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Abstract
FaceAnti-Spoofing (FAS) is essential to secure face recognition systems fromvarious physical attacks. A sufficient and diverse
training set helps to build robust FAS models. To exploit the potential of FAS datasets, we propose to generate high-quality
data including live and diverse presentation attacks (PAs) faces, for data augmentation during the model training stage. Our
method is called Cross-label Generative augmentation for Face Anti-Spoofing (CG-FAS), which could convert a live face
into a 3D high-fidelity mask, replay, print, or other extra physical PAs. Correspondingly, CG-FAS can also restore a specific
physical presentation attack into a live face. This function is realized by innovatively building an Interchange Bridge matrix,
which stores disentangled spoof clues between PAs and live faces. To verify the effects of these generated data, we utilize
them as augmentation data and conduct experiments on several typical FAS benchmarks. Extensive experimental results
demonstrate the superior performance gain with CG-FAS for off-the-shelf data-driven FAS models. We hope the CG-FAS
can shine a light on the deep FAS community to alleviate the data-hungry issue. The code will be released soon at: https://
github.com/liuxingwt/CG-FAS.
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1 Introduction

Face recognition technique plays a crucial role in mod-
ern applications like access control system and electronic
payment. Meanwhile, existing face recognition systems are
exposed to diverse presentation attacks (PAs), such as the
printed face (print attack), face replay on digital devices
(replay attack), face covered by a mask (3D high-fidelity
mask), etc. As a result, the Face Anti-Spoofing (FAS) (Yu
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et al., 2022) technique, which detects whether the presented
face is live or not, becomes indispensable to defend face
recognition systems.

In recent decade, researchers have proposed lots of data-
driven deep-learning-basedmethods (Lucena et al., 2017; Xu
et al., 2015; Shao et al., 2017; Liu et al., 2018a) to distinguish
spoof faces from live ones. Most of them train the live/spoof
detector via learning from pre-collected dataset (Yu et al.,
2020). Despite satisfactory performance on pre-defined test-
ing set, these well-trained FAS models usually encounter
generalization challenges when deployed in real-world sce-
narios. This overfitting phenomenon is mainly contributed to
the limited scale and diversity of datasets. Frequently used
datasets (Boulkenafet et al., 2017b; Liu et al., 2018b, 2022)
contain less than 100 identities and partial PAs due to expen-
sive cost. Further, data augmentation study shows limited
promotion in this field (Wang et al., 2023).

Motivated by the rapid development of generative models
(Goodfellow et al., 2014; Karras et al., 2019; Rombach et al.,
2022), we intend to generate face images to extend the diver-
sity of public datasets, andwe conjecture that these generated
samples could help to promote FASmodels. Generating data
as augmentation for FAS models has been studied in Liu et
al. (2020), Wu et al. (2021a), Jourabloo et al. (2018). How-
ever, These existing methods (Wang et al., 2023; Liu et al.,
2020; Ruiz et al., 2023) appear limited effects as shown in
Fig. 1: (1) Low quality: unsatisfactory generation quality
with eye-perceived artifacts,which is easy to be seen inEPCR
(Wang et al., 2023), DSDG (Wu et al., 2021a), STDN (Liu
et al., 2020) and other generative methods. (2) Rare diver-
sity: unable to generate arbitrary PAs with any input face, as
DSDG (Wu et al., 2021a) like methods are not able to control
the generation attributes precisely. (3) Inconsistent gener-
ation: hard to disentangle face characteristics from spoof
features. Since StableDiffusion (Rombach et al., 2022) based
method DreamBooth (Ruiz et al., 2023) is able to use prompt
to generate spoof faces, we can see that these generate faces
indeed own spoof trait like 3D mask margin. But the face
appearance is not consistent with inputs and changed appar-
ently throughout generation.

To overcome these challenges, we propose a novel frame-
work named Cross-label Generative augmentation for Face
Anti-Spoofing (CG-FAS). Using any FAS public dataset as
input, CG-FAS could generate samples whose spoof labels
are contrary to input images, while other characteristics are
consistent as shown in the last column of Fig. 1. To disentan-
gle spoof and spoof-irrelevant features, we execute the face
editing in a highly disentangled latent space W+ (Abdal
et al., 2019), which ensures that the face identity informa-
tion will not be exterminated throughout generation. What’s
more, an encoder and generator are trained to connect the
RGB space and latent space. We utilize the prevalent Style-
GAN (Karras et al., 2019) as generator, which is able to

Fig. 1 Comparison of different FAS augmentation manners applied on
HiFiMask (Liu et al., 2022) andOULU-NPU (Boulkenafet et al., 2017b)
datasets. The first column lists live, print attack and plaster mask face
images as input. The second column shows the results of Patch Shuffle
Augmentation proposed in EPCR (Wang et al., 2023). Another typical
GAN-based augmentation namely DSDG (Wu et al., 2021a) is com-
pared in the third column. Further we conduct image manipulation with
Stable Diffusion (Rombach et al., 2022) based method DreamBooth
(Ruiz et al., 2023). The last column shows the result of our proposed
CG-FAS, which is able to convert the input images’ spoofing label and
keep other face attributes consistent with input images

produce natural FAS faces superior to previous researches
(Wu et al., 2021a; Liu et al., 2020). To exploit the advan-
tages of the linearW+ space, we organize each presentation
attack’s discriminative feature into an Interchange Bridge
(IB) matrix, which can be used to generate images between
arbitrary PA and live labels even for unseen face identities.

Given any face images fromapublic FASdataset,CG-FAS
firstly encodes images into low-dimensional latent codes in
the W+ space. In this latent space, it is flexible to index
the IB matrix to obtain a residual vector, which represents an
editing direction, such as live to print attack. The editing pro-
cess is executed by adding the latent codes with the residual
vector, controlled by an editing coefficient scalar. After that,
the resultant vectors are eventually fed into the pre-trained
generator to produce target PA face images. Adding these
generated images into existing FAS datasets as augmenta-
tion, the proposed CG-FAS is demonstrated to obtain better
FAS models.

