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Abstract
The Audio-Visual Video Parsing task aims to identify and temporally localize the events that occur in either or both the audio
and visual streams of audible videos. It often performs in a weakly-supervised manner, where only video event labels are
provided, i.e., the modalities and the timestamps of the labels are unknown. Due to the lack of densely annotated labels, recent
work attempts to leverage pseudo labels to enrich the supervision. A commonly used strategy is to generate pseudo labels
by categorizing the known video event labels for each modality. However, the labels are still confined to the video level, and
the temporal boundaries of events remain unlabeled. In this paper, we propose a new pseudo label generation strategy that
can explicitly assign labels to each video segment by utilizing prior knowledge learned from the open world. Specifically, we
exploit the large-scale pretrained models, namely CLIP and CLAP, to estimate the events in each video segment and generate
segment-level visual and audio pseudo labels, respectively. We then propose a new loss function to exploit these pseudo labels
by taking into account their category-richness and segment-richness. A label denoising strategy is also adopted to further
improve the visual pseudo labels by flipping them whenever abnormally large forward losses occur. We perform extensive
experiments on the LLP dataset and demonstrate the effectiveness of each proposed design and we achieve state-of-the-art
video parsing performance on all types of event parsing, i.e., audio event, visual event, and audio-visual event. Furthermore,
our experiments verify that the high-quality segment-level pseudo labels provided by our method can be flexibly combined
with other audio-visual video parsing backbones and consistently improve their performances. We also examine the proposed
pseudo label generation strategy on a relevant weakly-supervised audio-visual event localization task and the experimental
results again verify the benefits and generalization of our method.

Keywords Audio-visual video parsing · Audio-visual event localization · Pseudo labeling · Label denoising · Audio-visual
learning
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1 Introduction

Acoustic and visual signals flood our lives in abundance, and
each signal may carry various events. For example, we often
see driving cars and pedestrians walking around on the street.
Meanwhile, we can hear the beeping of the car horns and the
sound of people talking. Humans achieve such a compre-
hensive understanding of audio-visual events in large part
thanks to the simultaneous use of their auditory and visual
sensors. To imitate this kind of intelligence for machines,
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Fig. 1 An illustrationof theweakly-supervised audio-visual videopars-
ing (AVVP) task and our pseudo label exploration method. a Given a
video and its event label (“speech" and “vacuum cleaner"), b AVVP
task needs to predict and localize the audio events, visual events, and
audio-visual events.Note that "vacuum cleaner" only exists in the visual
track, while "speech" exists in both audio and visual tracks, resulting
in the audio-visual event "speech". c To ease this challenging weakly-
supervised task, we aim to explicitly assign reliable segment-level audio
and visual pseudo labels. In our pseudo label generation process, the

pretrained CLAP and CLIP models are used to tell what events occur
in each audio and visual segment, respectively. d We further propose a
pseudo label denoising strategy to improve the obtained visual pseudo
labels by examining those segments that have abnormally large for-
ward loss values. In the example, visual event vacuum cleaner at the
third segment is assigned an incorrect pseudo label ‘0’ and gets a large
forward loss. Our pseudo-label denoising strategy further amends this,
giving the accurate pseudo label ‘1’

many research works started from some fundamental tasks
of single modality understanding, such as the audio clas-
sification (Hershey et al., 2017; Kong et al., 2018; Kumar
et al., 2018; Gong et al., 2021), video classification (Karpa-
thy et al., 2014; Long et al., 2018a, b; Tran et al., 2019), and
temporal action localization (Zeng et al., 2019; Chao et al.,
2018; Zhu et al., 2021; Gao et al., 2022). The audio classifi-
cation task focuses on the recognition of the audio modality,
while the video classification and temporal action localiza-
tion tasks focus on the visual modality. With the deepening
of research, many works have further explored the multi-
modal audio-visual perception (Wei et al., 2022), giving birth
to tasks such as sound source localization (Arandjelovic &
Zisserman , 2017; Rouditchenko et al., 2019; Arandjelovic
& Zisserman, 2018; Senocak et al., 2018; Hu et al., 2020,
2019; Qian et al., 2020; Zhao et al., 2018; Afouras et al.,
2020; Zhou et al., 2022b, 2023b; Sun et al., 2023), audio-
visual event localization (Tian et al., 2018; Wu et al., 2019;
Xu et al., 2020; Zhou et al., 2021; Mahmud & Marculescu,
2022; Rao et al., 2022b; Xia & Zhao, 2022; Wu et al., 2022;
Zhou et al., 2023a; Wang et al., 2023), audio-visual video
description (Shen et al., 2023) and question answering (Yun
et al., 2021; Li et al., 2022; Yang et al., 2022; Song et al.,
2022; Li et al., 2023).

Recently, Tian et al. (Tian et al., 2020) proposed a new
multi-modal scene understanding task, namely Audio-Visual

Video Parsing (AVVP). Given an audible video, the AVVP
task asks to identify what events occur in the audio and
visual tracks and in which video segments these events
occur. Accordingly, the category and temporal boundary of
each event are expected to be predicted for each modal-
ity. Note that both the audio and visual tracks may contain
multiple distinct events, and these events usually exist in dif-
ferent consecutive segments, it is labor-intensive to provide
segment-level event labels for each modality with strong
supervision. The fact is that the AVVP is performed in
a weakly-supervised setting where only the video label is
provided during model training. As the example shown in
Fig. 1a, we only know that this video contains the event set
of speech and vacuum cleaner. For each event, the model
needs to judge whether it exists in the audio modality (audio
event), visual modality (visual event), or both (audio-visual
event), and locate the specific temporal segments, respec-
tively. Notably, as illustrated in Fig. 1b, in the AVVP task,
the audio-visual event is the intersection of the audio event
and visual event, whereas the video label is the union of the
audio event and visual event.

In this work, we emphasize there are two main challenges
in the AVVP task. (1) Cross-modal interference from the
video label. As the example shown in Fig. 1b, given the
weakly-supervised video label, the audio and the visual track
share the same supervision, i.e., {speech, vacuum cleaner}
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together. However, the audio and visual tracks contain dis-
tinct events. The vacuum cleaner only exists in the visual
modality. Thus, during the model training process, the label
vacuum cleaner will interfere with the audio event parsing.
Similarly, the visual event parsingmay also be interferedwith
the audio event label in other samples. (2) Temporal seg-
ment distinction. Assuming we successfully identify there
is an event vacuum cleaner in the visual modality, it is still
hard to distinguish which segments contain this event (seg-
ment level) under the weakly-supervised labels (video level).
These two challenges make the AVVP an intractable Multi-
modal Multi-Instance Learning (MMIL) problem, namely
distinguishing the events from both modality and temporal
perspectives.

In the pioneerwork (Tian et al., 2020), a benchmarknamed
Hybrid Attention Network (HAN) is proposed to encode the
audio-visual features, which uses attentive pooling to aggre-
gate the audio and visual features to predict events of the
video. The weak video label is used as the main supervi-
sion. To address this task, they propose to obtain the pseudo
labels for separate audio and visual modalities by processing
the known video label with label smoothing (Szegedy et al.,
2016) technique.Their experimental results indicate that gen-
erating pseudo labels for each modality brings significant
benefits for supervising event parsing (Tian et al., 2020). The
subsequent studies diverge into two branches. Most of them
focus on designing effective networks to implicitly aggre-
gate the multi-modal features for prediction (Mo & Tian ,
2022; Pasi et al., 2022; Lamba et al., 2021; Yu et al., 2022;
Lin et al., 2021; Jiang et al., 2022; Gao et al., 2023), while
using the video-level pseudo labels generated by HAN (Tian
et al., 2020). In contrast, the other new works (Wu & Yang ,
2021; Cheng et al., 2022) devote to generating better pseudo
labels for each modality based on the baseline backbone of
HAN. However, the generated pseudo label is denoised from
the video label and limited to the video level which only
indicates what events exist in each modality (modality per-
spective). Therefore, it fails to address the second challenge
because it remains difficult to distinguish which segments
contain the event (temporal perspective).

To deal with the above-mentioned two challenges, our
work starts with the intuition that can we explicitly gener-
ate pseudo labels for each segment of each modality to
facilitate this MMIL task. This is inspired by two observa-
tions: (1) The AVVP models are expected to be well-guided
with segment-level labels as such fine-grained labels can pro-
videmore explicit supervision information and directly fit the
goal of the AVVP task (temporal perspective); (2) The audio
and visual signals are processed with independent sensors
for humans. We can indeed annotate each modality, specifi-
cally for what we hear or see, by leveraging unimodal input
(modality perspective). To this end, we propose a Visual-
Audio Pseudo LAbel exploratioN (VAPLAN)method that

aims to generate high-quality segment-level pseudo labels for
both visualmodality and audiomodality and further advances
this weakly-supervised AVVP task.

