badrinarayanan et al., 2017), and pixel shuffle (Shi et al.,
2016), often have a preference of a specific task. For instance,
bilinear interpolation is favored in semantic segmentation
(Chen et al., 2018; Xie et al., 2021), while pixel shuffle is
preferred in image super-resolution (Ignatov et al., 2021).

A main reason is that each dense prediction task has its
own focus: some tasks like semantic segmentation (Long
et al., 2015) and instance segmentation (He et al., 2017)
are region-sensitive, while some tasks such as image super-
resolution (Dong et al., 2015) and image matting (Xu et al.,
2017; Lu et al., 2019) are detail-sensitive. If one expects
an upsampling operator to generate semantically consistent
features such that a region can share the same class label, it
is often difficult for the same operator to recover boundary
details simultaneously, and vice versa. Indeed empirical evi-
dence shows that bilinear interpolation and max unpooling
have inverse behaviors in segmentation and matting (Lu et
al., 2019, 2022a), respectively.

In an effort to evade ‘trials-and-errors’ from choosing an
upsampling operator for a certain task at hand, there has
been a growing interest in developing a generic upsampling
operator for dense prediction (Mazzini, 2018; Tian et al.,
2019; Wang et al., 2019, 2021; Lu et al., 2019, 2022a; Dai
et al., 2021). For example, CARAFE (Wang et al., 2019)
shows its benefits on four dense prediction tasks, including
object detection, instance segmentation, semantic segmenta-
tion, and image inpainting. IndexNet (Lu et al., 2019) also
boosts performance on several tasks such as image matting,
image denoising, depth prediction, and image reconstruction.
However, a comparison betweenCARAFEand IndexNet (Lu
et al., 2022a) indicates that neither CARAFE nor IndexNet
can defeat its opponent on both region- and detail-sensitive
tasks (CARAFE outperforms IndexNet on segmentation,
while IndexNet can surpass CARAFE on matting), which
can also be observed from the inferred segmentation masks
and alphamattes in Fig. 1. This raises a fundamental research
question: What makes for task-agnostic upsampling?

After an apples-to-apples comparison between existing
dynamic upsampling operators (Fig. 2), we hypothesize
that it is the inappropriate and/or insufficient use of high-
res encoder and low-res decoder features that leads to the
task dependency of upsampling. We also believe that there
should exist a unified form of upsampling operator that
is truly task-agnostic. In particular, we argue that a task-

Fig. 1 Inferred segmentation masks and alpha mattes with different
upsampling operators. The compared operators include IndexNet (Lu
et al., 2019), A2U (Dai et al., 2021), CARAFE (Wang et al., 2019), and
our proposed FADE. Among competitors, only FADE generates both
the high-quality mask and the alpha matte

agnostic upsampling operator should dynamically trade off
between semantic preservation and detail delineation in a
content-aware manner, instead of having a bias between
the two properties. To this end, our main idea is to make
the full use of encoder and decoder features in upsampling
(kernels). We therefore introduce FADE, a novel, plug-and-
play, lightweight, and task-agnostic upsampling operator for
encoder-decoder architectures. The name also implies its
workingmechanism: upsampling features in a ‘fade-in’man-
ner, from recovering spatial structure to delineating subtle
details. In the context of hierarchical encoder-decoder archi-
tectures such as feature pyramid networks (FPNs) (Lin et
al., 2017b) and U-Net (Ronneberger et al., 2015), semantic
information is rich in low-res decoder features, and detailed
information is often abundant in high-res encoder features.
To exploit both information in feature upsampling, FADE
Fuses the Assets of Decoder and Encoder with three key
observations and designs:

(i) By exploring why CARAFE works well on region-
sensitive tasks but poorly on detail-sensitive tasks, and
why IndexNet and A2U (Dai et al., 2021) behave
conversely, we observe that what features (encoder or
decoder) to use to generate the upsampling kernels mat-
ters. Using low-res decoder features preserves regional
coherence, while using high-res encoder features helps
recover details. It is thus natural to seek whether com-
bining encoder and decoder features enjoys both merits,
which underpins the core idea of FADE, as shown in
Fig. 2.

(ii) To integrate high-res encoder and low-res decoder fea-
tures, a subsequent obstacle is how to deal with the
problem of resolution mismatch. A standard way is
to implement U-Net-style fusion (Ronneberger et al.,
2015), including feature interpolation, feature concate-
nation, and convolution. However, we show that this
naive implementation can introduce artifacts into upsam-
pling kernels. To solve this, we introduce a semi-shift
convolutional operator that unifies channel compres-

123



International Journal of Computer Vision

Fig. 2 Main difference between dynamic upsampling operators on the
use of encoder and/or decoder features. a CARAFE (Wang et al., 2019)
generates upsampling kernels conditioned on decoder features, while

b IndexNet (Lu et al., 2022a) and A2U (Dai et al., 2021) generate ker-
nels using encoder features only. By contrast, c FADE considers both
encoder and decoder features in upsampling kernel generation

sion, concatenation, and kernel generation. Particularly,
it allows granular control over how each feature point
contributes to upsampling kernels.

(iii) Inspired by the gating mechanism used in FPN-like
designs (Li et al., 2020c, 2023), we further refine upsam-
pled features by enabling selective pass of high-res
encoder features via a simple decoder-dependent gating
unit.

To improve the practicality and efficiency of FADE, we also
investigate parameter-efficient and memory-efficient imple-
mentations of semi-shift convolution. Such implementations
lead to a lightweight variant of FADE termed FADE-Lite.
We show that, even with one forth number of parameters
of FADE, FADE-Lite still preserves the task-agnostic prop-
erty and behaves reasonably well across different tasks. The
memory-efficient implementation also enables direct execu-
tion of cross-resolution convolution, without explicit feature
interpolation for resolution matching.

We conduct experiments on seven data sets covering
six dense prediction tasks. We first validate our motivation
and the rationale of our design via several toy-level and
small-scale experiments, such as binary image segmentation
on Weizmann Horse (Borenstein & Ullman, 2002), image
reconstruction on Fashion-MNIST (Xiao et al., 2017), and
semantic segmentation on SUN RGBD (Song et al., 2015).
We then show through large-scale evaluations that FADE
reveals its task-agnostic property by consistently boost-
ing both region- and detail-sensitive tasks, for instance: (i)
semantic segmentation: FADE improves SegFormer-B1 (Xie
et al., 2021) by+ 2.73mask IoUand+ 4.85boundary IoUon
ADE20K (Zhou et al., 2017) and steadily boosts the bound-
ary IoU with stronger backbones, (ii) image matting: FADE
outperforms the previous best matting-specific upsampling
operator A2U (Dai et al., 2021) on Adobe Composition-
1K (Xu et al., 2017), (iii) object detection and (iv) instance
segmentation: FADE performs comparably against the best
performing operator CARAFE over Faster R-CNN (Ren et
al., 2015) (+ 1.1 AP for FADE vs. + 1.2 AP for CARAFE
with ResNet-50) and Mask R-CNN (He et al., 2017) (+ 0.4
mask AP for FADE vs. + 0.7 mask AP for CARAFE with

ResNet-50) baselines on Microsoft COCO (Lin et al., 2014),
and (v) monocular depth estimation: FADE also surpasses
the previous best upsampling operator IndexNet (Lu et al.,
2022a) over the BTS (Lee et al., 2019) baseline on NYU
Depth V2 (Silberman et al., 2012). In addition, FADE retains
the lightweight property by introducing only a few amount
of parameters and FLOPs. It has also good generality across
convolutional and transformer architectures (Xiao et al.,
2018; Xie et al., 2021).

Overall, our contributions include the following:

– For the first time, we show that task-agnostic upsampling
is made possible on both high-level region-sensitive and
low-level detail-sensitive tasks;

– We present FADE, one of the first task-agnostic upsam-
pling operator, that fuses encoder and decoder features
in generating upsampling kernels, uses an efficient semi-
shift convolutional operator to control per-point contri-
bution, and optionally applies a gating mechanism to
compensate details;

– We provide a comprehensive benchmarking on state-
of-the-art upsampling operators across five mainstream
dense prediction tasks, which facilitates future study.

A preliminary conference version of this work appeared
in (Lu et al., 2022b). We extend (Lu et al., 2022b) from the
following aspects: (i) to highlight the task-agnostic property,
we validate FADE comprehensively on more baseline mod-
els, e.g., UPerNet (Xiao et al., 2018), Faster RCNN (Ren et
al., 2015), Mask RCNN (He et al., 2017), and BTS (Lee et
al., 2019), on different network scales, from SegFormer-B1
to -B5 (Xie et al., 2021) and from R50 to R101 (He et al.,
2016), and on three additional vision tasks including object
detection, instance segmentation, and monocular depth esti-
mation; (ii) we carefully benchmark the performance of
state-of-the-art dynamic upsampling operators on the evalu-
ated tasks to provide a basis for future studies; (iii) we further
explore parameter-efficient andmemory-efficient implemen-
tations of semi-shift convolution to enhance the practicality
of FADE, which also leads to a lightweight variant called
FADE-Lite; (iv) by observing some unexpected phenomena

123



International Journal of Computer Vision

in experiments, we rethink the value of the gating mecha-
nism in FADE and provide additional analyses and insights
on when to use the gating unit, particularly for instance-level
tasks; (v) we extend the related work by comparing feature
upsamplingwith other closely related techniques such as fea-
ture alignment and boundary processing; (vi) we also extend
our discussion on the general value of feature upsampling to
dense prediction.

2 Literature Review

We review upsampling operators in deep networks, tech-
niques that share a similar spirit to upsampling including
feature alignment and boundary processing, and typical
dense prediction tasks in vision.

2.1 Feature Upsampling

Unlike joint image upsampling (Tomasi & Manduchi, 1998;
He et al., 2010), feature upsampling operators are mostly
developed in the era of deep learning, to respond to the
need for recovering spatial resolution of encoder features
(decoding). Conventional upsampling operators typically use
fixed/hand-crafted kernels. For instance, the kernels in the
widely used NN and bilinear interpolation are defined by
the relative distance between pixels. Deconvolution (Zeiler
andFergus, 2014),a.k.a. transposed convolution, also applies
a fixed kernel during inference, despite the kernel parame-
ters are learned. Pixel Shuffle (Shi et al., 2016) first employs
convolution to adjust feature channels and then reduces the
depth dimension to increase the spatial dimension. While
the main purpose of resolution increase is achieved, the
operators above also introduce certain artifacts into features.
For instance, it is well-known that, interpolation smooths
boundaries, and deconvolution generates checkerboard arti-
facts (Odena et al., 2016). Several recent work has shown
that unlearned upsampling has become a bottleneck behind
architectural design (Liu et al., 2023), and dynamic upsam-
pling behaviors are more expected (Lu et al., 2019). Among
hand-crafted operators, unpooling (Badrinarayanan et al.,
2017) perhaps is the only operator that implements dynamic
upsampling, i.e., each upsampled position is data-dependent
conditioned on the max operator. The importance of such
a dynamic property has been exemplified by some recent
dynamic kernel-based upsampling operators (Wang et al.,
2019; Lu et al., 2019; Dai et al., 2021; Lu et al., 2022c),
which leads to a new direction from considering generic
feature upsampling across tasks and architectures. In particu-
lar, CARAFE (Wang et al., 2019) implements context-aware
reassembly of features with decoder-dependent upsampling
kernels, IndexNet (Lu et al., 2019) provides an indexing per-
spective of upsampling and executes upsampling by learning

a soft index (kernel) function, and A2U (Dai et al., 2021)
introduces affinity-aware upsampling kernels by exploiting
second-order information.At the core of these operators is the
data-dependent upsampling kernelswhose kernel parameters
are not learned but dynamically predicted by a sub-network.