The main contributions of this study are summarized
below:

• We propose the Interchange Bridge(IB) matrix, which
could be used to generate arbitrary live/PA faces while
keeping spoof-irrelevant attributes consistent with input
images.

• Applying the IB matrix as augmentation during FAS
model training, we introduce a novel framework called
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CG-FAS, which significantly enhances the performance
of the FAS model.

• Evaluated on single-domain and cross-domain exper-
iments, our proposed CG-FAS achieves competitive
performance on several FAS benchmarks.

2 RelatedWork

2.1 Face Anti-Spoofing

Before the deep learning era, FAS researchers were keen
on extracting handcrafted local features to distinguish live
and PAs face images. The most commonly used features are
LBP (Tiago et al., 2013; Boulkenafet et al., 2015), HOG
(Komulainen et al., 2013), SIFT (Patel et al., 2016), and DoG
(Boulkenafet et al., 2017), which show limited performance.
In recent decades, FAS methods have indeed benefited from
the huge breakthrough of deep neural networks (He et al.,
2016a; Ronneberger et al., 2015) and large-scale datasets
(Liu et al., 2018a; Zhang et al., 2020; Liu et al., 2021a, 2022;
Fang et al., 2024a, b). A lot of deep learning based FASmeth-
ods (Liu et al., 2019; Menotti et al., 2015; Nagpal & Dubey,
2019; Jourabloo et al., 2018) have emerged.

The significant Central Difference Convolution Network
(CDCN) (Yu et al., 2020) is proposed to improve the repre-
sentation capacity of detailed textures via leveraging local
gradient features. After that, dual-cross central difference
networks (Yu et al., 2021) are proposed to exploit the dif-
ference of the center and surrounding sparse local features to
alleviate the information redundancy and sub-optimal prob-
lem in the training stage. PatchNet (Wang et al., 2022a) utilize
fine-grained face patch to enhance model’s discriminative
ability. Other works (Wang et al., 2022b; Sun et al., 2023)
pay attention to the domain adaption problem in FAS task.

Some generated-based methods show impressive results
by augmenting training data like STDN (Liu et al., 2020)
and DSDG (Wu et al., 2021a). However, previous generated-
based methods (Liu et al., 2020; Wu et al., 2021a) are
limited to intra-dataset generation scenarios and the gener-
ated images do not seem as realistic as natural samples. In
contrast, our proposed CG-FAS is able to flexibly generate
vivid samples whose spoof label is different from the inputs
and can be easily applied on unseen dataset.

2.2 Image Generation and Editing

2.2.1 Generative Methods

Generative methods are broadly studied and applied for
image editing (Ling et al., 2021; Ruiz et al., 2023). We first
introduce the recently prevailing generative methods, and
image editing related advances later. Many popular gener-

ative paradigms are put forward like Auto-regressive models
(Van Oord et al., 2016), Variational Autoencoder (VAE)
(Diederik & Max, 2014), Generative Adversarial Network
(GAN) (Goodfellow et al., 2014) and diffusionmodels (Sohl-
Dickstein et al., 2015). Among all, diffusion models are
popular but not easy to precisely control generation details
with text prompt (Rombach et al., 2022). Since GAN-based
methods are particularly concerned for generating high-
quality and realistic samples (Arjovsky et al., 2017; Karras et
al., 2018; Miyato et al., 2018), and generally applied in tasks
like image-to-image translation (Isola et al., 2017), semantic
image editing (Ling et al., 2021).Wechoose the distinguished
StyleGAN (Karras et al., 2019, 2020b, a, 2021) network as
our image generator (Wu et al., 2021b).

GAN inversion aims to invert real-world images into latent
codes in the low-dimensional latent space (Xia et al., 2021),
which is the reverse function of a GAN generator (Good-
fellow et al., 2014). The latent space of GAN is generally
studied and recognized as a Riemannian manifold (Shen et
al., 2020a). The Z space is utilized by randomly samples
a normal distribution vectors (Radford et al., 2016). Style-
GAN utilizes a non-linear mapping network to convert a Z
space latent code into W space, enabling better interpola-
tion and disentangles (Karras et al., 2019, 2020b). Some
researchers employW+ space, which extendsW space to a
better representation (Abdal et al., 2019, 2020). In this study,
the cutting-edge e4e (Tov et al., 2021)method andW+ space
is chosen as our encoder module for high efficiency.

2.2.2 Face Image Editing

Face image editing technique is attractive for its versatility
and beyond imagination results (Patashnik et al., 2021). A
typical editing manner of StyleGAN-based researches obeys
a paradigm of "invert first, edit later" (Richardson et al.,
2021), which is conducted by firstly converting the given
image into latent space, manipulating the latent code, and
lastly generating the desired image by generator (Härkönen
et al., 2020; Shen et al., 2020a). For instance, InterFaceGAN
(Shen et al., 2020b) uses the SVM method to find seman-
tic directions inW+ space to revise face attributes like age,
gender, and expression. GANSpace (Härkönen et al., 2020)
applies PCA(Principal Component Analysis) to find mean-
ingful direction and execute an interpolation manipulation in
a BigGAN (Brock et al., 2018) or StyleGAN (Karras et al.,
2019) latent space. StyleCLIP (Patashnik et al., 2021) enables
natural language to edit input images, relying on a large-scale
visual-language model CLIP (Radford et al., 2021). While
these methods are rarely applied in FAS area, we are seeking
to use them for improving typical FAS methods.
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Fig. 2 An overview of the CG-FAS pipeline. The upper subpicture
shows that our CG-FAS could serve as a plugin for any existing FAS
methods. Fedwith source images, CG-FAS could generate new samples
as augmentation, which helps to improve the training of the FASmodel.
The lower-left subpicture illustrates the generation process of CG-FAS.
Initially, a well-trained encoder maps the source face images into latent
codes in the latent space. Subsequently, face editing is performed by

adding the latent code with the IB matrix element. Finally, a StyleGAN
generator is utilized to generate target images. The lower-right subpic-
ture shows the training process of IB matrix. By adding latent codes
with IB matrix element, the resultant vector is sent into a pre-trained
classifier. Thereafter, the cross entropy loss is calculated to update the
IB matrix element merely. (Best viewed in color)

3 Methodology

3.1 Overview

Since image generation techniques are rarely incorporated
in contemporary FAS methods, we aim to utilize generative
models to promote FASmodel’s performance.By elaborately
designing the latent space and editing approach, we pro-
pose CG-FAS to generate new images whoes spoof labels are
reversed while keeping other face attributes reserved. These
generated samples are subsequently used as augmentation to
train a more robust FAS model, which provably and practi-
cally performs better.