To obtain the visual or audio pseudo labels, a natural idea
is to borrow free knowledge from pretrained models for the
image or audio classification. However, there is a category
misalignment problem between the source and the target
datasets using such a strategy. Take generating visual pseudo
labels as an example, the models typically pretrained on the
ImageNet (Deng et al., 2009) would classify the instance in
the AVVP task into predefined categories of the ImageNet.
However, the predicted category label may not exist in the
target LLP dataset of the AVVP task, causing the category
misalignment. Different from the traditional image classifi-
cation models, vision-language pre-training (Alayrac et al.,
2022; Jia et al., 2021; Radford et al., 2021) has attracted
tremendous attention recently, which can flexibly classify
images from an open-category vocabulary and show impres-
sive zero-shot performance.Among thoseworks, Contrastive
Language-Image Pretraining (CLIP) (Radford et al., 2021) is
a representative one. Given an image, its potential category
names are inserted into a predefined text prompt. Then CLIP
can score the categories according to the similarity between
the encoded texts and the image features. The category with
a high similarity score is finally identified as the classifica-
tion result. Similar to the CLIP, in the audio community, the
Contrastive Language-Audio Pretraining (CLAP) (Wu et al.,
2023) is trained on a large-scale corpus that incorporates the
texts with the semantic-aligned audio. With similar training
and inference schemes, CLAP is able to perform audio clas-
sification in a zero-shot manner, and satisfactorily identify
the category of a given audio from open-vocabulary too.

Inspired by such benefits of large-scale pretraining, we
propose a Pseudo Label Generation (PLG) module that
seeks guidance from the CLIP (Radford et al., 2021) and
CLAP (Wu et al., 2023) to generate reliable segment-level
visual and audio pseudo labels. A simple illustration of PLG
can be seen from Fig. 1c. Given all the potential event labels,
CLIP/CLAPacting like an intelligent robot is asked to answer
whether the event is contained in the given visual/audio
segment. In brief, the queried event categories with high
cross-modal similarity scores that exceed the pre-set thresh-
old τv/τa are finally regarded as the visual/audio pseudo
labels. This process can be applied to each video segment, so
we can obtain segment-level pseudo labels.We provide more
implementation details in Sect. 4.1. The generated pseudo
labels are used to provide full supervision for each modality.
Going a step further, we consider the generated pseudo labels
may contain potential noise since the pseudo labels are non-
manually annotated. Especially, some video instances can be
challenging even for human annotators due to issues inher-
ent in the collected videos, such as objects in the visual event
being too small or obscured.As the example shown inFig. 1d,
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onlypart of the vacuum cleaner is visible in the third segment.
PLG only uses the single frame to generate pseudo labels and
fails to recognize the visual event vacuum cleaner for this
segment without contextual information, giving the incorrect
pseudo label ‘0’ for this category (denoted by brown box).
To alleviate such noise in pseudo labels generated by PLG,
we further propose a Pseudo Label Denoising (PLD) strat-
egy to re-examine the generated pseudo labels and amend the
incorrect ones. Samples with noisy labels are usually hard to
learn and often get a large forward propagation loss (Hu et al.,
2021a; Kim et al., 2022; Huang et al., 2019). In our work, the
large loss comes from those data where the model is unable
to give consistent predictions with the pseudo labels. For the
video example shown in Fig. 1d, the third segment indeed
suffers an abnormally large forward loss whereas the value
is 3.39. Note that the values are almost zero for other seg-
ments in the same video which are assigned accurate labels.
This motivates us to perform a segment-wise denoising by
checking the abnormally large forward loss along the time-
line. The segments with these controversial pseudo labels
will be reassigned, providing a more accurate version. More
discussions and implementation details of PLDwill be intro-
duced in Sect. 4.3.

PLG and PLD enable the production of high-quality
pseudo labels. Furthermore, we find that the obtained
segment-level audio and visual pseudo labels contain rich
information, indicating how many categories of events hap-
pen in each audio/visual segment (category-richness) and
how many audio/visual segments a certain category of the
event exists in (segment-richness). Take the visual modality
for example, as shown in Fig. 1b, the video-level label indi-
cates that there may be at most two events in the visual track,
i.e., the speech and vacuum cleaner. In practice, only the
fourth segment contains both two events while the first seg-
ment contains only one event, namely the vacuum cleaner.
Therefore, we can denote the visual category richness for
the first and the fourth segments as 1/2 and 1, respectively.
Similarly, from the perspective of the event categories, the
vacuum cleaner event appears in four video segments of the
entire video which totally contains five segments, while the
speech event only exists inone (the fourth) segment. Thus,we
can denote the visual segment richness for events of vacuum
cleaner and speech as 4/5 and 1/5, respectively. Such infor-
mation about category richness and segment richness can
also be observed in the audio track. An AVVP model should
be aware of the differences in category richness and seg-
ment richness to give correct predictions. Based on this, we
propose a Pseudo Label Exploitation (PLE) strategy that
uses a novel Richness-aware Loss to align the richness infor-
mation contained in model predictions with that contained
in pseudo labels. Our experiments verify that the generated
pseudo labels combined with the proposed richness-aware
loss significantly boost the video parsing performance.

For the challenging audio-visual video parsing task, we
conduct a comprehensive study on the exploration of the
segment-wise audio and visual pseudo labels, including their
generation, exploitation, and denoising. Extensive experi-
mental results demonstrate the effectiveness of our main
designs. Besides, our method can also be extended to the
related weakly-supervised audio-visual event localization
(AVEL) (Tian et al., 2018;Wu et al., 2019; Zhou et al., 2021)
task. Overall, our contributions can be summarized as fol-
lows:

• We introduce a new approach to explore the pseudo-label
strategy for the AVVP task from a more fine-grained
level, i.e., the segment level.

• Our proposed pseudo label generation and label denois-
ing strategies successfully provide high-quality segment-
wise audio and visual pseudo labels.

• We propose a new richness-aware loss function for
superior model optimization, effectively exploiting the
segment-richness and category-richness present in the
pseudo labels.

• Our method achieves new state-of-the-art in all types of
event parsing, including audio event, visual event, and
audio-visual event parsing.

• The proposed core designs can be seamlessly integrated
into existing frameworks for the AVVP task and AVEL
task, leading to enhanced performances.

2 RelatedWork

Audio-Visual Video Parsing (AVVP). AVVP task needs to
recognize what events happen in each modality and localize
the corresponding video segments where the events exist.
Tian et al. (Tian et al., 2020) first propose this task and
design a hybrid attention network to aggregate the intra-
modal and inter-modal features. Also, they use the label
smoothing (Szegedy et al., 2016) strategy to address the
modality label bias from the single video-level label. Some
methods focus on network design. Yu et al. (2022) propose
a multimodal pyramid attentional network that consists of
multiple pyramid units to encode the temporal features. Jiang
et al. (2022) use two extra independent visual and audio pre-
diction networks to alleviate the label interference between
audio and visual modalities. Mo & Tian (2022) use learn-
able class-aware tokens to group the semantics from separate
audio and visual modalities. To overcome the label interfer-
ence, Wu & Yang (2021) swap the audio and visual tracks
of two event-independent videos to construct new data for
model training. The pseudo labels are generated according
to the predictions of the reconstructed videos. Cheng et al.
(2022) first estimate the noise ratio of the video label and
reverse a certain percentage of the label with large forward
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losses. Although these methods bring considerable improve-
ments, they can only generate the event label from the video
level. Unlikely, we aim to directly obtain high-quality pseudo
labels for both audio and visual modalities from the segment
level that further helps the video parsing system training.

CLIP/CLAP Pre-Training. Here, we discuss the pre-
training technique and elaborate on why we choose the
CLIP/CLAP as the base big model for generating pseudo
labels in this work. CLIP (Radford et al., 2021) is trained
on a dataset with 400 million image-text pairs using the
contrastive learning technique. This large-scale pretraining
enables CLIP to learn efficient representations of the images
and texts and demonstrates impressive performance on zero-
shot image classification. Its zero-shot transfer ability opens
a new scheme to solve many tasks and spawns a large num-
ber of research works, such as image caption (Barraco et al.,
2022), video caption (Tang et al., 2021), and semantic seg-
mentation (Ma et al., 2022; Ding et al., 2022; Xu et al.,
2021; Zhou et al., 2022a; Rao et al., 2022b). Most of the
works choose to freeze or fine-tune the image and text
encoders of CLIP to extract advanced features for down-
stream tasks (Tang et al., 2021; Wang et al., 2022; Barraco
et al., 2022;Ma et al., 2022; Zhou et al., 2022c). For the zero-
shot semantic segmentation, some methods start to use the
pretrained CLIP to generate pixel-level pseudo labels which
are annotator-free and helpful (Zhou et al., 2022a; Rao et al.,
2022b). Similarly to CLIP, CLAP (Wu et al., 2023) is trained
using a similar contrastive objective but with 630k audio-text
pairs and achieves state-of-the-art zero-shot audio classifica-
tion performance. Recently, some works have started to use
CLAP to facilitate downstream tasks, such as audio source
separation (Liu et al., 2023b), text-to-audio generation (Liu
et al., 2023a), and speech emotion recognition (Pan et al.,
2023). In this work, we make a new attempt to borrow the
prior knowledge from CLIP/CLAP to ease the challenging
weakly-supervised audio-visual video parsing task.

