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Abstract
The presence of noisy examples in the training set inevitably hampers the performance of out-of-distribution (OOD) detection.
In this paper, we investigate a previously overlooked problem called OOD detection under asymmetric open-set noise, which
is frequently encountered and significantly reduces the identifiability of OOD examples. We analyze the generating process
of asymmetric open-set noise and observe the influential role of the confounding variable, entangling many open-set noisy
examples with partial in-distribution (ID) examples referred to as hard-ID examples due to spurious-related characteristics.
To address the issue of the confounding variable, we propose a novel method called Adversarial Confounder REmoving
(ACRE) that utilizes progressive optimization with adversarial learning to curate three collections of potential examples
(easy-ID, hard-ID, and open-set noisy) while simultaneously developing invariant representations and reducing spurious-
related representations. Specifically, by obtaining easy-ID examples with minimal confounding effect, we learn invariant
representations from ID examples that aid in identifying hard-ID and open-set noisy examples based on their similarity to the
easy-ID set. By triplet adversarial learning, we achieve the joint minimization and maximization of distribution discrepancies
across the three collections, enabling the dual elimination of the confounding variable. We also leverage potential open-set
noisy examples to optimize a K+1-class classifier, further removing the confounding variable and inducing a tailored K+1-
Guided scoring function. Theoretical analysis establishes the feasibility of ACRE, and extensive experiments demonstrate its
effectiveness and generalization. Code is available at https://github.com/Anonymous-re-ssl/ACRE0.

Keywords Out-of-distribution detection · Asymmetric open-set noise · Open-world visual recognition · Adversarial
confounder removing
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1 Introduction

Ensuring the reliability of machine learning models during
real-world deployments is crucial, and out-of-distribution
(OOD) detection plays a vital role in achieving this goal
(Fang et al., 2022; Nguyen et al., 2015; Yang et al., 2021b;
Hell et al., 2021). Pioneering studies have demonstrated
impressive performance when the test data belongs to classes
that are not seen during training (Yang et al., 2021b;
Hendrycks and Gimpel, 2017; Liang et al., 2017; Liu et al.,
2020a; Sun et al., 2021a). In practice, this achievement is
contingent upon the essential prerequisite that the labeled
training in-distribution (ID) data are devoid of any data noise.

The presence of noisy examples in the training set
inevitably hampers the effectiveness of OOD detection (Wu
et al., 2021). While training-time OOD detection methods
make adjustments to themodel training process, the inclusion
of noisy examples in the training set can disrupt classification
boundaries (Hendrycks et al., 2018; Chen et al., 2021; He et
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Fig. 1 Motivation illustration. a the problem of OOD detection under
asymmetric open-set noise. b, c asymmetric open-set noise in the train-
ing set poses a greater detriment than the symmetric.AUROCandAUPR

are metrics for OOD detection. The larger the AUROC and AUPR, the
better the performance of the OOD detection

al., 2022a). Conversely, test-time OOD detection methods
heavily rely on trained models and design an OOD scoring
function for identifying unseen classes without access to the
training data (Hendrycks and Gimpel, 2017; Liang et al.,
2017; Liu et al., 2020a). Accordingly, their performance is
irreversibly compromised when the noisy datasets interfere
with the prediction uncertainties of trained models, particu-
larly if the noisy dataset contains open-set noisy examples
that closely resemble the upcoming OOD examples.

To address the challenge of OOD detection in the pres-
ence of noisy training examples, a few training-time OOD
detection methods have been proposed (Wu et al., 2021;
Yu and Aizawa, 2020; Wei et al., 2021). These methods
primarily focus on addressing closed-set noise (e.g., label
noise) and symmetric open-set noise. Symmetric open-set
noise occurs when examples from unobserved classes are
distributed across ID classes in a random manner without
considering the characteristics of the examples.We argue that
this problem can be effectively resolved by combining exist-
ing techniques in noisy label learning and OOD detection
(Wu et al., 2021; Wei et al., 2021). Pioneering studies have
also shown that symmetric open-set noise can even provide
benefits for OOD detection (Hendrycks et al., 2018; Ming
et al., 2022). Our experiments show that existing methods
are limited in handling OOD detection in scenarios with pre-
viously overlooked asymmetric open-set noise. Asymmetric
open-set noise frequently occurs when OOD classes are dis-
tributed towards the ID classes that share spurious-related
characteristics with them, as depicted in Fig. 1a. Compared
with symmetric open-set noise, the presence of asymmet-
ric open-set noise significantly decreases the OOD detection
performance by reducing the identifiability of OOD exam-
ples, as depicted in Fig. 1b and c.

We delve into the data-generating process of asymmetric
open-set noise using structural causal models (Pearl, 2009).
We observe that the confounding variable plays a significant
role in entangling many open-set noisy examples with a sub-
set of ID examples, referred to as “hard-ID examples”, due to

spurious-related characteristics. For instance, consider an ID
dataset that includes the shoe class while the open-set classes
encompass zebra-related classes in Fig. 1a. Due to the pres-
ence of zebra-like stripes on a subset of shoe examples, the
data collection process (e.g., from web sources) often leads
to misclassifying examples from the zebra class as belong-
ing to the shoe class (Han et al., 2022a). In this scenario, the
shoe examples with zebra stripes represent hard-ID exam-
ples, while the other shoes constitute easy-ID examples. The
zebra stripes act as a potentially confounding variable, reduc-
ing the identifiability of OOD examples, especially when the
OOD data comprise zebra-related classes.

In this paper, we introduce Adversarial Confounder
REmoving (ACRE) as a solution to eliminating the con-
founding variable. ACRE employs progressive optimization
with adversarial learning to curate three distinct collec-
tions of potential examples: easy-ID, hard-ID, and open-set
noisy. Inspired by domain-invariant representation learning
(Nguyen et al., 2021; Han et al., 2022b; Wang et al., 2022a;
Jang et al., 2022), this approach allows us to simultane-
ously develop invariant representations from ID examples
while reducing spurious-related representations from open-
set noisy examples. To begin, we can efficiently identify
the easy-ID examples with minimal effect from confound-
ing variable by small loss criteria (Han et al., 2018; Jiang et
al., 2018). From these examples, we learn invariant represen-
tations that help differentiate between hard-ID and open-set
noisy examples based on their similarity to the easy-ID set.
Simultaneously, we employ triplet adversarial learning to
facilitate the minimization and maximization of distribu-
tion discrepancies across the three collections, successfully
achieving the dual elimination of the confounding variable.
In addition, we leverage potential open-set noisy exam-
ples to optimize a K+1-class classifier. This process aids
in removing the confounding variable and induces a tailored
K+1-Guided scoring function. We give a theoretical analy-
sis to verify the feasibility of triplet adversarial learning in
confounder removal.
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In the field of computer vision, the concept of Open-
World Visual Recognition has emerged as a critical area
of research. Its aim is to develop resilient systems capable
of handling real-world scenarios, where out-of-distribution
(OOD) data is common. Our research focuses on Visual Out-
of-Distribution Detection in Open-Set Noisy Environments,
addressing the urgent need for algorithms that can effectively
identify OOD instances within complex real-world visual
data. By introducing innovative methodologies and insights
to the field ofOpen-WorldVisualRecognition, ourwork aims
to advance the frontier of visual recognition systems towards
greater adaptability and robustness, to cope with dynamic
and uncertain environments.

Our contributions can be summarized as follows:

• We introduce and investigate the problem of OOD detec-
tion under asymmetric open-set noise, which accom-
modates a variety of real-world applications but is
unexplored.

• Wepropose a novelmethod calledACRE that employs an
adversarial learning approach to remove the confounding
variable between open-set noisy examples and hard-ID
examples, resulting in improved OOD detection perfor-
mance.

• Theoretical analysis and empirical results demonstrate
the feasibility and effectiveness of ACRE on real-world
datasets, and ACRE can pave a solid baseline for future
studies.