Our CG-FAS consists of three main stages: (1) Determin-
ing the latent space. The W+ space is selected as our latent
space for its convenient semantic editing capability. Conse-
quently we train an encoder and a generator to connect RGB
space and this latent space shown in Sect. 3.2. (2) Bridging
live and PAs in latent space. After mapping RGB images
into the semantic disentangled W+ space, we are able to
train and obtain each PA’s unique spoof characteristics vec-
tor, and gather them into a matrix named Interchange Bridge
(IB) matrix. The IB matrix can be used to transfer any face
image’s spoof label with a zero-shot ability introduced in
Sect. 3.3. (3) Augmentation for FAS models. The IB matrix
serves as a plug-in for training a FASmodel, and its effective-
ness is conceptionally proved in Sect. 3.4. When executing
face editing on batch images, we found a dilemma of balanc-
ing FAS score and identification similarity score.We propose

a strategy to reach a trade-off in Sect. 3.5. The overall pipeline
of CG-FAS is illustrated in Fig. 2.

3.2 The Latent Space

Determining a proper latent space is vital for image edit-
ing tasks. While the RGB space is high-dimensional and
unsuitable for image editing, regular GAN-based methods
generate images from a low-dimensional latent space, which
is convenient for editing. Among all, StyleGAN (Karras et
al., 2020a) is popular for generating vivid images, and some
typical latent spaces (Radford et al., 2016;Karras et al., 2019;
Abdal et al., 2019) of StyleGAN are therefore put forward.
TheW+ space (Abdal et al., 2019) is advanced and special-
ized in human face manipulation, we confidently choose the
linearW+ space as latent space. In this study, ourW+ space
is a concatenation of 16 different 512-dimensional vectors,
which could be used to generate 512 × 512 resolution face
images.

To transfer the RGB space images into W+ space, an
indispensable component is training a generator as connec-
tion. In this study, the official StyleGAN2-ada (Karras et
al., 2020a) is utilized as its generator could produce images
obeying a similar distributionwith input images. The Fréchet
Inception Distances (FID) (Heusel et al., 2017) is used as
supervision. During training, we add up the FFHQ dataset
(Karras et al., 2019) and some FAS datasets as the complete
training set, which is sufficient to produce faces with vari-
ous characteristics. In summary, we define a generator fG to
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Algorithm 1 Training IB Matrix.
Require: Training set S: image and label pair (x, y) ∈ S
1: initialize IB matrix: Dn+1 = zeros(n+1, n+1, d)
2: while not end of training do
3: choose PA type i : i = randint[1, n]
4: build dataset: Si = {(x, y) | y = 0 or i}
5: get mini-batch data: (X , Y ) ⊆ Si
6: get residual vector: δ0i = D[0, i]
7: encode X into latent codes:
8: e = encoder(X)

9: edit latent codes with residual vector:
10: e′ = e + β · δ0i · (2 · 1Y �=i − 1)
11: compute target labels:
12: Y ′ = i − Y
13: compute loss:
14: Lbridge = classi f ier(e′, Y ′)
15: compute gradient �D:
16: �D = backward(Lbridge)

17: update Interchange Bridge Matrix:
18: D ← D − learning_rate · �D
19: end while
20: D[i, j] = D[0, j] − D[0, i], f or 1 ≤ i < j ≤ n
21: D[i, j] = −D[ j, i], f or 0 ≤ i �= j ≤ n
22: Indicator function 1c ∈ {0, 1} returns 1 if c is true.

map any latent code e ∈ Rd into RGB space image x by the
following equation:

x = fG(e), (1)

where d is equal to 8192 in this study.
Reversely, to obtain the latent code e for any given image

x , we train a deep neural network based encoder to map
images into latent space. In this study, the e4e (Tov et al.,
2021) encoder network is utilized to execute this mapping
operation. The encoding procedure could be expressed by the
formulation: e = fE (x). Generally, fG and fE are approxi-
mately inverse functions of each other and can be conveyed
as follow:

e = fE (x) = fE ◦ fG(e), (2)

where the notation ◦ is a link in composite function. When
training the encoder, we choose the LPIPS loss (Zhang et al.,
2018) and ArcFace (Deng et al., 2019) loss to compute total
loss: Lencoder = LLP I PS + λI D · LArcFace.

3.3 The Interchange BridgeMatrix

After the encoder and generator are well trained, we are
able to manipulate images in latent space. For any given
latent code e, commonly used semantic face editing (such as
expression, age, and gender) approaches are finding a resid-
ual vector (Härkönen et al., 2020; Shen et al., 2020b), which
represents a specific semantic edition in the disentangled
W+ space. In this study, we use a Multi Layer Perceptron
named classi f ier as supervision and calculate cross entropy

loss to train each residual vector. For better usage, we orga-
nize a series of residual vectors into a matrix, namely the
Interchange Bridge matrix described below:

Dn+1 =

⎡
⎢⎢⎢⎣

δ00 δ01 · · · δ0n

δ10 δ11 · · · δ1n
...

...
. . .

...