However, while being dynamic, CARAFE, A2U, and
IndexNet still exhibit a certain degree of bias on specific
tasks. In this work, we show through FADE that the devil
is in the use of encoder and decoder features in generating
upsampling kernels.

2.2 Feature Alignment and Boundary Processing

Different from dynamic upsampling that aims to enhance
feature quality during resolution change, much existingwork
also attempts to enhance the feature quality after matching
resolution. Two closely related techniques are feature align-
ment and boundary processing. Feature alignment explores
to align multi-level feature maps by warping features with,
for example, either sampling offsets (Wu et al., 2022; Huang
et al., 2021) or a dense flow field (Li et al., 2020b, 2023),
which has been found effective in reducing semantic aliasing
during cross-resolution feature fusion. Another idea is to use
a gating unit to align and refine features (Li et al., 2020c),
which prevents encoder noise from entering decoder feature
maps. FADE has also a similar design as post-processing, but
is much simpler. Considering that, most fragile predictions in
segmentation are along object boundaries, boundary process-
ing techniques are developed to optimize boundary quality.
In particular, PointRend (Kirillov et al., 2020) views segmen-
tation as a rendering problem and adaptively selects points
to predict crisp boundaries by an iterative subdivision algo-
rithm. Li et al. (2020a) improves boundary prediction with
decoupled body and edge supervision. Boundary-preserving
Mask R-CNN (Cheng et al., 2020) presents a boundary-
preservingmask head to improvemask localization accuracy.
Gated-SCNN (Takikawa et al., 2019) introduces a two-
stream architecture that wires shape information as a separate
processing branch to process boundary-related information
specifically.

Compared with dynamic upsampling, feature alignment
and boundary processing are typically executed after naive
feature upsampling. Since feature upsampling is inevitable,
it would be interesting to see whether one could enhance the
feature quality during upsampling, which is exactly one of
the goals of dynamic upsampling. In this work, we show that
FADE is capable of mitigating semantic aliasing as feature
alignment and of improving boundary predictions as bound-
ary processing. FADE also demonstrates universality across
a number of tasks more than segmentation.

123



International Journal of Computer Vision

2.3 Dense Prediction

Dense prediction covers a broad class of per-pixel label-
ing tasks, ranging from mainstream object detection (Ren
et al., 2015), semantic segmentation (Long et al., 2015),
instance segmentation (He et al., 2017), and depth estimation
(Eigen et al., 2014) to low-level image restoration (Mao et al.,
2016), image matting (Xu et al., 2017), edge detection (Xie
and Tu, 2015), and optical flow estimation (Teed & Deng,
2020), to name a few. An interesting property about dense
prediction is that a task could be region-sensitive or detail-
sensitive. The sensitivity is closely related to what metric
is used to assess the task. In this sense, semantic/instance
segmentation is region-sensitive, because the standard Mask
Intersection-over-Union (IoU) metric (Everingham et al.,
2010) is mostly affected by regional mask prediction quality,
instead of boundary quality. On the contrary, image matting
can be considered detail-sensitive, because the error metrics
(Rhemann et al., 2009) are mainly computed from trimap
regions that are full of subtle details or transparency. Note
that, when we emphasize region sensitivity, we do not mean
that details are not important, and vice versa. In fact, the
emergence of the Boundary IoU metric (Cheng et al., 2021)
implies that the limitation of a certain evaluation metric has
been noticed by our community.

Feature upsampling can play important roles in dense
prediction, not only for generating high-resolution predic-
tions but also for improving the quality of predictions. The
goal of developing a task-agnostic and content-aware upsam-
pling operator capable of both regional preservation and
detail delineation can have a broad impact on a number of
dense prediction tasks. In this work, we evaluate FADE and
other upsampling operators on both types of tasks using both
region-aware and detail-aware metrics.

3 Task-Agnostic Upsampling: A Trade-off
Between Semantic Preservation and Detail
Delineation?

Before we present FADE, we share some of our view points
towards task-agnostic upsampling, which may be helpful to
understand our designs in FADE.

Remark 1 Encoder and decoder features play different roles
in upsampling, particularly in the generation of upsampling
kernels.

In dense prediction models, downsampling stages are
involved to reduce computational burden or to acquire a
large receptivefield, bringing theneedof peer-to-peer upsam-
pling stages to recover the spatial resolution, which together
constitutes the basic encoder-decoder architecture. During
downsampling, details of high-res features are impaired or

even lost, but the resulting low-res encoder features often
have good semantic meanings that can pass to decoder fea-
tures. Hence, we believe an ideal upsampling operator should
appropriately resolve two issues: (1) preserve the seman-
tic information already extracted; (2) compensate as many
lost details as possible without deteriorating the semantic
information. NN or bilinear interpolation only meets the
former. This conforms to our intuition that interpolation
often smooths features. A reason is that low-res decoder fea-
tures have no prior knowledge about missing details. Other
operators that directly upsample decoder features, such as
deconvolution and pixel shuffle, can have the same prob-
lem with poor detail compensation. Compensating details
requires high-res encoder features. This is why unpooling
that stores indices before downsampling has good boundary
delineation (Lu et al., 2019), but it hurts the semantic infor-
mation due to zero-filling.

Dynamicupsamplingoperators, includingCARAFE(Wang
et al., 2019), IndexNet (Lu et al., 2019), and A2U (Dai et
al., 2021), alleviate the problems above with data-dependent
upsampling kernels. Their upsampling modes are shown in
Fig. 2a, b. FromFig. 2, it can be observed that, CARAFEgen-
erates upsampling kernels conditioned on decoder features,
while IndexNet (Lu et al., 2019) and A2U (Dai et al., 2021)
generate kernels via encoder features. This may explain the
inverse behavior between CARAFE and IndexNet/A2U on
region- or detail-sensitive tasks (Lu et al., 2022a). Yet, we
find that generating upsampling kernels using either encoder
or decoder features can lead to suboptimal results, and it
is critical to leverage both encoder and decoder features
for task-agnostic upsampling, as implemented in FADE
(Fig. 2c).

Remark 2 How each feature point contributes to upsampling
matters.

After deciding what the features to use, the follow-up
question is how to use the features effectively and efficiently.
The main obstacle is the mismatched resolution between
encoder and decoder features. Per Fig. 3, one may consider
simple interpolation for resolutionmatching, but this can lead
to sub-optimal upsampling. Considering the case of apply-
ing ×2 NN interpolation to decoder features, if we use 3× 3
convolution to generate the upsampling kernel, the effective
receptive field of the kernel can reduce to be < 50%: before
interpolation there are 9 valid points in a 3 × 3 window, but
only 4 valid points are left after interpolation. Besides this,
another more important issue remains. Still in the×2 upsam-
pling in Fig. 3, the four windows which control the variance
of upsampling kernels w.r.t. the 2× 2 neighbors of high res-
olution are affected by the naive interpolation. Controlling a
high-res upsampling kernel map, however, is blind with the
low-res decoder feature. It contributes little to the variance of
the four neighbors. A more reasonable choice may be to let

123



International Journal of Computer Vision

Fig. 3 Naive implementation for generating upsampling kernels using
encoder and decoder features. The kernel prediction using high-res
encoder and low-res decoder features requires matching resolution with
explicit feature interpolation and concatenation, followed by channel
compression and convolution

encoder anddecoder features cooperate to control the overall
upsampling kernel, but let the encoder feature alone control
the variance of the four neighbors. This insight exactly moti-
vates the design of semi-shift convolution (Sect. 4.3).

Remark 3 High-res encoder features can be leveraged for fur-
ther detail refinement.

Besides helping structural recovery via upsampling ker-
nels, there remains useful information in encoder features.
Since encoder features only go through a few layers of a net-
work, they preserve ‘fine details’ of high resolution. In fact,
nearly all dense prediction tasks require fine details, e.g.,
despite regional prediction dominates in instance segmen-
tation, accurate boundary prediction can significantly boost
performance (Tang et al., 2021), not to mention the stronger
request of fine details in detail-sensitive tasks. The demands
of fine details in dense prediction need further exploitation of
encoder features. Following existing ideas (Cho et al., 2014;
Li et al., 2020c, 2023), we explore the use of a gating mech-
anism by leveraging low-res decoder features to guide where
the high-res encoder features can pass through. Yet, in some
instance-aware tasks, we find that the gate is better left fully
open (more discussion can be found in Sect. 4.4).

4 FADE: Fusing the Assets of Decoder and
Encoder

Here we elaborate our designs in FADE. We first revisit the
framework of dynamic upsampling, then present from three
aspects on how to fuse the assets of decoder and encoder fea-
tures in upsampling, particularly discussing the principle and
the efficient implementations of the semi-shift convolution.

4.1 Dynamic Upsampling Revisited

Here we review some basic operations in recent dynamic
upsampling operators such as CARAFE (Wang et al., 2019),
IndexNet (Lu et al., 2019), and A2U (Dai et al., 2021). Fig-
ure 2 briefly summarizes their upsamplingmodes. They share
an identical pipeline, i.e., first generating data-dependent
upsampling kernels, and then reassembling the decoder fea-
tures using the kernels. Typical dynamic upsampling kernels
are content-aware, but channel-shared, which means each
position has a unique upsampling kernel in the spatial dimen-
sion, but the same ones are shared in the channel dimension.

CARAFE learns upsamplingkernels directly fromdecoder
features and then reassembles them to high resolution.
Specifically, the decoder features pass through two consecu-
tive convolutional layers to generate the upsampling kernels,
of which the former is a channel compressor implemented by
1×1 convolution used to reduce the computational complex-
ity and the latter is a content encoder with 3×3 convolution.
IndexNet and A2U, however, adopt more sophisticated mod-
ules to leverage the merit of encoder features. Further details
can be referred to (Wang et al., 2019; Lu et al., 2019; Dai et
al., 2021).

FADE is designed to maintain the simplicity of dynamic
upsampling. Hence, we mainly optimize the process of ker-
nel generation with semi-shift convolution, and the channel
compressor will also function as a way of pre-fusing encoder
and decoder features. In addition, FADE also includes a gat-
ing mechanism for detail refinement. The overall pipeline of
FADE is summarized in Fig. 4. In what follows, we explain
our three key designs and present our efficient implementa-
tions.