2 RelatedWork

2.1 Out-of-Distribution Detection

The ability to distinguish between in-distribution (ID) and
out-of-distribution (OOD) data is a fundamental concern
for deploying machine learning models in real-world appli-
cations. OOD detection methods can be broadly classi-
fied into two main categories: classification-based meth-
ods (Hendrycks and Gimpel, 2017; Liang et al., 2017; Lee
et al., 2018; Liu et al., 2020a; Gomes et al., 2022; Sun et al.,
2022a; Ming and Li, 2023; Yang et al., 2023), density-based
methods (Ren et al., 2019; Xiao et al., 2020; Morningstar et
al., 2021; Zhou and Levine, 2021; Jiang et al., 2021; Zhang
et al., 2021). Classification-based methods for detecting out-
of-distribution (OOD) data involve modeling the conditional
distribution of the in-distribution (ID) data, and then design-
ing a scoring function to measure the uncertainty of test data.
Density-basedmethodsmodel the IDdistribution using prob-
abilistic models and consider test data in low-density regions
as OOD data. Density-based OOD detection methods can be

difficult to train and optimize, often yielding inferior perfor-
mance compared to classification-basedmethods (Yang et al.,
2021b). Therefore, in this paper, we focus on classification-
based methods. Within this category, there are two main
branches of research: testing-time methods (Hendrycks and
Gimpel, 2017; Liang et al., 2017; Lee et al., 2018; Liu et
al., 2020a; Wang et al., 2022b; Zhu et al., 2022; Song et al.,
2022a; He et al., 2024b) and training-time methods (Ming
et al., 2023; Ming and Li, 2023; Yang et al., 2023; Du et
al., 2023; He et al., 2024ba). Test-time methods are easy to
use without modifying the training procedure and objective
(Yang et al., 2021b).

Unlike testing-time methods, training-time methods aim
to mitigate overconfident predictions for OOD data dur-
ing the training period. According to whether the OOD-
supervised signals are used in the training process, training-
time methods can be categorized into OOD-free and OOD-
needed methods. The representatives of OOD-free methods
are Wei et al. (2022), Lin et al. (2021). Wei et al. (2022)
decoupled the influence of logits’ norm from the training pro-
cedure by incorporating LogitNorm into the cross-entropy
loss. Lin et al. (2021) exploited intermediate classifier outputs
for dynamic and efficient OOD inference. The OOD-needed
methods aim to calibrate the model by OOD-supervised sig-
nals, which are from auxiliary OOD datasets (Hendrycks et
al., 2018; Liu et al., 2020a; Chen et al., 2021; Ming et al.,
2022;Wang et al., 2023), unlabeled dataHe et al. (2022b), Yu
and Aizawa (2019), Yang et al. (2021a), Zhou et al. (2021),
Katz-Samuels et al. (2022), He et al. (2024ba), or synthetic
virtual OOD data (Du et al., 2022; Tang et al., 2021; Tack et
al., 2020; He et al., 2022a; Du et al., 2023).

Nevertheless, the OOD detection methods commonly
used in representative works assume an impeccable learn-
ing environment in which the labeled ID data is noise-free.
In real-world applications, however, this assumption is often
unattainable, which can severely compromise the robustness
of these methods. There are only three pioneering works (Yu
and Aizawa, 2020; Wei et al., 2021; Wu et al., 2021) that
leverage label cleaning, geometric structure or injects open-
set auxiliary data to enhance OOD detection. Although these
methods have addressed the problemofOODdetection under
noisy environments, the open-set noise they consider is sym-
metric. According to Hendrycks et al. (2018), Ming et al.
(2022), Wang et al. (2023), we can know that symmetric
open-set noise is helpful for OOD detection. However, in
many real-world scenarios, open-set noise is not symmetric
(random) but rather asymmetric (dependent). According to
Fig. 1 in main body, we can know that asymmetric open-set
noise is harmful to OOD detection severely. Our paper aims
to address the issue of OOD detection under asymmetric
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open-set noise, which is a highly challenging and valuable
problem that has received relatively little attention.

2.2 Learning fromNoisy Labels

Previous works on learning from noisy labels can be clas-
sified into three categories: label-based, sample-based, and
loss-based methods. Early methods focused on correcting
corrupted labels by estimating the noise transition matrix
Patrini et al. (2017), Goldberger and Ben-Reuven (2017),
but this approach is challenging due to the difficulty in accu-
rately estimating the matrix. Sample-based methods (Han et
al., 2018; Wei et al., 2020; Yao et al., 2023) aim to select rep-
resentative samples for training, while loss-based methods
(Reed et al., 2014; Zhang and Sabuncu, 2018) focus on using
robust loss functions to improve model performance. How-
ever, these methods are only designed for close-set noise in
the training set. More recent works (Wang et al., 2018; Sun
et al., 2020; Yu and Aizawa, 2020; Sachdeva et al., 2021; Li
et al., 2020; Yao et al., 2021; Li et al., 2021; Xia et al., 2022;
Sun et al., 2022b; Wei et al., 2021; Wan et al., 2024) propose
to handle both in-distribution (IND) and out-of-distribution
(OOD) noise in training datasets. However, these approaches
are not directly applicable for detectingOODdata at test time.
Combining them with existing OOD detection methods may
not yield satisfactory performance (Wu et al., 2021).

3 Methodology

In this section, we first introduce the learning set-up. Then,
we point out the key insight by the structural causal model.
According to the insight, we present adversarial confounder
removing.

3.1 Introduction of Different Noise Type

We introduce a classification of different noise types, as
shown inTable 1. Then,we introduce the different noise types
in detailed as follows:

• SymmetricClose-SetNoise:The noise belongs to one of
the knowncategories, but the label is incorrect.Moreover,
the distribution of noise is uniform,meaning that samples
from every category have the same probability of being

Table 1 Classification of different noise types

Symmetric Asymmetric

Close-Set Sym Close-Set Asym Close-Set

Open-Set Sym Open-Set Asym Open-Set

incorrectly labeled as another category. This noise model
does not favor any specific mislabeling pattern, and is
therefore considered “symmetric."

• Asymmetric Close-Set Noise: The noise belongs to one
of the known categories, but the label is incorrect. More-
over, the distribution of noise is uneven, with samples
from certain categories more likely to be mislabeled
as specific other categories. This type of noise usually
occurs between categories that are similar or easily con-
fusedwith one another, for instance,mislabeling a known
wolf category as a known dog category is more common
than mislabeling it as a known cat category.

• Symmetric Open-Set Noise: The noisy samples do not
belong to any known category in the training set, and
these samples are evenly distributed across known cate-
gories.

• Asymmetric Open-Set Noise: The noisy samples do not
belong to any known category in the training set, but these
samples have an uneven probability of being misclassi-
fied into specific known categories. For example, in an
animal classification task, there may be samples from
new animal categories not included in the training set,
and these samples are more likely to be classified into
specific categories that resemble them in appearance or
ecological characteristics.

3.2 Problem Set-Up

We consider a noisy training set Dtrain
in = {(xk, ỹk)}nk=1

where xk ∈ X , ỹk ∈ Y , X denotes the input space, Y
denotes the ID label space, Y = {1, 2, . . . , K }, K denotes
the number of ID classes, and n denotes the number of exam-
ples in Dtrain

in . We assume the examples from ID classes are
clean. In our setting of OOD detection under asymmetric
open-set noise, Dtrain

in contains two types of example: (1)
ID example xi whose assigned label yi is the same as the
ground-truth label y∗

k and y
∗
k ∈ Y; (2)Asymmetric open-set

noise example xo whose assigned label ỹk does not equal
to the ground-truth label y∗

k , ỹk ∈ Y but y∗
k /∈ Y , and ỹk is

assigned based on similarity to ID classes.
Let Dtest denote the test set, which consists of ID test set

Dtest
in and OOD test set Dtest

out . The example xi t in Dtest
in is

from the ID classes. The example xot in Dtest
out is from the

unknown classes. The goal of OOD detection is to define a
decision functionF such that for a given test input x ∈ Dtest ,

F(x) =
{
0 if x ∈ Dtest

out ,

1 if x ∈ Dtest
in ,

(1)

whereF(x) = 1means that x is ID data andF(x) = 0means
that x is OOD data.
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Fig. 2 The training data generating process: The gray shade of nodes
indicates that the variables are unobservable

3.3 Problem Analysis

We reveal a generating process of the training set by
Fig. 2, where the shaded variables are unobservable, and the
unshaded variables are observable. The left graph in Fig. 2
and Eq. (2) reveal the generating process of ID data.

za ∼ pza , zb ∼ pzb , xi = g (za, zb) . (2)

In the generating process of ID data, we assume that ID data
xi ∈ X is generated by latent variable z ∈ Z ⊆ R

m through
a function g : Z →X . We partition latent variable z into two
variables z = [za, zb]. za denotes the private variable which
only xi owns. zb denotes the confounding variable which
both xi and xo own simultaneously. Further, we assume that
yi is generated by the private variable za and the confounding
variable zb.

