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Abstract
Generalization across various forgeries and robustness against corruption are pressing challenges of forgery detection.
Although previous works boost generalization with the help of data augmentations, they rarely consider the robustness
against corruption. To tackle these two issues of generalization and robustness simultaneously, in this paper, we propose a
novel forgery detection generative adversarial network (FD-GAN), which consists of two generators (a blend-based generator
and a transfer-based generator) and a discriminator. Concretely, the blend-based generator and the transfer-based generator can
adaptively create challenging synthetic images with more flexible strategies to improve generalization. Besides, the discrim-
inator is designed to judge whether the input is synthetic and predicts the manipulated regions with a collaboration of spatial
and frequency branches. And the frequency branch utilizes Low-rank Estimation algorithms to filter out adversarial corruption
in the input for robustness. Furthermore, to present a deeper understanding of FD-GAN, we apply theoretical analysis on
forgery detection, which provides some guidelines on data augmentations for improving generalization and mathematical
support for robustness. Extensive experiments demonstrate that FD-GAN exhibits better generalization and robustness. For
example, FD-GAN outperforms 14 existing methods on 3 benchmarks in generalization evaluation, and it separately improves
the performance against 6 kinds of adversarial attacks and 7 types of distortions by 16.2% and 2.3% on average in robustness
evaluation.

Keywords Face forgery · Forgery detection · Generative adversarial networks

1 Introduction

With the rapid development of deep learning, generative
models like Variational Auto-Encoders (VAEs) (Kingma &
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Welling, 2013), Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014a), and Diffusion Models (Ho et al.,
2020) have been present in many fields and made signif-
icant progress. Along with these generative methods, face
forgery has become a popular topic in recent research, such
as FaceSwap.However, by synthesizing realistic faces to fool
human beings, face forgery techniques expose risks and may
be used for nefarious purposes, such as fake news and finan-
cial fraud. Therefore, to eliminate these potential threats,
forgery detection has become a significant research direc-
tion, where plenty of efforts (Li et al., 2021b; Luo et al.,
2021; Chen et al., 2022; Liu et al., 2021; Qian et al., 2020)
are spurred to face forgery detection.

Current forgery detectors can achieve excellent perfor-
mance when the training and testing forgeries are from
the same datasets and deepfake techniques, dubbed as
“in-dataset" settings since they focus on method-specific
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Fig. 1 Challenges in forgery detection. a Current forgery detectors
usually make predictions depending on the method-specific synthetic
textures (e.g., Deepfakes (DF)). b Unseen deepfake techniques hold
quite different synthetic textures (e.g., DF-VAE (Jiang et al., 2020a),
Face2Face (F2F) (Thies et al., 2016), FaceSwap (FS), and Neural-
Textures (NT) (Thies et al., 2019)), which causes the challenge of
generalization across datasets. c Perturbations poison these textures
(e.g., blur, noise, block, and adversarial attacks (Szegedy et al., 2014;
Goodfellow et al., 2014b; Li et al., 2021a)), which leads to the challenge
of robustness against corruption

synthetic textures (Fig. 1a) 1. Although these detectors can
achieve good performance under “in-dataset" settings, for
practical usage, there are still two inevitable challenges
for face forgery detection. (1) The first challenge is the
generalization of forgery detectors across various datasets
(“cross-dataset" settings), where the testing forgeries are cre-
ated by unseen advanced deepfake methods. Due to the gap
in synthetic textures between the training and testing data
generated by various deepfake methods, as shown in Fig. 1b,
existing forgery detectors usually suffer from poor detection
performance. (2) The other challenge is the robustness of
forgery detectors. Since there are many uncertainties in the
real world, natural media data is often disturbed by common
corruption like blur, compression, and designed adversar-
ial attacks (Szegedy et al., 2014; Goodfellow et al., 2014b;
Li et al., 2021a; Feng et al., 2021, 2023b, a), as shown in
Fig. 1c. These perturbations may poison some discriminative
synthetic textures and mislead forgery detectors to incorrect
predictions, thereby reducing their performance.

For the aforementioned two challenges, plenty of works
have made impressive progress in boosting the generaliza-
tion for cross-dataset detection, while few works focus on
improving the robustness. (1) To improve the generalization
across datasets, in earlier years, it is proposed to apply fre-
quency artifacts (Durall et al., 2020; Liu et al., 2021; Qian et
al., 2020) and spatial information (Wang et al., 2020; Afchar
et al., 2018; Nguyen et al., 2019b). Recently, researchers
have found data augmentations can lead to better gener-
alization improvement, and many works focus on taking

1 Figure 1a and b display that different forgery techniques may produce
forgeries with different textures, and existing forgery detection meth-
ods mainly focus on method-specific synthetic textures to improving
performance on the specific forgery.

advantage of data augmentations to enhance the general-
ization further. Specifically, they usually synthesize various
data by empirically designed augmentations, like generating
blended images from two pristine images. Although these
augmented-based methods can improve the detector’s gen-
eralization, to a certain extent, they also have some defects.
Firstly, their designed augmentations mainly depend on intu-
itive thoughts, which only include limited fixed synthetic
strategies. Although SLADD (Chen et al., 2022) tries to
construct various samples dynamically by adversarial learn-
ing, its manipulated region selection is still hand-crafted, and
the synthetic strategy remains blend-based. Secondly, these
augmented-based methods lack theoretical analysis for the
effectiveness of data augmentations, and they do not take into
account the use of frequency information to further improve
the generalization like earlier works (Durall et al., 2020; Liu
et al., 2021; Qian et al., 2020). (2) For robustness, among
these attempts to improve the generalization, only limited
works (Haliassos et al., 2022, 2021) consider keeping detec-
tors robust against corruption, especially more threatening
adversarial perturbations. Thus, an investigation on simul-
taneously improving the generalization and robustness of
forgery detectors with theoretical analysis is noteworthy.

Inspired by the aforementioned discussion, in this paper,
we propose a forgery detection generative adversarial net-
work (FD-GAN) with two generators (i.e., a blend-based
generator and a transfer-based generator) for adaptive data
augmentations and a discriminator (i.e., the forgery detector),
which can simultaneously boost both the generalization and
robustness. Specifically, the blend-based generator adap-
tively calculates manipulated regions (i.e., the forgery
masks) for blending. And the transfer-based generator
mixes the synthetic style in the fake reference image and
the semantics in the real source image to make augmen-
tations. Moreover, to further improve the generalization,
we design the discriminator to judge whether the input is
synthetic and predict manipulated regions (i.e., the forgery
prototypes) with a collaboration of the spatial and frequency
branches, like earlier works (Durall et al., 2020; Liu et al.,
2021; Qian et al., 2020). Concretely, the spatial branch aims
to compute spatial features and predict forgery prototypes,
and the frequency branch works for mining helpful and
generalizable frequency cues. Further, to boost the robust-
ness of the detector, we propose a Low-rank Module in the
frequency branch, which utilizes the Low-rank Estimation
algorithm (Zhuo et al., 2021; Li et al., 2018b; Zhang et
al., 2019) to filter out adversarial corruption. Therefore, our
method can explore a large variety of augmented forgeries
from the adaptive generatorwith spatial and robust frequency
cues to improve generalization and robustness progressively.
Besides, we also provide a theoretical analysis about the
generalization and the robustness against adversarial attacks
to guarantee the effectiveness of the proposed method. And
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extensive experiments illustrate that our method can achieve
state-of-the-art performance on forgery detection in both in-
dataset and cross-dataset settings. In addition, the robustness
of our method against adversarial attacks can also be demon-
strated by experiments. Meanwhile, experimental results in
Sect. 4.4 also verify the robustness of our method against
common corruption (e.g., blur, noise, and etc.).

The contributions of our paper are as follows:

• We propose a forgery detection generative adversar-
ial network (FD-GAN) with two generators (i.e., a
blend-based generator and a transfer-based generator) for
adaptive data augmentations and a discriminator (i.e., the
forgery detector), which can not only improve the gen-
eralization across datasets but also boost the robustness
against corruption and adversarial attacks.

• We design the discriminator to identify whether the input
is real and indicate the manipulated regions with spatial
and frequency branches. Besides, an LRM in the fre-
quency branch based on Low-rank Estimation removes
adversarial corruption to keep our model robust.

