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Abstract
Font generation presents a significant challenge due to the intricate details needed, especially for languages with complex
ideograms andnumerous characters, such asChinese andKorean.Althoughvarious few-shot (or even one-shot) font generation
methods have been introduced, most of them rely on GAN-based image-to-image translation frameworks that still face (i)
unstable training issues, (ii) limited fidelity in replicating font styles, and (iii) imprecise generation of complex characters.
To tackle these problems, we propose a unified one-shot font generation framework called Diff-Font, based on the diffusion
model. In particular, we approach font generation as a conditional generation task, where the content of characters is managed
through predefined embedding tokens and the desired font style is extracted from a one-shot reference image. For glyph-rich
characters such as Chinese and Korean, we incorporate additional inputs for strokes or components as fine-grained conditions.
Owing to the proposed diffusion training process, these three types of information can be effectively modeled, resulting in
stable training. Simultaneously, the integrity of character structures can be learned and preserved. To the best of our knowledge,
Diff-Font is the first work to utilize a diffusion model for font generation tasks. Comprehensive experiments demonstrate that
Diff-Font outperforms prior font generation methods in both high-fidelity font style replication and the generation of intricate
characters. Our method achieves state-of-the-art results in both qualitative and quantitative aspects.

Keywords Font generation · One-shot image generation · Diffusion model-based framework · Conditional generation

Communicated by Seon Joo Kim.

Haibin He and Xinyuan Chen have contributed equally to this work.

B Chaoyue Wang
chaoyue.wang@outlook.com

B Juhua Liu
liujuhua@whu.edu.cn

Haibin He
haibinhe@whu.edu.cn

Xinyuan Chen
xychen9191@gmail.com

Bo Du
dubo@whu.edu.cn

Dacheng Tao
dacheng.tao@ntu.edu.sg

Qiao Yu
yu.qiao@siat.ac.cn

1 School of Computer Science, National Engineering Research
Center for Multimedia Software, Institute of Artificial
Intelligence, and Hubei Key Laboratory of Multimedia and
Network Communication Engineering, Wuhan University,
Wuhan, China

1 Introduction

Words are omnipresent in our everyday lives, appearing on
book covers, signboards, advertisements,mobile phones, and
even clothing. As a result, font generation holds significant
commercial value and potential for application. However,
designing a font library could be an extremely challeng-
ing task, particularly for glyph-rich languages with complex
structures, such as Chinese (with over 60,000 glyphs) and
Korean (with over 11,000 glyphs). Recently, the progress
made in deep generative models, known for their capability
to produce high-quality images, has indicated the feasibility
of automatically generating diverse font libraries.
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“Zi2zi” Tian (2017) is the first to adopt Generative
Adversarial Networks (GANs) Goodfellow et al. (2020) to
automatically generate a Chinese font library by learning a
mapping from one style font to another, however, it needs
paired data which is labor-reliant and expensive to collect.
To facilitate the automatic synthesis of new fonts in an easy
manner, numerous Few-shot (or even one-shot) Font Genera-
tion (FFG) methods have been proposed. These methods use
a character image as the content and a few (or one) target char-
acters to supply the font style, then their models are trained
to generate the content character’s image with the target font
style. Most existing FFG methods are built upon the GAN-
based image-to-image translation framework. Some works
follow unsupervised methods to obtain content and style fea-
tures separately, and then fuse them in a generator to generate
new characters Zhang et al. (2018b), Gao et al. (2019), Xie
et al. (2021). Meanwhile, some other works exploit auxiliary
annotations (e.g., strokes, components) to make the models
aware of the specific structure and details about glyphs Jiang
et al. (2019), Cha et al. (2020), Park et al. (2021a, b, 2022),
Kong et al. (2022), Tang et al. (2022).

Although previous GAN-based methods have made sig-
nificant progress and achieved impressive visual quality, font
generation remains an extremely challenging long-tail task
due to its stringent requirements for intricate details. Most of
these methods still grapple with one or more of the follow-
ing three challenges. Firstly,GAN-basedmethods employing
adversarial training schemes may suffer from training insta-
bility and convergence difficulties, particularly with large
datasets. While some tricks can alleviate this issue to some
extent, they do not completely solve the problem. Secondly,
GAN-basedmethods generally treat font generation as a style
transfer problem between source and target image domains,
often failing to separately model content and font style of
characters. Consequently, neither significant font style trans-
fers (i.e., drastic style changes) yield satisfactory results,
nor subtle variations between two similar fonts are properly
modeled. Last but not the least, when source characters are
complex, these methods may struggle to ensure the integrity
of the generated character structure. A qualitative illustration
of problems arising from gaps in font style and complicated
characters can be found in Fig. 1.