4.2 Generating Upsampling Kernels from Encoder
and Decoder Features

We first showcase a few visualizations on some small-scale
or toy-level data sets to highlight the importance of both
encoder and decoder features for task-agnostic upsampling.
We choose semantic segmentation on SUN RGBD (Song
et al., 2015) as the region-sensitive task and image recon-
struction on Fashion MNIST (Xiao et al., 2017) as the
detail-sensitive one. We follow the network architectures
and the experimental settings in (Lu et al., 2022a). Since
we focus on upsampling, all downsampling stages use max
pooling. Specifically, to show the impact of encoder and
decoder features, in the segmentation experiments, we use
CARAFE as the baseline but only modify the source of fea-
tures used for generating upsampling kernels. We build three
baselines: (1) decoder-only, the standard implementation of
CARAFE; (2) encoder-only, where the upsampling kernels
are generated from encoder features; (3) encoder-decoder,
where the upsampling kernels are generated from the con-

123



International Journal of Computer Vision

Fig. 4 Technical pipeline of FADE. From b the overview of FADE,
FADE upsamples the low-res decoder feature with the help of the high-
res encoder features. The two types of features are fed into two key
modules. In a dynamic feature upsampling, the features are used to
generate upsampling kernels using a semi-shift convolutional operator

(Fig. 6). The kernels are then applied to the decoder feature to gener-
ate the upsampled feature. In c gated feature refinement, the encoder
and upsampled features are modulated by a decoder-dependent gating
mechanism to enhance detail delineation before outputting the final
refined feature

Table 1 Results of semantic
segmentation on SUN RGBD
and image reconstruction on
Fashion MNIST

Segmentation Reconstruction
Accuracy ↑ Accuracy ↑ Error ↓
mIoU bIoU PSNR SSIM MAE MSE

Decoder-only 37.00 25.61 24.35 87.19 0.0357 0.0643

Encoder-only 36.71 27.89 32.25 97.73 0.0157 0.0257

Encoder-decoder 37.59 28.80 33.83 98.47 0.0122 0.0218

Best performance is in boldface

catenation of encoder and NN-interpolated decoder features.
We report Mask IoU (mIoU) (Everingham et al., 2010) and
Boundary IoU (bIoU) (Cheng et al., 2021) for segmenta-
tion, and Peak Signal-to-Noise Ratio (PSNR), Structural
SIMilarity index (SSIM), Mean Absolute Error (MAE), and
root Mean Square Error (MSE) for reconstruction. From
Table 1, one can observe that the encoder-only baseline out-
performs the decoder-only one in image reconstruction, but
in semantic segmentation the trend is on the contrary. To
understand why, we visualize the segmentation masks and
reconstructed results in Fig. 5. We find that in segmentation
the decoder-only model tends to produce regionally coher-
ent masks, while the encoder-only one generates clear mask
boundaries but blocky regions; in reconstruction, by contrast,
the decoder-only model almost fails and can only gener-
ate low-fidelity reconstructions. It thus can be inferred that,
high-res encoder features help to predict details, while low-
res decoder features contribute to semantic preservation of
regions. Indeed, by considering both encoder and decoder
features, the resulting mask seems to integrate the merits of
the former two, and the reconstructions are also full of details.

Fig. 5 Visualizations of inferred mask and reconstructed results on
SUN RGBD and Fashion-MNIST. The decoder-only model gener-
ates semantically consistent mask predictions but poor reconstructions,
while the encoder-only one is on the contrary. When both encoder and
decoder features are considered, the model generates reasonable masks
as the decoder-onlymodel and clear reconstructions as the encoder-only
one (cf. the table lamp and the stripes on clothes)

Therefore, albeit a simple tweak, FADE significantly bene-
fits from generating upsampling kernels with both encoder
and decoder features, as illustrated in Fig. 2c.

4.3 Semi-shift Convolution

Given encoder and decoder features, we next address how to
use them to generate upsampling kernels. We investigate two

123



International Journal of Computer Vision

Fig. 6 Upsampling kernel generation using semi-shift convolutionwith
both encoder and decoder features. In contrast to naive implementation
(Fig. 3), semi-shift convolution carefully controls the per-point contri-
bution to the kernel (see how each decoder feature point corresponds to
each encoder feature point) and unifies feature interpolation, concate-
nation, channel compression, and kernel prediction

implementations: the naive one presented in Fig. 3 and our
customized one–semi-shift convolution. We first illustrate
the principle of semi-shift convolution and then present its
efficient implementations. Finally, we compare the compu-
tational workload and memory occupation among different
implementations.

4.3.1 Principle of Semi-shift Convolution

The key difference between naive and semi-shift convolution
is how each decoder feature point spatially corresponds to
each encoder feature point. The naive implementation shown
in Fig. 3 includes five operations: (i) feature interpolation,
(ii) concatenation, (iii) channel compression, (iv) standard
convolution for kernel generation, and (v) softmax normal-
ization. As aforementioned in Sect. 3, naive interpolation can
have a few problems. To address them, we propose semi-shift
convolution that simplifies the first four operations above into
a unified operator, which is illustrated in Fig. 6. Note that the
4 convolution windows in encoder features all correspond to
the same window in decoder features. This design has the
following advantages: (1) the role of control in the kernel
generation is made clear where the control of the variance
of 2× 2 neighbors is moved to encoder features completely;
(2) the receptive field of decoder features is kept consistent
with that of encoder features; (3) memory cost is reduced,
because semi-shift convolution directly operates on low-res
decoder features, without feature interpolation; (4) channel
compression and kernel generation can also be merged in
semi-shift convolution.

Mathematically, the single window processing with naive
implementation or semi-shift convolution has an identical
form if ignoring the content of feature maps. For example,
considering the top-left window w.r.t. the index ‘1’ in Figs. 3
and 6, the (unnormalized) upsampling kernel takes the form

wm =
d∑

l=1

h∑

i=1

h∑

j=1

βi jlm

(
2C∑

k=1

αkl xi jk + al

)
+ bm

=
d∑

l=1

h∑

i=1

h∑

j=1

βi jlm

(
C∑

k=1

αen
kl x

en
i jk +

C∑

k=1

αde
kl x

de
i jk + al

)
+ bm

=
d∑

l=1

h∑

i=1

h∑

j=1

βi jlm

C∑

k=1

αen
kl x

en
i jk

+
d∑

l=1

h∑

i=1

h∑

j=1

βi jlm

(
C∑

k=1

αde
kl x

de
i jk + al

)
+ bm , (1)

where wm,m = 1, ..., K 2, is the weight of the upsampling
kernel, K the upsampling kernel size, h the convolution
window size, C the number of input channel dimension
of encoder and decoder features, and d the number of
compressed channel dimension. αen

kl and {αde
kl , al} are the

parameters of 1 × 1 convolution specific to encoder and
decoder features, respectively, and {βi jlm, bm} the parame-
ters of 3×3 convolution. Following CARAFE, we set h = 3,
K = 5, and d = 64.

4.3.2 Efficient Implementations of Semi-shift Convolution

Given the formulation above, here we discuss the efficient
implementations of semi-shift convolution. According to
Eq. (1), by the linearity of convolution, the two standard
convolutions on 2C-channel features are equivalent to apply-
ing two distinct 1 × 1 convolutions to C-channel encoder
and C-channel decoder features, respectively, followed by
a shared 3 × 3 convolution and summation. Such decom-
position allows us to process encoder and decoder features
without matching their resolution explicitly. However, we
still need to address the mismatch implicitly. There are two
strategies: i) downsampling the high-res encoder output to
match the low-res decoder one, or ii) upsampling the low-res
decoder output to match the high-res encoder one.

To process the whole feature map following the first strat-
egy, the window can move s steps on encoder features but
only �s/2� steps on decoder features. This is why the oper-
ator is given the name ‘semi-shift convolution’. We split the
process to 4 sub-processes; each sub-process focuses on the
top-left, the top-right, the bottom-left, and the bottom-right
window, respectively. Different sub-processes have similar
prepossessing strategies. For example, for the top-left sub-
process, we add full zero padding to the decoder feature, but
only pad the top and left side of the encoder feature. Then
all the top-left window correspondences can be satisfied by
setting convolutional stride of 1 for the decoder feature and
of 2 for the encoder feature. Finally, after a few memory
operations, the four sub-outputs can be reassembled to the
(unnormalized) upsampling kernel. This process is illustrated
in the left of Fig. 7,which can be called the high-to-low (H2L)
implementation.

The H2L implementation above is provided in our con-
ference version (Lu et al., 2022b). We later notice that

123



International Journal of Computer Vision

Fig. 7 Fast implementations of semi-shift convolution. We present two
forms of fast implementations: (left: H2L) high resolution matches low
resolution, which is presented in our conference version (Lu et al.,
2022b), and (right: L2H) low resolution matches high resolution, which
is more memory efficient

the key characteristic of semi-shift convolution lies in the
same decoder feature point corresponds to 4 encoder feature
points, which shares the same spirit of NN interpolation.
Following this interpretation, we provide a more efficient
implementation with less use of memory, as shown in the
right of Fig. 7, named the low-to-high (L2H) implementation.
First, unshared 1 × 1 convolutions are used to compress the
encoder and decoder features, respectively. Then the shared
3× 3 convolution is applied, of which the decoder feature is
NN-interpolated to the size of the encoder one. Finally they
are summed to obtain the (unnormalized) kernel.

Both implementations can be implemented within the
standard PyTorch library. In the H2L implementation, the
kernel Wi of the i-th sub-process (with specific padding
applied), i = 1, 2, 3, 4, takes the form

Wi = conv/2(CC(Xen, θen), θ)

+conv/1(CC(Xde, θde), θ), (2)

where conv/s(X , θ) denotes the stride-s 3× 3 convolution
over the featuremapX , parameterized by θ .CC is the channel
compressor implemented by 1×1 convolution.Xen andXde

are the encoder and the decoder feature, respectively. Note
that, the parameters θen and θde in CC are different, while
the parameters in conv/1 and conv/2 are the same θ . The
four Wi ’s need to be aggregated and reshaped to form the
full kernel W .

In contrast, the L2H implementation does not require sub-
process division and computes the full kernel W directly. It
can be formulated as

W = conv/1(CC(Xen, θen), θ)

+NN (conv/1(CC(Xde, θde), θ)), (3)

where NN is the ×2 NN interpolation operator.

Table 2 Results on the Weizmann Horse dataset

SegNet – baseline mIoU

Unpooling 93.42

IndexNet (Lu et al., 2019) 93.00

NN 89.15

CARAFE (Wang et al., 2019) 89.29

NN + Gate 95.26

CARAFE + Gate 95.25

SemiShift-Lite and FADE-Lite.We also investigate a simpli-
fied variant of semi-shift convolution, which uses depthwise
convolution to further reduce the computational complex-
ity, named SemiShift-Lite. Specifically, SemiShift-Lite sets
d = K 2 and adopts 3 × 3 depthwise convolution to encode
the local information. Its whole number of parameters is
2CK 2 + 9K 2. The use of SemiShift-Lite also leads to a
lightweight variant of FADE, i.e., FADE-Lite. We use this
variant to show that the task-agnostic property indeed comes
with the careful treatment of encoder and decoder features,
even with much less parameters. When C = 256, d = 64,
and K = 5, despite FADE-Lite only includes 27.6%parame-
ters of its standard versionFADE,weobserve that FADE-Lite
is still task-agnostic and outperforms most upsampling oper-
ators (see Sect. 5 for details).

4.4 Extracting Fine Details from Encoder Features

Here we further introduce a gating mechanism to com-
plement fine details from encoder features to upsampled
features. We again use some experimental observations to
motivate our design. We use a binary image segmentation
dataset, Weizmann Horse (Borenstein & Ullman, 2002). The
reasons for choosing this dataset are two-fold: (1) the visu-
alization is made simple; (2) the task is simple such that the
impact of feature quality can be neglected. When all base-
lines have nearly perfect region predictions, the difference in
detail prediction can be amplified. We use SegNet pretrained
on ImageNet as the baseline and alter only the upsampling
operators. Results are listed in Table 2. An interesting phe-
nomenon is that CARAFE works almost the same as NN
interpolation and even falls behind the default unpooling and
IndexNet.An explanation is that the dataset is too simple such
that the region smoothing property of CARAFE is wasted,
but recovering details matters.