• Our method achieves superior performance on face
forgery detection than current state-of-the-art methods in
both in-dataset and cross-dataset settings. Moreover, our
method shows strong robustness against common corrup-
tion and adversarial attacks.

2 RelatedWork

Face Forgery Techniques. In the past decades, face forgery
techniques have rapidly developed. Early attempts (Dale et
al., 2011; Garrido et al., 2014, 2015; Thies et al., 2015) on
face forgery usually reconstruct 3D models for both source
and target faces and generate synthetic videos. For example,
Face2Face (Thies et al., 2016) is a classical real-time face
forgery technique with 3D model reconstruction and image-
based rendering. Somemethods, like FaceSwap, even simply
utilize only image processing to create synthetic faces. With
the development of deep learning, many face forgery tech-
niques [(e.g., Deep Video Portraits (Kim et al., 2018) and
Neural Textures (Thies et al., 2019)] apply neural networks
in their pipeline for facial reenactment. Recently, Generative
models like Variational Auto-Encoders (VAEs) (Kingma &
Welling, 2013), Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014a), and Diffusion Models (Ho et
al., 2020) have revealed excellent performance in AI-content
generation (AIGC) and become common choices for face
forgery generation. Since these techniques can produce high-
quality synthetic facial images and videos, their potential
threats should be seriously considered.
Face Forgery Detection. Recent research has seen different
attempts on face forgery detection (Wang et al., 2020;Rossler

et al., 2019; Yang et al., 2019; Li et al., 2018a, 2020a; Chen
et al., 2022; Shiohara & Yamasaki, 2022; Li et al., 2021b;
Qian et al., 2020; Liu et al., 2021; Luo et al., 2021; Xu &
Feng, 2023). Earlier works (Wang et al., 2020; Rossler et al.,
2019) apply common CNNs like ResNet (He et al., 2016)
and Xception (Chollet, 2017) to treat face forgery detection
as a binary classification problem. Later, some approaches
(Yang et al., 2019; Li et al., 2018a) pay attention to anomalies
frequently in clumsy face forgery, while others (Cozzolino
et al., 2021; Agarwa et al., 2019) utilize auxiliary identity
information. Concerns about the generalization of forgery
detectors arise along with the rapid development of deepfake
techniques, and numerous methods have been proposed to
solve this problem, such as applying data augmentations (Li
et al., 2020a; Chen et al., 2022; Shiohara &Yamasaki, 2022),
mining frequency cues (Li et al., 2021b;Qian et al., 2020; Liu
et al., 2021; Luo et al., 2021; Miao et al., 2023, 2022), assist-
ing with extra tasks (Chen et al., 2022; Nguyen et al., 2019a),
using attention mechanisms (Zhao et al., 2021), and focus-
ing on self-consistency (Huh et al., 2018; Dong et al., 2022).
In this paper, we utilize a forgery detector with a spatial
branch and a frequency branch to combine their advantages,
rarely considered in previous works. Furthermore, in order
to explore more training samples, an adversarial data aug-
mentation strategy is also employed.
Adversarial Robustness. In the real world, neural networks
can encounter incidental adversity like common corruption
and intentional adversity created by adversarial attackers.
Both can mislead models into wrong predictions. Some face
forgery detectionmethods (Haliassos et al., 2021, 2022) have
made progress in defending common corruption. However,
adversarial attacks are usually considered more severe since
they can target models with a crisis, fooling a model with
invisible perturbations to human beings.

In addition to those universal adversarial attacks (Szegedy
et al., 2014; Goodfellow et al., 2014b; Li et al., 2021a; Feng
et al., 2024; Xu et al., 2024), someworks (Li et al., 2021a; Jia
et al., 2022) explore attacks targeted for face forgery detec-
tion. Li et al. (2021a) use pre-trained StyleGAN (Karras et
al., 2019a) with gradients to generate high-quality adversar-
ial examples, and Carlini and Farid (2020) apply black-box
attacks on forgery detection to evaluate their robustness. Sev-
eral frequency-based attacks (Jia et al., 2022;Luo et al., 2022)
are proposed to evade frequency-based detectors and keep
adversarial perturbations imperceptible. Recently, backdoor
attacks (Sun et al., 2023), attribute variation-based attacks
(Meng et al., 2023) and audio-based attacks (Panariello et
al., 2023) have been applied to face forgery detection. On the
contrary, only a few works (Hussain et al., 2021; Neekhar et
al., 2021) try to prevent detectors from adversarial attacks.
In this paper, we consider removing adversarial corruption
with an elaborate module based on Low-rank Estimation.
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Fig. 2 The pipeline of our method. (1) The blend-based generator GB
and the transfer-based generator GT take source and reference images
to derive synthetic samples. (2) The discriminator D utilizes synthetic

samples to get prediction (real or fake) andmanipulated regions (i.e., the
forgery prototypes {P1, · · · , Pk}) with a spatial branch and a frequency
branch. Details are available in Sect. 3

3 Method

In this section, we propose a forgery detection generative
adversarial network (FD-GAN), as shown in Fig. 2. Our FD-
GAN consists of two generators and a discriminator: (1) The
blend-based and transfer-based generators are responsible for
adversarial data augmentations to boost generalization, illus-
trated in Sect. 3.1. (2) The discriminator (i.e., the detector) is
applied for forgery detection with robust features, described
in Sect. 3.2. Furthermore, Sect. 3.3 formulates the training
objectives and Sect. 3.4 provides a detailed discussion with
theoretical support.

3.1 Generators

Both the blend-based generator GB(·; θB) and transfer-
based generator GT (·; θT ) aim to improve generalization
with adversarial data augmentations, where θB and θT
denote their parameters. They take an original source image
xs ∈ R3×H0×W0 and a manipulated reference image xr ∈
R3×H0×W0 as inputs, and output synthetic samples xsyn ∈
R3×H0×W0 .

Blend-based Generator GB . The blend-based generator
extracts the feature mapAB ∈ RC×H×W from inputs, where
C , H , andW represent the number of channels, the height and
the width of the feature map. To produce high-quality data
augmentations with dynamic manipulated regions, we sup-
pose themanipulated regions can be divided into k local parts.

Fig. 3 Details of the Blend Process. The source image xs is processed
with k mask filters FB = { f 1B , · · · , f kB} by Eq. (1) to get the cor-
responding forgery masks {M1, · · · , Mk}. Since each Mi covers the
corresponding part of manipulated regions, these forgery masks are
fused by Eq. (2) to obtain the blending mask M . With the blending
mask M , the blend-based generator merges the reference image xr and
the source image xs into a synthetic image x Bsyn

Thus, we design k mask filters (MFs) FB = { f 1B, · · · , f kB},
where each f iB ,∀i = 1, · · · , k is responsible for locating one
specific part. Concretely, each MF f iB ∈ R1×1×C is param-
eterized by a 1 × 1 convolution kernel weight. These MFs
are utilized to convolve with the feature mapAB and get the
corresponding forgery masks {M1 · · · , Mk}:

Mi = σ( f iB � AB), (1)

where � is the convolution operation and σ(·) represents
the sigmoid function. Each Mi covers the corresponding part
of manipulated regions, and we fuse {M1, · · · , Mk} as the
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blending mask M :

M = Clip(
1

k

k∑

i=1

Clip(Mi , th), 0), (2)

whereClip(X , th) treats values in X greater than th as 1 and
others as 0. And the blending can be formulated as:

x Bsyn = M ⊗ xr + (1 − M) ⊗ xs, (3)

where ⊗ is the Hadamard product, and x Bsyn is the synthetic
result of blending. Details of the above steps are also dis-
played in Fig. 3. Note that pre-processes like face alignment,
color transfer, and blur should be applied before blending to
avoid significant artifacts in the results.

Transfer-based Generator GT . The main idea of the
transfer-based generator comes from a simple heuristic prin-
ciple: Face forgeries can be viewed as a combination of
original contents and synthetic styles. As a result, we can
separate the styles of the synthetic reference samples xr and
generate a new synthetic sample xTsyn with such synthetic
styles and the content from the original source image xs .
Comparedwith the blend-based generator, the transfer-based
generator can prevent boundary artifacts from synthetic sam-
ples, which enables it to explore more challenging samples
for augmentation. It contains a style encoder FS , a content
encoder FC , and a decoder DT .