Learning with Pseudo Labels. Deep neural networks
achieve remarkable performance in various tasks, largely due
to the large amount of labeled data available for training.
Recently, some researchers have attempted to generate mas-
sive pseudo labels for unlabeled data to further boost model
performance.Mostmethods directly generate and use pseudo
labels, which have been proven to be beneficial for various
tasks, such as image classification (Yalniz et al., 2019; Xie
et al., 2020; Pham et al., 2021; Rizve et al., 2021; Zoph
et al., 2020; Hu et al., 2021b), speech recognition (Kahn
et al., 2020; Park et al., 2020), and image-based text recog-
nition (Patel et al., 2023). For the studied AVVP task, few
works study the impact of pseudo labels and existing sev-
eral methods focus on disentangling the event pseudo label
for each modality from the known video label (Tian et al.,
2020; Wu & Yang , 2021; Cheng et al., 2022). However, the
obtained pseudo labels are confined to the video level. On

the other hand, some new works in other fields notice the
potential noise contained in the pseudo labels and propose
effectivemethods to better learnwith noisy pseudo labels (Hu
et al., 2021a; Kim et al., 2022). Specifically, Hu et al. (2021a)
propose to optimize the network by giving much weight to
the clean samples while less on the hard-to-learn samples.
In the weakly-supervised multi-label classification problem,
Kim et al. (2022) propose to correct the false negative labels
that are likely to have larger losses. However, these works
focus on label refinement for image tasks. Refocusing on
our video task, we conduct a comprehensive exploration
of pseudo labels, encompassing both their generation and
denoising. Specifically, we propose to assign explicit pseudo
labels for each segment of each modality. We achieve this
goal by flexibly sending all the possible event categories
to reliable large-scale text-vision/audio models to pick the
most likely event categories for each video segment. Fur-
thermore, we propose a new pseudo-label denoising strategy,
which performs segment-wise denoising to provide pseudo
labels with more accurate temporal boundaries within each
video.We also providemore in-depth discussions on pseudo-
label quality assessment and the denoising effects in different
modalities as shown in Sect. 5.2.

3 Preliminary

In this section, we formulate the detail of the AVVP task and
briefly introduce the baseline framework HAN (Tian et al.,
2020), which is used in both our approach and prior works
employing video-level pseudo labels (Wu & Yang , 2021;
Cheng et al., 2022) in the AVVP task.

Task Formulation. Given a T -second video sequence
{Vt , At }T

t=1, Vt and At denote the visual and the audio com-
ponents at the t-th video segment, respectively. The event
label of the video yv∪a ∈ R

1×C = {yv∪a
c |yv∪a

c ∈ {0, 1}, c =
1, 2, ..., C}, where C is the total number of event categories,
the superscript ‘v ∪ a’ denotes the event label of the entire
video is the union of the labels of audio and visualmodalities,
value 1 of yv∪a

c represents an event with that c-th category
happens in the video. Note that yv∪a is a weakly-supervised
label from the video level, the label of each individual
modality for each video segment is unknown during training.
However, the audio events, visual events, and audio-visual
events contained in each segment need to be predicted for
evaluation. We denote the probabilities of the video-level
visual and audio events as {{ pv; pa} ∈ R

1×C |pv
c , pa

c ∈
[0, 1]}, pv∩a = pv ∗ pa is used to represent the intersec-
tion of them. Thus, the probability of the visual events, audio
events, and audio-visual events of all video segments can
be denoted as {Pv; Pa; Pv∩a} ∈ R

T ×C , which need to be
predicted.
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Baseline Framework. The baseline network HAN
(Tian et al., 2020) uses the multi-head attention (MHA) mech-
anism in Transformer (Vaswani et al., 2017) to encode
intra-modal and cross-modal features for audio and visual
modalities. We denote the initial audio and visual features
extracted bypretrained neural networks (Hershey et al., 2017;
He et al., 2016) as Fa , Fv ∈ R

T ×d , where d is the feature
dimension. The process of HAN can be summarized as,

{
Ḟ

a = Fa + MHA(Fa, Fa) + MHA(Fa, Fv),

Ḟ
v = Fv + MHA(Fv, Fv) + MHA(Fv, Fa),

(1)

where Ḟa, Ḟv ∈ R
T ×d are the updated audio and visual

features. The probabilities of segment-wise events for audio
and visualmodalities are predicted through a fully-connected
(FC) layer and a sigmoid function, denoted as Pa ∈ R

T ×C

and Pv ∈ R
T ×C . An attentive pooling layer is further used to

transform the segment-level predictions {Pa; Pv} to video-
level predictions { pa; pv} ∈ R

1×C . By summarizing the
audio and visual predictions, pa and pv , we obtain the event
prediction of the entire video pv∪a ∈ R

1×C . The basic video-
level objective for model training is:

L = Lbce( pv∪a, yv∪a) + Lbce( pa, ya) + Lbce( pv, yv), (2)

where Lbce is the binary cross-entropy loss, yv∪a ∈ R
1×C

is the video-level ground truth label and { yv; ya} ∈ R
1×C

are the video-level visual and audio pseudo labels generated
using label smoothing (Szegedy et al., 2016) from yv∪a .

4 Our Method

An overview of our method is shown in Fig. 2. We focus
on producing reliable segment-level audio and visual pseudo
labels to better supervise the model for audio-visual video
parsing. For the backbone, we simply adopt the baseline
HAN (Tian et al., 2020) to generate event predictions. Our
method provides the following new innovations. (1) We
propose a pseudo label generation module that uses the
pretrained CLIP (Radford et al., 2021) and CLAP (Wu
et al., 2023) models to respectively generate reliable visual
and audio pseudo labels from the segment level. (2) We
then propose a pseudo label exploitation strategy to utilize
the obtained pseudo labels. Specifically, we design a new
richness-aware loss to regularize the predictions to be aware
of the category richness and segment richness contained in
the pseudo labels. This is helpful for model optimization. (3)
We also propose a pseudo label denoising strategy that fur-
ther improves the generated visual pseudo labels for those
data with abnormally high forward loss values due to being

assigned incorrect pseudo labels. Next, we elaborate on these
proposed strategies.

4.1 Pseudo Label Generation (PLG)

PLG aims to generate high-quality visual and audio pseudo
labels from the segment level that are expected to alleviate the
video-level label interference for single modality and better
supervise the model to distinguish video segments. As dis-
cussed in Sect. 1, we select the pretrained CLIP (Radford
et al., 2021) and CLAP (Wu et al., 2023) to achieve this goal
due to their flexible open-vocabulary classification capabili-
ties.

Taking visual modality as an example, we detail the
pseudo label generation process. Specifically, each video
instance is evenly split into several segments and we sam-
ple the middle frame to represent each segment. As shown
in Fig. 2-1, for the sampled frame It at the t-th segment,
we input it into CLIP image encoder and obtain the visual
feature, denoted as f It ∈ R

1×d . As for the event category
encoding, the default text input of the CLIP text encoder
follows the prompt “A photo of a [CLS]” where the
[CLS] can be replaced by the potential category names.
For the AVVP task, we empirically change the prompt to
a more appropriate one, “This photo contains the
[CLS]” (An ablation study of prompt in CLIP text encoder
will be shown in Sect. 5.2). By replacing the [CLS] in this
prompt with each event category and sending the generated
texts to the CLIP text encoder, we can obtain the text (with
event category) features of allC-class f T ∈ R

C×d . Then the
normalized cosine similarity st ∈ R

1×C between the image
and event categories can be computed by,

st = softmax

(
f It

‖ f It ‖2
⊗ (

f T

‖ f T ‖2
)�

)
, (3)

where ⊗ denotes the matrix multiplication, and � is the
matrix transposition. A high similarity score in st indicates
that the event category is more likely to appear in the image.

We use a threshold τv to select the categories with higher
confidence scores in st and obtain the score mask mt . After
that, we impose the score mask mt on the known video-level
label yv∪a with element-wise multiplication 	 to filter out
the visual events occurring at t-th segment ŷv

t ∈ R
1×C . This

process can be formulated as,

{
mt = 1(st − τv),

ŷv
t = mt 	 yv∪a,

(4)

where 1(xi ) outputs ‘1’ when the input xi ≥ 0 else outputs
‘0’, i = 1, 2, ..., C , and mt ∈ R

1×C .
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Fig. 2 Overview of our method. As a label refining method, we aim to
produce high-quality and fine-grained segment-wise event labels. For
the backbone, any existing network for the AVVP task can be used to
generate event predictions.Here,we adopt the baselineHAN(Tian et al.,
2020). In our solution, we design a pseudo label generation (PLG)mod-
ule, where the pretrained CLIP (Radford et al., 2021) and CLAP (Wu
et al., 2023) are used to generate segment-level pseudo labels for the
visual and the audio modality, respectively. Notably, the parameters of
the CLIP andCLAP are frozen. In the figure, we detail the visual pseudo
label generation and simplify that for the audio modality since they
share similar pipelines. In brief, the pseudo labels can be identified by
thresholding the similarity of visual/audio—(event) text embeddings.
For the t-th segment, the video label ‘speech’ is filtered out for the

visual modality and only ‘rooster’ is remained for the audio modality.
After that, with the generated pseudo labels, we propose the pseudo
label exploitation (PLE) by designing a richness-aware loss as a new
fully supervised objective to help the model align the category richness
and segment richness in the prediction and pseudo label. Lastly, we
design a pseudo label denoising (PLD) strategy that further refines the
pseudo labels by reversing the positions with anomalously large for-
ward loss values. Specifically, we re-examine the pseudo labels along
the timeline. Pseudo labels of those segmentswith abnormal high binary
cross-entropy forward loss will be refined (the motivation and imple-
mentation detail can be seen in Sect. 4.3). The updated pseudo labels
are further used as new supervision for model training. ⊗ denotes the
matrix multiplication and 	 is the element-wise multiplication

This pseudo label generation process can be applied to
all the segments. Therefore, we can obtain the segment-
level visual pseudo label for each video, denoted as Ŷ

v =
{ ŷv

t } ∈ R
T ×C . Note that the video-level visual pseudo

label ŷv ∈ R
1×C can be easily obtained from Ŷ

v
, where

ŷv
c = 1(

∑T
t=1 Ŷ

v

t,c) that means if a category of the event
exists in at least one video segment, it is contained in the
video-level label.