δn0 δn1 · · · δnn

⎤
⎥⎥⎥⎦, (3)

Here n represents presentation attack categories.Any arbi-
trary element δi j ∈ Dn+1 denotes a residual vector that
could convert live/PA type i into type j . To be mentioned,
the IB matrix’s diagonal elements are zero vectors, meaning
no transformation within one live/PA type. Once we got the
IB matrix, the editing operation can be expressed as adding
latent code e with δi j by the following formulation:

e′ = e + β · δi j , (4)

where β is editing coefficient, and δi j ∈ Rd .
Since transforming live face into PA face and transforming

PA face into live face are reversemanipulation in linear space
W+, naturally we get δi j = −δ j i . Therefore the IB matrix
Dn+1 is skew-symmetric, which means that we only need to
obtain theupper triangular part of the IBmatrix.What’smore,
transforming live/PA from type i to type j can be considered
as two separate steps: first transforming live/PA from type i
into live face, then transforming live face into live/PA type
j . Therefore, we have δi j = δi0 + δ0 j .
Depending on the relationships described above, we only

need to train the first line elements ofDn+1, while other ele-
ments could be obtained by these relationships. The whole
training procedure is explicitly described in Alg.1. The
matrix Dn+1 can be utilized to generate arbitrary PA or live
faces, thus we named it Interchange Bridge matrix, which
shows zero-shot generation capability even for unseen face
identities.

3.4 Effect Analysis of CG-FAS

Problem Definition Arranging the IB matrix as a plugin
when training a FASmodel, we conjecture this augmentation
could help to promote the FAS model’s performance, which
is called CG-FAS in this study. In this subsection, we will
demonstrate how CG-FAS could assist training FAS models
by prevent overfitting. Firstly, we mathematically define a
FAS task described in Eq. (5). For any input image x ∈ X,
there exists a corresponding label y ∈ {0, 1} representing live
or PA face respectively. Researchers aim to find an optimal
mapping relation between input x and label y. Generally we
use a deep neural network fS to approximate this relation-
ship, and the objective is minimizing the cross entropy (CE)
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loss of model output and ground truth:

min
fS

L(x, y; fS) =
∑
x,y

CE( fS(x), y)

s.t . x ∈ X, y ∈ {0, 1},
(5)

In the physical world, it’s observed that different types of
presentation attack, such as print attack and 3D mask attack,
exhibit distinct spoofing characteristics. Base on this obser-
vation, we have

Assumption 1 Any two PAs’ normalized residual vectors in
Es = {si | si = δ0i‖δ0i‖ , i = 1, . . . , n} are orthonormal,

namely si · sTj = 0,∀ si , s j ∈ Es .

Since the linear W+ space is proved to be highly disentan-
gled (Abdal et al., 2019, 2020), showing that any attribute
(e.g., glasses, hat) in live face can be encoded into a distinct
embedding. Consequently, it is concluded that any live face
can be expressed by a linear combination of such orthogonal
embeddings, each corresponding to a specific attribute. Thus
we have

Assumption 2 Any spoof-irrelevant face features (e.g.,
glasses, hat) could be conveyed by a set of orthonormal vec-
tors Eb = {bi | i = 1, . . . ,m} inW+.

As illustrated in Fig. 3, CG-FAS is able to modify any
face image’s spoofing attribute without altering other spoof-
irrelevant attributes. This leads us to believe that the spoofing
features described in assumption 1 and features described in
assumption 2 are orthogonal to each other. We have

Assumption 3 Any two elements in E = Es ∪ Eb are
orthogonal, we get ei · eTj = 0,∀ ei , e j ∈ E. Therefore
E = [s1, .., sn, . . . , b1, . . . , bm] forms a standard orthogonal
basis of latent spaceW+, and arbitrary latent code e is equiv-
alent to coordinate vector α = [α1, . . . , αn, . . . , αn+m]T
under this basis:

e = E · α

= [s1, .., sn, b1, . . . , bm] · [α1, . . . , αn, . . . , αn+m]T ,
(6)

In this study, the subsetEs = {s1, . . . , sn} stands for different
kinds of spoof clues like replay-attack texture, 3Dmaskmar-
gin features and so on. And Eb = {b1, . . . , bm} stands for
spoof-irrelevant information like lighting condition, scene,
camera device which are independent of spoof clues. Based
on the assumptions above, it’s natural to define a valid FAS
model to discriminate PA faces from live ones below:

Fig. 3 An illustration of the editing process on the HiFiMask dataset.
By increasing the editing coefficient β progressively, the intermediate
images are exhibited in detail. Most spoof-irrelevant attributes like hats,
glasses and lighting conditions are reserved during the process

fS(x) = fS ◦ fG(e)

= [1, . . . , 1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
m−t

] · ET · e

= α1 + . . . + αn + αn+1 + . . . + αn+t︸ ︷︷ ︸
over f i t ting i tems

,

(7)

In this FAS model, the coefficient from α1 to αn+t will
determine the final discriminative result. Since the previous
n items represent level of spoof features, the latter t spoof-
irrelevant features are mistakenly considered as spoof clues
which are overfitting items. Live faces with these features
may be misidentified as PA faces. Thus, a better FAS model
ought to own fewer overfitting items. In the following part,
we are going to prove how our proposed CG-FAS could elim-
inate overfitting.

For a typical FAS dataset, we suppose that b1 ∈ Eb repre-
sents a spoof-irrelevant but overfitted feature, which mostly
occurs in PA samples but rarely occurs in live samples. In
such circumstance, researchers tend to train a FAS model
like Eq. (7), where the overfitting item αn+1 exists.

For any input images x , it is equal to a latent code e by
Eq. (1), while e is equal to α under the basis E by Eq. (6). To
simplify, we set {αi = 0 or 1 | i ∈ α}. Thus, x could be
categorized into the following two types:

x � e � α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ 0, . . . , 0︸ ︷︷ ︸
n

, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

]T i f x is live

[ 1, . . . , 1︸ ︷︷ ︸
n

, 1, 0, . . . , 0︸ ︷︷ ︸
m−1

]T i f x is P A,
(8)

Once we conduct CG-FAS on x , m items of spoof-
irrelevant features keep consistent and n items of spoof clues
are converted. The generated sample x ′ could be expressed
as:
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x ′ = CG-FAS(x) � e′ � α′

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ 1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

]T while x ′ is P A

[ 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, . . . , 0︸ ︷︷ ︸
m−1

]T while x ′ is live,
(9)

by adding up x and x ′ into training set, we can see that the
n + 1 th feature b1 in Eq. (6) exists in both live and PA
examples. Using the added images as training set, we tend to
obtain a better FAS model where the overfitting item αn+1

in Eq. (6) no longer exists, thus relieving overfitting.