The style encoder FS uses the encoder-bottleneck archi-
tecture (Choi et al., 2018) to extract the synthetic style from
the reference image xr and the output feature map AS ∈
RC�×H�×W �

is fed into two 1×1 convolution layers for latent
styles (γ, β). The content feature map AC ∈ RC�×H�×W �

is produced from xs by the content encoder FC , similar to
the style encoder. Then we consider these styles should be
transferred between the similar relative parts on the face.
For instance, synthetic textures on the eyes should be trans-
ferred to the corresponding eye regions of the source image
xs . Consequently, we introduce Attentive MakeupMorphing
(AMM)module (Jiang et al., 2020b) tomorph the latent styles
(γ, β) for synthetic sample generation. AMM calculates an
attentive matrix A ∈ RH�W �×H�W �

by AS , AC , and facial
landmarks, where Ai, j suggests the attentive value between
the i-th pixel in the source image xs and the j-th pixel in the
reference image xr .2 As a result, we get:

γ ′ =
∑

j

Ai, jγ j , β
′ =

∑

j

Ai, jβ j . (4)

γ ′ and β ′ are duplicated and expanded along the channel
dimension to produce (�,B). Finally, we generate synthetic

2 The detailed calculation of the attentive matrix A is available in Jiang
et al. (2020b).

samples xTsyn with the morphed latent styles (�,B), the con-
tent encoder FC , and the decoder DT (Choi et al., 2018),
calculated by:

xTsyn = DT (� ⊗ AC + B). (5)

3.2 Discriminator

To discover universal synthetic artifacts, our discriminator
D(·; θD) has a frequency branch and a spatial branch, focus-
ing on frequency and spatial features separately.

Spatial Branch. With reference to Rossler et al. (2019),
we adopt Xception to capture the synthetic spatial textures.
As shown in Fig. 2, the spatial extractor gets output feature
maps Asp ∈ RC ′×H ′×W ′

from the synthetic samples xsyn .
Considering the blend-based generator creates forgeries with
a series of forgery masks, we expect to encourage our spatial
branch to locate the manipulated regions for better general-
ization.

Thus, k forgery prototypes {P1, · · · , Pk} are proposed,
corresponding to the forgery masks {M1, · · · , Mk}. They
are created from k prototype filters { f 1P , · · · , f kP }, similar
to those mask filters { f 1B, · · · , f kB}:

Pi = σ( f iP � Asp), f iP ∈ R1×1×C ′
, ∀i = 1, · · · , k. (6)

Frequency Branch. The frequency branch explores fre-
quency artifacts from both a global and local perspective. It
consists mainly of the following modules:

• TheGlobal Extractor obtains the global featuremapAg

from the synthetic sample xsyn transformed by Discrete
Cosine Transform (DCT) to deal with global textures.

• The Low-rank Module (LRM) is applied to remove
adversarial perturbations in blocks for robustness by
Low-rank Estimation algorithms, and its explanation is
shown in Sect. 3.4. Its input should be split into blocks
and then transformed by DCT to reduce the computation,
and its output should be reverted to the same size as the
input.

• The Local Extractor pays more attention to local fre-
quency textures. It derives the local feature mapAl from
the output of LRM.

• The Fusion Module enables the collaboration between
the global and local information with a convolution layer
Conv(·). Specifically, it is formulated as:

Mc = Conv(Ag + Al),

Alo = Al + Mc ⊗ Ag,

Ago = Ag + Mc ⊗ Al ,

(7)

where Ago and Alo are the final global and local feature
maps.
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The frequency feature mapsAgo,Alo, and the spatial fea-
ture map Asp are concatenated to get the final feature map,
utilized in the prediction on forgery detection.

3.3 Training Objectives

Classification LossLcls . Following previous works (Qian et
al., 2020; Shiohara & Yamasaki, 2022), we use the binary
cross-entropy loss to compute Lcls .

Lcls = − 1

N

N−1∑

i=0

{yi log f (xi ) + (1 − yi ) log(1 − f (xi )},(8)

where yi is the corresponding ground truth label, and f (xi )
indicates the probability predicted by our proposed model of
the input sample xi .

Forgery Similarity Loss Lsim . The forgery masks and
forgery prototypes are fed into a fully connected (FC) layer
to adaptively get the importancewi of each forgery mask Mi

and the corresponding forgery prototype Pi :

wi = FC(concat(Mi , Pi )),∀i = 1, · · · , k. (9)

Note the transfer-based synthetic sample xTsyn can be

viewed as the entire face synthesis, so we fix its wi as 1
k

and Mi as 1. And the forgery similarity loss Lsim can be
denoted as:

Lsim =
k∑

i=1

wi ||Mi − Pi ||1. (10)

Diversity Loss Ldiv . It is likely that all forgery masks
cluster in the same region and generate specific synthetic
samples. We propose a diversity loss inspired by Liu et al.
(2019), written as:

Ldiv =
k∑

i=1

k∑

j=1

cos( f iB , f j
B), (11)

where cos(·, ·) denotes the cosine similarity.
Finally, the optimization process can be formulated as:

min
θD

max
θB ,θT

L(θB, θT , θD),

s.t .L(θB ,θT , θD) = Lcls + ηLsim + λLdiv,
(12)

where η and λ are hyper-parameters.

3.4 Discussion

In this part, we discuss our design on data augmentation and
adversarial robustness in detail, suggesting our FD-GAN’s
effectiveness with theoretical analyses.

DataAugmentation.Several previousworks (Shiohara&
Yamasaki, 2022; Li et al., 2020a) utilize data augmentation to
improve their generalization, while most depend on intuitive
ideas. SLADD (Chen et al., 2022) shows the superior per-
formance of generative models like GANs Goodfellow et al.
(2014a) on augmentation in forgery detection. In this part, we
will give helpful hints about data augmentation with detailed
theoretical analysis in our Appendix A. They expound on
how to make data augmentation effective and why genera-
tive models like GANs work well in forgery detection.

Wefirst provide somebasic settings for the following anal-
ysis. For convenience, we set real samples as the target since
forgery detection is a binary classification problem. Suppose
real samples in the training set are X = {X1, · · · , Xk}, where
Td is the size of X . They should be independent and identi-
cally distributed because they are all real samples, following
a probability density function (PDF) pd . Similarly, synthetic
samples Y = {y1, · · · , yTr } follow another PDF pr and the
size of Y is Tr . It is common sense that pr depends on the data
augmentation strategies and the source data. Here we mainly
concern with the influence of various strategies rather than
the source data since the latter is not the focus of our paper.

Our theoretical analysis suggests the following:

• Suggestion 1: Make the number of synthetic samples Tr
as large as possible, which is universal among most var-
ious augmentation strategies in forgery detection.

• Suggestion 2: Generative models like GANs can effec-
tively create diverse synthetic samples to complement the
original training set X in forgery detection.

It is convenient for us to generalize our discovery across
various forgery detector designs because our theoretical anal-
ysis mainly applies only to Logistic Regression. Based on
Suggestion 2, we have developed our detector (FD-GAN) by
a GAN-based approach, incorporating both a blend-based
generator and a transfer-based generator to generate diverse
synthetic samples for better generalization, demonstrated by
the results in Sect. 4.3. Besides, our Appendix A also sup-
ports our Suggestion 1.

Adversarial Robustness. In general, adversarial exam-
ples can be regarded as a combination of natural semantic
information and adversarial perturbations. A natural thought
arises that we can prevent forgery detectors from adversar-
ial attacks if the adversarial perturbations are filtered out.
However, this process is usually lossy to the inputs’ qual-
ity and may degrade the performance of detectors. To tackle
this problem, Low-rank Estimation (Zhuo et al., 2021; Li et
al., 2018b; Zhang et al., 2019) provides a well-established
theory and useful algorithms for recovering data matrices
from noise observations when original data matrices have
some ideal properties (e.g., sparse singular values). As stated
in Awasthi et al. (2020), natural images often hold sparse
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singular values, and forgeries hold similar properties 3. It
implies the validity of using Low-rank Estimation to remove
adversarial perturbations while keeping the natural semantic
information. Since DCT usually makes matrices sparse with
their rank unchanged, we design the LRM in the frequency
branch. Concretely, it aims to solve the following problem:

min
R̂

rank(X), s.t .,∀i, j, R̂i j ≈ Xi j , (13)

where X , R̂, and R represent the input with adversarial
noises, the estimator, and the true data matrix, respectively.
Moreover, the recovery of the true data matrix with the low-
rank property can be theoretically guaranteed (Please refer
to our Appendix A). It suggests our LRM can retain the
semantic information and remove the annoying adversarial
perturbations. Similar to other adversarial defense techniques
based on pre-processing like (Dziugaite et al., 2016;Xu et al.,
2017; Ding et al., 2019), LRMmay slightly lower FD-GAN’s
performance on normal images but improve the adversarial
robustness significantly, proved by our experiments in Sect.
4.5.