As for the audio pseudo labels, they can be generated
in a similar way but with several adjustments. For brevity,
we introduce the main steps here. (1) We use the CLAP
model instead of the CLIP for audio pseudo label gener-
ation. (2) The audio waveform of the entire video is split
into T equal-length segments and each segment is sent to the
CLAP audio encoder. (3)We use the prompt “This sound
contains the [CLS]” with the event categories as the
input of CLAP text encoder. (4) We compute the similarity

score of the text and audio features extracted by CLAP (just
like Eq. 3) and use an independent threshold τa (replace τv in
Eq. 4) to select high similarity values. In this way, we obtain
the segment-level audio pseudo label Ŷ

a ∈ R
T ×C and the

video-level audio pseudo label ŷa ∈ R
1×C for each video

sample.

4.2 Pseudo Label Exploitation (PLE)

The weakly-supervised AVVP task requires predicting for
each segment, but only the video-level label is provided. This
task would be greatly advanced if segment-level supervision
is additionally provided. In this part, we try to exploit the
pseudo labels from both the video-level and segment-level
since we have obtained pseudo labels of these two levels,
namely ŷm ∈ R

1×C and Ŷ
m ∈ R

T ×C , where m ∈ {v, a}
denotes themodality type. In particular, for the segment-level
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supervision, we propose a new richness-aware optimization
objective to help the model align the predictions and pseudo
labels. We introduce our pseudo label exploitation strategy
in the two aspects below.

Basic video-level loss.Existingmethods usually adopt the
objective function formulated inEq. 1 formodel training (Wu
&Yang , 2021; Yu et al., 2022; Cheng et al., 2022;Mo&Tian
, 2022), where ym ∈ R

1×C is the video-level label obtained
by label smoothing. Instead, we use the video-level pseudo
label ŷm ∈ R

1×C generated by our PLG module as new
supervision. The objective is then updated to,

LV = Lbce( pv∪a, yv∪a) + Lbce( pa, ŷa
) + Lbce( pv, ŷv

).(5)

New segment-level loss. With the segment-wise pseudo
label Ŷ

m
, we propose a new richness-aware loss that is

inspired by the following observations. (1) Each row of the
segment-wise pseudo labels, e.g., Ŷ

m
t · ∈ R

1×C , the t-th row
of the pseudo label, indicates whether all the events appear
in the t-th segment. For example, we show the visual pseudo
label in Fig. 2-2, i.e., Ŷ

m
wherem = v. There are three visual

events in the first segment, i.e., the dog, rooster, and speech,
Ŷ

v

1· = [1, 1, 1], while the last segment only contains one
rooster event, i.e., Ŷ

v

T · = [0, 1, 0]. This reflects the richness
of the event category in different segments that indicates how
many event categories exist in each segment. Similarly, the
audio pseudo label Ŷ

a
tells the category richness of audio

events. We define the category richness of t-th segment crm
t

as the ratio of the category number of t-th segment to the
total category number of the video, written as,

crm
t =

∑C
c=1 Ŷ

m
t,c∑C

c=1 yv∪a
c

, (6)

where m ∈ {v, a} denotes the visual or audio modality.
Therefore, we can obtain the category richness vector of all
segments crm ∈ R

T ×1 for each modality. In the example
shown in Fig. 2-2, the visual category richness for the first
and last segments, i.e., crv

1 and crv
T , is equal to 1 and 1/3,

respectively.
(2) On the other hand, each column of the pseudo

labels, e.g., Ŷ
m
·c ∈ R

T ×1, m ∈ {v, a}, indicates how many
visual/audio segments contain the event of c-th category.
We denote the segment richness of c-th category srm

c as the
ratio of the number of segments containing that category c
to the total segment number of the video, written as below,

srm
c = 1

T

T∑
t=1

Ŷ
m
t,c. (7)

In the example shown in Fig. 2-2, the visual segment richness
for the event categories dog and speech, i.e., srv

1 and srv
3 is

equal to 1/2 and 1/4, respectively. Extending to all C event
categories, we can obtain the segment richness vector of all
the categories srm ∈ R

1×C , where m ∈ {v, a} denotes the
visual and audio modalities.

So far, regardless of modality m ∈ {v, a}, we can obtain
the category richness crm and segment richness srm of the
pseudo label. With the prediction Pm ∈ R

T ×C from the
baseline network, we can compute its category richness and
segment richness in the same way, denoted as pcrm ∈ R

T ×1

and psrm ∈ R
1×C . Then, we design the segment-level

richness-aware loss LS to align the richness of the predic-
tions and the pseudo labels, calculated by,

LS =
∑

m∈{v,a}
Lbce( pcrm, crm) + Lbce( psrm, srm). (8)

The total objective functionLtotal for AVVP in this work is
the combination of the basic loss LV and the richness-aware
loss LS , i.e.,

Ltotal = LV + λLS , (9)

where λ is a weight parameter.

4.3 Pseudo Label Denoising (PLD)

In general, PLG can produce trustworthy segment-level
pseudo labels, especially when combined with the proposed
richness-aware loss, which significantly improves the audio-
visual video parsing performance. This can be verified by
our experiments shown in Sect. 5.3. Going a step further, we
posit that the generated pseudo labels may still encompass
some noise. By our observation, the video-level event cate-
gory pseudo-annotation can be satisfactorily tackled, but the
misclassification of specific segments exists along the time-
line within each video, particularly when dealing with hard
video instances that are difficult to annotate from the seg-
ment level.We specifically trace such challenges in the visual
modality and observe that without contextual information,
separate frames sent to the CLIP may be incorrectly classi-
fied, especially in the instanceswhere the visual objects in the
images are too diminutive, the images are afflicted by blurri-
ness or inadequate lighting, when portions of the objects are
obscured, rendering them arduous to discern, etc. As shown
in Fig. 2, the dog at the last two segments is mostly obscured
by the rooster, and CLIP fails to recognize the visual event
dog without contextual information. In this case, the gener-
ated pseudo labels do not accurately capture the temporal
boundary of the event and would be detrimental to model
training. We believe that the segment-level visual pseudo
labels can be further refined. As for the audio modality, the
audio signal is represented through waveform and it keeps
good continuity even if it is split into multiple segments for
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pseudo-labeling. This characteristic may help to resist dis-
turbances along the timeline when generating segment-level
audio pseudo labels with CLAP. In fact, the quality of audio
pseudo labels is indeed better than that of visual pseudo
labels. For example, the segment-level F-score metric for
audio pseudo labels is ∼10 points higher than that of visual
pseudo labels, as demonstrated in Tables 1, 2. This implies
the high quality of audio pseudo labels produced by PLG
and highlights the greater difficulty in enhancing the accu-
racy of visual pseudo labels. We present further discussions
with more experimental results in Sect. 5.2.

In this section,we propose a pseudo label denoising (PLD)
strategy that aims to recheck the pseudo labels generated by
PLG and further refine the inaccurate ones (noisy pseudo
labels). Our PLD is inspired by the works that conduct label
denoising with the help of the forward propagation loss for
image tasks (Kim et al., 2022; Hu et al., 2021a). In general, a
large forward loss means that the trained model does not give
the same prediction as the labels for a sample. There are two
main reasons for this: (1) the provided label is correct but the
video data is hard to learn and the model does not learn an
effective representation for it; (2) the label itself is incorrect.
In this work, our PLD aims to leverage the forward loss to
check the temporal continuity of segment-level pseudo labels
in each video and amend the abnormal segments when they
belong to the second case.

Specifically, we first use the objective function shown
in Eq. 9 to train a baseline model. Then, we compute the
element-wise forward loss matrix by measuring the binary
cross entropy between the prediction Pm and the pseudo
label Ŷ

m
, denoted as Mm = Lbce(Pm, Ŷ

m
) ∈ R

T ×C ,
where m ∈ {v, a} denotes the visual and the audio modal-
ity. Denote the j-th column of Mm as Mm

· j ∈ R
T ×1, it

indicates the loss value of all segments for the specific j-th
event category. In the example shown in Fig. 2-3, we dis-
play the forward loss matrix for the visual modality and find
that the last two video segments have much larger forward
losses than other segments for the dog category; they actually
contain this event like other segments. The abnormally large
loss value is caused by the fact that the last two segments
are assigned incorrect visual pseudo labels. Therefore, the
matrixMm can reflect those segments whose pseudo labels
contain potential noise and require refinement.

Note that the pseudo label ŷm ∈ R
1×C indicates the pre-

dicted event categories that appear in each modality.We trust
the event category ŷm and use it to mask the matrix Mm .
There are two steps for the matrixMm masking. Step I: For
other event categories that do not occur in the video sample,
their pseudo labels will be eased by setting zeros inMm . For
the example shown in Fig. 2-2, we only need to denoise the
pseudo labels for the three columns of ŷm that corresponds
to the predicted event categories of dog, rooster and speech.