A common sense in segmentation is that, the interior of a
certain class would be learned fast, while mask boundaries
are difficult to predict. This can be observed from the gra-
dient maps w.r.t. an intermediate decoder layer, as shown in
Fig. 8. During the middle stage of training, most responses
are near boundaries. Now that gradients reveal the demand of

123



International Journal of Computer Vision

Fig. 8 Gradient maps and gate maps of horses

detail information, featuremapswould alsomanifest this req-
uisite with some distributions, e.g., in multi-class semantic
segmentation a confident class prediction in a region would
be a unimodal distribution along the channel dimension, and
an uncertain prediction around boundaries would likely be
a bimodal distribution. Hence, we assume that all decoder
layers have gradient-imposed distribution priors and can be
encoded to inform the requisite of detail or semantic infor-
mation. In this way fine details can be chosen from encoder
features without hurting the semantic property of decoder
features. Hence, instead of directly skipping encoder features
as in feature pyramid networks (FPNs) (Lin et al., 2017b), we
introduce a naive gating mechanism following existing ideas
(Cho et al., 2014; Li et al., 2020c, 2023) to refine upsampled
features using encoder features, conditioned on decoder fea-
tures. The gate is generated through a 1×1 convolution layer,
aNN interpolation layer, and asigmoid function.As shown
in Fig. 4c, the decoder feature first goes through the gate gen-
erator, and the generator then outputs a gate map instantiated
in Fig. 8. Finally, the gate map G modulates the encoder
feature Fencoder and the upsampled feature Fupsampled to
generate the final refined feature Frefined as

Frefined = Fencoder · G + Fupsampled · (1 − G). (4)

From Table 2, the gate works on both NN and CARAFE.
We remark that our initial motivation for developing the

gating mechanism comes from semantic segmentation and
image matting tasks. In semantic segmentation, the model
outputs a set of logits and uses argmax to select one chan-
nel as the predicted class. This form of prediction renders
the model working in a one-class-one-value manner. To pre-
serve this manner, we expect the gate to extract only the
details that require from the encoder (Fig. 8) and to influence
the decoder feature as less as possible. Similarly in matting,
despite the number of classes can be considered to be infin-
ity, themodel still follows the one-class-one-value paradigm.
However, in instance-sensitive tasks, such as object detec-
tion, given the one-class-one-value feature maps, one cannot
tell the instance difference with argmax. In addition, object
detection is rather different from semantic segmentation,
where high-res features are responsible for precise localiza-
tion, so in (Lin et al., 2017b) the FPN is adopted to improve
Faster-RCNN (Ren et al., 2015). For the reasons above, gat-

ing, as a mechanism strengthening decoder features, may not
tackle the improvement for localization. In this case, FADE
without gating, denoted by FADE (G=1), would be a better
choice. We will discuss more in the experiments on object
detection (Sect. 5.3) and instance segmentation (Sect. 5.4).

5 Applications

Here we demonstrate the applications and the task-agnostic
property of FADE on various dense prediction tasks, includ-
ing semantic segmentation, image matting, object detection,
instance segmentation, and monocular depth estimation. In
particular, we focus our experiments on segmentation to
analyze the the upsampling behaviors of FADE from differ-
ent aspects and design ablation studies to justify our design
choice on FADE.

5.1 Semantic Segmentation

Semantic segmentation is region-sensitive. To prove that
FADE is architecture-independent, SegFormer (Xie et al.,
2021) and UPerNet (Xiao et al., 2018) are chosen as trans-
former and convolutional baselines, respectively.

5.1.1 Data Set, Metrics, Baseline, and Protocols

Weuse theADE20Kdataset (Zhou et al., 2017). It covers 150
fine-grained semantic concepts, including 20, 210 training
images and 2, 000 validation images. In addition to reporting
the standard mask IoU (mIoU) (Everingham et al., 2010), we
also report the boundary IoU (bIoU) (Cheng et al., 2021) to
assess the boundary quality.

SegFormer-B1 (Xie et al., 2021) is first evaluated.Wekeep
the default model architecture in SegFormer except for mod-
ifying the upsampling stages in the MLP head. In particular,
feature maps of each scale need to be upsampled to 1/4 of
the original image. Therefore, there are 3+2+1 = 6 upsam-
pling stages in all. All training settings and implementation
details are kept the same as in (Xie et al., 2021). Since Seg-
Former follows a ‘fuse-and-concatenate’ manner, where the
feature maps are all upsampled to the max-resolution one,
we verify two styles of upsampling strategies: direct upsam-
pling and 2 by 2 iterative upsampling. We also test B3, B4,
and B5 versions of SegFormer to see if a similar boost could
be observed on stronger backbones. In addition, considering
that stronger backbones often produce better feature quality,
this also allows to see whether feature upsampling still con-
tributes to improved feature quality on stronger backbones.

For UPerNet (Xiao et al., 2018), we use the implementa-
tion provided by mmsegmentation.1 We use the ResNet-

1 https://github.com/open-mmlab/mmsegmentation.

123

https://github.com/open-mmlab/mmsegmentation


International Journal of Computer Vision

Table 3 Semantic segmentation and image matting results on the ADE20K and Adobe Composition-1K data sets

SegFormer-B1/ Segmentation – accuracy metric ↑ Matting – error metric ↓
A2U Matting-R34 mIoU bIoU GFLOPs Params SAD MSE Grad Conn GFLOPs Params

Bilinear 41.68 27.80 15.9 13.7M 37.31 0.0103 21.38 35.39 8.6 8.1M

CARAFE (Wang et al., 2019) 42.82 29.84 +1.5 +0.4M 41.01 0.0118 21.39 39.01 +6.0 +0.3M

IndexNet (Lu et al., 2019) 41.50 28.27 +30.7 +12.6M 34.28 0.0081 15.94 31.91 +31.7 +12.3M

A2U (Dai et al., 2021) 41.45 27.31 +0.4 +0.1M 32.15 0.0082 16.39 29.25 +0.7 +38K

SAPA (Lu et al., 2022c) 43.20 30.96 +1.7 +0.2M 31.19 0.0079 15.48 28.30 +1.8 +0.1M

FADE 44.41 32.65 +2.7 +0.3M 31.10 0.0073 14.52 28.11 +8.9 +0.1M

FADE-Lite 43.49 31.55 +0.9 +80K 31.36 0.0075 14.83 28.21 +1.5 +27K

For IndexNet, we use the ‘M2O’ version in matting and ‘HIN’ in segmentation following (Lu et al., 2022a). GFLOPs and Param indicate the
additional floating-point calculations and additional number of parameters compared with the bilinear baseline. Best performance is in boldface
and second best is underlined

Table 4 Semantic segmentation
results on the ADE20K data set
with different SegFormer
backbones

SegFormer Backbone Params mIoU bIoU

Bilinear B1 13.7M 41.68 27.80

FADE B1 +0.4M 44.41 (+2.73) 32.65 (+4.85)

Bilinear B3 47.3M 49.04 35.24

FADE B3 +0.7M 49.05 (+0.01) 36.79 (+1.55)

Bilinear B4 64.1M 49.93 35.63

FADE B4 +0.7M 50.11 (+0.18) 37.39 (+1.76)

Bilinear B5 84.7M 51.00 37.81

FADE B5 +0.7M 50.90 (−0.10) 38.91 (+1.10)

50 and ResNet-101 backbones and modify the upsampling
operators in the FPN and train themodel with 80K iterations.
The original skip connection is removed due to the inclusion
of the gating mechanism. Because FADE upsamples by ×2
times of the input at once, we use the aligned resizing in
inference to match the resolution. Other settings are kept the
same.

5.1.2 Semantic Segmentation Results

Quantitative results of different upsampling operators are
reported in Table 3. FADE is the best performing operator on
both mIoU and bIoU metrics. In particular, it improves over
theBilinear baseline by a largemargin,with+2.73mIoUand
+4.85 bIoU. Qualitative results are shown in Figs. 1, 2, 3, 4,
5, 6, 7, 8, 9 and 10. FADE generates high-quality predictions
both within mask regions and near mask boundaries.

Stronger Backbones. We also test stronger backbones on
SegFormer, including the B3, B4, and B5 versions. From
Table 4, when stronger backbones are used, we observe both
mIoU and bIoU improve (B1→B3, B3→B4, and B4→B5).
However, onB3, B4, andB5, the benefits of FADE are almost
invisible in terms of mIoU, which suggests improved fea-
ture quality brought by improved backbones have addressed
manymisclassifications that upsampling can amend, particu-
larly for interior regions. Yet, steady boosts in bIoU (> 1) can

still be observed. This means improved features only address
the boundary errors to a certain degree (cf. bIoU improve-
ments in B1→B3 vs. that in B3→B4), and FADE can still
improve feature quality near mask boundaries. Our evalua-
tions connote improved feature upsampling indeed makes a
difference, particularly being useful for resource-constrained
applications where a model has limited capacity.

Upsampling Styles.We also explore two styles of upsam-
pling in SegFormer: direct upsampling and iterative ×2
upsampling. From Table 5 we can see that iterative upsam-
pling is better than the direct one in performance. Compared
with CARAFE, FADE is more sensitive to the upsampling
style, which implies the occurrence of features of different
scales matters.

Applicability to CNN Architecture. We further evaluate
FADE on UPerNet. Results are shown in Table 6. Compared
with Bilinear, FADE boosts around +1% mIoU and outper-
forms the strong baseline CARAFE with ResNet-50, which
confirms the efficacy of FADE for the FPN architecture. On
theResNet-101 backbone, FADEalsoworks, andwe observe
a evenmore significant improvement in bIoU,which suggests
FADE is good at amending boundary errors.

Visualization of Learned Upsampling. We also visualize
the learning process of CARAFE and FADE with increased
iterations. From Fig. 9, we can see that the two upsampling
operators have different behaviors: FADEfirst learns to delin-

123



International Journal of Computer Vision

Table 5 SegFormer with direct or iterative upsampling of FADE and
CARAFE

SegFormer-B1 mIoU
Direct Iterative

CARAFE (Wang et al., 2019) 42.67 42.82

FADE 42.89 44.41

Table 6 Semantic segmentation results with UPerNet

UPerNet Backbone mIoU bIoU

Bilinear R50 41.09 28.04

CARAFE (Wang et al., 2019) R50 41.49 28.29

FADE R50 42.18 28.72

Bilinear R101 43.33 30.21

FADE R101 44.27 31.31

Best performance is in boldface

Fig. 9 Learned upsampled feature maps with increased iterations. The
learning process between CARAFE and FADE is different. FADE first
delineates the outlines of objects and then fills the interior regions, while
CARAFE starts from the interior and then spreads outside

eate the outlines of objects and then fills the interior regions,
while CARAFE focuses on the interior initially and then
spreads outside slowly. We think the reason is that the gat-
ing mechanism is relatively simple and learns fast. By the
way, one can see that there are checkerboard artifacts in the
visualizations of CARAFE (on the leg of the bottom left per-
son) due to the adoption of Pixel Shuffle. Such visualizations
suggest that upsampling can significantly affect the quality
of features. While there is no principal rule on what could
be called ‘good features’, feature visualizations still proffer
a good basis of the feature quality, and one at least can sense
where is wrong when clear artifacts present in visualizations.

5.2 ImageMatting

Our second task is image matting (Xu et al., 2017). Image
matting is a typical detail-sensitive task. It requires a model
to estimate an accurate alpha matte that smoothly splits fore-
ground from background. Since ground-truth alpha mattes
can exhibit significant differences among local regions, esti-
mations are sensitive to a specific upsampling operator used
(Lu et al., 2019; Dai et al., 2021).