4 Experiment

4.1 Experimental Setup

Inputs.WeuseRetinaFace (Deng et al., 2020) for face extrac-
tion and DLIB (Sagonas et al., 2016) for facial landmark
detection. All faces are aligned and resized in the training
and testing datasets.
Discriminator. We adopt Xception (Rossler et al., 2019)
as the backbone of Spatial Extractor, Global Extractor, and
Local Extractor. Besides, LRM applies USVT (Chatterjee,
2012) for Low-rank Estimation.
textbiGenerator. We modify Xception (Chollet, 2017) as the
backbone for the blend-based generator, which is initialized
by pre-trained Xception on ImageNet (Deng et al., 2009).
The transfer-based generator’s architecture follows (Choi et
al., 2018), as stated in our paper.
Optimization. The hyper-parameters in the final loss func-
tion are η = 0.1 and λ = 0.02. Besides, we use the Adam
optimizer (Kingma & Ba, 2014) for both the generator and
the discriminator with β1 = 0.9 and β2 = 0.999. The batch
size is fixed to 32, and the learning rates of the discriminator
and generator are set to 1×10−4 and 3×10−5, respectively.
Training Datasets. Based on recent deepfake detection
methods (Li et al., 2021b; Wang & Deng, 2021; Luo et al.,
2021; Chen et al., 2022; Liu et al., 2021; Qian et al., 2020;
Li et al., 2020a), we train our model mainly on Faceforen-

3 The detailed proof is available in our Appendix A.

cis++ (FF++) dataset (Rossler et al., 2019), which consists
of 1K real videos and 4K synthetic videos. Deepfakes (DF),
FaceSwap (FS), Face2Face (F2F) (Thies et al., 2016), and
Neural-Textures (NT) (Thies et al., 2019) are applied to
generate synthetic videos with various compression levels,
including RAW, High Quality (HQ), and Low Quality (LQ).
We adopt theHQversion in our experiments by default unless
otherwise specified.
Testing Datasets. To evaluate the generalizability of our
method, we perform experiments on the following datasets:
(1) CelebDF-v2 (CDF) (Li et al., 2020b) contains 518 test
videos created by the improved deepfake technology. (2)
Deepfake Detection Challenge Preview Dataset (DFDC)
(Dolhansky et al., 2020) includes over 1K real videos and
over 4K synthetic videos manipulated by multiple methods.
(3) Deepfake Detection Dataset (DFD) contributes over 300
real videos and over 3K fake videos to support deepfake
detection efforts. (4) DeeperForensics (DFo) (Jiang et al.,
2020a) mainly consists of forged videos created by DF-VAE
(Jiang et al., 2020a). As for the adversarial robustness eval-
uation, we follow (Jia et al., 2022) to choose 560 (140 × 4)
frames from synthetic videos in FF++ test dataset.
Baselines. We mainly compare our methods with various
augment-based methods (Face X-ray (Li et al., 2020a),
SBI (Shiohara & Yamasaki, 2022), and SLADD (Chen et
al., 2022)) and frequency-based forgery detection methods
(F3Net (Qian et al., 2020), SPSL (Liu et al., 2021), and
FDFL (Li et al., 2021b)). Some state-of-the-art methods are
also selected for comparisons, such as Two Branch (Masi et
al., 2020), MADD (Zhao et al., 2021), FTCN (Zheng et al.,
2021), RealForensics (Haliassos et al., 2022), LipForensics
(Haliassos et al., 2021), and ICT (Dong et al., 2022). Sev-
eral popular baselines are considered, like Xception (Rossler
et al., 2019), MesoNet (Afchar et al., 2018), Patch-based
(Chai et al., 2020), CNN-GRU (Sabir et al., 2019), CNN-aug
(Wang et al., 2020), Capsule (Nguyen et al., 2019b), Multi-
task (Nguyen et al., 2019a), andDSP-FWA (Li&Lyu, 2018).
Limited by computational cost and few official code imple-
mentations, some results are unavailable and represented by
“-". In the adversarial robustness evaluation, we adopt spatial
attacks (FGSM (Goodfellow et al., 2014b), PGD (Madry et
al., 2017), MIM (Dong et al., 2018), DIM (Xie et al., 2019),
and TIM (Dong et al., 2019)) and frequency attacks (Fre-
qAttack (Jia et al., 2022) and SSAH (Luo et al., 2022)). The
hyper-parameters follow the defaults in Jia et al. (2022).
Evaluation Metrics. Following the previous works (Li et al.,
2021b; Wang & Deng, 2021; Luo et al., 2021; Chen et al.,
2022; Liu et al., 2021; Qian et al., 2020; Li et al., 2020a), we
mainly report the accuracy (ACC) and the Area Under the
receiver operating characteristic Curve (AUC) for the eval-
uation on forgery detection. Besides, we choose the Attack
Success Rate (ASR) for adversarial robustness evaluation
based on Jia et al. (2022).
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Table 1 In-dataset evaluation
results. Quantitative results
(ACC (%) and AUC (%)) on
FF++ are displayed with Raw,
HQ and LQ versions,
respectively. The bold results
are best

Methods RAW HQ LQ

ACC AUC ACC AUC ACC AUC

CNN-GRU Sabir et al. (2019) 98.60 99.90 97.00 99.30 90.10 92.20

LipForensics Haliassos et al. (2021) 98.90 99.90 98.80 99.70 94.20 98.10

LRNet Sun et al. (2021) – 99.90 – 97.30 – 95.70

MADD Zhao et al. (2021) – – 96.37 98.97 86.95 87.26

MesoNet Afchar et al. (2018) 95.23 – 83.10 – 70.47 –

Patch-based Chai et al. (2020) 99.30 99.90 92.60 97.20 79.10 78.30

Two Branch Masi et al. (2020) – – – 86.59 – 98.70

Xception Rossler et al. (2019) 99.26 99.20 95.73 96.30 86.86 89.30

F3Net Qian et al. (2020) 99.95 99.80 97.52 98.10 90.43 93.30

FDFL Li et al. (2021b) 99.43 99.70 96.69 99.30 89.00 92.40

SPSL Liu et al. (2021) – – 91.50 95.32 81.57 82.82

Face X-ray Li et al. (2020a) – 99.10 – 87.35 – 61.60

Ours 99.83 99.90 98.12 99.75 91.60 98.77

Table 2 Cross-dataset
evaluation results. Quantitative
results (AUC (%)) on CDF,
DFDC, DFD, and DFo are
displayed

Method Test Set AUC (%)

CDF DFDC DFD DFo

Capsule Nguyen et al. (2019b) 63.7 – 69.7 68.4

CNN-aug Wang et al. (2020) 75.6 72.1 60.1 74.4

CNN-GRU Sabir et al. (2019) 69.8 68.9 – 74.1

DSP-FWA Li and Lyu (2018) 69.5 67.3 91.0 50.2

ICT Dong et al. (2022) 85.7 – 84.1 93.6

LipForensics Haliassos et al. (2021) 82.4 73.5 – 97.6

MesoInc4 Afchar et al. (2018) 53.6 – 59.1 51.4

Multi-task Nguyen et al. (2019a) 75.7 68.1 65.2 77.7

Patch-based Chai et al. (2020) 69.6 65.6 49.9 81.8

RealForensics Haliassos et al. (2022) 86.9 75.9 – 99.3

Xception Rossler et al. (2019) 73.7 70.9 95.6 84.5

SPSL Liu et al. (2021) 76.9 66.1 – –

Face X-ray Li et al. (2020a) 79.5 65.5 94.1 86.8

SLADD Chen et al. (2022) 79.7 – – –

Ours 84.2 77.2 97.1 99.6

The bold results are best

Table 3 Robustness against
adversarial attacks. ASR (%) of
adversarial attacks on various
face forgery detection methods
is shown