The calculation of the maskedmatrixM′m can be computed
by,

M′m = frpt-T( ŷm
) 	 Mm, (10)

where M′m ∈ R
T ×C , and frpt-T( ŷm

) denotes the operation
of repeating ŷm along the temporal dimension for T times,
and frpt-T( ŷm

) ∈ R
T ×C .

Step II:Returning to the masked forward loss of all video
segments of the j-th category M′m· j ∈ R

T ×1, we treat the
average of the top-K smallest loss values of M′m· j as the
thresholdμm

j .μ
m
j is the tolerable forward loss within a video

sample. If the loss of some segments is abnormally larger
than μm

j , they may have incorrect pseudo labels. Comparing
the forward loss of each segment with μm

j , we can obtain

a binary mask vector ϕm
j ∈ R

T ×1, where ‘1’ reflects that
the segment has a larger loss than μm

j . This process can be
written as,

{
μm

j = favg( fk(M′m· j )),

ϕm
j = 1(M′m· j − α · μm

j ),
(11)

where fk and favg denotes the top-K minimum loss selec-
tion and the average operation, respectively. Note that we set
a scaling factor α to magnify the averaged loss. It is used
to better ensure that anomalous loss is caused by incorrect
pseudo labels rather than the data not being well learned.

Extending Eq. 11 to all the event categories, we obtain
the binary mask matrix of the video Φm = {ϕm

j } ∈ R
T ×C .

Afterwards, the segment-level pseudo label Ŷ
m

produced
by PLG can be refined by reversing the positions that have
unusually large loss values reflected by Φm , denoted as
˜Y

m = f∼(Ŷ
m
,Φm). As shown in Fig. 2-2, for the event

dog again, the visual pseudo labels generated by PLG are
‘0’ for the last two segments (indicating that there is no dog)
and get a large forward loss (marked by the purple box in
Fig. 2-3). This indicates that the visual pseudo labels of these
two segments are incorrect (actually containing dog) and are
thus reversed during the denoising process. We display more
examples in Fig. 7 to illustrate the pseudo label denoising
process. Finally, the pseudo labels refined by PLD can be
taken as new supervision for the model training.

5 Experiments

5.1 Experimental Setup

Dataset. Experiments for the AVVP task are conducted on
the publicly available Look, Listen, and Parse (LLP) (Tian
et al., 2020) dataset. It contains 11,849 videos spanning over
25 common audio-visual categories, involving scenes such
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as humans, animals, vehicles, musical instruments, etc. Each
video is 10 s long and around 61% of the videos contain more
than one event category. Videos of the LLP dataset are split
into 10,000 for training, 649 for validation, and 1200 for
testing. The training set is provided with only the video-level
labels, i.e., the label union of the audio events and visual
events. For validation and test sets, the segment-wise event
labels for each audio and visual modality are additionally
provided.

Evaluation metrics. Following existing works (Tian
et al., 2020; Cheng et al., 2022; Wu & Yang , 2021; Yu
et al., 2022), we evaluate our method by measuring the pars-
ing results of all the types of events, namely audio events
(A), visual events (V), and audio-visual events (AV, both
audible and visible). The average parsing result of the three
types is denoted as the “Type@AV” metric. Different from
Type@AV metric, “Event@AV” metric calculates the F-
score considering the predictions of the audio and the visual
events together. For the above event types, both the segment-
level and event-level F-scores are used as evaluation metrics.
The segment-level metric measures the quality of the pre-
dicted events by comparing them with the ground truth for
each video segment. And the event-level metric treats con-
secutive segments containing the same event category as a
whole event, and computes the F-score based on mIoU = 0.5
as the threshold. Therefore, the event-level F-score metric
is more difficult because it requires the model to predict a
satisfactory temporal boundary of the event.

Implementation details. (1) Feature extraction. For the
LLP dataset, each video is divided into 10 consecutive 1-
second segments. For a fair comparison, we adopt the same
feature extractors to extract the audio and visual features.
Specifically, the VGGish (Hershey et al., 2017) network
pretrained on AudioSet (Gemmeke et al., 2017) dataset is
used to extract the 128-dim audio features. The pretrained
ResNet152 (He et al., 2016) and R(2+1)D (Tran et al., 2018)
are used to extract the 2D and 3D visual features, respec-
tively. The low-level visual feature is the concatenation of
2D and 3D visual features. (2) Pseudo label preparation.
For each video in the training set of the LLP dataset, we first
offline generate the segment-wise visual and audio pseudo
labels using our PLG module. We use the ViT-B/32-based
CLIP (Vaswani et al., 2017) and HTSAT-RoBERTa-based
CLAP (Wu et al., 2023) to conduct the pseudo label genera-
tion, and their parameters are frozen. (3) Training procedure.
The objective functionLtotal shown inEq. 9 is used to train the
baseline model HAN (Tian et al., 2020). The hyperparameter
λ in Eq. 9 for balancing the video-level and the segment-
level losses is empirically set to 0.5. This pretrained model
is then used in our PLD to further refine the pseudo labels.
The refined pseudo labels are used to supervise the baseline
model training again. For all the training processes, we adopt
the Adam optimizer to train the model with a mini-batch size

Table 1 Parameter study of the threshold τv and prompt used in
the VISUAL pseudo label generation

Parameter setup Precision Segment. (V) Event. (V)
τv prompt
– – 66.96 58.65 53.48

0.040 VP1 85.31 70.29 64.68

0.041 86.88 71.08 64.82

0.042 72.19 51.51 43.13

0.041 VP1 86.88 71.08 64.82

VP2 85.64 68.96 61.83

VP3 84.69 67.60 60.98

VP4 86.75 70.29 63.78

Different setups are used to generate segment-level pseudo labels; con-
sequently, we can obtain the corresponding video-level pseudo labels.
Here, we report the precision between the visual pseudo label and the
ground truth from the video level. Also, we report the segment-level and
event-level F-scores. ‘–’ denotes the result of directly assigning video
labels as the visual event labels and each event happens at all the visual
segments. The specific expressions of the prompts are introduced in our
main text. This experiment is conducted on the validation set of the LLP
dataset

of 32 and the learning rate of 3 × 10−4. The total train-
ing epoch is set to 30. All experiments are conducted with
PyTorch (Paszke et al., 2019) on a single NVIDIA GeForce-
RTX-2080-Ti GPU. The codes, pseudo labels, and pretrained
models will be released.

5.2 Parameter Studies

We perform parameter studies of essential parameters used
in our method, namely the score threshold τv/τa and the text
prompt for CLIP/CLAP used in the PLG module, and the
top-K and scaling factor α used in the PLD strategy. Exper-
iments in this section are conducted on the validation set of
the LLP dataset of which the segment-level event labels are
accessible. Thus, we also verify the quality of pseudo labels
through correctness measurements in this part.

Study of the thresholds and prompts in PLG. τv/τa is
the threshold to select high scores of the cosine similarity
between the event category and the visual/audio segment in
the mask calculation (Eq. 4). We first explore the impact of
τv on the visual pseudo label generation. As shown in the
upper part of Table 1, we used the default prompt VP1—
“This photo contains the [CLS]” and test sev-
eral values of τv to generate visual pseudo labels. Then, we
report the category precision between the pseudo labels and
the ground truth at the video level, and the segment-level
and event-level F-scores to measure the quality of the gener-
ated pseudo labels. As shown in the Table, the pseudo label
with the best quality is obtained when τv = 0.041. And all
the evaluation metrics drop significantly when τv changes
from 0.041 to 0.042. We argue such sensitivity is related to
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Table 2 Parameter study of the threshold τa and prompt used in the
AUDIO pseudo label generation

Parameter setup Segment. (A) Event. (A) Average

τa prompt
– – 77.07 63.84 70.45

0.037 AP1 79.79 70.77 75.28

0.038 80.01 70.87 75.28

0.039 80.23 71.27 75.75

0.040 80.18 71.70 75.44

0.037 AP2 80.06 70.74 75.40

0.038 80.32 71.54 75.93

0.039 80.20 71.00 75.60

0.040 80.03 69.91 74.97

Different setups are used to generate segment-level audio pseudo labels.
Here, we report the segment-level and event-level F-scores between the
audio pseudo label and the ground truth. The last column shows the
average value of these two evaluationmetrics, which is used to select the
best setup. ‘–’ denotes the result of directly treating the video labels as
the audio event labels and each event happens at all the audio segments.
The specific expressions of the prompts are introduced in our main text.
This experiment is conducted on the validation set of the LLP dataset

the softmax operation in Eq. 3 that squeezes the similarity
score into small logits. The metrics for visual modality are
acceptable up to the threshold of τv =0.041. Using the same
experimental strategy, we explore the impacts of threshold τa

in audio pseudo label generation. The experimental results
are shown in Table 2 and we find that the optimal audio
pseudo labels are obtained when τa is equal to 0.038.