5.2.1 Data Set, Metrics, Baseline, and Protocols

Weconduct experiments on theAdobe ImageMatting dataset
(Xu et al., 2017), whose training set has 431 unique fore-
ground objects and ground-truth alpha mattes. Following
(Dai et al., 2021), instead of compositing each foreground
with fixed 100 background images chosen from MS COCO
(Lin et al., 2014), we randomly choose background images
in each iteration and generate composited images on-the-fly.
The Composition-1K testing set has 50 unique foreground
objects, and each is composited with 20 background images
from PASCAL VOC (Everingham et al., 2010). We report
the widely used Sum of Absolute Differences (SAD), Mean
Squared Error (MSE), Gradient (Grad), and Connectivity
(Conn) (Rhemann et al., 2009).

A2UMatting (Dai et al., 2021) is adopted as the baseline.
Following (Dai et al., 2021), the baseline network adopts
a backbone of the first 11 layers of ResNet-34 with in-
place activated batchnorm (Bulo et al., 2018) and a decoder
consisting of a few upsampling stages with shortcut connec-
tions. Readers can refer to (Dai et al., 2021) for the detailed
architecture. We use max pooling in downsampling stages
when applying FADE as the upsampling operator to train
the model, and cite the results of other upsampling opera-
tors from A2U Matting (Dai et al., 2021). We strictly follow
the training configurations and data augmentation strategies
used in (Dai et al., 2021).

5.2.2 Image Matting Results

We compare FADE with other state-of-the-art upsampling
operators. Quantitative results are also shown in Table 3.
Akin to segmentation, FADE consistently outperforms other
competitors in all metrics, with also few additional parame-
ters. Note that IndexNet and A2U are strong baselines that
are delicately designed upsampling operators for image mat-
ting. Also the worst performance of CARAFE indicates that
upsampling with only decoder features is not sufficient to
recover details. Compared with standard bilinear upsam-
pling, FADE invites 16–32% relative improvements, which
suggests a simple upsamplingoperator canmake adifference.
Our community may shift more attention to upsampling.
Additionally, it is worth noting that FADE-Lite also outper-
forms other prior operators, and particularly, surpasses the
strong baseline A2U with even less parameters. Qualitative
results are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. FADE
generates high-fidelity alpha mattes.

Task-Agnostic Property. By comparing different upsam-
pling operators across both segmentation andmatting, FADE
is the only operator that exhibits the task-agnostic property.
A2U is the previous best operator in matting, but turns out to
be the worst one in segmentation. CARAFE is the previous
best operator in segmentation, but the worst one in mat-

123



International Journal of Computer Vision

Table 7 Object detection results
with Faster R-CNN on
MS-COCO

Faster RCNN (Ren et al., 2015) Backbone Params AP AP50 AP75 APS APM APL

FA2M (Wu et al., 2022) R50 +23K 37.9 58.8 40.9 22.1 41.7 48.8

FAM (Li et al., 2020b) R50 +0.8M 37.8 58.6 41.0 21.8 41.2 48.8

GD-FAM (Li et al., 2023) R50 +0.5M 38.1 59.2 41.3 22.7 41.5 49.6

Nearest R50 46.8M 37.4 58.1 40.4 21.2 41.0 48.1

CARAFE (Wang et al., 2019) R50 +0.3M 38.6 59.9 42.2 23.3 42.2 49.7

IndexNet (Lu et al., 2022a) R50 +8.4M 37.6 58.4 40.9 21.5 41.3 49.2

A2U (Dai et al., 2021) R50 +0.1M 37.3 58.7 40.0 21.7 41.1 48.5

SAPA (Lu et al., 2022c) R50 +0.1M 37.8 59.2 40.6 22.4 41.4 49.1

FADE R50 +0.2M 37.8 58.8 40.8 21.2 41.2 49.4

FADE (G=1) R50 +0.2M 38.5 59.6 41.8 23.1 42.2 49.3

FADE-Lite (G=1) R50 +52K 38.3 59.5 41.7 22.4 41.9 49.7

Nearest R101 65.8M 39.4 60.1 43.1 22.4 43.7 51.1

FADE (G=1) R101 +0.2M 40.0 61.0 43.3 23.6 44.0 51.1

The ‘HIN’ version of IndexNet is used. Best performance is in boldface and second best is underlined

Fig. 10 Qualitative results of different upsampling operators on differ-
ent dense prediction tasks.Among all competitors, only FADEproduces
visually pleasing visualizations on both region- and detail-sensitive

tasks, e.g., the water drops under the bulb, the hand on the rope, and the
(generally) smooth depth values of the wall

123



International Journal of Computer Vision

Fig. 11 Upsampled feature maps of different upsampling operators on
Faster R-CNN

ting. This implies that current dynamic operators still have
certain weaknesses to achieve task-agnostic upsampling. In
addition, FADE-Lite also exhibits the task-agnostic property
(being the consistent second best in both tasks in all metrics),
which suggests such a property is insensitive to the number
of parameters.

5.3 Object Detection

The third task is object detection (Ren et al., 2015).
Object detection addresses where and what objects are with
category-specific bounding boxes. It is a mainstream dense
prediction problem. Addressing ‘what’ is a recognition prob-
lem, while addressing ‘where’ requires precise localization
in feature pyramids. Upsampling is therefore essential to
acquire high-res feature maps.

5.3.1 Data Set, Metrics, Baseline, and Protocols

We use the MS COCO dataset (Lin et al., 2014) and
report the standard AP , AP50, AP75, APS , APM , and APL .
We use Faster R-CNN as the baseline and replace the
default NN interpolation with other upsampling operators.
We follow the Faster R-CNN implementation provided by
mmdetection2 and only modify the upsampling stages
in FPN. Note that, the original skip connection in FPN
is removed due to the inclusion of the gating mechanism.
All other settings remain unchanged. We evaluate on both
ResNet-50 and ResNet-101 backbones. Moreover, since the
FPN is used, in addition to the dynamic upsampling opera-
tors, we also compare with some feature alignment modules
designed for FPN, including the FA2M used in FSANet (Wu
et al., 2022), the FAM used in SFNet (Li et al., 2020b), and
the GD-FAM used in SFNet-Lite (Li et al., 2023).

5.3.2 Object Detection Results

Quantitative and qualitative results are shown in Table 7 and
Fig. 10, respectively.We find that, while FADE still improves
detection performance, it is not at a level comparable to
CARAFE. However, when setting the gate G = 1 in FADE,

2 https://github.com/open-mmlab/mmdetection.

the performance improves from 37.8 to 38.5 AP , approach-
ing to CARAFE. We are interested to know why. After a
careful check at the upsampled feature map (Fig. 11), we see
that the detector favors more detailed upsampled features
than blurry ones (CARAFE vs. FADE). Perhaps details in
features can benefit precise localization of bounding boxes.
In the use of CARAFE, high-res encoder features are directly
skipped in the FPN. In contrast, FADE uses a gate to con-
trol of pass the encoder features. The resulting features of
FADE show that the gate does not work as expected: the
decoder features dominate in the output. Why does not the
gate work?We believe this can boil down to how the detector
is supervised. Since the gate predictor has few parameters,
the generated gate is mostly affected by the feature map.
In semantic segmentation and image matting where per-
pixel ground truths are provided, the features can be updated
delicately. Yet, in detection where the ground truth bound-
ing boxes are sparse, the feature learning could be coarse,
therefore affecting the prediction of the gate. Fortunately,
the gating mechanism works in FADE as a post-processing
step and can be disabled when unnecessary. In addition,
we observe FADE (G=1) outperforms feature alignment
modules, which suggests manipulating kernels seems more
effective thanmanipulating features. A plausible explanation
is that, feature alignment needs to correct additional arti-
facts introduced by naive feature upsampling (NN or bilinear
upsampling is typically executed before feature alignment is
performed). Moreover, with a stronger backbone ResNet-
101, FADE can also boost the performance. This implies
that, while a better backbone is often favored, there are still
feature issues that cannot be addressed with increased model
capacity. In this case, some improved components within the
architecture such as improved upsampling may help.

5.4 Instance Segmentation

The forth task is instance segmentation (He et al., 2017).
Instance segmentation is an extended task of semantic seg-
mentation. In addition to labelling object/scene categories, it
needs to further discriminate instances of the same category.
It can also be considered a region-sensitive task.

5.4.1 Data Set, Metrics, Baseline, and Protocols

Akin to object detection, we use the MS COCO dataset (Lin
et al., 2014) for instance segmentation and report box AP ,
mask AP , and boundary AP . Following (Wang et al., 2019),
we select Mask R-CNN as our baseline and only replace the
default NN interpolation with other upsampling operators in
the FPN. Since the gate in FADE would reduce to the skip
connection when G = 1 according to Eq. (4), the original
skip connection in FPN is removed.We also follow theMask
R-CNN implementation provided by mmdetection and

123

https://github.com/open-mmlab/mmdetection


International Journal of Computer Vision

Table 8 Instance segmentation
results with Mask R-CNN
(ResNet50 as the backbone) on
MS-COCO

Mask R-CNN (He et al., 2017) Bbox metric

Method Backbone AP AP50 AP75 APS APM APL

FA2M (Wu et al., 2022) R50 38.8 59.7 42.1 22.7 42.2 50.3

FAM (Li et al., 2020b) R50 38.4 59.2 41.7 21.9 41.6 49.9

GD-FAM (Li et al., 2023) R50 38.7 59.4 42.2 22.4 41.7 50.7

Nearest R50 38.3 58.7 42.0 21.9 41.8 50.2

CARAFE (Wang et al., 2019) R50 39.2 60.3 42.9 23.4 42.5 51.2

IndexNet (Lu et al., 2022a) R50 38.4 59.1 42.1 22.1 42.0 50.2

A2U (Dai et al., 2021) R50 37.9 59.0 40.8 22.0 41.5 49.4

SAPA (Lu et al., 2022c) R50 38.7 59.7 42.2 23.1 41.8 49.9

FADE R50 38.7 59.3 42.0 22.6 42.4 50.4

FADE (G=1) R50 39.2 60.3 42.7 23.2 42.6 51.0

FADE-Lite (G=1) R50 38.9 60.0 42.3 23.2 42.2 50.9

Nearest R101 40.0 60.4 43.7 22.8 43.7 52.0

FADE (G=1) R101 40.6 61.5 44.3 24.1 44.4 53.1

Segm metric

Method Backbone AP AP50 AP75 APS APM APL

FA2M (Wu et al., 2022) R50 35.3 56.4 37.6 16.8 37.6 52.1

FAM (Li et al., 2020b) R50 34.8 56.0 36.9 15.9 37.1 50.9

GD-FAM (Li et al., 2023) R50 35.0 56.1 37.3 16.6 37.1 51.4

Nearest R50 34.7 55.8 37.2 16.1 37.3 50.8

CARAFE (Wang et al., 2019) R50 35.5 57.1 37.8 17.3 37.9 51.9

IndexNet (Lu et al., 2022a) R50 34.8 55.9 37.0 16.3 37.3 51.3

A2U (Dai et al., 2021) R50 34.4 55.7 36.8 15.7 37.1 50.6

SAPA (Lu et al., 2022c) R50 35.3 56.7 37.6 16.9 37.9 50.7

FADE R50 34.7 55.9 36.9 15.9 37.2 51.0

FADE (G=1) R50 35.2 56.8 37.5 16.8 37.7 51.4

FADE-Lite (G=1) R50 35.3 56.7 37.6 17.2 37.7 51.7

Nearest R101 36.0 57.6 38.5 16.5 39.3 52.2

FADE (G=1) R101 36.4 58.0 38.9 17.4 39.3 53.3

Boundary metric

Method Backbone AP AP50 AP75 APS APM APL

FA2M (Wu et al., 2022) R50 21.1 46.2 16.8 16.8 31.4 20.6

FAM (Li et al., 2020b) R50 20.7 45.8 16.4 15.9 31.0 19.9

GD-FAM (Li et al., 2023) R50 20.9 46.2 16.3 16.5 30.9 20.1

Nearest R50 20.7 45.5 16.6 16.0 31.2 20.0

CARAFE (Wang et al., 2019) R50 21.3 47.0 16.9 17.3 31.5 20.6

IndexNet (Lu et al., 2022a) R50 20.8 45.8 16.4 16.3 31.2 20.3

A2U (Dai et al., 2021) R50 20.4 45.1 15.9 15.7 30.8 19.7

SAPA (Lu et al., 2022c) R50 21.1 46.4 16.6 16.8 31.7 19.6

FADE R50 20.7 45.7 16.3 15.9 31.1 20.3

FADE (G=1) R50 21.2 46.6 16.7 16.8 31.4 20.4

FADE-Lite (G=1) R50 21.2 46.7 16.6 17.1 31.5 20.6

Nearest R101 22.1 48.1 17.6 16.4 33.0 21.5

FADE (G=1) R101 22.2 48.5 17.6 17.4 33.0 21.6

Upsampling operators are replaced in FPN. ‘HIN’ version of IndexNet is used. The parameter increment is
the same as in Faster R-CNN. Best performance is in boldface and second best is underlined