Fig. 1 Illustration for the problems caused by the gap in font style and
complicated characters. a Example of significant font style changes:
When the styles between the source and target glyphs differ signif-
icantly, methods based on an image-to-image translation framework
may generate images with losing local details (column 3 and 4); b

Example for subtle font style variations: Our proposed Diff-Font can
well capture the subtle variations between two fonts with similar styles
while previous methods cannot; c Example for incorrect generation of
complicated character: Image-to-Image translation framework may not
perform well in generating characters with complicated structure
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To tackle the aforementioned challenges, we introduce
a novel diffusion model-based framework called Diff-Font
for one-shot font generation. Instead of treating font genera-
tion as a style/domain transfer between a source font domain
and a target font domain, the proposed Diff-Font approach
considers font generation as a conditional generation task.
Specifically, different character content is preprocessed into
unique tokens, in contrast to the image inputs employed
by previous methods which could cause confusion in sim-
ilar glyphs. Regarding font styles, we utilize a pre-trained
style encoder to extract style features as our conditional
inputs. Moreover, to mitigate imprecise generation issues
associated with glyph-rich characters, we incorporate a more
fine-grained condition signal to help Diff-Font better model
character structures. For Chinese fonts, we use stroke condi-
tions, as strokes represent the smallest units that make up
Chinese characters. Likewise, the components of Korean
characters serve as the additional conditional input for
Korean font generation. Instead of using the one-bit encod-
ing employed in StrokeGAN Zeng et al. (2021), we employ
count encoding to represent stroke (component) attributes,
which more accurately reflects the character’s stroke (com-
ponent) properties. Consequently, the proposed Diff-Font
effectively decouples the content and styles of characters,
yielding high-quality generation results for complex char-
acters. Simultaneously, thanks to the conditional generation
pipeline and diffusion process, Diff-Font can be trained on
large-scale datasets while exhibiting improved training sta-
bility compared to previous GAN-based methods. Lastly, we
assemble a stroke-aware dataset for Chinese font generation
and a component-aware dataset for Korean font generation.

In summary, the main contributions of this paper are as
follows:

– We present Diff-Font, a unified generative network for
robust one-shot font generation based on the diffusion
model. In comparison to GAN-based methods, Diff-Font
offers the advantages of stable training and the ability to
be effectively trained on large datasets. To the best of our
knowledge, this is the first attempt to develop a diffusion
model for font generation.

– The proposed Diff-Font tackles the font generation task
by employing a multi-attribute conditional diffusion
model instead of the image-to-image translation frame-
work. Character content and styles are processed as
conditions, and the diffusion model utilizes these con-
ditions to generate corresponding character images. Fur-
thermore, a more fine-grained condition, such as stroke
or component condition, is employed to enhance the
generation of scripts with complex structures. Extensive
experiments demonstrate the efficacy of our Diff-Font
for one-shot font generation in comparison to previous
state-of-the-art methods.

– We have compiled and annotated a stroke-wise dataset
for Chinese and a component-wise dataset for Korean,
which we believe can enhance font generation perfor-
mance from the perspective of strokes and components.
The source code, pre-trained models, and datasets are
available at https://github.com/Hxyz-123/Font-diff.

The rest of this paper is organized as follows. In Sect. 2, we
briefly review the related works. In Sect. 3, we introduce our
proposed method in detail. Section 4 reports and discusses
our experimental results. Lastly, we conclude our study in
Sect. 5.

2 RelatedWork

2.1 Image-to-Image Translation

The task of image-to-image translation involves learning a
mapping function that can transform source domain images
into corresponding images that preserve the content of the
original images while exhibiting the desired style character-
istics of the target domain. Generating fonts can be achieved
by means of the image-to-image translation models, which
can be used to generate any desired font styles from a given
content font image. Image-to-image translation using gen-
erative adversarial networks (GANs) has been a classical
problem in the field of computer vision. Many works have
been proposed to address this problem. Conditional GAN-
based methods Mirza and Osindero (2014), such as Pix2Pix
Isola et al. (2017), require paired data to guide the gener-
ation process. To eliminate the dependency on paired data,
unsupervised methods have been proposed, including cycle-
consistency-based approaches Zhu et al. (2017a), Yi et al.
(2017), Kim et al. (2017), Kancharagunta and Dubey (2019)
and the UNIT Liu et al. (2017) framework that leverages
CoGAN Liu and Tuzel (2016) and VAE An and Cho (2015).
BicycleGANZhu et al. (2017b) enables one-to-many domain
translation by building a bijection between latent coding and
output modes. For many-to-many domain translation, meth-
ods such as MUNIT Huang et al. (2018), CD-GAN Yang et
al. (2018) and FUNIT Liu et al. (2019) disentangle the con-
tent and style representations using two encoders and couple
them. Recently, due to the impressive results of the diffusion
model, many diffusion model-based methods Saharia et al.
(2022a), Sasaki et al. (2021), Zhao et al. (2022), Li et al.
(2022), Wolleb et al. (2022) are proposed to tackle image-to-
image tasks. However, controlling the generated output using
diffusionmodel-basedmethods remains a challenge, and fur-
ther exploration and development are needed, especially in
the context of font generation.

Existing image-to-image translation methods generally
focus on transforming object pose, texture, color, and style
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while preserving the content structure, which may not be
directly applicable to font generation. Unlike natural images,
font styles are primarily defined by variations in shape and
specific stroke rules rather than texture and style information.
As a result, content structure information may also change
during the font generation process. Therefore, applying
image-to-image translation methods directly cannot produce
satisfactory results.