Furthermore, we explore the impact of prompts used in
the PLG. The prompts are combined with the event cate-
gories and sent as text inputs to the CLIP or CLAP text
encoder. For the visual pseudo label generation, specif-
ically, we test four types of prompts, i.e., our default
VP1—“This photo contains the [CLS]”,VP2—
“This photo contains the scene of [CLS]”,
VP3—“This photo contains the visual
scene of [CLS]” and VP4—“This is a photo
of the [CLS]”. We use these different prompts to gen-
erate pseudo labels and compare them with the ground
truth. As shown in the lower part of Table 1, visual pseudo
labels generated using these different prompts remain rela-
tively consistent. The pseudo label has the highest F-score
using the VP1 prompt. Therefore, we use the prompt VP1
as the default setup for visual pseudo label generation in
our following experiments. Notably, the precision of the
video-level visual pseudo label reaches about 87% under
the optimal setup, whereas the precision of directly assign-
ing video labels as the visual event labels (i.e., without
prompt) is only ∼67%. This reveals that PLG can satisfac-
torily disentangle visual events from weak video labels. For
the audio pseudo label generation, we test two prompts,

Table 3 Parameter study of the K and scaling factor α used in the
VISUAL pseudo label denoising

Parameter setup Segment. (V) Event. (V) Average

K α

– – 71.08 64.82 67.95

4 30 72.45 67.82 70.13

5 72.99 68.28 70.63

6 72.17 66.90 69.53

5 20 72.85 68.10 70.47

30 72.99 68.28 70.63

40 72.82 68.12 70.47

Different values of K and α are tested for the segment-wise visual
pseudo label denoising. The segment-level and event-level F-scores of
the denoised visual pseudo labels are reported. The last column is the
average result. ‘–’ denotes the result of the visual pseudo label generated
by PLG without label denoising. This experiment is conducted on the
validation set of the LLP dataset

i.e., the AP1—“This is a sound of [CLS]” and
AP2—“This sound contains the [CLS]”, to gen-
erate segment level audio pseudo labels. Then, we report the
segment-level and event-level F-scores of the audio events
under different setups and use their average value to select the
best one. As shown in the Table 2, performances moderately
change under different setups, and the best performance is
obtainedwhenusing theAP2 prompt and τa equals 0.038.We
thereby use this optimal setup as the default for audio pseudo
label generation. It is noteworthy that the event-level F-score
is only around 64% if simply assigning the video labels to all
the audio segments (without prompt). In contrast, this metric
is around 72% for our generated audio pseudo labels. This
reveals the vital role of segment-level event identification.

Study of the K and α in PLD. For each predicted event
category, the top-K smallest forward loss along the temporal
dimension is magnified by α and used as the threshold to
determine which segments’ pseudo labels should be refined
(Eq. 11). The segment-level and event-level F-scores of the
events are used to evaluate the quality of the denoised pseudo
labels. For the visual pseudo label denoising, the results in
Table 3 indicate that denoised visual pseudo labels ensure
significantly better results than the original labels generated
by PLG. In particular, the event-level F-score is improved
by 3.46%. Observing Table 3, the optimal setup are K = 5
and α = 30. Under this setup, the segment-level and event-
level F-scores of the visual pseudo labels of the validation
set achieve 72.99% and 68.28%, respectively. For the audio
pseudo label denoising, as shown in Table 4, the denoised
audio pseudo labels are slightly better than the pseudo labels
generated by PLG under the optimal setup (K = 6, α =
400). As discussed in Sect. 4.3, PLD is proposed to alleviate
the potentially discontinuous pseudo-event labels that hap-
pened during PLG and provide better temporal boundaries of
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Table 4 Parameter study of the K and scaling factor α used in the
AUDIO pseudo label denoising

Parameter setup Segment. (A) Event. (A) Average

K α

– – 80.32 71.54 75.93

5 400 79.63 70.88 75.25

6 80.43 71.68 76.06

7 80.15 71.33 75.74

6 300 80.16 71.27 75.72

400 80.43 71.68 76.06

500 80.40 71.27 75.72

Different values of K and α are tested for the segment-wise audio
pseudo label denoising. The segment-level and event-level F-scores of
the denoised audio pseudo labels are reported. The last column is the
average result. ‘–’ denotes the result of the audio pseudo label gener-
ated by PLG without label denoising. This experiment is conducted on
the validation set of the LLP dataset

the events. We argue that the discontinuity of pseudo labels
of audio events rarely occurs due to the temporal charac-
teristics of audio data, thus leading to a slight improvement
for the audio modality as shown in Table 4. Besides, from
Tables 3 and 4, we observe an interesting phenomenon that
the segment-level and event-level F-scores of audio pseudo
labels without PLD (80.32% and 71.54%) remain superior
to those of the denoised visual pseudo labels (72.99% and
68.28%). This suggests the high quality of audio pseudo
labels generated by PLG and underscores the greater diffi-
culty in denoising visual pseudo labels.We ultimately strike a
balance between the second computational costs and denois-
ing improvements and refrain fromapplyingPLD to the audio
modality in our experiment setup.

5.3 Ablation Studies

In this section, we provide some ablation studies to explore
the impact of each module in our method. The experimental
results are shown in Table 5. The row with id- 1© denotes the
performance of the baseline HAN (Tian et al., 2020).

Impact of the PLG.To further verify the benefits of PLG,
we use the generated pseudo labels to supervise the model
training. Note that the vanilla HAN (id- 1© in Table 5) is
trained with the video-level pseudo label obtained by using
label smoothing on the given weak label (Eq. 2). For a fair
comparison, we only use the video-level pseudo labels gen-
erated by PLG as the model supervision (Eq. 5). As shown
in row- 2© of Table 5, utilizing the video-level pseudo label
generated by our PLG significantly improves the visual event
parsing performances. The visual metric (V) increases from
52.9 to 64.1% at the segment level while from 48.9 to 60.2%
at the event level. These improvements reflect that our PLG
generates more accurate video-level pseudo labels for the

visual modality, better distinguishing the event categories
and guiding the model training. The improvement in audio
event parsing is not pronounced in this situation. We antici-
pate that the temporally continuous audio segments are more
challenging to distinguish under weak video-level supervi-
sion. Additionally, the visual features can encapsulate more
distinct event semantics, thereby promoting model optimiza-
tion that ismore beneficial to the visualmodality. Even so, the
utilization of more fine-grained, segment-level pseudo labels
generated by our PLG (see ids 3© and 4© in Table 5) sig-
nificantly enhances both the audio and visual event parsing
performances.

Our PLG is able to generate high-quality pseudo labels
at the segment level, which can be verified by the results
shown in Tables 1 and 2. In Fig. 3a, we further display the
event-level F-scores of the generated audio and visual pseudo
labels of each event category and provide more discussions.
As seen, the audio and visual pseudo labels have satisfac-
tory F-scores for most of the categories. The highest F-score
is 93.5% for audio event Accordion and 91.7% for visual
event Blender, respectively. Besides, we also find that each
modality faces some intractable event categories, such as the
speech for visual modality and cat for audio modality. We
argue this is caused by the unbalanced data distribution and
some categories are particularly difficult for visual recogni-
tion, such as speech, cheering, and clapping. Nevertheless,
our PLG generally provides reliable audio and visual pseudo
labels from both the video level and segment level, ensuring
better model learning.

Impact of the PLE.Our PLE uses the proposed richness-
aware loss LS in Eq. 8 to exploit the pseudo labels from
segment-level, which is taken as a complement to the video-
level supervision. At first, we make an ablation study to
explore the effect of the respective richness component.
As shown in Table 6, “SR” and “CR” denote the seg-
ment richness loss and category richness loss between the
predictions and pseudo labels, respectively. From Table 6,
we can find that each of them can effectively improve the
model performance since the studied AVVP task requires
distinguishing both the video segments and the event cate-
gories. When both types of richness information are used,
the pseudo labels fully demonstrate the capability for model
optimization. To further validate its superiority, we compare
it with a native variant that directly computes the binary
cross entropy loss between the predictions and the pseudo
labels, denoted as L′

S = Lbce(Pv, Ŷ
v
) + Lbce(Pa, Ŷ

a
). As

shown in the row- 3© and 4© of Table 5, both L′
S and the

proposed LS are beneficial for the audible video parsing
since they all provide segment-level supervision. Neverthe-
less, the proposed RL loss is more helpful. The conventional
cross-entropy loss relies on ‘hard’ segment-wise alignments
between predictions and pseudo labels. In contrast, our
proposed richness-aware loss exploits the pseudo labels
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Table 5 Ablation study of the main modules

Id Main modules Segment-level Event-level

PLG PLE PLD A V AV Type@AV Event@AV A V AV Type@AV Event@AV

1© × × × 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0

2© � × × 59.8 64.1 57.5 60.5 58.3 50.8 60.2 50.7 53.9 49.3

3© � �-L′
S × 61.5 64.7 58.6 61.6 60.0 54.5 61.0 52.4 55.9 52.7

4© � �-LS × 61.2 65.8 59.1 62.0 60.2 54.8 62.4 52.6 56.6 53.3

5© � � � 62.4 66.7 60.3 63.1 61.4 55.7 63.3 53.7 57.6 54.3

Id- 1© denotes the performance of the baseline backbone HAN (Tian et al., 2020). LS is the proposed richness-aware loss (Eq. 8). L′
S is a native

loss that simply computes the binary cross entropy loss of the prediction and pseudo label. We report the results on the test set of the LLP dataset

Fig. 3 Event-level F-scores of pseudo labels for each event category. a
We display the event-level F-scores of audio and visual pseudo labels
generated by PLG. b Compared to PLG, PLD further improves the

event-level F-scores formost categories, providingmore accurate visual
pseudo labels. All the results are reported on the validation set of the
LLP dataset

by aligning predictions from two independent dimensions:
category-richness (cr ) and segment-richness (sr ). According
to the definitions of cr (Eq. 6) and sr (Eq. 7), their values are
expressed as percentages (‘soft’ ratios) and are independent.
This designmakes themodel trainedwith our richness-aware
loss automatically balance and utilize the soft supervisions
from category-richness and segment-richness. Experimental
results shown in Table 6 indicate the superiority of our flex-
ible design of richness-aware loss.