123



International Journal of Computer Vision

the training setting used in (Wang et al., 2019). We test on
both ResNet-50 and ResNet-101 backbones. In addition, we
also compare against the feature alignment modules as in
detection, because Mask R-CNN uses the FPN as well.

5.4.2 Instance Segmentation Results

Quantitative and qualitative results are shown in Table 8
and Fig. 10, respectively. We have similar observations to
object detection: i) the standard implementation of FADE
only shows marginal improvements; ii) FADE without gat-
ing works better than FADE and is on par with CARAFE.
Compared with other tasks, all upsampling operators have
limited improvements (< 1) in terms of mask AP. A reason
may be the limited output resolution (28 × 28) of the mask
head. In this case, the benefits of improved boundary delin-
eation of upsampling may not be revealed, which can also be
observed from the marginal improvements on the boundary
AP . Indeed the more significant relative improvements on
box AP than mask AP indicate that the improved mask AP
could be mostly due to the improved detection performance.
Nevertheless, FADE without gating could still be a prefer-
able choice if taking its task-agnostic property into account.
With a stronger backbone ResNet-101, FADE invites an
improvement of 0.6 box AP and 0.4 mask AP , which pro-
vides a similar boost as ResNet-50. Compared with feature
alignment modules, dynamic upsampling operators gener-
ally work better. From the visualizations of feature maps in
Fig. 12, one can see that, despite being empirical, the qual-
ity of the feature maps generally seems an good indicator
of final performance: feature maps more resembling to the
ground truth at the relatively low resolution (the second row)
generally have better performance (cf. the feature maps of
NN and A2U).

5.5 Monocular Depth Estimation

Our final task is monocular depth estimation (Xian et al.,
2018). This task aims to infer the depth from a single image.
Compared with other tasks, depth estimation is a mixture
of region- and detail-sensitive dense predictions. In a local
region, depth values could remain constant (an object plane
parallel to the image plane), could be gradually varied (an
object plane oblique to the image plane), or could be suddenly
changed (on the boundary between different depth planes).
The recovery of details in depth estimation is also critical for
human perception, because boundary artifacts can be easily
perceived by human eyes in many depth-related applications
such as 3D ken burns (Niklaus et al., 2019) and bokeh ren-
dering (Peng et al., 2022).

Fig. 12 Visualizations of upsampled feature maps generated by dif-
ferent methods. The feature maps are extracted from the output of
upsamplers in Mask R-CNN-R50 (He et al., 2017). The quality of fea-
ture maps generally provides an implication of performance

5.5.1 Data Set, Metrics, Baseline, and Protocols

We use the NYU Depth V2 (Silberman et al., 2012) dataset
and standard depthmetrics used by previous work to evaluate
the performance, including root mean squared error (RMS)
and its log version (RMS (log)), absolute relative error (Abs
Rel), squared relative error (Sq Rel), average log10 error
(log10), and the accuracy with threshold thr (δ < thr ).
Readers can refer to (Lee et al., 2019) for definitions of the
metrics. We use BTS3 as our baseline and modify all the
upsampling stages except for the last one, because there is
no guiding featuremap at the last stage.We follow the default
training setting provided by the authors but set the batch size
as 4 in our experiments (due to limited computational bud-
gets).

5.5.2 Monocular Depth Estimation Results

Quantitative and qualitative results are shown in Table 9 and
Fig. 10, respectively. Note that FADE requires more num-
ber of parameters in this task. The reason is that the number
of channels in encoder and decoder features are different,
and we need a few 1 × 1 convolutions to adjust the channel

3 https://github.com/cleinc/bts.

123

https://github.com/cleinc/bts


International Journal of Computer Vision

Table 9 Monocular depth estimation results on NYU Depth V2 with BTS

Accuracy metric ↑ Error metric ↓
BTS-ResNet50 (Lee et al., 2019) Params δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMS RMS (log) log10

Nearest 49.5M 0.865 0.975 0.993 0.119 0.075 0.419 0.152 0.051

CARAFE (Wang et al., 2019) +0.4M 0.864 0.974 0.994 0.117 0.071 0.418 0.152 0.051

IndexNet (Lu et al., 2022a) +44.2M 0.866 0.976 0.995 0.117 0.071 0.416 0.151 0.050

A2U (Dai et al., 2021) +0.2M 0.860 0.973 0.993 0.121 0.077 0.429 0.156 0.052

SAPA (Lu et al., 2022c) +0.2M 0.871 0.977 0.994 0.116 0.070 0.410 0.151 0.050

FADE +2.8M 0.875 0.978 0.995 0.114 0.068 0.404 0.147 0.049

FADE-Lite +2.5M 0.870 0.977 0.995 0.115 0.069 0.411 0.150 0.050

‘HIN’ version of IndexNet is used. Best performance is in boldface and second best is underlined

number for the gating mechanism. Overall, FADE reports
consistently better performance in allmetrics than other com-
petitors, and FADE-Lite is also the steady second best. It is
worth noting that A2U degrades the performance, which sug-
gests only improving detail delineation is not sufficient for
depth estimation. FADE, however, fuses the benefits of both
detail- and region-aware upsampling capable of simultane-
ous detail delineation and regional preservation. We believe
this is the reasonwhy FADEbehaves remarkably on this task.

5.6 Ablation Study

Here we conduct ablation studies to justify our three design
choices. We follow the settings in segmentation and mat-
ting, because they are sufficiently representative to indicate
region- and detail-sensitive tasks. In particular, we explore
how performance is affected by the source of features, the
way for upsampling kernel generation, and the use of the
gating mechanism. We build six baselines:

(1) b1: encoder-only. Only encoder features go through 1×
1 convolution for channel compression (64 channels),
followed by 3×3 convolution layer for kernel generation;

(2) b2: decoder-only. This is the CARAFE baseline (Wang
et al., 2019). Only decoder features go through the 1× 1
and 3× 3 convolution for kernel generation, followed by
Pixel Shuffle;

(3) b3: encoder-decoder-naive.NN-interpolateddecoder fea-
tures are first concatenated with encoder features, and
then the same two convolutional layers are applied;

(4) b4: encoder-decoder-semi-shift. Instead of using NN
interpolation and standard convolutional layers, we use
semi-shift convolution to generate kernels as in FADE;

(5) b5: b4 with skipping. We directly skip the encoder fea-
tures as in feature pyramid networks (Lin et al., 2017b);

(6) b6: b4 with gating. The full implementation of FADE.

Results are shown in Table 10. By comparing b1, b2, and
b3, the results confirm the importance of both encoder and

decoder features for upsampling kernel generation. By com-
paring b3 and b4, semi-shift convolution is superior than
naive implementation in the way of generating upsampling
kernels. As aforementioned, the rationale behind such a supe-
riority can boil down to the granular control on the per-point
contribution in the kernel (Sect. 4). We also note that, even
without gating, the performance of FADE already surpasses
other upsampling operators (b4 vs. Table 3), which means
the task-agnostic property is mainly due to the joint use of
encoder and decoder features and the semi-shift convolution.
In addition, skipping in these two task is clearly not the opti-
mal way to move encoder details to decoder features, at least
worse than the gating mechanism (b5 vs. b6). Hence, we
think gating is generally beneficial.

5.7 Limitations and Further Discussions

Computational Overhead. Despite FADE outperforms CA-
RAFE in 4 out of 6 tasks, FADE processes 5 times data
more than CARAFE and thus consumes more FLOPs due to
the involvement of high-res encoder features. Our efficient
implementations do not change this fact but only help pre-
vent extra calculations on interpolated decoder features. A
thorough comparison of the computational complexity and
inference time of different dynamic upsampling operators
can be found in Appendix A.
Prerequisite of Using FADE. The use of the gating mech-
anism in FADE requires an equal number of channels of
encoder and decoder features. Therefore, if the channel num-
ber differs, one needs to add a 1×1 convolution layer to align
the channel number. However, this would introduce addi-
tional parameters, for example depth estimation with BTS.
If the gate is not used, i.e., FADE (G=1), this trouble could
be saved. In addition, if there is no high-res feature guidance,
for instance, the last upsampling stage in BTS or in image
super-resolution tasks, FADE cannot be applied as well.
When to Use the Gating Mechanism. At our initial design
(Lu et al., 2022b), we mainly consider the one-class-one-
value mapping as in semantic segmentation or regressing

123



International Journal of Computer Vision

Table 10 Ablation study on the source of features, the way for upsampling kernel generation, and the effect of the gating mechanism