2.2 Few-Shot Font Generation

Few-shot font generation aims to generate an entire font
library with thousands of characters with only a few
reference-style images as input. Existing few-shot font
generation methods are predominantly based on the image-
to-image translation framework, which transfers the source
style of content characters to the reference style. To incor-
porate font-specific prior information into the method or
the labels for careful design, various approaches have been
proposed, demonstrating the potential of integrating such
knowledge to improve the quality and diversity of generated
fonts. DG-Font Xie et al. (2021) implements effective style
transfer by replacing the traditional convolutional blocks
with deformable convolutional blocks in an unsupervised
framework TUNIT Baek et al. (2021). ZiGAN Wen et al.
(2021) projects the same character features of different styles
into Hilbert space to learn coarse-grained content knowl-
edge. Some methods employ extra information to enhance
training, e.g., strokes and components. SC-Font Jiang et al.
(2019) uses stroke-level data to improve the correctness of
structure and reduce stroke errors in generated images. DM-
Font Cha et al. (2020) employs a dual-memory architecture
to disassemble glyphs into stylized components and reassem-
ble them into new glyphs. Its extension version LF-Font Park
et al. (2021a, 2022) designs component-wise style encoder
and factorization modules to capture local details in rich
text design. MX-Font Park et al. (2021b) has a multi-headed
encoder for specializing in different local sub-concepts, such
as components, from the given image. FS-Font Tang et al.
(2022) proposes a Style Aggregation Module (SAM) and an
auxiliary branch to learn the component styles from refer-
ences and the spatial correspondence between the content
and reference glyphs. CG-GAN Kong et al. (2022) proposes
a component discriminator to supervise the generator decou-
pling content and style at a fine-grained level. However, all
methods mentioned above are based on GANs, which suf-
fer from instability during training due to their adversarial
objective and are prone to mode collapse, leading to subopti-
mal results especially for font styles with significant or subtle
variations. As a result, there remains potential for improve-
ment in the quality of font generation.

2.3 DiffusionModel

Diffusion Model is a new type of generative model that
leverages the iterative reverse diffusion process to gener-
ate high-quality images and model complex distributions.
It provides state-of-the-art performance in terms of image
quality and can generate diverse outputs without mode col-
lapse. Specifically, It employs a Markov chain to convert
the Gaussian noise distribution to the real data distribu-
tion. Sohl-Dickstein et al. (2015) first clarify the concept of
diffusion probabilistic model and denoising diffusion proba-
bilistic models (DDPM)Ho et al. (2020) improves the theory
and proposed to use a UNet to predict the noise added
into the image at each diffusion time step. Dhariwal and
Nichol (2021) propose a classifier-guidance mechanism that
adopts a pre-trained classifier to provide gradients as guid-
ance toward generating images of the target class. Ho and
Salimans (2022) propose a technique that jointly trains a con-
ditional and an unconditional diffusion model without using
a classifier named classifier-free guidance. DDIM Song et al.
(2020) extends the original DDPM to non-Markovian cases
and is able to make accurate predictions with a large step
size that reduces the sampling steps to one of the dozens.
Glide Nichol et al. (2021), DALL-E2 Ramesh et al. (2022),
Imagen Saharia et al. (2022b) and Stable Diffusion Rombach
et al. (2022) introduce a pre-trained text encoder to gener-
ate semantic latent spaces and achieve exceptional results
in a text-to-image task. Although the above methods have
shown amazing results in image generation, they often focus
on generating a specific category of objects or concept-driven
generation guided by text prompts, with limited controllabil-
ity.

Some other works explore the use of multiple conditions
to guide the generation of diffusion models. SDG Liu et al.
(2021) designs a sampling strategy, which adds multi-modal
semantic information to the sampling process of the uncondi-
tional diffusion model for achieving language guidance and
image guidance generation. ILVR Choi et al. (2021) uses a
reference image at each time step during sampling to guide
the generation. Diss Cheng et al. (2022) uses stroke images
and sketch images as multi-conditions to train a conditional
diffusion model to generate images from hand-drawings. Liu
et al. (2022) consider the diffusion model as a combina-
tion of energy-based models and propose two compositional
operators, conjunction and negation, to achieve zero-shot
combinatorial generalization to a larger number of objects.
Nair et al. (2022) guides the generation of diffusionmodel by
calculating the comprehensive condition scores of multiple
modes to solve the problemofmulti-modal image generation.
ControlNet Zhang and Agrawala (2023) introduces an extra
conditional control module to enable a pre-trained diffusion
model to be applied to specific tasks. This work is further
extended by the multi-attribute conditional diffusion model
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which introduces composite-wise and stroke-wise attributes
conditional for better training and attribute-wise diffusion
guidance strategy for stroke-aware or component-aware font
generation.