Impact of the PLD. The impact of PLD can be observed
from two aspects. On one hand, PLD provides more accu-
rate pseudo labels than PLG. As the quality measurement of
visual pseudo labels shown in Table 3 on the validation set,
the average F-score is 67.95% for PLGwhile it is 70.63% for
PLD. In Fig. 3b, we show event-level F-scores for the visual
pseudo labels obtained by PLG and PLD of each event cate-
gory. PLD further improves the F-scores for most categories
(18/25), e.g., the metrics for events Fire alarm and Blender
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increase substantially by 18.2% and 6.8%, respectively. On
the other hand, visual pseudo labels generated by PLD are
more helpful than PLG for model training. We update the
visual pseudo labels as the new supervision to train the HAN
model.As shown in row- 5© of Table 5, themodel has superior

Table 6 Richness-aware loss LS under different configurations

Loss LS Segment-level Event-level

SR CR Type@AV Event@AV Type@AV Event@AV

× × 60.5 58.3 53.9 49.3

× � 61.8 60.2 56.4 52.9

� × 61.3 59.6 56.1 52.6

� � 62.0 60.2 56.6 53.3

SR and CR denote that we only computeLS with the segment richness
and category richness alignment, respectively

Table 9 Generalization of ourmethod on theweakly-supervised audio-
visual event localization task

Method label objective
video-level segment-level (ours)

AVEL 67.1 69.2(+2.1)

PSP 72.1 74.3(+2.2)

CMBS 72.2 74.4(+2.2)

Given the only video-level event label, this task needs to localize the
temporal video segments that contain the audio-visual event, i.e., the
audio and visual segments simultaneously describe the same event. We
extend our pseudo label generation strategy to this task and gener-
ate segment-level event labels. We test several SOTA models on this
task, namely AVEL (Tian et al., 2018), PSP (Zhou et al., 2021), and
CMBS (Xia & Zhao, 2022). All of them can be further improved using
our segment-level pseudo labels as the objective. This experiment is
conducted on the AVE (Tian et al., 2018) dataset

Table 7 Comparison with the state-of-the-arts

Method Segment-level Event-level
A V AV Type@AV Event@AV A V AV Type@AV Event@AV

AVE (Tian et al., 2018) 47.2 37.1 35.4 39.9 41.6 40.4 34.7 31.6 35.5 36.5

AVSDN (Lin et al., 2019) 47.8 52.0 37.1 45.7 50.8 34.1 46.3 26.5 35.6 37.7

HAN (Tian et al., 2020) 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0

MM-Pyramid (Yu et al., 2022) 60.9 54.4 50.0 55.1 57.6 52.7 51.8 44.4 49.9 50.5

MGN (Mo & Tian , 2022) 60.8 55.4 50.4 55.5 57.2 51.1 52.4 44.4 49.3 49.1

CVCMS (Lin et al., 2021) 59.2 59.9 53.4 57.5 58.1 51.3 55.5 46.2 51.0 49.7

DHHN (Jiang et al., 2022) 61.3 58.3 52.9 57.5 58.1 54.0 55.1 47.3 51.5 51.5
�MA (Wu & Yang , 2021) 60.3 60.0 55.1 58.9 57.9 53.6 56.4 49.0 53.0 50.6
�JoMoLD (Cheng et al., 2022) 61.3 63.8 57.2 60.8 59.9 53.9 59.9 49.6 54.5 52.5
�VAPLAN (ours) 62.4 66.7 60.3 63.1 61.4 55.7 63.3 53.7 57.6 54.3
�VAPLAN (ours) 69.0 70.2 63.5 67.6 67.9 61.9 66.4 56.9 61.7 60.1

� represents these methods are all focused on generating better pseudo labels for the AVVP task and are all developed on the baseline HAN (Tian
et al., 2020) backbone. � denotes we further implement our method with the more advanced visual and audio features extracted by CLIP and
CLAP, respectively. Results are reported on the test set of the LLP dataset

Table 8 Generalization of our method on other audio-visual video parsing backbones

Method Segment-level Event-level
A V AV Type@AV Event@AV A V AV Type@AV Event@AV

MGN (Mo & Tian , 2022) 60.8 55.4 50.4 55.5 57.2 51.1 52.4 44.4 49.3 49.1

MGN + MA 60.2 61.9 55.5 59.2 58.7 50.9 59.7 49.6 53.4 49.9

MGN + PLG 60.1 63.3 56.5 60.0 58.9 50.3 60.9 50.2 53.8 49.4

MGN + PLD 61.0 64.3 57.1 60.8 60.1 51.1 61.9 50.6 54.5 50.4

MM-Pyramid (Yu et al., 2022) 60.9 54.4 50.0 55.1 57.6 52.7 51.8 44.4 49.9 50.5

MM-Pyramid + MA 61.1 60.3 55.8 59.7 59.1 53.8 56.7 49.4 54.1 51.2

MM-Pyramid + PLG 60.2 65.4 58.3 61.3 60.1 54.5 62.0 52.8 56.4 53.0

MM-Pyramid + PLD 61.0 66.4 58.5 62.0 60.9 55.0 63.0 52.8 56.9 53.4

Our method can generate reliable segment-level audio and visual pseudo labels which can be directly used for other methods in the AVVP task too.
We evaluate two representative backbones, namely the MGN (Mo & Tian , 2022) and MM-Pyramid (Yu et al., 2022). The pseudo labels generated
by our PLG and refined by our PLD consistently boost these models. Both PLG and PLD are also superior to the existing method MA (Wu & Yang
, 2021) that provides video-level pseudo labels. The best and second-best results of each evaluation metric are bold and underlined, respectively
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performance on all types of event parsing. This again reveals
that the visual pseudo labels obtained by PLD are more accu-
rate than by PLG and can better supervise the multi-modal
parsing model. These results verify the effectiveness of the
label denoising strategy in PLD.

5.4 Comparison with the State-of-the-Arts

We report the performance of our VAPLAN on the test
set of the LLP dataset. The comparison results with exist-
ing methods are shown in Table 7. Our method achieves
superior performance on all types of event parsing. First,
compared to the baseline HAN (Tian et al., 2020) on which
our method is developed, our method significantly improves
the performance. Especially for the visual event parsing (V
in the table), the segment-level metric is lifted from 52.9%
to 66.7% (↑ 13.8%), and the event-level metric is improved
from 48.9% to 63.3% (↑ 14.4%). Second, our method out-
performs other competitors on the track of generating pseudo
labels for the AVVP task. As shown in the low part of
Table 7, our method generally exceeds the previous state-
of-the-art JoMoLD (Cheng et al., 2022) by about 1.5 points
for the audio event parsing, and around 3 points for the visual
event and audio-visual event parsing. Both JoMoLD (Cheng
et al., 2022) and MA (Wu & Yang , 2021) generate audio-
visual pseudo labels from the video level, while our method
can provide audio-visual pseudo labels from a more fine-
grained segment level. Our video parsingmodel can be better
supervised and optimized, resulting in better performance.
Furthermore, we report the result of our method using the
visual and audio features respectively extracted by CLIP and
CLAP. As shown in the last row of Table 7, all types of event
parsing performance can be further significantly improved.
In particular, the audio event parsing benefits more from
such advanced feature representations. As shown, its per-
formance improves by 6.6% and 6.2% for the segment-level
and event-level F-scores, respectively. These improvements
demonstrate the effectiveness and superiority of our method.

5.5 Generalization of Our Method

Generalization on other AVVP backbones. A core con-
tribution of our method is that it can provide high-quality
segment-level audio and visual pseudo labels, which then
better guide the model optimization. Our method can also
be applied to other existing backbones in the AVVP task. To
explore its impact, we examine two recently proposed net-
works, i.e., MGN (Mo & Tian , 2022) and MM-Pyramid (Yu
et al., 2022). Specifically, we train the models using the
pseudo labels generated by our PLG and refined by our PLD,
respectively. The experimental results are shown in Table 8.
Both PLG and PLD significantly boost the vanilla models,
especially in the visual event and audio-visual event parsing.