The right graph in Fig. 2 and Eq. (3) reveal the generating
process of asymmetric open-set noise.

zb ∼ pzb , zc ∼ pzc , xo = g (zb, zc) . (3)

In the generating process of asymmetric open-set noise, we
assume that open-set data xo ∈ X is generated by latent
variables zb and zc. zc denotes the private variable which
only xo owns. ỹo denotes the noisy label of open-set data,
and ỹo is generated due to the biased influence zb → y.

During the inference stage, when the tested OOD example
xot in Dtest

out contains zb, xot is likely to be identified as ID
example, resulting in poor performance of OOD detection.
The existence of zb is the essential reason for the performance
decline of OOD detection. A pivotal insight is to remove
confounding variable zb to increase the separability of ID
and OOD data, thus improving the performance of OOD
detection.

We visualized the t-SNE graph of CIFAR-10 ID data con-
taminated with asymmetric open-set noise fromCIFAR-100.
In Fig. 3, the points labeled from ‘0’ to ‘9’ represent the
features of ID examples, while the points labeled as ‘10’

Fig. 3 The t-SNE visualization

correspond to the features of asymmetric open-set noise
examples. We can see that the ID data and open-set noise
are difficult to separate due to their spurious-related features,
acting as a confounding variable. This reduces the separa-
bility of ID and OOD data, leading to poor OOD detection
performance. Based on Fig. 3, we also find that certain ID
examples (at the edge) can be well separated from open-set
examples, with low influence from confounding variable zb.
These are easy-IDexamples (xe), almost generatedby za . The
remaining ID examples (xh) are hard-ID examples, generated
by both za and zb. To address the confounding between xh
and xo, we propose adversarial confounder removing, which
uses adversarial learning on xe, xh , and xo to remove zb.

3.4 Adversarial Confounder Removing

Adversarial Confounder REmoving (ACRE) includes three
components: 1) a triplet estimation module to obtain xe, xh ,
and xo; 2) a triplet adversarial learning module that uses
adversarial learning on xe, xh , and xo to remove zb; and 3) a
K+1-Guided scoring function to detect OOD data. The net-
work consists of three subnetworks: 1) feature extractor G;
2) two-head classifier (including a K -class classifier E and
a K+1-class classifier C); and 3) discriminator D.

Our method includes a pre-training phase and a training
phase. The pre-training phase primarily focuses on obtain-
ing the initial feature extractor G, a K -classifier head E,
and a K+1 classifier head C. The training phase mainly
includes three components: triplet estimation, discrimina-
tive learning, and adversarial learning. The triplet estimation
component provides uncertainty estimates and continuously
updated triplets for the next twomodules. The discriminative
learning and adversarial learning components utilize the esti-
mated triplets for adversarial training to remove confounding
factors, thereby improving the identifiability of OOD data.
Detailed optimization workflow can be seen in Fig. 4 and
Algorithm 1.
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Fig. 4 The overview of ACRE for OOD detection under asymmetric open-set noise

Algorithm 1 Adversarial Confounder REmoving (ACRE).

Require: Noisy training set Dtrain
in , harmonization factor τ , loss coef-

ficients λ1, λ2, λ3, training epochs niter
1: collect easy-ID examples D̂E by Eq. (4)
2: obtain pre-trained G, E , and C by minimizing Lpre in Eq. (5)
3: estimate ID probability ω(x) in Eq. (6)
4: collect hard-ID examples D̂H and open-set noisy examples D̂O by

ω(x)
5: for i = 1 to niter do
6: for i ∈ {1, . . . , niter } do
7: update D by Eq. (9)
8: update G and C by Eq. (10) and Eq. (7)
9: update ID probability ω(x) in Eq. (6)
10: recollect hard-ID examples D̂H and open-set noisy examples

D̂O by ω(x)
11: end for
12: compute K+1-Guided score S(x) by Eq. (13)
13: distinguish ID and OOD data by Eq. (14)

3.4.1 Triplet Estimation

In this part, we first select easy-ID examples based on small
loss criteria. Then we propose ω(x) estimation to progres-
sively identify potential hard-IDexamples andopen-set noisy
examples, where ω(x) denotes the probability that the exam-
ple x belongs to the ID classes.

Easy-ID examples selection. We identify the easy-ID
examples by the small loss criteria (Han et al., 2018; Jiang

et al., 2018):

D̂E = {(xk, ỹk)|(xk, ỹk) ∈ Dtrain
in , �̄(xk) < ζ },

b�̄(xk) = − 1

T1

T1∑
t=1

log

(
eEỹk (G(xk))∑K
j=1 e

E j (G(xk))

)
, (4)

where T1 denotes the number of epoch to select easy-ID data,
ζ is the pre-defined threshold, and E j (·) denotes the j-th logit
from classifier E . After obtaining the easy-ID data set D̂E ,
we use D̂R to denote the remaining set, which contains both
hard-ID examples and open-set noisy examples.

Progressive estimation of ω(x). The estimation of ω(x)
contains two stages: the pre-training and updating stage. The
updating of ω(x) is progressive and is performed simulta-
neously with Triplet Adversarial Learning (see Sect. 3.4.2).
Details optimization workflow can be seen in Fig. 4.

During the pre-training stage, we utilize all examples in
Dtrain

in to pre-train the feature extractor G and two-head
classifier. In the optimization process, we utilize Dtrain

in to

optimize E and utilize D̂E to optimize C . The pre-training
optimization objective Lpre is defined by

Lpre = −1

n

∑
(xk ,ỹk )∈Dtrain

in

log

(
eEỹk (G(xk))∑K
j=1 e

E j (G(xk ))

)
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− 1

ne

∑
(x,y)∈D̂E

log

(
eCy(G(x))∑K+1
j=1 eC j (G(x))

)
, (5)

where ne denotes the number of examples in D̂E . After the
pre-trained stage by minimizing Lpre, we obtain pre-trained
G, E , and C . Then, based the pre-trained G, E , and C , we
estimate ω(x) by

ω(x) = (1−τ) · f e(E(G(x)))+τ ·(1− f c(C(G(x)))) , (6)

where f e denotes maximum softmax probability (MSP)
(Hendrycks and Gimpel, 2017), f c denotes the K+1-th
softmax probability, and τ is a harmonization factor. Our
experiments verify that using two different classifiers can
improve the estimation of ω(x) because, at the initial stage,
E trained with all examples outperforms C , E can primarily
guide C to constantly self-growth and self-renewal trained
with easy-ID examples.

During the updating stage,we begin by preliminarily split-
ting D̂R into hard-ID set D̂H and open-set noisy set D̂O by
ωD̂R and (1− ω)D̂R , respectively. Let nh and no denote the
number of examples in D̂H and D̂O . Then, to improve the
estimation of ω(x), we rectify the label of D̂O to K + 1 and
fine-tune the two-head classifier with D̂H and D̂O by LC ,
which is defined by

LC = − λ2

nh + ne

∑
(x,y)∈D̂H∪D̂E

log

(
eCy(G(x))∑K+1
j=1 eC j (G(x))

)

− λ3

no

∑
x∈D̂O

log

(
eCK+1(G(x))∑K+1
j=1 eC j (G(x))

)
, (7)

where λ2 and λ3 denote coefficients. The first item in Eq. (7)
optimizes the first K outputs of C , and the second item in
Eq. (7) optimizes the K+1-th output of C . Then, we update
ω(x) by optimizing the second item in Eq. (6) with fine-tuned
G and C . Besides updating ω(x), another advantage of the
K+1-class classifier is that it can be utilized to design an
OOD scoring function (see Sect. 3.4.3).