3.5 Batch Image Editing

Since we can use Eq. (9) to realize our desired editing task,
as shown in Fig. 3, by progressively increasing the editing
coefficient β in Eq. (4), input live faces are smoothly con-
verted into 3D plaster mask faces as output. If we set β as
low value, the face attributes similarity between input and
output is high but the output’s spoof degree is low. If we
increase β, the output image’s FAS score become higher but
attributes similarity would get lower. Thus, determining the
value of β becomes a vital problem.

To be mentioned, β is easy to be determined for a single
image by delicate manual adjustment, but infeasible for large
batch images which would exhaust too much human efforts.
In this study, we will use a face recognitionmodel fR to eval-
uate spoof-irrelevant features’ consistency and a FAS model
fS to evaluate spoof confidence score. When editing batches
of live/spoof faces, we hope the fR score between input and
output keep close and fS score be reversed after edition.

To measure our objective quantitatively, we use fR and
fS score on the original validation set as standards, and we
hope CG-FAS generated samples obey a similar distribution
with validation set on the two scores. Thus, we calculate the
average value of fR and fS score on the validation set, noted
as t̃ = [tR, tS]. The optimization problem can be conveyed
as: finding an optimal value β∗, where generated images’ fR
and fS score point should be close to t̃ , which is described
below:

β∗ = argmin
β

{| 1
k

k∑
i=1

fR( fG(ei + βδ), fG(ei )) − tR |

+ | 1
k

k∑
i=1

fS( fG(ei + βδ)) − tS |},
(10)

Here k is batch size, ei is the i th latent code in this batch
and δ is a residual vector in IB matrix Dn+1. By trying dif-
ferent value of β in the equation above, we could figure out
the approximately optimal value β∗.

4 Experiments

In this section, firstly we introduce the experimental settings,
and then quantitatively evaluate the editing result by some
expertmodels.Next,we compare our proposedCG-FASwith
other contemporary methods on two intra-testing datasets,
and conduct two cross-testing experiments.We execute abla-
tion studies on four key factors throughout our research.
Finally, we show more visualization results of IB matrix
applied on four typical FAS datasets.

4.1 Experimental Settings

4.1.1 Datasets & Preprocessing

Four high resolution datasets namely OULU-NPU (Boulke-
nafet et al., 2017b), SiW (Liu et al., 2018a), HKBUMARsV2
(Liu et al., 2016) and HiFiMask (Liu et al., 2022, 2021b)
are chosen as FAS datasets as shown in Table 1. Both
OULU-NPU and SiW contain two categories of 2D PA:
print and replay attack. MarsV2 is a 3D mask presenta-
tion attack dataset which includes live images two types of
mask: ThatsMyFace and RealF masks. HiFiMask is a newly
proposed 3D high fidelity dataset which contains live, trans-
parent, plaster and resin masks. Besides, the FFHQ (Karras
et al., 2019) dataset including 70000 identities face images
is used while training StyleGAN. After executing the face
detection and alignment operation, all images are cropped
into 512 × 512 resolution as preprocssing.

4.1.2 Implementation Details

We choose StyleGAN2-ada (Karras et al., 2020a) config-
uration with a pre-trained model as the generator. While
fine-tuning, we freeze the preceding ten layers and train other
parameters with FFHQ and the four FAS datasets. For the
encoder, we follow the implementation of e4e (Tov et al.,
2021) network as our encoder and λI D set as 0.5. We select
CDCN (Yu et al., 2020) as our FAS model backbone. Dur-
ing batch image edition, we set β as 0.22 in HiFiMask and
0.25 in OULU-NPU. Moreover, we set the ratio of generated
images to original images as 1.0 when applying IB matrix on
FAS tasks. Eight NVIDIA RTX-2080 GPUs are employed
during training.

4.1.3 Performance Metrics

For intra testings, we strictly follow the protocols and evalua-
tion metrics of OULU-NPU and HiFiMask. APCER (Attack
Presentation Classification Error Rate) and BPCER (Bona
Fide Presentation Classification Error Rate) are computed
first, and their mean value ACER (Average Classification
Error Rate) is used as the evaluation metric. During cross
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Table 1 Four FAS datasets used
in our experiments

Dataset Live 2D PA 3D PA

OULU-NPU (Boulkenafet et al., 2017b) ✓ Print, replay ✗

SiW (Liu et al., 2018a) ✓ Print, replay ✗

HiFiMask (Liu et al., 2022) ✓ ✗ Transparent, plaster, resin

MARsV2 (Liu et al., 2016) ✓ ✗ RealF, ThatsMyFace

‘PA’ is short for presentation attack

testings, HTER (Half Total Error Rate) value and AUC (Area
Under Curve) value are calculated as the evaluation metric.

4.2 Analyzing Editing Result

As shown in Fig. 3, we demonstrate the complete editing
process on images of HiFiMask. By changing the editing
coefficient β progressively, live faces turn into 3D high-
fidelity masks smoothly. Attributes like glasses, expression,
skin color, hat, and light condition are perfectly preserved
after generation, which shows the huge advantages of our
proposed CG-FAS.

Furthermore, we conducted a group of experiments to
evaluate generated images quantitatively. As shown in Table
2, the first column lists the original testing set and CG-
FAS generated sets which remain to be evaluated, while the
last column lists two training sets on which we train two
expert models. The middle columns display the comparison
results on HiFiMask and OULU-NPU protocol 1. Evaluated
on HiFiMask trained expert model, the testing ACER value
on the original testing set is 1.3, while the generated testing
set is 3.1. These two values are extremely close and near
zero, meaning that our generated data owns the same spoof
clues as the original HiFiMask. Additionally, when using the
model trained on OULU-NPU dataset as expert, ACER on
generated sets is 0.9, near the original testing set result as
well.