3 Methodology

In this section, we introduce the details of Diff-Font. We
first illustrate the framework of our model by incorporat-
ing the attributes of content, style, strokes and components
(Sect. 3.1). Then, we elucidate the training process by for-
mulating our multi-attributes conditional diffusion model
(Sect. 3.2). Lastly, we present the adopted strategy to achieve
attribute-wise guidance that can set the guidance level of
attribute conditions separately during the generation process
(Sect. 3.3).

3.1 The Framework of Diff-Font

The framework of our proposed Diff-Font is illustrated in
Fig. 2. As shown, Diff-Font consists of two modules: a char-
acter attributes encoder, which encodes the attributes of a
character (i.e., content, style, strokes, components) into a
latent variable, and a diffusion generation model, which uses
the latent variable as a condition to generate the character
image from Gaussian noise. The character attributes encoder
is designed to process the attributes (content, style, strokes,
components) of a character image separately.

In the character attributes encoder f , the content (denoted
as c), style (denoted as s), and optional condition (like strokes
or components, denoted as op) are encoded as the latent
variable: z = f (c, s). If using the optional condition, then
z = f (c, s, op). Unlike previous font generation methods
based on image-to-image translation that use the images from
the source domain to obtain the content representations, we
regard different content characters as different tokens. As
practices commonly used in the NLP community (Devlin et
al., 2018; Cui et al., 2021; Touvron et al., 2023), we adopt
a randomly initialized embedding layer to convert different
tokens of characters into different content representations.
Specifically, different character content is first tokenized, and
then the embedding layer is employed to transform these
tokens into unique content embeddings. The content embed-
ding layer is updated together with the diffusion generator.
There are three reasons why we chose a content embedding
layer instead of a content encoder. Firstly, characters are usu-
ally a finite set, making it possible to use countable tokens to
represent the content of character and encode tokens as con-
tent embedding by a content embedding layer. Secondly, a
content embedding layer consumes less computing resources
than a content encoder. Lastly, using an embedding layer to
encode the tokenized content can avoid the confusion of sim-
ilar glyphs when using content encoder.

The style representation is extracted by a pre-trained style
encoder. A trained style encoder in DG-Font is used as our
pre-trained style encoder and its parameters are frozen in our
diffusion model training. As for strokes (or components), we
encode each character into a 32-dimensional vector. Each

Fig. 2 Overview of our proposed method. In the diffusion process, we
gradually add noise to image x0, and make it become approximately
a Gaussian noise after time step T. For the reverse diffusion process,
we use a latent variable z, which contains the content, style, and other

optional attributes semantic information of x0, as a condition to train a
diffusion model (based on UNet architecture) to predict the added noise
at each time step in the diffusion process

123



International Journal of Computer Vision

Fig. 3 a 32 basic strokes of Chinese characters. The first and sixth
columns are the dimensional locations of the basic strokes in the stroke
vector. b Strokes and stroke count encoding vector of Chinese character
‘Tong’. Each dimension of the encoding vector represents the counts of
corresponding basic stroke it contains

dimension of the vector represents the number of corre-
sponding basic strokes (or components) it contains (shown in
Figs. 3 and 4). This count encoding can better represent the
stroke (or component) attribute of a character than one-bit
encoding used in StrokeGAN Zeng et al. (2021). Thereafter,
a stroke (or component) vector can be expanded into a vec-
tor consistent with the dimension of the content embedding.
Using this method, we can obtain attribute representations of
a character image and then concatenate them as a condition
z for later conditional diffusion model training.

In the diffusion process, we add random gaussian noise to
the real image x0 slowly to obtain a long Markov chain from
the real image x0 to noise xT . We adopt UNet architecture as
our diffusion model and follow Dhariwal and Nichol (2021)
to learn the reverse diffusion process. The reverse diffusion
process generates characters images from gaussian noise by
using multi-attributes condition latent variable z. This con-
ditional generation is designed to mitigate the impact of the
distinction in font style.

Fig. 4 a 24 basic components of Korean characters. bComponents and
count encoding vector of example Korean character. We encode Korean
components in the same way as Chinese strokes. Since Korean has only
24 basic components, we pad into 32 dimensions with 0

3.2 Multi-Attributes Conditional DiffusionModel

In our method, we regard each raw image of the char-
acter which is determined by its content (c), style (s)
(and optional conditions (op)) attributes as a sample in
the whole training data distribution, and denote the sam-
ple as x0 ∼ q(x0 | f (c, s)). If using the optional condition,
then, x0 ∼ q(x0 | f (c, s, op)). Like the thermal motion of
molecules, we add randomGaussian noise to the image thou-
sands of times to gradually transform it from a stable state to
a chaotic state. This process is called diffusion process and
can be defined as:

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1), (1)

where

q(xt | xt−1) = N (xt ;
√
1 − βt xt−1, βt I),

t = 1, . . . , T , (2)

and β1 < · · · < βT is a variance schedule following Ho et
al. (2020). According to the Eq. 2, xt can be rewritten as:

xt = √
1 − βt xt−1 + √

βtεt−1, εt−1 ∼ N (0, I) (3)

= √
ᾱt x0 + √

1 − ᾱtε, ᾱt =
t∏

i=1

αi , ε ∼ N (0, I) (4)