3.4.2 Triplet Adversarial Learning

The objective of this section is to remove the confound-
ing variable through adversarial learning over the estimated
triplet, comprising both the discriminative and adversarial
stages.

During the discriminative stage, we introduce a triplet dis-
criminator D as follows,

D(G(x)) = [D0(G(x)), D1(G(x)), D2(G(x))] , (8)

where D0(·), D1(·), and D2(·) represent the probability that
example x belongs to easy-ID subset, hard-ID subset, and
open-set subset, respectively. Given these three dimensions
outputted by D, we propose the triplet discrimination loss
LD , which is defined by

LD(x) = 1

ne

∑
x∈D̂E

[− log D0(G(x))]

+ 1

nh

∑
x∈D̂H

[− log D1(G(x))]

+ 1

no

∑
x∈D̂O

[− log D2(G(x))] . (9)

By fixing G and optimizing D with LD , we can obtain an
optimal discriminator D∗, which can identify which of the
three triplets the example comes from.

During the adversarial stage, our approach tackles the
removal of the confounding variable by learning invari-
ant representations across easy-ID and hard-ID examples
andminimizing the spurious-related representations between
hard-ID examples and open-set noisy examples. However,
designing an effective adversarial loss remains a critical
challenge, as prior adversarial methods typically employ
two-dimensional discriminators (Gui et al., 2023; Ganin
et al., 2016). In contrast, our method utilizes a three-
dimensional discriminator. To address this issue, we propose
the OOD-aware triplet adversarial loss LOT A:

LOT A(x) = 1

ne

∑
x∈D̂E

[− log D1(G(x))]

+ 1

nh

∑
x∈D̂H

[− log D0(G(x))]

+ 1

no

∑
x∈D̂O

[− log D2(G(x))] . (10)

Adversarial optimization. Based on Eq. (9) and Eq. (10),
we define the bi-level optimization by

min
G

1

ne

∑
x∈D̂E

[− log D∗
1(G(x))]

+ 1

nh

∑
x∈D̂H

[− log D∗
0(G(x))]

+ 1

no

∑
x∈D̂O

[− log D∗
2(G(x))] ,

s.t .D∗ = argmin
D

1

ne

∑
x∈D̂E

[− log D0(G(x))]
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+ 1

nh

∑
x∈D̂H

[− log D1(G(x))]

+ 1

no

∑
x∈D̂O

[− log D2(G(x))] , (11)

The first two items in Eq. (11) achieve the minimization of
distribution discrepancies across easy-ID and hard-ID data
to learn invariant representations to remove zb. The last two
items achieve the maximization of distribution discrepancies
across hard-IDdata andopen-set noisydata, enabling thedual
elimination of spurious-related representations to remove zb.
Triplet adversarial learning increases the distributiondiscrep-
ancies across hard-ID data and open-set noisy data, which
contributes to better estimation of ω(x) and curates three
collections of potential examples more reliably.

Although confounding variable zb can be removed by
optimizing Eq. (11), the classifier still outputs an overconfi-
dent prediction to OOD data. The reason is that, during the
training stage, ID example (xi , yi ) and asymmetric open-set
example (xo, ỹo) are used for optimizing classifier. Clas-
sifier is constantly learning spurious influence from xo to
ỹo. Although xo is only generated by zc after removing zb,
classifier also learns another spurious influence: zc → ỹo.
During the inference stage, when the tested OOD example
xot in Dtest

out contains zc, xot is likely to be identified as ID
example, resulting in poor performance of OOD detection.
To remove the spurious influence zc → ỹo, we propose to
rectify the label of xo to K + 1, and optimate model by con-
necting Eq. (11) with Eq. (7), which helps learn a correct
influence zc → K + 1, improve the classifier’s separabil-
ity of ID and OOD data, and enhance the estimation of ID
probability ω(x).

Therefore, considering Eqs. (11) and (7), we define the
final optimization formally by

min
G,C

λ1LOT A + LC , s.t . D∗ = argmin
D

LD , (12)

where λ1 are coefficient.

3.4.3 OOD Detection in Testing Stage

During the test stage, we define the K+1-Guided scoring
function S(x) from classifier C by

S(x) = eCK+1(G(x))∑K+1
j=1 eC j (G(x))

, (13)

where C j denotes the j-th logit from C . For OOD detection,
one can exercise the thresholding mechanism to distinguish

Fig. 5 The force analysis of optimizing LOT A

between ID and OOD data by

Gγ (x) =
{
OOD S (x) ≥ γ ,

ID S (x) < γ .
(14)

The threshold γ is chosen so that a high fraction of ID data
(e.g., 95%) is correctly classified (Sun et al., 2021b). All the
used notations can be seen in Table 2.

4 Theoretical Analysis

According to inner-level optimization in Eq. (11), we min-
imize LD loss to find optimal D∗ with a fixed G. The

output of D∗ is D∗(z) =
[

PE (z)
3Pavg(z)

,
PH (z)

3Pavg(z)
,

PO (z)
3Pavg(z)

]
, where

Pavg(z) = (PE (z)+PH (z)+PO(z))/3, z denotes the output
from G. PE (z), PH (z), and PO(z) are the feature distri-
butions of easy-ID data, hard-ID data, and open-set data,
respectively. We optimize G given D∗ by minimizing LOT A

loss. Then we can obtain the following Theorem.

Theorem 1 (Proof in Appendix)LOT A loss can be expressed
as,

LOT A = K L
(
PH‖Pavg

) + 3K L
(
Pavg‖PH

)
+ K L

(
PE‖Pavg

) + 3K L
(
Pavg‖PE

)
− K L

(
PO‖Pavg

) + OEH + 5 log 3 , (15)

where

OEH =
∫
z

(
PO(z) log

PH (z)

3Pavg(z)
+ PO(z) log

PE (z)

3Pavg(z)

)
dz .

(16)

By minimizing LOT A loss, the confounding variable can be
removed (Fig. 5).

RemarkWeanalyze K L
(
PH‖Pavg

)+3K L
(
Pavg‖PH

)+
K L

(
PE‖Pavg

)+3K L
(
Pavg‖PE

)− K L
(
PO‖Pavg

)
by the

analysis of forces in the field of physics. Since the KL
divergence is asymmetric, it can be viewed as a force approxi-
mately.We use Fea, Fha, Fah, Fae to denote K L

(
PE‖Pavg

)
,
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Table 2 The summary of all the used notations

X , Y , Z Input space, ID label space, latent space

K The number of ID classes

Dtrain
in , Dtest , Dtest

in , Dtest
out Noisy training set, test set, ID test set, OOD test set

n The number of examples in Dtrain
in

(xk , ỹk) The example with index of k in Dtrain
in

y∗ Ground-truth label

ỹo Noisy label of open-set example

xit , xot The example in Dtest
in , The example in Dtest

out

F Decision function for OOD detection

xi , xo, xe, xh ID example, OOD example, easy-ID example, hard-ID example

za The private variable which only xi owns

zc The private variable which only xo owns

zb The confounding variable which both xi and xo own simultaneously

E , C , D, G K -class classifier, K+1-class classifier, discriminator, feature extractor

f e The maximum softmax probability of E

f c The K+1-th softmax probability of C

τ The harmonization factor to control two items about certainty estimation

D̂E , D̂H , D̂O Easy-ID data set, hard-ID data set, open-set noisy set

D̂R The remaining set which contains both hard-ID and open-set noisy examples

ω Certainty estimation score

ζ The pre-defined threshold for obtaining D̂E

λ1, λ2, λ3 The coefficients about LC and LOT A

S(x) The K+1-Guided scoring function

K L
(
PH‖Pavg

)
, K L

(
Pavg‖PH

)
, K L

(
Pavg‖PE

)
, respec-

tively. E,H,O,A denote PE , PH , PO , PA, located at the
three vertices and the center of the triangle, respectively.
Faeh denotes the resultant force, and its direction represents
the direction A moves. Fha and Fea will keep E and H
moving closer to A. By optimizing LOT A, K L

(
PE‖Pavg

)
,

K L
(
PH‖Pavg

)
, K L

(
Pavg‖PH

)
,
(
Pavg‖PE

)
will keep decr-

easing until PE ≈ PH ≈ Pavg . We use Fa denote
−K L

(
PO‖Pavg

)
. Minimizing LOT A increases K L (PO‖

Pavg
)
, resulting inO constantly moving away fromA. DAO

denotes the distance ofA andO in the optimal G. Moreover,
minimizing LOT A will decrease OEH and the output of the
open-set data on D0 and D1. PE ≈ PH ≈ Pavg dictates that
we learn invariant representations across PE and PH , andO
constantly moving away from A dictates that we minimize
the spurious-related representations, successfully removing
confounding variable.