4.3 Intra Testing

4.3.1 Result on OULU-NPU

OULU-NPU is a widely used evaluation dataset designed for
2D presentation attacks. There are four protocols on OULU-
NPU by allocating different identities, PA types, devices
and sessions. As shown in Table 3, we apply our proposed
CG-FAS framework on the four protocols’ training tasks,
achieving the best performance on each protocol. Compared
with other contemporary methods, CG-FAS shows evident
superior performance on protocol three and protocol four,
which verifies its strong generalization ability on hard exam-
ples. This experiment demonstrates the superiority of our
proposed CG-FAS on 2D presentation attacks.

4.3.2 Result on HiFiMask

We further conduct an intra testing experiment on a 3D
mask dataset called HiFiMask. It is a newly released 3D
high resolution mask dataset which contains three repre-
sentative masks of transparent, plaster and resin materials.
HiFiMask dataset gathered various identities, lighting con-
ditions, scenes and devices, while three protocols were raised
by these rules. Within its training set, we utilize our CG-FAS
framework to generate mask faces from live ones, and live
faces from mask ones. After adding these generated images
into the training set, our FAS model acquires state-of-the-
art ACER by considerable advantage on all three protocols,
which is shown in Table 4.

Table 2 Evaluation of the
original and CG-FAS generated
testing set (marked as �) on two
FAS models, which are
well-trained on HiFiMask and
OULU-NPU training set
respectively

Evaluated set APCER (%) BPCER (%) ACER (%) Training set

HiFiMask 0.8 1.9 1.3 HiFiMask

HiFiMask � 0.5 5.6 3.1

HiFiMask 39.5 24.2 21.5 OULU-NPU

HiFiMask � 18.8 5.6 3.1

OULU-NPU 35.8 36.7 36.3 HiFiMask

OULU-NPU � 0.4 54.6 27.5

OULU-NPU 0.0 0.0 0.0 OULU-NPU

OULU-NPU � 1.7 0.2 0.9

All models use CDCN as backbone
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Table 3 The intra-dataset
testing results on OULU-NPU

Prot Method APCER (%) BPCER (%) ACER (%)

1 FAS-SGTD (Wang et al., 2020) 2.0 0.0 1.0

STDN (Liu et al., 2020) 0.8 1.3 1.1

CDCN (Yu et al., 2020) 0.4 1.7 1.0

BCN (Yu et al., 2020) 0.0 1.6 0.8

LMFD-PAD (Fang et al., 2022) 1.4 1.6 1.5

CDCN++ (Yu et al., 2020) 0.4 0.0 0.2

NAS-FAS (Yu et al., 2020) 0.4 0.0 0.2

DCN (Zhang et al., 2021) 1.3 0.0 0.6

DSDG (Wu et al., 2021a) 0.6 0.0 0.3

PatchNet (Wang et al., 2022a) 0.0 0.0 0.0

CG-FAS (Ours) 0.0 0.0 0.0

2 STASN (Yang et al., 2019) 4.2 0.3 2.2

FAS-SGTD (Wang et al., 2020) 2.5 1.3 1.9

STDN (Liu et al., 2020) 2.3 1.6 1.9

BCN (Yu et al., 2020) 2.6 0.8 1.7

CDCN (Yu et al., 2020) 1.5 1.4 1.5

LMFD-PAD (Fang et al., 2022) 3.1 0.8 2.0

CDCN++ (Yu et al., 2020) 1.8 0.8 1.3

NAS-FAS (Yu et al., 2020) 1.5 0.8 1.2

DCN (Zhang et al., 2021) 2.2 2.2 2.2

DSDG (Wu et al., 2021a) 1.5 0.8 1.2

PatchNet (Wang et al., 2022a) 1.1 1.2 1.2

CG-FAS (Ours) 0.7 1.7 1.2

3 STDN (Liu et al., 2020) 1.6±1.6 4.0±5.4 2.8±3.3

FAS-SGTD (Wang et al., 2020) 3.2±2.0 2.2±1.4 2.7±0.6

BCN (Yu et al., 2020) 2.8±2.4 2.3±2.8 2.5±1.1

CDCN (Yu et al., 2020) 2.4±1.3 2.2±2.0 2.3±1.4

LMFD-PAD (Fang et al., 2022) 3.5±3.2 3.3±3.2 3.4±3.1

CDCN++ (Yu et al., 2020) 1.7±1.5 2.0±1.2 1.8±0.7

NAS-FAS (Yu et al., 2020) 2.1±1.3 1.4±1.1 1.7±0.6

DCN (Zhang et al., 2021) 2.3±2.7 1.4±2.6 1.9±1.6

DSDG (Wu et al., 2021a) 1.2±0.8 1.7±3.3 1.4±1.5

PatchNet (Wang et al., 2022a) 1.8±1.5 0.6±1.2 1.2±1.3

CG-FAS (Ours) 1.3±1.2 0.8±1.4 1.0±0.6

4 FaceDs (Jourabloo et al., 2018) 1.2±6.3 6.1±5.1 5.6±5.7

BCN (Yu et al., 2020) 2.9±4.0 7.5±6.9 5.2±3.7

FAS-SGTD (Wang et al., 2020) 6.7±7.5 3.3±4.1 5.0±2.2

STDN (Liu et al., 2020) 2.3±3.6 5.2±5.4 3.8±4.2

LMFD-PAD (Fang et al., 2022) 4.5±5.3 2.5±4.1 3.3±3.1

CDCN++ (Yu et al., 2020) 4.2±3.4 5.8±4.9 5.0±2.9

NAS-FAS (Yu et al., 2020) 4.2±5.3 1.7±2.6 2.9±2.8

DCN (Zhang et al., 2021) 6.7±6.8 0.0±0.0 3.3±3.4

DSDG (Wu et al., 2021a) 2.1±1.0 2.5±4.2 2.3±2.3

PatchNet (Wang et al., 2022a) 2.5±3.8 3.3±3.7 2.9±3.0

CG-FAS (Ours) 3.8±5.2 0.0±0.0 1.9±2.6

Best results are marked in bold
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Table 4 The intra-dataset
testing results on HiFiMask

Prot Method APCER (%) BPCER (%) ACER (%)