Method Attack

FGSM PGD DIM TIM FreqAttack SSAH Average

CNN-aug Wang et al. (2020) 65.9 66.1 72.0 74.9 67.2 79.8 72.0

Xception Rossler et al. (2019) 48.9 61.6 94.6 86.4 70.5 71.0 72.2

F3Net Qian et al. (2020) 24.8 80.9 86.9 82.6 82.5 76.8 72.4

SBI Shiohara and Yamasaki (2022) 92.9 92.6 95.0 96.0 90.2 94.0 93.4

Ours 40.7 58.9 64.7 65.4 52.6 52.7 55.8

The best results are in bold
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Table 4 Robustness against common corruption. Average AUC scores (%) ofmethods for each corruption in Jiang et al. (2020a) across five intensity
levels are shown

Method Clean Saturation Contrast Block Noise Blur Pixel Compress Average

CNN-aug Wang et al. (2020) 99.8 99.3 99.1 95.2 54.7 76.5 91.2 72.5 84.1

CNN-GRU Sabir et al. (2019) 99.9 99.0 98.8 97.9 47.9 71.5 86.5 74.5 82.3

FTCN Zheng et al. (2021) 99.4 99.4 96.7 97.1 53.1 95.8 98.2 86.4 89.5

LipForensics Haliassos et al. (2021) 99.9 99.9 99.6 87.4 73.8 96.1 95.6 95.6 92.6

Patch-based Chai et al. (2020) 99.9 84.3 74.2 99.2 50.0 54.4 56.7 53.4 67.5

RealForensics Haliassos et al. (2022) 99.8 99.8 99.6 98.9 79.7 95.3 98.4 97.6 95.6

Xception Rossler et al. (2019) 99.8 99.3 98.6 99.7 53.8 60.2 74.2 62.1 78.3

F3Net Qian et al. (2020) 100.0 100.0 99.3 98.0 32.7 93.2 97.1 96.7 88.1

FDFL Li et al. (2021b) 99.8 99.8 99.4 91.5 67.3 95.1 89.2 96.2 91.2

SPSL Liu et al. (2021) 99.7 98.8 88.0 96.0 73.1 92.0 95.4 95.0 91.2

Face X-ray Li et al. (2020a) 99.8 97.6 88.5 99.1 49.8 63.8 88.6 55.2 77.5

SBI Shiohara and Yamasaki (2022) 99.6 98.9 97.6 98.7 42.2 73.4 89.2 85.9 83.7

Ours 99.8 99.5 99.6 99.0 92.3 96.7 98.7 99.7 97.9

The best results are in bold

4.2 In-Dataset Evaluation

In this part, we first compare our method with baselines on
different face manipulation methods in FF++, including the
RAW,HQ, andLQversions. The results are shown inTable 1.
Obviously, our method outperforms other baselines in AUC
with the LQ dataset, and the performances on the RAW and
HQ datasets are comparable (close to 100%). The perfor-
mance improvement mainly benefits from the spatial and
frequency information extracted by ourmethod. In summary,
these experiments show great success with previous methods
on in-dataset evaluations, and we will illustrate the transfer-
ability of our method in the following.

4.3 Cross-Dataset Evaluation

In this section, we train our method on FF++ with multiple
forgeries while evaluating it on other benchmarks, such as
CDF, DFDC, DFo, and DFD. Since the synthetic samples
are generated with unseen techniques in these benchmarks,
this cross-dataset setting is more challenging than the in-
dataset setting. Table 2 shows the AUC comparison with
baseline methods for face forgery detection. Our method still
achieves the state-of-the-art AUC in most cases, although it
is on par with RealForensics (Haliassos et al., 2022) and
ICT (Dong et al., 2022) on CDF, which obtain extra tempo-
ral information. These results illustrate the advantage of our
proposed method on generalization under different datasets,
which mainly benefits from the appreciable data augmenta-
tion and the spatial-frequency components. Detailed analysis
of our method is available in Sect. 4.5 to understand the com-
ponents responsible for excellent performance.

Table 5 Framework ablation. AUC (%) on CDF and DFD, and ASR
(%) on selected adversarial images after training on FF++ are shown.
“Frequency Branch" and “Spatial Branch" represent the corresponding
part of our model. “w/o LRM” and “w/o Prototype” represent the per-
formance without the LRM and forgery prototypes, respectively. All
modules are defined in Sect. 3.2

Frequency Spatial w/o w/o CDF DFD ASR
Branch Branch LRM Prototype

� � 84.2 97.1 87.6

� � � 84.6 97.6 55.8

� � � 80.5 92.0 –

� 84.1 93.1 –

� 78.0 94.2 –

The best results are in bold

4.4 Robustness Evaluation

In general, ideal detectors should be robust against common
and adversarial corruption in addition to great generalization
on various datasets. Thus, we evaluate our model with some
baselines against adversarial attacks and common corruption
to assess their robustness.

Robustness againstAdversarialAttacks.Table 3 reports
the ASR against FF++ and illustrates that our method out-
performs other forgery detection methods by a large margin.
For instance, PGD gets 66.1%ASR against CNN-aug (Wang
et al., 2020) while only achieving 58.9% ASR against our
method. Besides, CNN-aug (Wang et al., 2020) augmented
with blur and compression resistsmore robust comparedwith
other baselines, dropping ahint that someaugmentationsmay
help to keep models from adversarial corruption.
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Table 6 Data augmentation ablation. AUC (%) on CDF and DFD after
training on FF++ is shown. “Blend", “Blend (fixed)", and “Transfer"
represent augmentations from the blend-based generator GB , another
fixedblending strategyLi et al. (2020a), and the transfer-based generator
GT , respectively

Blend Blend (Fixed) Transfer CDF DFD

� � 84.2 97.1

� � 83.7 95.3

� 82.7 94.3

� 81.8 94.1

� 79.9 93.7

The best results are in bold

Robustness against Common Corruption. Following
(Haliassos et al., 2021) and (Haliassos et al., 2022), we
train our FD-GAN on FF++. The distortions are the same
as those in Jiang et al. (2020a), including changes in satura-
tion and contrast, Gaussian blur and noise, compression on
both video and image levels, and local block-wise distortion.
Five different intensity levels are applied for each type, and
the average AUC across all intensity levels is shown in Table
4. As expected, our method outperforms baselines in most
cases, even compared to the popular RealForensics (Halias-
sos et al., 2022) and LipForensics (Haliassos et al., 2021).
Besides, we report AUC for each intensity level separately
on some common corruption with several models. In Fig. 5,
we can observe that our FD-GAN performs best in almost
all cases, especially against severe corruption. The superior
performance of our FD-GAN against common corruption is
credited to our generators (adaptive data augmentation) and
the LRM (removing noises).

4.5 Ablation Studies

Ablation studies in this section try to determine how the fac-
tors contribute to our method’s performance.
Framework Ablations. In Table 5, we ablate the components
of our method and check the generalization of the detector on
CDF and DFD (trained on FF++). First, training our detec-
tor with only the frequency or the spatial branch leads to
a significant drop in performance (about 3.3% on average).
Second, the LRM slightly degrades the performance of our
detector (up to 0.5% drop in performance) while it results in
much bettter robustness (leading to over 30% improvement
in ASR). More results of LRM on adversarial robustness are
available in the following. Finally, we observe remarkable
improvements (about 4.4% on average) with the forgery pro-
totypes.
Data Augmentations. Evaluation results are shown in Table
6. We obverse that with only one kind of augmentation, the
performance of our model degrades, especially only with the
transfer-based augmentation (by about 3.85% on average).