5 Experiments

To validate the effectiveness of ACRE, we conduct a com-
prehensive performance evaluation, comparing it against
state-of-the-art methods.

5.1 Setup

Following Wu et al. (2021), we choose CIFAR-10 and
CIFAR-100 as the ID benchmark datasets, and choose
CIFAR-100,TinyImageNet (Denget al., 2009), andPlaces365
(Zhou et al., 2017) as the OOD benchmark datasets. Tak-
ing the ID dataset CIFAR-10 and OOD dataset CIFAR-100
as an example (abbreviated as CIFAR-10&CIFAR-100), the
generation process of the noisy training set Dtrain

in can be
described in three steps. Firstly, we train a supervised model
on CIFAR-10 using cross-entropy loss. Secondly, a certain
percentage of open-set examples from CIFAR-100 are ran-
domly selected, and their pseudo-labels are predicted using
the trained supervised model. Lastly, the open-set examples
with pseudo-labels are integrated into the training set. This
procedure approximates the actual noise generation process.
Table 3 shows the dataset configurations for open-set noisy
environments.

We compare our proposed ACRE with state-of-the-art
methods:MSP (Hendrycks andGimpel, 2017),ODIN (Liang
et al., 2017), Mahalanobis (Lee et al., 2018), Energy (Liu
et al., 2020a), GradNorm (Huang et al., 2021), Rank-
Feat (Song et al., 2022b), LogitNorm (Wei et al., 2022),
NGC (Wu et al., 2021), and ODNL (Wei et al., 2021).
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Table 3 Dataset configurations for open-set noisy environments

Dtrain
in Dtest

in Dtest
out

CIFAR-10 (CIDAR-100) CIFAR-10 CIFAR-100

CIFAR-10 (TinyImagenet) CIFAR-10 TinyImagenet

CIFAR-10 (Places365) CIFAR-10 Places365

CIFAR-100 (TinyImagenet) CIFAR-100 TinyImagenet

CIFAR-100 (Places365) CIFAR-100 Places365

TinyImagenet (CIFAR-100) TinyImagenet CIFAR-100

ImageNet-100 (ImageNet-100-200) ImageNet-100 ImageNet-100-200

CIFAR-10 (CIFAR-100) CIFAR-10 iSUN, Places365, Texture, SVHN, LSUN-C, LSUN-R

CIFAR-100 (TinyImagenet) CIFAR-100 iSUN, Places365, Texture, SVHN, LSUN-C, LSUN-R

Similar to Liu et al. (2020b), we measure the following
metrics forOODdetection: (1) the false positive rate (FPR95)
of OOD examples when the true positive rate of ID exam-
ples is at 95%; (2) the area under the receiver operating
characteristic curve (AUROC); and (3) the area under the
precision-recall curve (AUPR).

We implement our algorithm in PyTorch using the stan-
dard ResNet-50 backbone. The model is trained for 4,000
iterations with ACRE. Mini-batch SGD is employed with a
weight decay of 5e-4 and Nesterov momentum of 0.9. The
learning rate is 0.002 and follows a cosine annealing sched-
ule.

5.2 Results

Table 4 presents the results obtained on the CIFAR-10 in-
distribution (ID) dataset, along with three out-of-distribution
(OOD) datasets: CIFAR-100, TinyImageNet, and Places365.
ACRE demonstrates superior performance compared to all
test-time OOD detection methods, as shown in Table 4. For
instance, when compared to RankFeat, ACRE exhibits an
8.68% improvement in AUROC, 7.03% improvement in
AUPR, and 27.72% improvement in FPR95 on the CIFAR-
100 OOD dataset. Similarly, in comparison to Energy,
ACRE achieves an 15.29% improvement inAUROC, 9.98%
improvement in AUPR, and 48.99% improvement in FPR95
on the TinyImageNet OOD dataset, demonstrating the effec-
tiveness of confounding variable removing. These results
also demonstrate that test-time OOD detection methods are
vulnerable to asymmetric open-set noise. Moreover, the
results indicate that CIFAR-100 andTinyImageNet are closer
to CIFAR-10 than Places365. Nevertheless, ACRE consis-
tently achieves the best performance across all evaluation
metrics, regardless of the proximity of the OOD dataset,
thereby confirming its robustness.

Table 5 presents the results obtained on theCIFAR-100 in-
distribution (ID) dataset, along with two out-of-distribution
(OOD) datasets: TinyImageNet and Places365. ACRE sur-

passes all training-time OOD detection methods, including
LogitNorm, NGC, and ODNL, as indicated in Table 5.
For instance, compared to LogitNorm, ACRE achieves an
18.68% improvement in AUROC, 25.68% improvement in
AUPR, and 41.03% improvement in FPR95 on the Tiny-
ImageNet OOD dataset. NGC and ODNL are designed to
address scenarios where the ID training set contains close-set
noise and symmetric open-set noise. In comparison, ACRE
achieves 25.69% and 39.27% improvement in FPR95 on
the TinyImageNet OOD dataset, respectively, outperform-
ing NGC and ODNL. Notably, the test-time OOD detection
method MSP exhibits a higher AUROC by 0.61% and
3.32% compared to NGC and ODNL, respectively, on the
Places365 OOD dataset. These results emphasize the limita-
tions of combining noisy label learning and OOD detection
techniques in effectively handling OOD detection under
asymmetric open-set noise Table6.

5.3 More Results on Larger-Scale Datasets

To validate the effectiveness and generalizability of ACRE,
we also conduct experiments on larger-scale datasets Tiny-
ImageNet and ImageNet. For TinyImageNet, we use Tiny-
ImageNet as the in-distribution (ID) data and obtain out-of-
distribution (OOD) data from CIFAR-100. For ImageNet,
we treat the first 100 classes (ImageNet-100) as the ID
classes and the classes with index of 100 to 200 (ImageNet-
100-200) as OOD classes. The specific experimental results
are shown in Table 7. According to Table 7, ACRE com-
prehensively surpasses all the baseline methods, which
demonstrates the effectiveness of our approach in address-
ing out-of-distribution (OOD) detection under asymmetric
open-set noise. ACRE exhibits strong performance on both
standard-scale datasets and larger-scale datasets, which also
reflects ACRE’s good generalization ability.
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Table 4 The effectiveness of ACRE on the ID datasets CIFAR-10 and OOD datasets CIFAR-100, TinyImageNet, and Places365.