Take the MM-Pyramid (Yu et al., 2022) method for exam-
ple, the segment-level visual event parsing performance is
improved from 54.4% to 65.4% and 66.4% by using our
PLG and PLD, respectively. PLD is superior due to the addi-
tional label denoising strategy. Such improvements can also
be observed for MGN (Mo & Tian , 2022). Besides, it is
worth noting that these two backbones perform better when
combined with our (segment-level) pseudo labels than the
(video-level) pseudo labels generated by the previousmethod
MA (Wu&Yang , 2021). These results again indicate that our
method is able to provide better fine-grained pseudo labels
and demonstrate the superiority and generalizability of our
method.
Generalization on the AVEL task. We also extend our
pseudo label generation strategy to a related audio-visual
event localization (AVEL) task. We explore the challenging
weakly-supervised setting where the model needs to local-
ize those video segments containing the audio-visual events
(an event is both audible and visible) given only the video-
level event category label. Previous AVEL methods merely
use the known video-level labels as the objective for model
training. Here we try to generate segment-level pseudo labels
for this task as we did for the weakly-supervised AVVP task.
Similarly, we use the pretrained CLIP and CLAP models
to generate segment-level visual and audio pseudo labels,
respectively. The audio-visual event pseudo labels are the
intersection of them. In thisway,we know if there is an audio-
visual event in each video segment. Then such segment-level
pseudo labels can be used as a new objective to supervise
the model training. We test three representative audio-visual
event localizationmethodswhose official codes are available,
namely the AVEL (Tian et al., 2018), PSP (Zhou et al., 2021)
and CMBS (Xia & Zhao, 2022). We conduct experiments
on the corresponding AVE (Tian et al., 2018) dataset and
the results are shown in Table 9. The second column shows
the performance of vanilla models with only the video-level
supervision. The last column shows that these models can be
significantly improved by around 2 points when using our
segment-level pseudo labels.

We also present somequalitative examples for amore intu-
itive comparison. As shown in Fig. 4a, the audio-visual event
church bell occurs exclusively in the last five video segments.
The previous state-of-the-art method, CMBS, incorrectly
assumes this event to be present in the first five segments
as well. In contrast, our method yields accurate localization
results. The reason is that vanilla CMBS relies solely on the
known weak event label (video-level) to supervise model
training, while our method is capable of generating high-
quality pseudo labels at the segment level. In the lower part
of Fig. 4a, we illustrate our pseudo label generation process.
Our method accurately identifies that the church bell event
exists in all the visual segments but is present only in the last
five audio segments, which results in the precise audio-visual
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Fig. 4 Qualitative examples for the weakly-supervised audio-visual
event localization task. This task aims to temporally locate those seg-
ments containing events that are both audible and visible. The previous
state-of-the-art method, CMBS (Xia & Zhao, 2022), utilizes only the
video-level weak labels for model training and predictions. In con-
trast, ourmethod can generate high-quality segment-level pseudo labels,
offering fine-grained supervision during training and producing more

accurate localization results. “GT”denotes the ground truth. “PL-A” and
“PL-V” represent our segment-level pseudo labels for the audio and
visual modalities, respectively. The audio-visual event pseudo labels
(“PL-AV”) result from the intersection of “PL-A” and “PL-V”. Our
method surpasses the vanilla CMBS model in distinguishing between
the background and audio-visual events (a) as well as among different
audio-visual event categories (b)

Fig. 5 Qualitative examples of the audio-visual video parsing using
different methods. We compare our method with the HAN (Tian et al.,
2020), MA (Wu & Yang , 2021) and JoMoLD (Cheng et al., 2022).
“GT” denotes the ground truth. Our method successfully recognizes

that there is only one visual event violin in (a) or basketball bounce in
(b). Our method is also more accurate in parsing the audio events and
audio-visual events, providing better temporal boundaries of the events
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Fig. 6 Typical and challenging visualization examples of the gener-
ated audio and visual pseudo labels. “ 1©” and “ 2©” denote the ground
truth and the obtained pseudo labels, respectively. a In these typical
cases where the events are clearly represented in the audio and visual
signals, our method can generate accurate segment-level pseudo labels.

We also display some challenging examples: the audio event is mixed
with other sounds (b) or the visual event is hard to perceive (c). In gen-
eral, our method can provide satisfactory audio and visual pseudo labels

event pseudo label and then better supervises themodel train-
ing and predictions. Similar benefits can also be observed
from Fig. 4b, the vanilla CMBS incorrectly classifies the
audio-visual event guitar to be the ukulele. In contrast, our
method can generate accurate segment-level pseudo labels,
thereby ensuring superior predictions. These results again
verify the generalization of our method and we believe our
method can also help to address other related audio-visual
tasks lacking fine-grained supervision.

5.6 Qualitative Results on the AVVP Task

Visualization examples of the audio-visual video parsing.
We first display some qualitative video parsing examples in
Fig. 5.We compare ourmethodwithHAN (Tian et al., 2020),
MA (Wu & Yang , 2021), and JoMoLD (Cheng et al., 2022).
Both MA and JoMoLD are developed on the HAN and try
to generate video-level pseudo labels for better model train-
ing. As shown in Fig. 5a, two events exist in the video, i.e.,
speech and violin, while the visual event only contains the
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Fig. 7 Qualitative visualization examples of the pseudo label denois-
ing. Here, we take the visual modality as an example since it faces
more challenges in both pseudo label generation and denoising pro-
cesses. “GT” denotes the ground truth. “F-loss” represents the forward
loss between the model predictions and the pseudo labels generated
by PLG (Eq. 10). PLG basically disentangles the visual event(s) from

the weak video label, yielding well-defined segment-wise event cate-
gories. Additionally, PLD helps alleviate potential label noise for those
segments along the timeline in the same video whose pseudo labels
generated by PLG suffer abnormally large loss values. The improved
labels are highlighted by the dotted box

violin. For audio event parsing, although all methods cor-
rectly recognize the two events occurring in the audio track,
our method locates more exact temporal segments. Also, our
method accurately recognizes the visual event violin and pro-
vides superior audio-visual event parsing. In Fig. 5b, both the
events speech and basketball bounce exist in the video. All
methods miss the audio event speech. The reason may be
that the speech event only happens in the second segment
and the audio signal contains some noise from outdoors.
It is hard to distinguish them. For visual and audio-visual
event parsing, only our method provides satisfactory pre-
diction for the audio event basketball bounce. Although our
method incorrectly identifies that the third segment contains
this event, we argue that there may be an annotation mistake.
The basketball player in this segment is clearer than in the
second segment. If true, our result is more correct. These
video samples demonstrate the superiority of our method,
which leverages high-quality segment-level pseudo labels to
better supervise model training.

Visualization examples of the obtained pseudo labels.
In this part, we display the pseudo labels of some typical and
challenging video samples. Our method is able to provide
high-quality segment-level audio and visual pseudo labels.

As shown in Fig. 6a, the baby cry event is clearly represented
in the video and our method successfully recognizes it in
both audio and visual tracks. The temporal boundaries of the
generated pseudo labels highly match the ground truth. Our
method performs well in handling similar cases with explicit
audio and visual event signals. Turning to Fig. 6b, ourmethod
generates accurate pseudo labels for the visual event frying
food and audio event speech. The audio event frying food
in the eighth segment is not identified. The difficulty is that
the sound of frying food is mixed with the louder sound of
speech, which causes the frying food event to be missed. The
compound audio classification is still a challenging task in the
community. In Fig. 6c, our method satisfactorily generates
segment-level pseudo labels for all the audio events but fails
to recognize the visual eventdog. Thedog in the visual frames
is too small (located around the man’s feet in the figure)
to be identified. This situation is hard to judge even for a
human annotator. The pseudo labels can be further explored
in the future if consideringmore specific techniques for these
challenging cases. Nevertheless, our method can generally
provide reliable segment-level pseudo labels.

Visualization of the pseudo label denoising. As shown
in Fig. 7, we show two visualization examples to reflect the
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impact of pseudo label denoising. Here, we take the more
challenging visual pseudo label denoising as an example. As
shown in Fig. 7a, the video-level label contains the events
of speech and cat, where speech does not exist in the visual
modality. PLG successfully recognizes that only cat event
happens in the visual track. However, since the object is too
blurry in the first two segments, the event cat is incorrectly
recognized. As a result, the forward loss values for these
two segments are significantly greater, possibly 300 to 400
times larger than the other segments, as shown in the Fig. 7a.
Contributing to the proposed label denoising (PLD) strat-
egy, we make the correction. Observing Fig. 7b, there are
no visual events. PLG mistakenly classifies a few segments
as the event clapping because the player’s movements are
complex in these segments. This inaccuracy is once again
evident through the abnormally high forward losses. PLD
also rectifies these erroneous pseudo labels. By analysis, the
pseudo labels generated by PLG rely on the prior knowl-
edge of event categories from the pretrained CLIP, while
PLD benefits from an additional revision process (—the joint
exploration of the predictions and pseudo labels through the
forward loss calculation in each video) to possibly correct
inaccurate segment-level pseudo labels in PLG.

6 Conclusion

We propose a Visual-Audio Pseudo LAbel exploratioN
(VAPLAN) method for the weakly-supervised audio-visual
video parsing task. VAPLAN is a new attempt to generate
segment-level pseudo labels in this field, which starts with a
pseudo label generation module that uses the reliable CLIP
and CLAP models to determine the visual events and audio
events occurring in each modality (at the segment level) as
pseudo labels.We then exploit the category richness and seg-
ment richness contained in the pseudo labels and propose a
new richness-aware loss as fine-grained supervision for the
AVVP task. Furthermore, we propose a pseudo label denois-
ing strategy to refine the visual pseudo labels and better
guide the predictions. Qualitative and quantitative experi-
mental results on theLLPdataset corroborate that ourmethod
can effectively generate and exploit high-quality segment-
level pseudo labels. All these proposed techniques can be
directly used in the community. We also extend our method
to a related weakly-supervised audio-visual event localiza-
tion task and the experimental results verify the effectiveness
and generalization of our method. We believe this work will
not only facilitate future research on the studied audio-visual
video parsing task but also inspire other related audio-visual
topics seeking better supervision.
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