Fig. 4 Defense ablation. ACC (%) on clean samples and average ASR
(%) on various adversarial attacks (the lower, the better) are shown.
“w/o LRM” means our method’s performance without the LRM. And
“JPEG”, “Bit-Reduction”, and “Smooth” represent the performance of
our model with the corresponding defense

Table 7 AUC (%) on CDF and DFD after training on FF++. “Blend”
and “Transfer” denote the blend-based and transfer-based generators.
“w AMM" and “w/o AMM" indicate the transfer-based generator is
with or without AMM

Blend Transfer CDF DFD
w AMM w/o AMM

� � 84.2 97.1

� � 83.0 94.5

� 79.9 93.7

� 78.3 92.6

The best results are in bold

The main reason is that limited choices of synthetic samples
are likely to suppress the generalization of our model. More-
over, the fixed blend-based augmentation seems less effective
than our blend-based generator since the fixed augmentations
cannot be adaptive to the evolving forgery detector in train-
ing.
Defense Techniques. Here, we use other defense methods
based on image processing techniques, including JPEG (Dzi-
ugaite et al., 2016), Bit-depth Reduction (Xu et al., 2017),
and Smooth (Ding et al., 2019). As a baseline, we also pro-
vide the performance against perturbations of our detector
without the LRM. In Fig. 4, each defense method can ben-
efit our detector in robustness, but our LRM gains superior
improvement compared with others. Besides, all adversarial
defenses listed in Fig. 4 lead to a decrease in performance on
clean samples and LRM shows the least performance penalty
compared with other methods, which suggests its effective-
ness.
Effect of Attentive Makeup Morphing. We perform exper-
iments on Attentive Makeup Morphing (AMM), shown in
Table 7. The performance drop without AMM suggests that
AMM helps the transfer-based generator for better augmen-
tation.
Sensitivity Analysis on Hyper-parameters of the Final Loss
Function in Eq. (12). Sensitivity experiments on η and λ
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Fig. 5 AUC under common corruption in various intensity levels. The results of RealForensics and LipForensics are from their original paper

Fig. 6 Sensitivity analysis on hyper-parameters in loss function. We
test detectors on CDF and DFD after training on FF++

Fig. 7 Performance with various sizes of synthetic samples. AUC (%)
of our FD-GAN on CDF (Li et al., 2020b) and DFD is shown when
the number of synthetic samples varies. Note that the ratio of original
samples to synthetic samples is fixed. “×0.5"means the applied training
dataset contains only half of the synthetic samples compared with the
normal training process (“×1.0"), and so on

are displayed in Fig. 6. The results verify the stability of our
FD-GAN since both coefficients are robust in a large range.
Effect of the number of synthetic samples. To verify our
Suggestion 1, we construct some experiments. In Fig. 7, we
obverse that the performance of our method increases with a
larger size of data augmentations. However, the performance
shows a modest increase when the number of synthetic sam-
ples is very large. It suggests the limited benefit of much
larger data augmentation.
Effect of the number of forgery prototypes. The forgery
masks and prototypes are designed to locate the manipulated
regions, leading to flexible data augmentation strategies and
better generalization across datasets. In this part, we focus

Fig. 8 Performancewith various sizes of forgerymasks and prototypes.
AUC (%) of our FD-GAN on CDF (Li et al., 2020b) and DFD is shown
when the number of forgery masks and prototypes k varies

on the effect of the number of forgery masks and prototypes
(i.e., k). As displayed in Fig. 8, more masks and prototypes
(k ≤ 8) help to improve the generalization of our model,
while too many masks and prototypes (k ≥ 8) may result
in confusion among various parts of manipulated regions.
Therefore, we select k = 8 as our default setting.
Robustness against more threatening attacks. Table 8 dis-
plays the results of ourFD-GANand several baselines against
more threatening attacks. Although the performance of our
FD-GAN against these threatening attacks degrades by a
largemargin, it still outperforms other forgery detectors, sug-
gesting its robustness.
“Fakeness" score of FD-GAN’s synthetic samples. Follow-
ing CNN-aug Wang et al. (2020), we list the performance of
forgery detectors (“Blur + JPEG (0.5)" (Wang et al., 2020)
and “Blur + JPEG (0.1)" Wang et al. (2020)) on synthetic
samples generated byourFD-GANandbaselines. The results
in Table 9 illustrate that our generator’s synthetic samples can
fool detectors better than others in all cases. It indicates our
detector enjoys more challenging samples for better gener-
alization.

4.6 Qualitative Results

Saliency map visualization. To gain better insights into both
generalization and robustness, we highlight the behavior of
our forgery prototypes with some baselines. Figure 9 visu-
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Table 8 Attack success rate
(ASR) of several adversarial
attacks against forgery detectors

Method Attack
C&W (%) BPDA (%) EOT (%)

CNN-aug Wang et al. (2020) 86.6 76.7 81.3

F3Net Qian et al. (2020) 93.5 84.1 90.0

SBI Shiohara and Yamasaki (2022) 98.1 87.5 93.9

Ours 78.4 70.8 73.2

Table 9 The accuracy of CNN-aug Wang et al. (2020) on synthetic samples created by various generative models

SANDai et al.
(2019)

Deepfake
Rossler et al.
(2019)

BigGAN
Brock et al.
(2018)

CRN Chen
and Koltun
(2017)

StyleGAN2
Karras et al.
(2019b)

StyleGAN
Karras et al.
(2019a)

Ours

Blur + JPEG
(0.5) Wang et
al. (2020)

50.0 51.1 59.0 87.6 68.4 73.4 41.8

Blur + JPEG
(0.1) Wang et
al. (2020)

50.5 53.5 70.2 86.3 84.4 87.1 43.6

Fig. 9 Saliency map visualization. The baselines (F3Net (Qian et al.,
2020) and SBI (Shiohara & Yamasaki, 2022)) capture method-specific
artifacts while failing to detect the complete manipulated regions. Our
FD-GAN’s attention covers most of the manipulated regions. However,
without the help of the frequency branch (“w/o Frequency Branch") or
the spatial branch (“w/o Spatial Branch"), our method tends to locate
method-specific artifacts like the baselines

alizes several examples with Grad-CAM (Selvaraju et al.,
2019). Clearly, our FD-GAN has more complete coverage of
manipulated regions in most cases since our model enjoys
a large variety of synthetic samples. However, the baselines
focus on a limited choice of training samples.
Manipulated Regions and Predicted Masks. Visualization
ofmanipulated regions and predictedmasks are shown inFig.
10. The predicted masks cover most manipulated regions.
Moreover, the forgery prototypes describe the corresponding
forgery masks accurately. It demonstrates that the discrimi-
nator can not only judge whether the input is synthetic, but
also predict the manipulated regions.
Synthetic samples. Synthetic samples created by our FD-
GAN are shown in Fig. 11. We can see that our synthetic
samples are high-quality, although our paper does not focus

Fig. 10 Manipulated regions, predicted masks, part of forgery masks
and the corresponding forgery prototypes

on face forgery generation.And themanipulated regions vary
with the corresponding source and reference images.
Forgery prototypes. In Figure 12, we can observe the explicit
semantic correspondences between the same forgery pro-
totypes. It proves the efficiency of our forgery prototypes.
After training on plenty of synthetic samples, each forgery
prototype can capture a specific semantic pattern so that the
prediction is likely to be more robust to some corruption and
capture universal synthetic artifacts.

5 Conclusion

In this paper, we propose a forgery detection generative
adversarial network (FD-GAN)with twogenerators (a blend-
based and a transfer-based generator) and a discriminator
(i.e., detector), which can generalize well in unseen scenarios
and keep robust against adversarial and common corrup-
tion. Specifically, the two generators can adaptively create
challenging synthetic images with more flexible strategies
to improve generalization. Besides, we design the discrim-
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Fig. 11 Synthetic samples. a, b, c, and d represent the source images,
reference images, blend-based synthetic samples, and transfer-based
synthetic samples, respectively

Fig. 12 Visualization of our forgery prototypes.We take five prototypes
of forgeries created byNT (Thies et al., 2019) andDF-VAE (Jiang et al.,
2020a) as examples. Obviously, we can see that each forgery prototype
focuses on a specific manipulated part

inator to judge whether the input is synthetic and predicts
the manipulated regions with a collaboration of spatial and
frequency branches. Further, we propose a Low-rank Mod-
ule in the frequency branch to remove adversarial corruption
in the input for robustness improvement. And we also pro-
vide some guidelines on data augmentations for improving
generalization and mathematical support for robustness. In
experiments, FD-GAN exhibits superior generalization and
robustness than the state-of-the-art methods.