Method CIFAR-100 TinyImageNet Places365
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

MSP (Hendrycks and Gimpel, 2017) 77.67 80.49 83.78 73.45 46.80 86.28 84.28 61.20 70.59

ODIN (Liang et al., 2017) 79.77 81.68 78.35 77.86 51.54 77.88 84.72 57.25 68.07

Energy (Liu et al., 2020a) 79.76 81.67 78.38 77.87 51.54 77.67 84.90 58.06 67.44

Mahalanobis (Lee et al., 2018) 72.79 73.79 77.93 85.12 59.81 57.61 83.09 60.94 77.70

GradNorm (Huang et al., 2021) 70.38 72.65 84.62 65.49 40.66 89.22 48.60 21.94 96.16

ReAct (Sun et al., 2021a) 78.47 80.67 83.69 76.87 50.66 82.17 83.38 54.21 73.61

RankFeat (Song et al., 2022b) 79.78 81.68 78.40 78.00 51.60 77.46 84.31 58.23 67.38

EED (He et al., 2024ba) 83.62 84.42 72.31 84.43 37.61 63.38 82.76 50.71 69.72

MMD (He et al., 2024ba) 81.41 83.85 75.99 82.95 46.77 73.98 85.00 67.67 75.43

LAPS (He et al., 2024b) 82.35 82.18 72.98 78.27 35.87 75.37 82.39 52.73 73.25

LogitNorm (Wei et al., 2022) 75.79 73.92 79.14 71.56 32.72 81.84 71.42 30.79 84.93

NGC (Wu et al., 2021) 84.29 84.50 70.31 83.63 42.45 65.53 86.96 65.15 55.71

ODNL (Wei et al., 2021) 75.07 72.60 80.96 71.42 29.81 80.79 83.90 57.64 67.72

ACRE (ours) 88.46 88.71 50.68 93.16 61.52 28.68 96.11 83.96 16.88

The ratio of asymmetric open-set noise is 50%. All values are percentages. ↑ (↓) indicates larger (smaller) values are better. Bold numbers are
superior results

Table 5 OOD detection results of ACRE and comparison with competitive baselines on the ID datasets CIFAR-100

Method TinyImageNet Places365
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

MSP (Hendrycks and Gimpel, 2017) 72.46 21.89 84.06 70.50 32.51 87.83

ODIN (Liang et al., 2017) 70.47 17.49 84.38 67.31 26.61 89.28

Energy (Liu et al., 2020a) 70.46 17.50 84.38 67.43 26.73 88.99

Mahalanobis (Lee et al., 2018) 67.63 29.72 93.12 54.91 33.22 98.30

GradNorm (Huang et al., 2021) 50.28 13.13 96.93 50.84 20.64 99.03

ReAct (Sun et al., 2021a) 66.97 14.33 85.36 61.80 21.34 90.99

RankFeat (Song et al., 2022b) 70.55 17.55 84.01 67.86 26.15 88.94

EED (He et al., 2024ba) 71.36 19.41 84.67 68.45 29.15 89.47

MMD (He et al., 2024ba) 71.12 32.16 91.21 67.50 44.98 92.18

LAPS (He et al., 2024b) 70.03 16.89 84.62 67.01 26.12 89.28

LogitNorm (Wei et al., 2022) 69.15 20.69 88.47 65.42 28.97 87.91

NGC (Wu et al., 2021) 75.56 32.24 73.13 69.89 31.13 86.80

ODNL (Wei et al., 2021) 70.41 20.30 86.71 67.18 30.95 89.31

ACRE (ours) 87.83 46.37 47.44 93.17 77.27 30.53

Bold values indicate the superior results
The ratio of asymmetric open-set noise is 20%

Table 6 The effectiveness of ACRE on the ID datasets CIFAR-10 and OOD datasets CIFAR-100, TinyImageNet, and Places365 under K+1-Guided
score

Method CIFAR-100 TinyImageNet Places365
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

K+1 79.12 75.86 73.91 77.52 22.42 67.21 79.11 37.59 70.24

K+1 + ACRE 88.46 88.71 50.68 93.16 61.52 28.68 96.11 83.96 16.88
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Table 7 The effectiveness of ACRE on larger-scale datasets

Method TinyImageNet&CIFAR-100 ImageNet-100&ImageNet-100-200
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

MSP (Hendrycks and Gimpel, 2017) 64.86 67.98 93.53 72.98 76.43 87.15

ODIN (Liang et al., 2017) 62.07 63.78 94.32 73.39 75.54 86.81

Energy (Liu et al., 2020a) 61.98 63.71 94.53 73.38 75.51 86.80

Mahalanobis (Lee et al., 2018) 54.28 58.96 96.54 71.97 75.88 85.45

GradNorm (Huang et al., 2021) 51.82 51.71 93.67 67.75 67.92 85.26

ReAct (Sun et al., 2021a) 60.99 62.08 94.23 73.13 74.59 86.28

RankFeat (Song et al., 2022b) 61.98 63.71 94.53 73.38 75.51 86.80

EED (He et al., 2024ba) 68.10 70.67 91.35 70.92 88.10 88.23

MMD (He et al., 2024ba) 55.55 60.26 93.72 67.97 86.72 86.92

LAPS (He et al., 2024b) 67.68 69.40 90.28 68.15 85.87 87.72

LogitNorm (Wei et al., 2022) 54.26 57.87 96.40 64.00 67.77 92.05

NGC (Wu et al., 2021) 70.95 68.02 83.74 73.83 73.42 77.85

ODNL (Wei et al., 2021) 63.58 66.16 92.49 42.90 44.67 96.79

ACRE (ours) 93.28 92.26 26.71 83.43 83.19 62.23

All values are percentages. ↑ (↓) indicates larger (smaller) values are better. Bold numbers are superior results

Table 8 The verification of the effectiveness ofLOT A and K+1-Guided
score

E C AUROC ↑ AUPR ↑ FPR95 ↓
� – 94.61 73.43 20.98

– � 95.51 80.23 18.84

� � 96.11 83.96 16.88

Bold values indicate the superior results

5.4 Analyses

We analyze the individual strengths of three components:
the adversarial loss LOT A, ID probability ω(x) estimation
through the two-head classifier, and the K+1-Guided scoring
function.

Effectiveness of LOT A. Table 9 reports the results of
with/without adversarial loss LOT A. For instance, when
CIFAR-10 is the ID dataset and Places365 is the OOD
dataset, the removal of LOT A leads to a 5.99% decrease
in AUPR and a 24.84% increase in FPR95. These findings
demonstrate the importance of removing the confounding
variable and LOT A effectively achieve that.

Effectiveness of ω(x) estimation by two-head classifier.
Table 8 presents the results of ACREwith differentω(x) esti-
mation approaches: only using E to estimateω(x), only using
C to estimate ω(x), using both E and C to estimate ω(x).
Comparing the results, solely relying on E leads to a decline
in OOD detection performance, with approximately 1.50%
decrease in AUROC, 10.53% decrease in AUPR, and 4.10%
increase in FPR95. Similarly, using only C also results in a
decline inOODdetection performance,with 0.60% decrease

in AUROC, 3.73% decrease in AUPR, and 1.96% increase
in FPR95. These findings validate the effectiveness of ω(x)
estimation by the two-head classifier (Fig. 6).

Effectiveness of the K+1-Guided scoring function.
Table 9 reports the results obtained with and without the
K+1-Guided scoring function. It reveals that replacing the
K+1-Guided scoring function in ACRE with the MSP score
leads to a considerable decrease in performance. Specifi-
cally, the average AUROC experiences a drop of 9.74%, the
average AUPR declines by 16.93%, and the average FPR95
increases by 33.52%. Our findings emphasize the significant
advantages of our approach, as it not only successfully elim-
inates the confounding variable but also enables the training
of a K+1-class classifierC , which yields a novel OOD score.
Remarkably, this new OOD score proves to be effective for
detecting OOD instances under the presence of asymmetric
open-set noise.

Effectiveness of ACRE to eliminate confounding fac-
tors. To verify that our method can eliminate confounding
factors, we fixed the score as K+1-Guided score and then
tested the separability between open-set data and ID (In-
Distribution) data with and without the use of our ACRE.
The results are shown in Table 6. According to Table 6,
we can clearly see that after using ACRE, the separability
between ID and OOD (Out-Of-Distribution) data signifi-
cantly increases, indicating that our adversarial training to
remove interfering factors is effective. Since confounding
factors are key obstacles to the separability between ID and
OOD, the improvement in separability after usingACREalso
indicates that the confounding factors have been successfully
removed by ACRE. To further prove that our method can
increase the separability of ID and OOD data by removing
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Fig. 6 A comparative analysis with methods specifically addressing open-set noise

Table 9 The verification of the effectiveness of LOT A and K+1-Guided score

AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓
w(w/o) LOT A K+1-Guided score (MSP)

CIFAR-10&CIFAR-100 88.46 (87.74) 88.71 (88.26) 50.68 (53.12) 88.46 (84.63) 88.71 (85.75) 50.68 (68.05)

CIFAR-10&TinyImageNet 93.16 (90.94) 61.52 (54.03) 28.68 (37.68) 93.16 (87.78) 61.52 (52.01) 28.68 (56.07)

CIFAR-10&Places365 96.11 (92.01) 83.96 (77.97) 16.88 (41.72) 96.11 (88.55) 83.96 (70.91) 16.88 (55.85)

CIFAR-100&TinyImageNet 87.83 (86.85) 46.37 (43.20) 47.44 (49.65) 87.83 (74.24) 46.37 (25.24) 47.44 (81.09)

CIFAR-100&Places365 93.17 (92.77) 77.27 (75.45) 30.53 (32.12) 93.17 (74.86) 77.27 (39.31) 30.53 (80.64)

average 91.75 (90.06) 71.57 (67.78) 34.82 (42.86) 91.75 (82.01) 71.57 (54.64) 34.82 (68.34)

Bold values indicate the superior results

Fig. 7 Comparison of t-SNE plots without and with ACRE under
CIFAR-10&Places365

confounder, we add t-SNE visualization in Fig. 7. According
to Fig. 7, ACRE improves the separability between ID and
OOD data, while reducing the variance among OOD data.