1 ResNet50 (He et al., 2016b) 3.7 5.7 4.7

Aux.(Depth) (Liu et al., 2018a) 4.9 1.8 3.4

CDCN (Yu et al., 2020) 3.3 3.9 3.6

CCL(ViT* (Dosovitskiy et al., 2021)) 2.4 1.5 1.9

CCL (Liu et al., 2022) 2.1 3.1 2.6

DSDG (Wu et al., 2021a) 0.8 1.9 1.3

CG-FAS (Ours) 0.7 1.4 1.1

2 ResNet50 (He et al., 2016b) 22.4±15.3 14.6±6.7 18.5±11.0

Aux.(Depth) (Liu et al., 2018a) 11.1±9.4 11.2±9.8 11.2±9.0

CDCN (Yu et al., 2020) 12.6±7.3 16.8±15.6 14.7±11.4

CCL(ViT*) (Dosovitskiy et al., 2021) 12.2±10.3 12.9±11.2 12.5±10.7

CCL (Liu et al., 2022) 10.7±7.5 10.7±9.4 10.7±8.4

DSDG (Wu et al., 2021a) 9.5±8.6 6.2±5.0 7.8±6.8

CG-FAS (Ours) 6.8±5.2 5.9±4.9 6.3±5.0

3 ResNet50 (He et al., 2016b) 13.5 28.3 20.9

Aux.(Depth) (Liu et al., 2018a) 9.6 16.2 12.9

CDCN (Yu et al., 2020) 20.8 12.5 16.7

CCL(ViT*) (Dosovitskiy et al., 2021) 6.4 2.5 4.5

CCL (Liu et al., 2022) 8.2 12.7 10.5

DSDG (Wu et al., 2021a) 14.3 1.6 8.0

CG-FAS (Ours) 12.0 3.3 7.6

Methods with ‘*’ denote using pre-trained model
Best results are marked in bold

4.4 Cross Testing

We evaluate several state-of-the-art methods and our CG-
FAS regarding the above protocols. In Table 6, all results
from three protocols demonstrate a tendency that CG-FAS
is superior to previous methods. This is mainly attributed
to the ability of generating cross domain images by CG-
FAS. Adding these generated data would change the original
distribution of HiFiMask and OULU-NPU, which improves
the FAS model’s generalization ability.

4.4.1 HiFiMask &MARsV2

Since each FAS dataset owns its unique spoofing charac-
teristics, cross dataset experiments could prove a method’s
generalization ability. Following the predecessor’s paradigm
(Liu et al., 2022), we choose two 3D mask datasets namely
HiFiMask andMARsV2 to demonstrate our CG-FAS frame-
work.UsingHiFiMaskdataset as training set,CG-FASshows
a significant metric improvement by a large margin when
testing on MARsV2 dataset. On the contrary, we further use
MARsV2 as the training set and HiFiMask as the testing set.
The computed HTER andAUC value result also outperforms
previous works shown in Table 5. This performance strongly
proves the generalization ability of our proposed CG-FAS
framework.

4.4.2 Cross-domain Attack Benchmark

To further demonstrate that our method is more effective in
generating faces of unseen domains. In this part, we build
specified settings as: (1) We combine the training set of
OULU-NPU, the training set of HiFiMask, and the gen-
erated label transformation results of the above dataset as
the actual training set. (2) We set the testing set of SiW as
the actual testing set of protocol 1. This protocol ensures
that the training and testing sets have the same 2D presenta-
tion attacks but different distributions. (3) We set the whole
MARsV2 as the actual testing set of protocol 2. This protocol
ensures that the training and testing sets have the same 3D
presentation attacks but different distributions. Considering
that MARsV2’s overall data magnitude is relatively small,
we choose all of its data as the testing set. (4) Finally, we
combine the two above protocols as protocol 3.

4.5 Ablation Study

In this part, we execute four groups of experiments on four
import factors in CG-FAS: FAS model backbone, editing
coefficient β, the generated image number and generative
methods. These experiments are conducted on OULU-NPU
and HiFiMask datasets.
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Table 5 Cross-testing results on
two 3D presentation attack
datasets

Method HiFiMask to MARsV2 MARsV2 to HiFiMask
HTER (%)↓ AUC (%)↑ HTER (%)↓ AUC (%)↑

ResNet50 (He et al., 2016b) 20.61 86.87 38.96 67.05

CDCN (Yu et al., 2020) 16.56 90.81 45.20 56.13

Aux.(Depth) (Liu et al., 2018a) 9.31 96.31 44.24 57.05

CCL(ViT*) (Dosovitskiy et al., 2021) 9.82 96.72 38.03 63.07

CG-FAS (Ours) 4.86 99.11 34.64 71.54

Methods with ‘*’ denote using pre-trained model
Best results are marked in bold

Table 6 Cross-domain results
on our proposed cross-domain
attack benchmark

Prot Testing set Method APCER (%) BPCER (%) ACER (%)

1 SiW CDCN (Yu et al., 2020) 28.34 29.16 28.75

DSDG (Wu et al., 2021a) 26.41 26.07 26.24

CG-FAS (Ours) 24.62 23.84 24.23

2 MARsV2 CDCN (Yu et al., 2020) 8.53 9.13 8.83

DSDG (Wu et al., 2021a) 6.55 6.55 6.55

CG-FAS (Ours) 6.15 6.55 6.35

3 SiW + MARsV2 CDCN (Yu et al., 2020) 22.11 22.17 22.14

DSDG (Wu et al., 2021a) 19.46 19.50 19.48

CG-FAS (Ours) 18.13 18.22 18.17

Best results are marked in bold

Table 7 Ablation study of
CG-FAS with different
backbones on OULU-NPU
protocol 1

Method ACER (%) Method ACER (%) Method ACER (%)

ResNet 6.8 Aux 1.6 CDCN 1.0

ResNet(DSDG) 4.8 Aux.(DSDG) 1.3 CDCN(DSDG) 0.3

ResNet(CG-FAS) 3.5 Aux.(CG-FAS) 1.1 CDCN(CG-FAS) 0.0

Best results are marked in bold

4.5.1 Impact of FAS Backbones

To verify the effectiveness of our proposed CG-FAS under
any FAS model backbones, we select three prevalent net-
works: ResNet50 (He et al., 2016b), Aux. (Liu et al., 2018a)
and CDCN (Yu et al., 2020) as backbones. The compared
results are shown in Table 7. In the first row, there base-
line results were performed by using these backbones. In the
second row, we equipped the training set with DSDG gener-
ated data, the ACER value on three backbones all improved

to some extent. In the last row, CG-FAS achieved the most
competitive ACER value, which illustrates that our method
does not rely on any specific backbone.