∼ N (xt ;
√

ᾱt x0, (1 − ᾱt )I) (5)
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where αt = 1 − βt , and αt is negatively correlated with βt ,
therefore α1 > · · · > αT . When the T −→ ∞, ᾱT close to
0, xT nearly obeys N (0, I) and the posterior q(xt−1 | xt ) is
also a Gaussian. So in the reverse process, we can sample a
noisy image xT from an isotropic Gaussian and generate the
designated character image by denosing the xT in the long
Markov chain with a multi-attributes condition z = f (c, s)
(if using the optional condition, then, z = f (c, s, op)) that
contains the semantic meaning of character. Since the poste-
riorq(xt−1 | xt ) is hard to estimate,we use pθ to approximate
the posterior distribution which can be denoted as:

pθ (x0:T | z) = p(xT )

T∏

t=1

pθ (xt−1 | xt , z), (6)

pθ (xt−1 | xt , z) = N (μθ (xt , t, z),�θ (xt , t, z)), (7)

Following DDPM Ho et al. (2020), we set �θ(xt , t, z)
as constants and the diffusion model εθ (xt , t, z) learns to
predict the noise ε added to x0 in diffusion process from xt
and condition z for easier training. Through these simplified
operations, we can adopt a standard MSE loss to train our
multi-attributes-conditional diffusion model:

Lsimple = Ex0∼q(x0),ε∼N (0,I),z[‖ ε − εθ (xt , t, z) ‖2]. (8)

3.3 Attribute-wise Diffusion Guidance Strategy

For glyph-rich scripts (e.g., Chinese and Korean), we adopt a
two-stage training strategy to improve the generation effect.
Based on the multi-attributes conditional training (i.e., first
training stage), we also design a fine-tuning strategy (sec-
ond training stage) that randomly discards content attribute
or stroke (or component) attribute vectors with a 30% proba-
bility. If the content and stroke (or component) are discarded
at the same time, the style attribute vector also be discarded.
Such strategy has two advantages: first, it can enable our
model to be more sensitive to these three attributes, and sec-
ond, it can reduce the number of hyperparameters for we
only need two guidance scales instead of three. In our case,
we use zero vectors to replace the discarded attribute vectors,
denoted as 0. When sampling, we modify the predicted noise
to ε̂θ :

ε̂θ (xt , t, f (c, s, op)) = εθ (xt , t, 0)

+ s1 ∗ (εθ (xt , t, f (c, s, 0)) − εθ (xt , t, 0))

+ s2 ∗ (εθ (xt , t, f (0, s, op)) − εθ (xt , t, 0)),

(9)

where s1 and s2 are the guidance scales of content and strokes.
Thenwe adoptDDIMSong et al. (2020) to sample on a subset
of diffusion steps {τ1, . . . , τS} and set the variance weight
parameter η = 0 to speed up the generation process. So, we

can obtain xτi−1 from xτi by the following equation:

xτi−1 =
√

ᾱτi−1

(
xτi − √

1 − ᾱτi ε̂θ√
ᾱτi

)
+

√
1 − ᾱτi−1 ε̂θ . (10)

The final character image x0 can be obtained by iterating
through the above formula.

4 Experiments

In this section, we evaluate the performance of the proposed
method on the one-shot font generation task by comparing
it with state-of-the-art methods. In Sect. 4.1, we first intro-
duce the datasets and evaluation metrics used to conduct
experiments. The implementation details are described in
Sect. 4.2. The results of qualitative and quantitative com-
parisons between Diff-Font and previous SOTA methods on
different script generation are listed in Sects. 4.3, 4.4, 4.5
and 4.6. Limitations are discussed in Sect. 4.7.

4.1 Datasets and EvaluationMetrics

4.1.1 Chinese Font Datasets

We collect 410 fonts (styles) including handwritten fonts and
printed fonts as our whole dataset. Each font has 6625 Chi-
nese characters that cover almost all commonly used Chinese
characters. To evaluate the capacity of methods for different
scale datasets, we use a small dataset and a large dataset
for experiments. For the small dataset, the training set con-
tains 400 fonts and 800 randomly selected characters, and
the testing set contains the remaining 10 fonts with the same
characters as the training set. For the large dataset, we use
the same 400 fonts but all 6625 characters in training. The
testing set consists of the remaining 10 fonts and 800 char-
acters with complex structures and multiple strokes. In our
experiment, the number of small dataset is set consistent with
previous methods Xie et al. (2021). For fair comparison, the
image size is also the same as the previous methods Xie et
al. (2021), Zhang et al. (2018b), which is set as 80 × 80.

4.1.2 Evaluation Metrics

In order to quantitatively compare our method with other
advanced methods, we use the common evaluation metrics
in image generation task, e.g., SSIM Wang et al. (2004),
RMSE, LPIPS Zhang et al. (2018a), FIDHeusel et al. (2017).
SSIM (Structural Similarity) imitates the human visual sys-
tem to compare the structural similarity between two images
from three aspects: luminance, contrast and structure. RMSE
(Root Mean Square Error) evaluates the similarity between
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two images by calculating the root mean square error of their
pixel values. Both of them are pixel-level metrics. LPIPS
(Learned Perceptual Image Patch Similarity), a perceptual-
level metric, measures the distance between two images in a
deep feature space.