5.5 Comparative Analysis with Methods Specifically
Addressing Open-Set Noise

To further validate the effectiveness of ACRE, we compare
ACRE with methods specifically addressing open-set noise.
We compare with ONL (Wang et al., 2018), ODNL (Wei
et al., 2021), NGC (Wu et al., 2021), and our ACRE. ONL
(Wang et al., 2018) detects open-set noise and learns deep dis-
criminative features in an iterative fashion. However, it pri-
marily targets symmetric open-set noise. Symmetric open-set
noise does not impair the performance of out-of-distribution

(a) λ1 (b) λ2

(c) λ3 (d) τ

Fig. 8 An analysis of λ1, λ2, λ3, and τ under different values

detection. In our paper, we investigate asymmetric open-set
noise, which is detrimental to out-of-distribution detection.
ODNL (Wei et al., 2021) mitigates the problem of label
noise by incorporating symmetric open-set noise. Unlike
it, we address asymmetric open-set noise and focus on the
task of out-of-distribution (OOD) detection. NGC (Wu et
al., 2021) investigates the classification problem in scenarios
mixed with closed-set noise and symmetric open-set noise.
We integrate it with the OOD detection method as one of the
baselines for analysis. The experimental results are shown in
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Table 10 An analysis of the choice of ζ

Method ζ=0.1 ζ=0.2 ζ=0.3
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ACRE (ours) 88.46 88.71 50.68 87.11 86.46 51.44 85.34 83.59 53.67

Table 11 The K+1-Guided score with (without) ACRE

AUROC ↑ AUPR ↑ FPR95 ↓
(a)

iSUN 85.07 (82.10) 87.93 (81.59) 70.71 (73.15)

Places365 84.15 (76.66) 65.41 (43.39) 70.52 (82.74)

Texture 92.57 (87.82) 95.29 (91.01) 33.26 (52.29)

SVHN 83.79 (77.61) 76.43 (55.90) 72.96 (86.41)

LSUN-C 91.90 (74.02) 93.55 (73.77) 48.61 (90.80)

LSUN-R 85.50 (82.46) 88.03 (81.60) 75.40 (76.25)

average 87.16 (80.11) 84.44 (71.21) 61.91 (76.94)

(b)

iSUN 92.82 (71.31) 92.02 (73.09) 24.61 (85.19)

Places365 74.77 (65.56) 44.48 (30.92) 76.98 (89.29)

Texture 75.84 (67.21) 83.24 (76.46) 72.16 (85.25)

SVHN 74.10 (69.52) 62.92 (47.54) 92.78 (90.96)

LSUN-C 78.59 (73.49) 77.13 (69.68) 66.12 (72.81)

LSUN-R 95.08 (72.56) 94.49 (73.37) 18.16 (84.12)

average 81.87 (69.94) 75.71 (61.84) 58.47 (84.60)

(a): CIFAR-10&CIFAR100; (b): CIFAR-100&TinyImageNet
Bold values indicate the superior results

Fig. 6. According to Fig. 6, our method has a clear advan-
tage compared to baseline methods involving open-set noise.
Conventional solutions for symmetric open-set noise are not
suitable for direct application in asymmetric open-set noise
scenarios, which further validates the high value and sig-
nificance of researching OOD detection in the context of
asymmetric open-set noise.

5.6 Sensitivity of Hyperparameters

Our method has four most important hyperparameters,
including τ , λ1, λ2 and λ3. Then, we analyze the sensitivity
of them in detail. The sensitivity experiments about λ1, λ2
and λ3 are based on ID dataset CIFAR-10 with OOD dataset
CIFAR-100. The sensitivity experiment about τ is based on
the ID dataset CIFAR-10 with the OOD dataset Places365.
The sensitivity of τ . τ is the harmonic factor in Eq. (6),
which balances the outputs by E and C . Results can be seen
in Fig. 8d. Figure 8d shows that choosing a proper value of τ

is critical for the performance of OOD detection to a certain
extent.
The sensitivity of λ1, λ2, and λ3. λ1 in Eq. (12) acts to bal-
ance the OOD-aware triplet adversarial loss LOT A which is
aimed to remove the confounding variable. λ2 and λ3 in Eq.
(7) act to balance the optimization of the first K outputs of

C and the K + 1-th output of C . The impact of selecting
appropriate values for λ1, λ2, and λ3 are crucial for achiev-
ing optimal performance in OOD detection, as highlighted
in Fig. 8a, b, and c, respectively. Specifically, when the ID
dataset is CIFAR-10 and the OOD dataset is CIFAR-100,
varying values of λ1, λ2, and λ3 lead to significant differ-
ences in the results, with a 1.02% difference of AUROC in
λ1, a 2.41% difference of AUROC in λ2, and a 2.33% differ-
ence of AUROC in λ3 observed. These findings underscore
the importance of carefully choosing the value of λ1, λ2, and
λ3 when training the model by our proposed ACRE.
The sensitivity of ζ . ζ is a hype-parameter to select easy ID
samples. Table 10 reflects the sensitivity of our method to
ζ . According to Table 10, it is clear that our method is quite
sensitive to the choice of ζ . When ζ changes from 0.1 to 0.3,
the AUROC decreases by 3.12%. A larger ζ means a larger
selected easy-ID data set, but it introduces more potential
open-set noise.Therefore,we should choose a smaller ζ value
to ensure that the selected easy-IDdata set contains less open-
set noise.

5.7 Generalization of ACRE

Generalization to unseen OOD datasets. In the previous
experimental setup, xo in Dtrain

in and xot in Dtest
out are from

the identical distribution, which follows the setting of Wu
et al. (2021), Yu and Aizawa (2020), Zhou et al. (2021).
To demonstrate the generalization capability of ACRE, we
evaluate its performance on unseen OOD datasets, that is
xo and xot are not from the identical distribution. In our
experiments, during the training phase, we utilize CIFAR-
10&CIFAR-100 and CIFAR-100&TinyImageNet. However,
during the inference phase, we evaluate the model on six
unseen (new) OOD datasets, including iSUN, Places365,
Texture, SVHN, LSUN-C, and LSUN-R. The results are pre-
sented in Table 11. These results highlight that removing
the confounding variable effectively mitigates the detri-
mental effects of asymmetric open-set noise and enhances
its capability to detect unseen OOD data. For instance,
under CIFAR-100&TinyImageNet, ACRE achieves an aver-
age AUROC gain of 11.93%, an average AUPR gain of
13.87%, and an average FPR95 gain of 26.13%. These
compelling results substantiate the generalization ability of
ACRE.

Generalization to different noisy ratios. To assess the
generalization capability of ACRE, we conduct experiments
on CIFAR-10&CIFAR-100 with varying ratios of asym-
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Fig. 9 AUROC(%) of ACRE and compared baselines with different noisy ratios

metric open-set noise: 30%, 50%, and 70%. The results
are depicted in Fig. 9. The findings can be summarized as
follows. Firstly, as the ratio of asymmetric open-set noise
increases, the performance of OOD detection declines across
all methods, confirming the adverse impact of asymmetric
open-set noise on OOD detection. Secondly, ACRE con-
sistently outperforms all methods by a significant margin,
affirming the effectiveness of removing the confounding
variable as a strategy to mitigate the negative effects of
asymmetric open-set noise on OOD detection. Lastly, ACRE
demonstrates superior stability compared to the baselines,
exhibiting reduced susceptibility to the influence of asym-
metric open-set noise. These observations validate the robust-
ness and generalization capability of ACRE.