Appendix AMathematical Analysis

A.1 Analysis

Data augmentation. Recall the basic settings in our
manuscript: Forgery detection can be viewed as a binary clas-
sification problem, and we set real samples as the target for
convenience. A set of real samples X = {x1, · · · , xTd } and
another set of synthetic samples Y = {y1, · · · , yTr } are also
defined, where Td and Tr represent the size of X and Y ,
respectively. Samples are independent. Meanwhile, xi fol-

lows a probability density function (PDF) pd while yi follows
another PDF pr . Suggestions in our manuscript are listed as
follows:

• Suggestion 1: Make the number of synthetic samples Tr
as large as possible, which is universal among most var-
ious augmentation strategies in forgery detection.

• Suggestion 2: Generative models like GANs can effec-
tively create diverse synthetic samples to complement the
original training set X in forgery detection.

We consider the distribution of real samples in differ-
ent datasets depends on a parameterized family of functions
pu(·; θ) by θ . And there exist some θ� to satisfy pd =
pu(·; θ�). To solve this binary classification problem, we
hope to approximate θ� as θ̂ . Ideally, θ̂ should yield the fol-
lowing properties:

∫
pu(u; θ̂ )du = 1, (Normalized) (A1)

pu(·; θ̂ ) ≥ 0. (Non-negative). (A2)

However, the approximated θ̂ faces the gap between the
train set and the test set, and Eq. (A1) may not hold across
various datasets pu(·; θ). It is exactly the challenge of gen-
eralization in forgery detection.

To highlight this challenge, we denote distributions as
p′
u(·;α), and α represents the characteristics of datasets. For

each p′
u(·;α), we can use the normalization function C(α):

C(α) =
∫

p′
u(u;α)du. (A3)

Obviously,C(α) can convert any distribution p′
u(·;α) into

a normalized one p′
u(·;α)/C(α). However, C(α) cannot be

calculated directly in most cases. Previous works (Chen et
al., 2020c; He et al., 2020; Oord Avd et al., 2018; Gutmann
& Hyvärinen, 2012; Chen et al., 2020, a) provide a solution
with the help of pr since we can obtain pd if pr and the ratio
pd/pr are known. In other words, we can infer the properties
of real samples from the properties of synthetic samples and
the differences between real and synthetic samples. Letα as a
part of θ for simplification, i.e., θ → (θ, α), and then we can
get the following theorem (Gutmann & Hyvärinen, 2012):

Theorem 1 By logistic regression, the objective function can
be written as:

JT (θ) = 1

Td

Td∑

i=1

ln(h(xi ; θ)) + γ
1

Tr

Tr∑

i=1

ln(1 − h(yi ; θ)),

(A4)
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with

h(u; θ) = (1 + τ exp(− ln
pd(u; θ)

pr (u)
)−1, (A5)

where Y = {y1, · · · , yTr } is the set of training synthetic sam-
ples, Tr is the size of Y , and γ = Tr/Td.

Equation (A4) is also known as the binary cross-entropy
loss function, commonly used in forgery detection. Further-
more, we have several corollaries:

Corollary 1 θ̂T is the value of θ , which maximizes Eq. (A4).
It converges in probability to θ∗ in proper conditions.

Corollary 2
√
Td(θ̂T −θ∗) → N (0, �)when Td +Tr → ∞.

� is the covariance matrix.

Corollary 1 illustrates that applying Eq. (A4) in forgery
detection can lead to an ideal forgery detector, also proved
by many empirical results (Zheng et al., 2021; Li et al.,
2020a; Qian et al., 2020; Haliassos et al., 2021; Wang &
Deng, 2021).Moreover, Corollary 2 indicates thatMSE error
E{θ̂T − θ�} = tr(�)/Td can be independent of augmenta-
tion strategies when the size of training samples becomes
very large (our Suggestion 1).

One more observation is that J attains a maximum at
pr = pd so that wemay achieve better performance when pr
is closer to pd . Associatedwith the originalGAN’s (Goodfel-
low et al., 2014a) Proposition 2 (The distribution pr produced
bygeneratorG can converge to pd under suitable conditions),
adversarial augmentation can work well in synthetic sample
generation (our Suggestion 2).
Adversarial robustness. In this part, we continue the descrip-
tion in our manuscript and show the following results:

• Sparse singular values of synthetic forgeries. Syn-
thetic samples are usually created by generative models
(e.g., GANs and VAEs), where down-sampling and up-
sampling are widely applied.
However, up-sampling can lead to sparse singular values
in synthetic forgeries, proved by Theorem 2:

Theorem 2 Suppose the synthetic image as Xs ∈ RH×W by

up-sampling from Xs−ori ∈ R
H
2 ×W

2 , and we have:

rank(Xs) ≤ min(
H

2
,
W

2
). (A6)

Consideringmultiple up-sampling operations applied in gen-
erative models, the rank of forgery images is limited to a very
small number. Since low-rank matrices always have sparse
singular values,we can see that both real and synthetic images
hold sparsity in their singular values (i.e., the low-rank prop-
erty). It implies the validity of using Low-rank Estimation
algorithms for data recovery.

• Low-rankEstimation can remove (adversarial) noises
from the disturbed inputs. First, we review the formu-
lation of the Low-rank Estimation problem defined in our
manuscript:

min
R̂

rank(R̂), s.t .,∀i, j, R̂i j ≈ Ri j , (A7)

where X , R̂, and R represent the input with adversarial
noises, the estimator, and the true data matrix, respec-
tively. Besides, the next theoremdescribeswhyLow-rank
Estimation can remove adversarial noises (Chatterjee,
2012):

Theorem 3 Suppose the rank of R ∈ Rn×n as r . C0

and c are constants, depending on hyper-parameters in
algorithms. C(ε) is a function of ε, which also relies on
hyper-parameters. Then we have:

MSE(R̂) ≤ C0rmin + C(ε)e−cnp, (A8)

where rmin = min(
√

r
mp , 1), and MSE(R̂) is formulated as:

MSE(R̂) = E{ 1

n2

i=1∑

n

j=1∑

n

(Ri j − R̂i j )
2}. (A9)

Detailed proof of Theorem 3 is available in USVT (Chatter-
jee, 2012). Theorem3 tells us thatMSE(R̂) is strictly limited
if r is small, leading to the recovery ofmajority entries and the
erasure of adversarial noises. Besides, we can see that Theo-
rem 3 is not limited to adversarial perturbations, suggesting
its effectiveness in filtering out common noises like gaussian
noises. Table 4 in our manuscript shows similar results.

A.2 Proofs

A.2.1 Proof for Theorem 1

Proof.Wefirst come to the idea that no dataset bias exists. Let
U = {u1, · · · , uTd+Tr } be the union of X = {x1, · · · , xTd }
(the training set of real samples) and Y (the training set of
synthetic samples). And each sample ut is assigned a binary
class label Ct : Ct = 1 if ut ∈ X and Ct = 0 if ut ∈ Y .
Obviously, the prior probabilities are:

P(C = 1) = Td
Td + Tr

, P(C = 0) = Tr
Td + Tr

. (A10)

And the posterior probabilities are:

P(C = 1|u; θ)= pm
pm+γ pr

, P(C=0|u; θ)= γ pr
pm+pr

,

(A11)
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where pm = p(u|C = 1; θ), pr = p(u|C = 0) are the con-
ditional probability densities with logistic regression. Using
h(u; θ) introduced in our paper, we can easily get the condi-
tional log-likelihood:

l(θ) =
Td+Tr∑

t=1

Ct ln P(Ct = 1|ut ; θ)

+ (1 − Ct ) ln P(Ct = 0|ut ; θ)

=
Td∑

t=1

ln[h(xt ; θ)] +
Tr∑

t=1

ln[1 − h(yt ; θ)].

(A12)

Moreover, Eq. (A12) is also known as the binary cross-
entropy function.

To treat the generalization problem, we can see:

ln pm(·; θ) = ln p′(·;α) + c, (A13)

where θ ← (α, c). The parameter c = C(α) scales p′(·;α)

so that the normalized property can be fulfilled, as mentioned
in our paper. Therefore, we look for θ ← (α, c) instead of
θ ← (α, θ) for convenience. With the above settings, the
loss function can be formulated as:

JT (θ) = 1

Td

⎧
⎨

⎩

Td∑

t=1

ln[h(xt ; θ)] +
Tr∑

t=1

ln[1 − h(yt ; θ)]
⎫
⎬

⎭

= 1

Td

Td∑

t=1

ln[h(xt ; θ)] + γ

Td

Tr∑

t=1

ln[1 − h(yt ; θ)].