For computing the FID, we utilize an Inception-v3 model
pre-trained on the ImageNet dataset Heusel et al. (2017) in
accordance with Xie et al. (2021), Kong et al. (2022). Then
calculating the Fréchet Distance between the final average
pooling features of generated images and real images which
are extracted by the Inception-v3 model. Following previ-
ous works Park et al. (2021a, b, 2022), we trained content
classifier on test characters and style classifier on test fonts
to classify character labels (content-aware) and font labels
(style-aware). The architecture of classifiers are consistent
with the setting inMX-font Park et al. (2021b).ACCC , ACCS

and ACCB represent the classification accuracy of content
labels, style labels, and combining content and style labels,
respectively, as measured by these two trained classifiers.
Moreover, we follow the similar idea in MX-font to conduct
user study for human testing.

4.2 Implementation Details

4.2.1 Character Attributes Encoder

Character attributes encoder in Diff-Font consists of a con-
tent embedding layer, a style encoder, a style embedding
layer, and an optional embedding layer. The architecture of
our style encoder is the same as the style encoder in DG-
Font, and the dimensions of the output feature maps are set
to 128. Specifically, we adopt an embedding layer for the
content attribute and optional attribute respectively, and an
MLP for the style attribute. If using the optional attribute,
the dimensions of the content, style and optional attribute
vectors are set to 128, 128 and 256, respectively. Otherwise,
the dimensions of both the content and style vectors are set
to 256. Finally, they are concatenated as a 512 dimensions
conditional latent vector z for training.

4.2.2 Multi-attributes Conditional Diffusion Model

Our multi-attributes conditional diffusion model is based on
DDPM architecture. We list the hyperparameters setting for
our training in Table 1. For sampling, we set 25 sampling
steps to speed up the generation process.

4.3 Comparison with State-of-the-art Methods

Due to the complexity of the dataset we use, in addition to
the natural image generation method FUNIT, we choose two
advanced font generation methods, MX-Font and DG-Font,
forChinese one-shot font generation comparison: (1)FUNIT

Table 1 Hyperparameters setting for multi-attributes conditional dif-
fusion model

Small dataset Large dataset

Images trained 320K 2.65M

Batch size 24 64

Channels 128 128

Res. blocks num 3 3

Channel multiplier 1, 2, 3, 4 1, 2, 3, 4

Attention resolution [40, 20, 10] [40, 20, 10]

Diffusion steps 1000 1000

Noise Schedule Linear Linear

Conditional training iters 300k 420k

Fine-tuning iters 300k 380k

Learning rate 1e−4 1e−4

Optimizer Adam with no weight decay

Loss MSE MSE

Liu et al. (2019): FUNIT is a few-shot image-to-image
translation framework that disentangles content and style
representations by two different encoders and uses AdaIN
Huang and Belongie (2017) to couple them. (2) MX-Font
Park et al. (2021b): MX-Font extracts different local sub-
concepts by employingmulti-headed encoders. (3)DG-Font
Xie et al. (2021): DG-Font uses the deformable convolu-
tion to replace the traditional convolution in an unsupervised
framework. All these methods are based on GANs.

We use both datasets described in Sect. 4.1 to retrain mod-
els of FUNIT,MX-Font and DG-Font. During the generation
process, only one reference character image with the target
font is used. When evaluating these GANs-based methods,
we choose the Song font commonly used in the font gen-
eration task as the source font Xie et al. (2021), Park et al.
(2021b).

4.3.1 Quantitative Comparison

Table 2 shows the quantitative comparison results between
our method and other previous state-of-the-art methods. In
the experiments on both small and large datasets, Diff-Font
achieves the best performance on all evaluation metrics of
SSIM, RMSE, LPIPS and FID. In particular, our method
has a great improvement over the second-best method in
terms of FID indicators, 22.4% for the small dataset and
39.2% for the large dataset. The excellent performance on
two scale datasets demonstrates the effectiveness and advan-
tage of our Diff-Font. As for classification results, Diff-Font
outperforms other methods in terms of ACCC , ACCS and
ACCB , both on small and large datasets.

123



International Journal of Computer Vision

Table 2 Quantitative comparison results on two different scale datasets

Methods SSIM (↑) RMSE (↓) LPIPS (↓) FID (↓) ACCC (↑) ACCS (↑) ACCB (↑)
Quantitative comparison on small dataset

FUNIT 0.700 0.303 0.166 35.20 98.81 81.06 80.25

MX-Font 0.721 0.283 0.151 37.15 97.68 81.28 79.36

DG-Font 0.729 0.280 0.137 43.44 98.29 82.28 81.05

Diff-Font(ours) 0.742 0.271 0.124 27.30 99.36 93.05 92.46

Quantitative comparison on large dataset

FUNIT 0.682 0.311 0.166 26.70 75.71 78.59 60.34

MX-Font 0.692 0.298 0.138 26.64 95.01 78.30 74.20

DG-Font 0.709 0.292 0.112 28.63 95.25 92.81 88.24

Diff-Font(ours) 0.722 0.277 0.104 16.20 95.78 96.55 92.48

ACCC , ACCS and ACCB respectively indicate the classification accuracy of content labels, style labels, and combining content and style labels.
The best performance is marked in bold