6 Conclusion

In this paper, we investigated a previously overlooked prob-
lem in detecting OOD examples under the presence of
asymmetric open-set noise. Despite its broad applications in
the real world, this problem presents significant challenges.
To address this problem, we proposed Adversarial Con-
founderREmoving (ACRE) that introduces triplet estimation
and triplet adversarial learning to remove the confound-
ing variable between open-set noisy examples and hard-ID
examples. Our method is substantiated by rigorous theoret-
ical analysis and compelling empirical results, highlighting
its feasibility and effectiveness.We believe that ACRE estab-
lishes a solid foundation for future studies.

The primary limitation of the proposed method lies in
its ability to handle solely asymmetric open-set noise, where
the ground-truth label exists outside the ID label space, while
the assigned label tends to align with the known class that
exhibits similar spurious-related characteristics. In future
research, we aim to tackle the challenge of OOD detection
under multiple noisy environments.

Appendix A: The Proof of Theorem 1

Proof First, we fix the feature extractor G, and minimize the
distribution discrimination loss LD .

min
D

LD(x) =EPE (x)[− log D0(G(x))]
+ EPH (x)[− log D1(G(x))]

+ EPO (x)[− log D2(G(x))]
= −

∫
x∼PE (x)

log D0(G(x))dx

−
∫
x∼PH (x)

log D1(G(x))dx

−
∫
x∼PO (x)

log D2(G(x))dx

=−
∫
z∼PE (z)

log D0(z)dz

−
∫
z∼PH (z)

log D1(z)dz

−
∫
z∼PO (z)

log D2(z)dz

=
∫
z
(−PE (z) log D0(z) − PH (z) log D1(z)

−PO(z) log D2(z)) dz (A1)

D0(z)+D1(z)+D2(z) = 1 for all z. Therefore,we transform
the above optimization problem into an optimization problem
with constraints as follows:

min
D

−PE (z) log D0(z) − PH (z) log D1(z)

− PO(z) log D2(z)

s.t . D0(z) + D1(z) + D2(z) = 1 (A2)

To solve the optimization problem with constraints, we
use the Lagrange multiplier method.
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min
D

L̃D := −PE (z) log D0(z) − PH (z) log D1(z)

− PO(z) log D2(z)

+ v(D0(z) + D1(z) + D2(z) − 1) (A3)

where v denotes the Lagrange variable.
We compute the derivative of L̃D with respect to D and v

as follows:

∂L̃D

∂D0(z)
= −PE (z)

D0(z)
+ v = 0 ⇔ D0(z) = PE (z)

v

∂L̃D

∂D1(z)
= −PH (z)

D1(z)
+ v = 0 ⇔ D1(z) = PH (z)

v

∂L̃D

∂D2(z)
= −PO(z)

D2(z)
+ v = 0 ⇔ D2(z) = PO(z)

v

∂L̃D

∂v
= D0(z) + D1(z) + D2(z) − 1 = 0

⇔ D0(z) + D1(z) + D2(z) = 1 (A4)

According to the above equations, we can know

D0(z) + D1(z) + D2(z) = PE (z)

v
+ PH (z)

v
+ PO(z)

v
= 1 ,

(A5)

where

v = PE (z) + PH (z) + PO(z) = 3Pavg . (A6)

Thus, we obtain optimal D∗ as

D∗(z) = [D∗
0(z), D

∗
1(z), D

∗
2(z)]

=
[

PE (z)

3Pavg(z)
,

PH (z)

3Pavg(z)
,

PO(z)

3Pavg(z)

]
. (A7)

Then, during optimizing G through minimizing LOT A,
we fix D with D∗.

min
G

LOT A(x) = EPE (x)[− log D∗
1(G(x))]

+ EPH (x)[− log D∗
0(G(x))] + EPO (x)[− log D∗

2(G(x))]
=

∫
z

(−PE (z) log D∗
1(z) − PH (z) log D∗

0(z)

−PO(z) log D∗
2(z)

)
dz

=
∫
z

(
−PE (z) log

PH (z)

3Pavg(z)
− PH (z) log

PE (z)

3Pavg(z)

−PO(z) log
PO(z)

3Pavg(z)

)
dz

=
∫
z

(
−PE (z) log

PH (z)

3Pavg(z)
− PH (z) log

PE (z)

3Pavg(z)

−PO(z) log
PO(z)

3Pavg(z)

)
dz

=
∫
z

(
(PH (z) + PO(z) − 3Pavg) log

PH (z)

3Pavg(z)

+(PE (z) + PO(z) − 3Pavg) log
PE (z)

3Pavg(z)

−PO(z) log
PO(z)

3Pavg(z)

)
dz

=
∫
z

(
PH (z) log

PH (z)

3Pavg(z)
+ PO(z) log

PH (z)

3Pavg(z)

−3Pavg log
PH (z)

3Pavg(z)
+ PE (z) log

PE (z)

3Pavg(z)

+PO(z) log
PE (z)

3Pavg(z)
− 3Pavg log

PE (z)

3Pavg(z)

−PO(z) log
PO(z)

3Pavg(z)

)
dz

=K L
(
PH‖3Pavg

) +K L
(
3Pavg‖PH

) +K L
(
PE‖3Pavg

)
+ K L

(
3Pavg‖PE

) − K L
(
PO‖3Pavg

)
+

∫
z

(
PO(z) log

PH (z)

3Pavg(z)
+ PO(z) log

PE (z)

3Pavg(z)

)
dz

= K L
(
PH‖Pavg

) + 3K L
(
Pavg‖PH

) + K L
(
PE‖Pavg

)
+ 3K L

(
Pavg‖PE

) − K L
(
PO‖Pavg

) + 5 log 3

+
∫
z

(
PO(z) log

PH (z)

3Pavg(z)
+ PO(z) log

PE (z)

3Pavg(z)

)
dz

= K L
(
PH‖Pavg

) + 3K L
(
Pavg‖PH

) + K L
(
PE‖Pavg

)
+ 3K L

(
Pavg‖PE

) − K L
(
PO‖Pavg

)
+ OEH + 5 log 3 , (A8)

where OEH denotes
∫
z

(
PO(z) log PH (z)

3Pavg(z)
+ PO(z) log

PE (z)
3Pavg(z)

)
dz for convenience.Then,weanalyze K L

(
PH‖Pavg

)
+ 3K L

(
Pavg‖PH

) + K L
(
PE‖Pavg

) + 3K L
(
Pavg‖PE

) −
K L

(
PO‖Pavg

)
by the analysis of forces in the field of

physics. Since the KL dispersion is asymmetric, it can be
viewed as a force approximately. As shown in Fig. 5, we use
Fea, Fha, Fah, Fae to denote K L

(
PE‖Pavg

)
, K L

(
PH‖Pavg

)
,

K L
(
Pavg‖PH

)
,
(
Pavg‖PE

)
, respectively.E,H,O,Adenote

PE , PH , PO , PA, located at the three vertices and the center
of the triangle, respectively. Faeh denotes the resultant force,
and its direction represents the direction A moves. Fha and
Fea will keep E and H moving closer to A. By optimizing
LOT A, K L

(
PE‖Pavg

)
, K L

(
PH‖Pavg

)
, K L

(
Pavg‖PH

)
,(

Pavg‖PE
)
will keep decreasing until PE ≈ PH ≈ Pavg .

We use Fa denote −K L
(
PO‖Pavg

)
. Minimizing LOT A

increases K L
(
PO‖Pavg

)
, resulting in O constantly moving

away from A. DAO denotes the distance of A and O in the
optimal G. Moreover, minimizingLOT A will decrease OEH

and the output of the open-set data on D0 and D1, contribut-
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ing to enhancing the separability of ID and OOD distribution
as well. ��
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