(A14)

Theweak law of large numbers shows that JT (θ) → J (θ)

in probability when Td + Tr → ∞:

J (θ) = E{ln[h(x; θ)]} + γ E{ln[1 − h(y; θ)]}.�� (A15)

A.2.2 Proof for Corollary 1

Proof. First, we show the proper condition as followings:

Assumption 1 When pd �= 0, pr �= 0.

Assumption 2 supθ |JT (θ) − J (θ)| → 0 in probability.

Assumption 3 The matrix Iγ is positive definite, where

Iγ =
∫

g(u)g(u)T Pγ (u)pd(u)du,

Pγ (u) = γ pr (u)

pd(u) + γ pr (u)
, g(u) = ∇θ ln pm(u; θ)|θ∗ .

(A16)

Proof.
Assumption 1 mainly contributes to the existence of h(u; θ).
To prove Corollary 1, we have to show that given ∀ε > 0,
P(||θ̂T − θ∗|| > ε) → 0 when Td + Tr → ∞. With the
definition of J (θ) in Eq. (A15), we have:

J (θ + εφ) =
∫

ln[h(u; θ + εφ)]pd(u)du+

γ

∫
ln[1 − h(u; θ + εφ)]pr (u)du, ∀ε > 0,

(A17)

where θ, φ ∈ Rm . For simplification, we define rγ (x) =
1

1+γ exp(x) and G(u; θ) = ln pm(u; θ) − ln pr (u) so that
h(u; θ) = rγ (G(u; θ)) (γ = τ for normalization). we define
auxiliary variables a1 and a2 as:

a1 = φ�∇G(u; θ),

a2 = 1

2
φ�HG(u; θ)φ,

(A18)

where HG is the Hessian matrix of G(u; θ). And we obtain

ln rγ (G(u; θ + εγ )) = ln rγ
(
G(u; θ) + εa1 + ε2a2 + O

(
ε3

))
.

(A19)

Using Taylor expansions for G(u; θ), we get

J (θ + εφ) = J (θ) + A1ε + A2ε
2 + O(ε3).

A1 =
∫

a1
[
pd (u)(1 − h(u; θ)) − γ pr (u)h(u; θ)

]
du,

A2 =
∫

−1

2
a21(1 − h(u; θ))h(u; θ) (pd (u) + γ pr (u)) du+

∫
a2 (pd (u)(1 − h(u; θ)) − γ pr (u)h(u; θ)) du.

(A20)

In Eq. (A20), the term of order ε should be 0 for any φ

when θ = θ∗. It means:

pd(u)(1 − h(u; θ)) = γ pr (u)h(u; θ). (A21)

Thus, the objective function J (θ∗ + εφ) becomes:

J (θ∗ + εφ) =J (θ∗) − ε2

2

∫
a21(1 − h(u; θ∗))h(u; θ)

(pd(u) + γ pr (u))du + O(ε3).

(A22)

With the help of the formulation:

h(u; θ∗) = pd(u)

pd(u) + γ pr (u)
,

1 − h(u; θ∗) = γ pr (u)

pd(u) + γ pr (u)
,

(A23)
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we get the expression of J (θ∗ + εφ):

J
(
θ∗ + εφ

) =J
(
θ∗) −

ε2

2
φT

[∫
g(u)g(u)T Pγ (u)pd (u)du

]
φ+

O
(
ε3

)
.

(A24)

Obviously, J (θ∗) is a maximum when Assumption 3
holds. Based on the aforementioned results, we find that
J (θ∗) is a global maximum, suggesting that there exists a
δ(ε) to satisfy J (θ) + δ(ε) ≤ J (θ∗). Thus, we have:

P(||θ̂T − θ∗|| > ε) < P(J (θ) + δ(ε) ≤ J (θ∗)). (A25)

When Td + Tr → ∞, the difference between J (θ∗) and
J (θ̂T ) can be limited by:

|J (θ∗) − J (θ̂T )| = |J (θ∗) − JT (θ∗) + JT (θ∗) − J (θ̂T )|
≤ |J (θ∗) − JT (θ∗) + JT (θ̂T ) − J (θ̂T )|
≤ |J (θ∗) − JT (θ∗)| + |JT (θ̂T ) − J (θ̂T )|
≤ 2 sup

θ

|J (θ) − JT (θ)|,
(A26)

where θ̂T is the argument that maximizes JT (·). With
Assumption 2, we have the final result:

P(J (θ̂T ) + δ(ε) ≤ J (θ∗)) ≤ ε1, ∀ε1 > 0, (A27)

which indicates the conclusion in Corollary 1. ��

A.2.3 Proof for Corollary 2 Proof for Corollary 2

Proof : By calculation, we derive the following results:

∇θ JT (θ∗) = 1

Td

Td∑

t=1

(1 − h(xt ; θ∗))g(xt )

− γ
1

Td

Tr∑

t=1

h(yt ; θ∗)g(yt ),

HJ (θ
∗) = 1

Td

Td∑

t=1

{−(1 − h(xt ; θ∗))h(xt ; θ∗)g(xt )g(xt )�

+ (1 − h(xt ; θ∗))HG(xt ; θ∗)}

− γ
1

Tr

Tr∑

t=1

{(1 − h(yt ; θ∗))h(yt ; θ∗)g(yt )g(yt )�

+ h(yt ; θ∗)HG(yt ; θ∗)},

(A28)

where HJ (θ
∗) is the Hessian of JT (θ) at θ∗, and ∇θ JT (θ∗)

is the gradient of JT (θ) at θ∗. And we have

∇θ JT
(
θ∗) + HJ

(
θ∗) (

θ̂T − θ∗) + O
(
||θ̂T − θ∗||2

)
= 0. (A29)

Up to terms of order O(||θ̂T − θ∗||2), we have:

−√
Td H

−1
J

(
θ∗) ∇θ JT

(
θ∗) = √

Td
(
θ̂T − θ∗) . (A30)

Andwe calculate the expectation of∇θ JT (θ∗). The expec-
tation E{∇θ JT (θ∗)} can be formulated as:

E{∇θ JT (θ∗)} =
∫

g(u)
(
1 − h

(
u; θ∗)) pd(u)du−

γ

∫
g(u)h

(
u; θ∗) pr (u)du,

(A31)

with the assist of the i .i .d assumption. According to Eq.
(A19), we get the following result:

E{∇θ JT (θ∗)} = 0. (A32)

Let the variance of ∇θ JT (θ∗) be V , we see that:

√
Td∇θ JT (θ∗) → N (0, V ), (Td + Tr → ∞). (A33)

Due to HJ (θ
∗) P→ −Iγ for large sample sizes Td + Tr →

∞, we set � as I−1
γ V I−1

γ and get Corollary 2. ��

A.2.4 Proof for Theorem 2

Proof. The up-sampling can be divided into two steps:

Xs−ori ∈ R
H
2 ×W

2 → Xmid ∈ RH×W
2 → Xs ∈ RH×W .

(A34)

And Xs−ori , Xmid can be formulated as:

Xs−ori = (�x1, · · · , �x W
2
),

Xmid = (�xm1 , · · · , �xmW
2
),

(A35)

where �xi ∈ R
H
2 and �xmi ∈ R

H
2 are the i-th row vec-

tor of Xs−ori and Xmid , respectively. Obviously, we get
max(rank(Xs−ori ), rank(Xmid)) ≤ W

2 and Xs can be writ-
ten as:

Xs = (�xs1, · · · , �xsW ), (A36)

where �xs1 is the i-th row vector of Xs . Note that:

�xs2k = (�xmk + �xmk+1)/2,

�xs2k−1 = �xmk .
(A37)

Since the rows of Xs are linear combinations of the rows
of Xmid , we get the following results:

rank(Xs) ≤ rank(Xmid) ≤ W

2
. (A38)
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Without loss of generality, we can also get:

rank(Xs) ≤ H

2
. (A39)

Therefore, we get Theorem 2 with Eqs. (A38)
and (A39). ��
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Research Project (Grant No. JSZL2023416A001-058).
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