4.3.2 Qualitative Comparison

The qualitative comparison results are shown in Fig. 5. For
qualitative comparison, we define style and content based on
the difficulty of implementation as follows. The target styles
similar to the source font are regarded as easy styles, other-
wise as difficult styles. The characters with the number of
strokes less than or equal to 10 are defined as easy contents,
and the characters with the number of strokes more than or
equal to 15 as difficult contents. We make qualitative com-
parisons under the three settings of ESEC (easy styles and
easy contents), ESDC (easy styles and difficult contents),
and DSDC (difficult styles and difficult contents), respec-
tively. As shown in Fig. 5, FUNIT often generates incomplete
characters, and when the character structure is more com-
plex, it would produce distorted structures. MX-Font could
maintain the shape of characters to a certain extent, but it
tends to generate vague characters and unclear backgrounds.
DG-Font performswell in ESEC task, but losses some impor-
tant stroke detailed local components in ESDC and DSDC
tasks. Compared to these previous methods, our proposed
Diff-Font could generate high quality character images in all
three tasks.

In addition, Fig. 6 shows more qualitative comparison
results on four chosen art fonts to better illustrate the effec-
tiveness and advantages of Diff-Font. As these comparison
results, when there is significant stylistic difference between
the source and target font, GAN-based image-to-image trans-
lation frameworks would lead to worse structural distortion
and loss of details, and our proposed Diff-Font based on
conditional diffusion model could effectively reduce the
occurrence.

4.3.3 Human Testing

We conducted a user study with 10 test fonts, as specified in
Sect. 4.1.

Each method was applied to generate a line of ancient
Chinese poetry on each font, and 64 participants were asked
to evaluate the results based on content, style and both of
them, respectively. Participants chosen their favorite output,
so we obtained 64×10×3 = 1920 results and calculated the
percentage of scores for each method. Some visualization of
generation examples are shown in Fig. 7, and study results
are presented in Table 3.

As can be seen, our proposed Diff-Font achieves the best
score in human testing among the three evaluation criteria,
which also verifies the effectiveness of our proposed frame-
work.

4.4 Ablation Studies

In this part, we further conduct ablation studies to evaluate
the effectiveness of the stroke count encoding, and discuss
the impact of guidance scales.

4.4.1 Effectiveness of the Stroke Count Encoding

We train three Diff-Font separately on the small dataset, one
does not use the stroke condition, one uses the one-bit encod-
ing stroke condition and the remaining one uses the count
encoding stroke condition. As is shown in Table 4, using
count encoding stroke condition achieves the best quantita-
tive results in all evaluation metrics among the three models
and we can observe that adding the one-bit encoding stroke
condition (Fig. 8) even causes a decline in model perfor-
mance. In the visualization result of columns 2 and 3 in Fig. 9,
we find that other characters with the same basic strokes are
generated when using the one-bit encoding. And according
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Fig. 5 Example generation results on large test dataset. Easy style means the style of the reference font is similar to the source font. The characters
with 10 or fewer strokes are easy contents, and those with 15 or more are difficult contents
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Fig. 6 Example generation results of MX-Font, DG-Font, Diff-Font on four art fonts. It can be seen that the structure of the characters generated
by MX-Font is severely distorted and the characters generated by DG-Font may contain artifacts

to column 4 and column 5 in Fig. 9, when in the case of gener-
ating a difficult structure character, Diff-Font without stroke
condition and Diff-Font with one-bit encoding may gener-
ate characters with stroke errors since the number of basic
strokes is not explicitly encoded. These reveals that count
encoding is effective for improving the quality by preserving
a completed number of strokes.

4.4.2 Impact of Guidance Scales

We further discuss the impact of content and stroke on the
generation by setting different content scales (s1) and stroke
scales (s2). Our experiments are conducted on the test set in

Fig. 7 An example for human testing. The first column shows three
characters with the reference target style, and the first row lists charac-
ters with source content
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Table 3 Results of Human
testing

FUNIT (%) MX-Font (%) DG-Font (%) Diff-Font (%)

Content 6.41 6.41 26.09 61.09

Style 13.91 17.65 19.38 49.06

Both 13.44 13.28 4.53 48.75

Best results is marked in bold

Table 4 Effectiveness of the stroke count encoding form versus one-bit stroke encoding

Methods SSIM (↑) RMSE (↓) LPIPS (↓) FID (↓) ACCC (↑) ACCS (↑) ACCB (↑)
w/o strokes 0.740 0.275 0.127 28.83 99.15 89.14 88.56

One-bit encoding 0.739 0.277 0.131 30.44 98.38 88.38 87.40

Count encoding 0.742 0.271 0.124 27.30 99.36 93.05 92.46

Best results is marked in bold

Fig. 8 One-bit stroke encoding in StrokeGAN Zeng et al. (2021). Each
dimension of the encoding vector indicates whether the character con-
tains the corresponding basic stroke

Fig. 9 Qualitative results of ablation studies using different stroke con-
dition. The first row is the ground truth, and from the second to the
fourth row are results of Diff-Font without stroke condition, with one-
bit stroke encoding, with stroke count encoding, respectively

large dataset mentioned in Sect. 4.1. In Table 5, we obtain
that using the setting s1 = 3, s2 = 3 can get the best quality
generated images.