No SegFormer / A2U Matting Segm – accuracy ↑ Matting – error ↓
source of feat kernel gen fusion mIoU bIoU SAD MSE Grad Conn

b1 en 42.75 31.00 34.22 0.0087 15.90 32.03

b2 de 42.82 29.84 41.01 0.0118 21.39 39.01

b3 en & de naive 43.27 31.55 32.41 0.0083 16.56 29.82

b4 en & de semi-shift 43.33 32.06 31.78 0.0075 15.12 28.95

b5 en & de semi-shift skipping 43.22 31.85 32.64 0.0076 15.90 29.92

b6 en & de semi-shift gating 44.41 32.65 31.10 0.0073 14.52 28.11

‘en’ is for encoder, and ‘de’ for decoder. Best performance is in boldface

a dense 2D map as in image matting, but do not explore
instance-level tasks like object detection and instance seg-
mentation, where the situation differs from what we initially
claim. We find that the high-res encoder feature plays an
important role in localization. If forcing the feature map to
be alike to that in semantic segmentation, the model cannot
learn instance-aware information effectively. In this case the
gatingmechanism can fail, andwe propose to use direct addi-
tion (G = 1) as a substitution. One should also be aware that,
semi-shift convolution can introduce encoder noise in the
generated kernel such that the precise localization of bound-
ing box could be affected (the obviously lower AP75 of FADE
than CARAFE in object detection and instance segmenta-
tion).
General Value of Upsampling to Dense Prediction. As clos-
ing remarks, here we tend to share our insights on the general
value of upsampling to dense prediction. Compared with
other operators or modules studied in dense prediction mod-
els, upsampling operators have received less attention.While
we have conducted extensive experiments to demonstrate the
effectiveness of upsampling, one may still raise the question:
Is upsampling an intrinsic factor to influence the dense pre-
diction performance? Indeed current mainstream ideas are
to scale the model (Tan & Le, 2019; Zhai et al., 2022),
and results from Table 4 also indicate that, under a certain
evaluation metric, a strong backbone with a simple bilinear
upsampling is sufficient. Yet, we remark that, if one keep
pursuing the increment of a certain metric in a specific task,
e.g., mIoU in semantic segmentation, some other important
things would be overlooked such as the boundary quality.
From also Table 4, we can observe that enhanced upsampling
steadily boosts the bIoU metric. This is only in segmenta-
tion. From a broad view across different dense prediction
tasks, the value of upsampling can even be greater, particu-
larly for low-level tasks. For instance, it has been reported
that, with learned upsampling, the Deep Image Prior model

can use 95% fewer parameters to achieve superior denois-
ing results than existing methods (Liu et al., 2023). Our
previous experience in matting also suggests inappropriate
upsampling even cannot produce a reasonable alpha predic-
tion (Lu et al., 2022a). From the perspective of architecture
design, different operators or modules function differently,
but their ultimate goal is alike, i.e., learning high-quality fea-
tures. If enabling an upsampling operator that has a high
probability of being used in an encoder-decoder architecture
to have equivalent or even better functions implemented by
other optional modules, the architecture design could be sim-
plified. Task-agnostic upsampling at least demonstrates such
a potential. Indeed upsampling matters. We believe the value
of upsampling is not only about improved performance but
also about the design of new, effective, efficient, and generic
encoder-decoder architectures.

Another closely-related question is that: Does one still
need new fundamental (upsampling) operators, particularly
in the era of vision foundation models (Caron et al., 2021;
Radford et al., 2021; Rombach et al., 2022; Kirillov et al.,
2023)when the idea of scaling typicallywins? Indeed current
foundation models are made of standard operators such as
convolutional layers (Radford et al., 2021) and self-attention
blocks (Caron et al., 2021). The classic U-Net architecture
(Ronneberger et al., 2015) is also used in StableDiffusion
(Rombach et al., 2022). The adoption of sophisticated oper-
ators or architectures seem unnecessary if themodel capacity
reaches to a certain level. Yet, we note a phenomenon that
the SAM model (Kirillov et al., 2023) still cannot generate
accurate mask boundaries. We believe one of the reasons is
that it still uses the deconvolution upsampling in the decoder,
which smoothes boundaries. Hence, we think designing fun-
damental and task-agnostic network operators would remain
to be an active research area. Here we make a tentative pre-
diction: a real sense of the vision foundation model should
be made of task-agnostic operators. We expect this work can
inspire the new design of such operators.

123



International Journal of Computer Vision

6 Conclusion

In this paper, we provide feature upsampling with three lev-
els of meanings: i) being basic, the ability to increase spatial
resolution; ii) being effective, the capability of improving
performance; and iii) being task-agnostic, the generality
across tasks. In particular, to achieve the third property, we
propose FADE, a novel, plug-and-play, and task-agnostic
upsampling operator by fully fusing the assets of encoder
and decoder features. For the first time, FADE demonstrates
that task-agnostic upsampling is made possible across both
region- and detail-sensitive dense prediction tasks, outper-
forming or at least being comparable with the previous best
upsampling operators. We explain the rationale of our design
with step-to-step analyses and also share our viewpoints from
considering what makes for generic feature upsampling. Our
core insight is that an upsampling operator should be able to
dynamically trade off between detail delineation and seman-
tic preservation in a content-aware manner.

We encourage others to try this operator on many more
dense prediction tasks, particularly on low-level tasks such
as image restoration. So far, FADE is designed tomaintain the
simplicity by only implementing linear upsampling, which
leaves ample room for further improvement, e.g., by explor-
ing additional nonlinearity.

Appendix A Comparison of Computational
Complexity

A favorable upsampling operator, being part of overall net-
work architecture, should not significantly increase the com-
putation cost. This issue is not well addressed in IndexNet
as it introduces many parameters and much computational
overhead (Lu et al., 2019). In this part we analyze the
computational workload andmemory occupation among dif-
ferent dynamic upsampling operators. We first compare the
FLOPs and number of parameters inTable 11. FADE requires
more FLOPs than CARAFE (note that FADE processes 5

Table 11 Computational
complexity and parameters of
FADE and other upsampling
operators

Module Operation FLOPs (×HW ) Params

CARAFE Kernel generation Cd+36K 2d Cd+36K 2d

Feature assembly 4K 2C 0

Total Cd+36K 2d+4K 2C Cd+36K 2d

IndexNet Kernel generation 32C2+8C 32C2+8C

HIN Feature assembly 4C 0

Total 32C2+12C 32C2+8C

IndexNet Kernel generation 68C2 68C2

M2O Feature assembly 4C 0

Total 68C2+ 4C 68C2

A2U Kernel generation 73C+4K 2 4K 2C+2C

Feature assembly 4K 2C 0

Total 73C+4K 2+4K 2C 4K 2C+2C

SAPA Kernel generation 5Cd + 4K 2d 2Cd

Feature assembly 4K 2C 0

Total 5Cd + 4K 2d + 4K 2C 2Cd

FADE Kernel generation 5Cd+45K 2d 2Cd+9K 2d

Feature assembly 4K 2C 0

Gated fusion 9C C

Total 5Cd+4K 2C+45K 2d+9C 2Cd+9K 2d+C

Total (G=1) 5Cd+45K 2d+4K 2C 2Cd+9K 2d

FADE Kernel generation 5CK 2+45K 2 2CK 2+9K 2

Lite Feature assembly 4K 2C 0

Gated fusion 9C C

Total 5CK 2+4K 2C+45K 2+9C 2CK 2+9K 2+C

Total (G=1) 5CK 2+45K 2+4K 2C 2CK 2+9K 2

C number of channels of encoder and decoder features, d number of compressed channels, K upsampling
kernel size, H, W height and width of the decoder feature map. G=1 indicates no gating mechanism

123



International Journal of Computer Vision

Table 12 Comparison of
inference time among different
upsampling operators

Upsampler Bilinear CARAFE IndexNet A2U FADE FADE-Lite

Time (ms) 1.5 11.1 26.4 24.2 20.2 17.6

Time is tested on a single Nvidia GTX 3090 GPU on a server with Intel Xeon Gold 6226R@ 2.90 GHz CPUs

times more feature data than CARAFE), but less parameters
when the number of channels is small. For example, when
C = 256, d = 64, K = 5, and H = W = 112, CARAFE
and FADE cost 2.50 and 4.56 GFLOPs, respectively; the
number of parameters are 74 K and 47 K, respectively.
FADE-Lite, in the same setting, costs only 1.53 GFLOPs
and 13 K parameters. In addition, we also test the infer-
ence speed by upsampling a random feature map of size
256× 120× 120 (a guiding map of size 256× 240 is used if
required). The inference time is shown in Table 12. Among
compared dynamic upsampling operators, FADE and FADE-
Lite are relatively efficient given that they process five times
more data than CARAFE. We also test the practical memory
occupation of FADE on SegFormer-B1 (Xie et al., 2021),
with 6 upsampling stages. Under the default training setting,
SegFormer-B1 with bilinear upsampling costs 22, 157 MB
GPU memory. With the H2L implementation of FADE, it
consumes 24, 879MB, 2722MBmore than the original one.
The L2H one reduces the memory cost by 24.2% (from 2722
to 2064 MB), and is within an acceptable range compared
with the decoder-only upsampling operator CARAFE (664
MB) if taking the five times more data into account.

Funding This work is supported by the National Natural Science Foun-
dation of China Under Grant No. 62106080 and the Hubei Provincial
Natural Science Foundation of China Under Grant No. 2024AFB566.

References

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion. IEEE Trans Pattern Anal Mach Intell, 39(12), 2481–2495.

Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmen-
tation. Proc (pp. 109–122). European Conference on Computer
Vision: Springer.

Bulo, S.R., Porzi, L., & Kontschieder, P. (2018). In-place activated
batchnorm for memory-optimized training of dnns. In: Pro-
ceedings of the IEEE conference on computer vision pattern
Recognition, pp. 5639–5647.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P.,
& Joulin, A. (2021). Emerging properties in self-supervised vision
transformers. In: Proceedings of the IEEE International Confer-
ence Computer Vision, pp. 9650–9660.

Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018).
Encoder-decoder with atrous separable convolution for semantic
image segmentation. In: Proceedings of the European Conference
on Computer Vision, pp. 801–818.

Cheng, B., Girshick, R., Dollár, P., Berg, A.C., & Kirillov, A, (2021).
Boundary iou: Improving object-centric image segmentation eval-
uation. In: Proceedings of the IEEE conference on computer vision
and pattern Recognition, pp. 15334–15342.

Cheng, T.,Wang,X.,Huang, L.,&Liu,W. (2020).Boundary-preserving
mask r-cnn. Proc (pp. 660–676). European Conference on Com-
puter Vision: Springer.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014).
On the properties of neural machine translation: Encoder-decoder
approaches. arXiv Comput Res Repository.

Dai, Y., Lu, H., & Shen, C. (2021). Learning affinity-aware upsampling
for deep image matting. In: Proceedings of the IEEE conference
on computer vision and pattern Recognition, pp. 6841–6850.

Dong, C., Loy, C. C., He, K., & Tang, X. (2015). Image super-resolution
using deep convolutional networks. IEEETransPatternAnalMach
Intell, 38(2), 295–307.

Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction
from a single image using a multi-scale deep network. In: Annual
Conference on Neural Information Processing Systems, pp. 2366–
2374.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisser-
man, A. (2010). The pascal visual object classes (VOC) challenge.
International Journal of Computer Vision, 88(2), 303–338.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature
hierarchies for accurate object detection and semantic segmenta-
tion. In: Proceedings of the IEEE conference on computer vision
and pattern Recognition, pp. 580–587.

He, K., Sun, J., & Tang, X. (2010). Guided image filtering. Proc (pp.
1–14). European Conference on Computer Vision: Springer.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern Recognition, pp. 770–778.

He. K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN.
In: Proceedings of the IEEE conference on computer vision, pp.
2961–2969

Huang, S., Lu, Z., Cheng, R., & He, C. (2021). Fapn: Feature-aligned
pyramid network for dense image prediction. In: Proceedings of
the IEEE conference on computer vision, pp. 864–873.

Ignatov, A., Timofte, R., Denna, M., & Younes, A. (2021). Real-time
quantized image super-resolution on mobile npus, mobile ai 2021
challenge:Report. In: Proceedings of the IEEEconference on com-
puter vision and pattern Recognition, Workshops, pp. 2525–2534.

Kirillov, A., Wu, Y., He, K., & Girshick, R. (2020). Pointrend: Image
segmentation as rendering. In: Proceedings of the IEEE conference
on computer vision and pattern Recognition, pp. 9799–9808.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L.,
Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., Dollar, P., & Gir-
shick, R. (2023). Segment anything. In: Proceedings of the IEEE
conference on computer vision, pp. 4015–4026.