4.5 Korean Script Generation

Our proposed Diff-Font is language independent, so it
provides potential general solution for font generation in dif-
ferent languages by utilizing various attribute conditions. In
this section, we evaluate the effectiveness of Diff-Font in

Korean. As illustrated in Fig. 4, the Chinese stroke condition
can be substituted with the component condition of Korean.

Specifically, we collect a dataset of 201 Korean fonts, 195
for training, and the remaining 6 for testing. This dataset con-
tains 2350 Korean characters. To evaluate the effectiveness
of our proposed method, we conducted comparisons with the
DG-Font andMX-Font approaches in generating 800Korean
characters and the results are presented in Table 6 and Fig. 10.
We can see that our method also achieves the best results in
generating Korean script.

4.6 Other Script Generation

As for some simple scripts without complex structures
(e.g., Latin and Greek), we can train a Diff-Font in the first
stage by only using content and style attribute conditions
without fine-tuning in the second stage. As shown in Fig. 11,
ourmodel is also effective inLatin andGreek font generation.

4.7 Limitations

As our proposed Diff-Font is based on the denoising diffu-
sionmodel, it has the sameproblemasmost existing diffusion
models with low inference efficiency. Moreover, our exper-
imental results show that equipping with stroke/component
condition for font generation could reduce generation errors,
but cannot completely eliminate them. Some characters with
extreme intricate structures or uncommon styles that were
infrequently encountered in the training set still suffer gen-
eration failures. Some failure cases are shown in Fig. 12.
In addition, Diff-Font can only generate the characters it
has seen before. This limitation arises from the utilization
of tokenization processes for character content, as it is now
incapable to define tokens for unseen characters. However,
the character set is normally finite, the character dictionary
used for tokenization can cover almost all commonly used
characters, as shown in the experimental setting of Sect. 4.1.
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Table 5 Impact of guidance scales

Scales SSIM (↑) RMSE (↓) LPIPS (↓) FID (↓) ACCC (↑) ACCS (↑) ACCB (↑)
s1 = 1, s2 = 1 0.720 0.280 0.108 16.67 93.59 95.16 89.13

s1 = 1, s2 = 3 0.720 0.281 0.112 16.88 93.26 95.35 89.04

s1 = 1, s2 = 5 0.716 0.285 0.120 17.16 92.16 95.50 88.23

s1 = 3, s2 = 1 0.722 0.279 0.105 16.36 95.60 95.28 91.11

s1 = 3, s2 = 3 0.722 0.277 0.104 16.20 95.78 96.55 92.48

s1 = 5, s2 = 1 0.720 0.280 0.107 16.18 95.85 93.45 89.49

s1 = 5, s2 = 3 0.721 0.278 0.104 16.27 95.84 96.43 92.48

The best and second-best results are marked in bold and underlined, respectively

Table 6 Quantitative results on
Korean script

Methods SSIM (↑) RMSE (↓) LPIPS (↓) FID (↓) ACCC (↑) ACCS (↑) ACCB (↑)
MX-Font 0.691 0.278 0.158 47.05 93.52 48.50 44.85

DG-Font 0.771 0.235 0.095 43.36 92.81 80.33 73.52

Diff-Font 0.812 0.196 0.072 10.69 94.83 99.13 94.13

Best results are marked in bold

Fig. 10 Qualitative results on Korean script

Fig. 11 Example generation results of Diff-Font on Latin and Greek

Fig. 12 Some failure cases. Characters with extreme complex struc-
tures or uncommon styles still suffer generation failures

Therefore, Diff-Font is able to generate a comprehensive set
of commonly used characters. Moreover, we have noticed
that continual learning can expand the task scope of the
model. In the future work, we will investigate leveraging this
technology to endow Diff-Font with the ability to generate
unseen characters.
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5 Conclusion

In this paper, we propose a unified method based on the
diffusion model, namely Diff-Font, for one-shot font gen-
eration task. The proposed Diff-Font has a stable training
process and can be well-trained on large datasets. To address
the problems of unsatisfactory generation results on large
or subtle differences in the style of source font and target
font faced by previous GANs-based methods, we regard font
generation as a conditional generation task and generate the
corresponding character images according to the given char-
acter attribute conditions. Furthermore, we introduce stroke-
and component-wise information to improve the structural
integrity of generated characters and solve the problem of
low generation quality of complicated characters for Chi-
nese and Korean generation. The remarkable performance
on two datasets with different scales shows the effectiveness
of Diff-Font.
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