Lee, J.H., Han, M.K., Ko, D.W., & Suh, I.H. (2019). From big to small:
Multi-scale local planar guidance for monocular depth estimation.
arXiv Comput Res Repository.

Li, X., Li, X., Zhang, L., Cheng, G., Shi, J., Lin, Z., Tan, S., & Tong,
Y. (2020). Improving semantic segmentation via decoupled body
and edge supervision. Proc (pp. 435–452). European Conference
on Computer Vision: Springer.

Li, X., You, A., Zhu, Z., Zhao, H., Yang, M., Yang, K., Tan, S., &
Tong, Y. (2020). Semantic flow for fast and accurate scene parsing.
Proc (pp. 775–793). European Conference on Computer Vision:
Springer.

123



International Journal of Computer Vision

Li, X., Zhao, H., Han, L., Tong, Y., Tan, S., & Yang, K. (2020). Gated
fully fusion for semantic segmentation. Proceedings of the AAAI
Conference on Artificial Intelligence, 34, 11418–11425.

Li, X., Zhang, J., Yang, Y., Cheng, G., Yang, K., Tong, Y., & Tao,
D. (2023). SFNet: Faster and accurate semantic segmentation via
semantic flow. International Journal of Computer Vision, 132(2),
1–24.

Lin, G., Milan, A., Shen, C., & Reid, I. (2017a). RefineNet: Multi-path
refinement networks for high-resolution semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and
pattern Recognition, pp. 1925–1934.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan.
D., Dollár, P., & Zitnick, C.L. (2014). Microsoft coco: Common
objects in context. In: Proceedings of the European Conference on
Computer Vision, pp. 740–755.

Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S.
(2017b). Feature pyramid networks for object detection. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
Recognition, pp. 2117–2125.

Liu, S., Qi, L., Qin,H., Shi, J.,& Jia, J. (2018). Path aggregation network
for instance segmentation. In: Proceedings of the IEEE conference
on computer vision and pattern Recognition, pp. 8759–8768.

Liu, Y., Li, J., Pang, Y., Nie, D., & Yap, P.T. (2023). The devil is in the
upsampling: Architectural decisions made simpler for denoising
with deep image prior. In: Proceedings of the IEEE conference on
computer vision, pp. 12408–12417.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern Recognition, pp. 3431–
3440.

Lu, H., Dai, Y., Shen, C., & Xu, S. (2019). Indices matter: Learning
to index for deep image matting. In: Proceedings of the IEEE
conference on computer vision, pp. 3266–3275.

Lu, H., Dai, Y., Shen, C., & Xu, S. (2022). Index networks. IEEE
Transactions on Pattern Analysis andMachine Intelligence, 44(1),
242–255.

Lu, H., Liu, W., Fu, H., & Cao, Z. (2022b). Fade: Fusing the assets
of decoder and encoder for task-agnostic upsampling. In: Pro-
ceedings of the European Conference on Computer Vision, pp.
231–247.

Lu, H., Liu, W., Ye, Z., Fu, H., Liu, Y., & Cao, Z. (2022c). SAPA:
Similarity-aware point affiliation for feature upsampling. In:
Proceedings of the Annual Conference onNeural Information Pro-
cessing Systems, pp. 20889–20901.

Mao, X., Shen, C., & Yang, Y.B. (2016). Image restoration using
very deep convolutional encoder-decoder networks with symmet-
ric skip connections. In: Proceedings of the Annual Conference on
Neural Information Processing Systems, pp. 2802–2810.

Mazzini, D. (2018). Guided upsampling network for real-time semantic
segmentation. In: Proceedings of British Machine Vision Confer-
ence (BMVC), pp. 1–12.

Niklaus, S., Mai, L., Yang, J., & Liu, F. (2019). 3D ken burns effect
from a single image. ACM Trans Graph, 38(6), 1–15.

Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and
checkerboard artifacts. Distill, 1(10), e3.

Peng, J., Cao, Z., Luo, X., Lu, H., Xian, K., & Zhang, J. (2022).
BokehMe: When neural rendering meets classical rendering. In:
Proceedings of the IEEE conference on computer vision and pat-
tern Recognition, pp. 16283–16292.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning
transferable visualmodels fromnatural language supervision.Proc
(pp. 8748–8763). PMLR: International Conference on Machine
Learning

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards
real-time object detection with region proposal networks. Annual
Conference on Neural Information Processing Systems 28.

Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., & Rott, P.
(2009).Aperceptuallymotivated online benchmark for imagemat-
ting. In: Proceedings of the IEEE conference on computer vision
and pattern Recognition, pp. 1826–1833.

Rombach, R., Blattmann,A., Lorenz,D., Esser, P.,&Ommer, B. (2022).
High-resolution image synthesis with latent diffusion models. In:
Proceedings of the IEEE conference on computer vision and pat-
tern Recognition, pp. 10684–10695.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional
networks for biomedical image segmentation. In: International
Conference onMedical Image Computing and Computer-Assisted
Intervention, pp. 234–241.

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R.,
Rueckert,D.,&Wang,Z. (2016).Real-time single image andvideo
super-resolution using an efficient sub-pixel convolutional neural
network. In: Proceedings of the IEEE conference on computer
vision and pattern Recognition, pp. 1874–1883.

Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor
segmentation and support inference from RGBD images. In: Pro-
ceedings of the European Conference on Computer Vision, pp.
746–760.

Song, S., Lichtenberg, S.P., & Xiao, J. (2015). SUN RGB-D: A RGB-
D scene understanding benchmark suite. In: Proceedings of the
IEEE conference on computer vision and pattern Recognition, pp.
567–576.

Takikawa, T., Acuna, D., Jampani, V., & Fidler, S. (2019). Gated-scnn:
Gated shape cnns for semantic segmentation. In: Proceedings of
the IEEE conference on computer vision, pp. 5229–5238.

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for
convolutional neural networks. Proceedings of the International
Conference on Machine Learning, 97, 6105–6114.

Tang, C., Chen, H., Li, X., Li, J., Zhang, Z., & Hu, X. (2021). Look
closer to segment better: Boundary patch refinement for instance
segmentation. In: Proceedings of the IEEEconference on computer
vision and pattern Recognition, pp. 13926–13935.

Teed, Z., & Deng, J. (2020). Raft: Recurrent all-pairs field transforms
for optical flow. Proc (pp. 402–419). European Conference on
Computer Vision: Springer.

Tian, Z., He, T., Shen, C., & Yan, Y. (2019). Decoders matter for
semantic segmentation: Data-dependent decoding enables flexi-
ble feature aggregation. In: Proceedings of the IEEE conference
on computer vision and pattern Recognition, pp. 3126–3135.

Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and
color images. Proc (pp. 839–846). IEEE International Conference
on Computer Vision.

Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., & Lin, D. (2019).
CARAFE: Context-aware reassembly of features. In: Proc.
IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 3007–3016.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D.,
Mu, Y., Tan, M., Wang, X., et al. (2020). Deep high-resolution
representation learning for visual recognition. IEEE Transactions
on Pattern Analysis andMachine Intelligence, 43(10), 3349–3364.

Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C. C., & Lin, D. (2021).
CARAFE++: Unified Content-Aware ReAssembly of FEatures.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(9), 4674–4687.

Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural
networks. In: Proceedings of the IEEE conference on computer
vision and pattern Recognition, pp. 7794–7803.

Wu, J., Pan, Z., Lei, B., & Hu, Y. (2022). Fsanet: Feature-and-spatial-
aligned network for tiny object detection in remote sensing images.
Transactions on Geoscience and Remote Sensing, 60, 1–17.

123



International Journal of Computer Vision

Xian, K., Shen, C., Cao, Z., Lu, H., Xiao, Y., Li, R., & Luo, Z. (2018).
Monocular relative depth perception with web stereo data supervi-
sion. In: Proceedings of the IEEE conference on computer vision
and pattern Recognition, pp. 311–320.

Xiao, H., Rasul, K., & Vollgraf, R. (2017), Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
arXiv Comput Res Repository.

Xiao,T., Liu,Y., Zhou,B., Jiang,Y.,&Sun, J. (2018).Unifiedperceptual
parsing for scene understanding. In: Proceedings of the European
Conference on Computer Vision, pp. 418–434.

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., & Luo, P.
(2021). SegFormer: Simple and efficient design for semantic seg-
mentation with transformers. In: Proceedings of the Annual Con-
ference on Neural Information Processing Systems, pp. 12077–
12090.

Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In: Pro-
ceedings of the European Conference on Computer Vision, pp.
1395–1403.

Xu, N., Price, B., Cohen, S., & Huang, T. (2017). Deep image matting.
In: Proceedings of the IEEE conference on computer vision and
pattern Recognition, pp. 2970–2979.

Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., & Wang, J. (2021).
Ocnet: Object context for semantic segmentation. International
Journal of Computer Vision, 129(8), 2375–2398.

Zeiler, M.D., & Fergus, R. (2014). Visualizing and understanding con-
volutional networks. In: Proceedings of the European Conference
on Computer Vision, pp. 818–833.

Zhai, X., Kolesnikov, A., Houlsby, N., & Beyer, L. (2022). Scaling
vision transformers. In: Proceedings of the IEEE conference on
computer vision and pattern Recognition, pp. 12104–12113.

Zhao, H., Shi, J., Qi, X.,Wang, X., & Jia, J. (2017). Pyramid scene pars-
ing network. In: Proceedings of the IEEE conference on computer
vision and pattern Recognition, pp. 2881–2890.

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J.,
Xiang, T., & Torr, P.H., et al. (2021). Rethinking semantic segmen-
tation from a sequence-to-sequence perspective with transformers.
In: Proceedings of the IEEE conference on computer vision and
pattern Recognition, pp. 6881–6890

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016).
Learning deep features for discriminative localization. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
Recognition, pp. 2921–2929.

Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., & Torralba, A.
(2017). Scene parsing through ade20k dataset. In: Proceedings of
the IEEE conference on computer vision and pattern Recognition,
pp. 633–641.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	FADE: A Task-Agnostic Upsampling Operator for Encoder–Decoder Architectures
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Feature Upsampling
	2.2 Feature Alignment and Boundary Processing
	2.3 Dense Prediction

	3 Task-Agnostic Upsampling: A Trade-off Between Semantic Preservation and Detail Delineation?
	4 FADE: Fusing the Assets of Decoder and Encoder
	4.1 Dynamic Upsampling Revisited
	4.2 Generating Upsampling Kernels from Encoder and Decoder Features
	4.3 Semi-shift Convolution
	4.3.1 Principle of Semi-shift Convolution
	4.3.2 Efficient Implementations of Semi-shift Convolution

	4.4 Extracting Fine Details from Encoder Features

	5 Applications
	5.1 Semantic Segmentation
	5.1.1 Data Set, Metrics, Baseline, and Protocols
	5.1.2 Semantic Segmentation Results

	5.2 Image Matting
	5.2.1 Data Set, Metrics, Baseline, and Protocols
	5.2.2 Image Matting Results

	5.3 Object Detection
	5.3.1 Data Set, Metrics, Baseline, and Protocols
	5.3.2 Object Detection Results

	5.4 Instance Segmentation
	5.4.1 Data Set, Metrics, Baseline, and Protocols
	5.4.2 Instance Segmentation Results

	5.5 Monocular Depth Estimation
	5.5.1 Data Set, Metrics, Baseline, and Protocols
	5.5.2 Monocular Depth Estimation Results

	5.6 Ablation Study
	5.7 Limitations and Further Discussions

	6 Conclusion
	Appendix A Comparison of Computational Complexity
	References