4.5.2 Impact of Editing Coefficient

As shown in Table 8, we conduct five group experiments
by setting different values of β, ranging from 0.20 to 0.35.
What’s more, we further draw the similarity score vs. FAS
score curve shown in Fig. 4 All experiments are conducted

Table 8 Ablation study of
editing coefficient β on
HiFiMask protocol 1

β Avg. Similarity (%) Avg. AUC (%) Avg. Accuracy (%)

Val. set 39.77 99.73 98.34

0.20 44.72 89.97 85.22

0.22 39.52 98.36 95.27

0.25 36.07 99.16 96.89

0.30 31.01 99.67 98.24

0.35 26.72 99.85 98.69

Best results are marked in bold
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Fig. 4 The face recognition similarity score vs. FASAUC score under
different editing coefficient β. The red point is the result on HiFiMask
validation set

on the HiFiMask protocol one’s training set. When β is set as
0.35, the face recognition score between original training set
and generated samples are low, which means that faces are
over edited.And the face anti-spoofing score is high,meaning
that we indeed obtain desired PA or live face images. When
β is set as 0.20, we notice that the face recognition score is
high while face anti-spoofing score is low. Since the curve is
fitted with unavoidable error, we set the optimal β∗ as 0.22
approximately, which is highly close to target point t̃ . Thus
β∗ = 0.22 an approximately optimal solution of Eq. (10).

4.5.3 Impact of Generated Image Numbers

An intuitive question is how many generated samples are
suitable as data augmentation. By adding different amount
of generated images into training set, we use CDCN (Yu et
al., 2020) as backbone and train models on HiFiMask pro-
tocol one. As shown in Table 9, adding 0.1 times generated
images could promote the FAS model performance. And the
ACER keeps improving until 1.0 times generated images are
added to the training set. After that, the performance satu-
rates when the ratio is set to 2.0 on HiFiMask. While 3.0

times of generated images are added into the training set, the
ACER value degrades. We conjecture that too much gener-
ated imageswould alter the distribution of the original dataset
by introducing model bias. Thus we set 1.0 as the best ratio
throughout all experiment settings.

4.5.4 Impact of Generative Methods

As shown in Fig. 1, the Stable Diffusion (Rombach et al.,
2022) based method DreamBooth (Ruiz et al., 2023) could
also generate faces with PA trait, while other face features are
not enough consistent with input images. Therefore, we also
utilize the DreamBooth generated images as augmentation
and test on HiFiMask dataset. Table 10 demonstrates that
DreamBooth augmented model get better ACER value than
the baseline CDCN model, but inferior to our proposed CG-
FAS. We believe that the diffusion model based generation
also works, but less convenient to use than our proposed
IB matrix. Besides, it’s hard to find proper prompt to align
desired face editing tasks.

4.6 More Visualization Results

Aiming to show the superiority of our proposed IB matrix,
we conductmore visualization experiments on thementioned
four FAS datasets. According to the difference of source
and target images in domain and presentation attack, our
generation results could be categorized into three types: intra-
dataset generation, cross-domain generation and expanding-
PA generation shown in Fig. 5.

Table 9 Ablation study of the
ratio of CG-FAS generated
images to original images
during training

Generated/Original 0.0/1.0 0.1/1.0 0.5/1.0 1.0/1.0 2.0/1.0 3.0/1.0 1.0/0.1

ACER (%) 3.6 1.13 1.08 1.05 1.06 1.26 2.20

Experiments are conducted on HiFiMask protocol 1 dataset, and 1.0 times is equal to 32514 samples

Table 10 Ablation study of
generative methods on
HiFiMask dataset

Prot Method APCER (%) BPCER (%) ACER (%)

1 CDCN (Yu et al., 2020) 3.3 3.9 3.6

DreamBooth (Ruiz et al., 2023) 1.1 1.6 1.3

CG-FAS (Ours) 0.7 1.4 1.1

2 CDCN (Yu et al., 2020) 12.6±7.3 16.8±15.6 14.7±11.4

DreamBooth (Ruiz et al., 2023) 9.8±8.3 6.9±4.5 8.3±6.4

CG-FAS (Ours) 6.8±5.2 5.9±4.9 6.3±5.0

3 CDCN (Yu et al., 2020) 20.8 12.5 16.7

DreamBooth (Ruiz et al., 2023) 13.6 3.8 8.7

CG-FAS (Ours) 12.0 3.3 7.6

Best results are marked in bold
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Fig. 5 An exhibition of applying the IB matrix on four FAS datasets.
The figure is split into three parts by dotted line. a Intra-dataset Gen-
eration: The left two columns compare input transparent mask images
from HiFiMask dataset and our generated live faces, while the right
two columns show live faces from MARsV2 dataset and our gener-
ated ThatsMyFace mask images. b Cross-domain Generation: Both
MARsV2 and HiFiMask are 3D mask datasets. Using MARsV2 live

faces as input, we could generate HiFiMask plaster mask style faces.
What’s more, the OULU-NPU live faces can be used to generate SiW
replay attack style faces. c Expanding-PA Generation: Here we use 2D
PA dataset as input to generate 3D PA faces and reversely. OULU-NPU
print attack faces can be used to generate HiFiMask plaster 3D mask
faces.Besides,HiFiMask live faces are used to generate SiWprint attack
faces. (Best viewed in color)

4.6.1 Intra-dataset Generation

Firstly, we utilize our proposed CG-FAS to generate sam-
ples within a FAS dataset. Here we conduct experiments on
HiFiMask dataset, which contains live, transparent and plas-
ter and resin mask images. We select some transparent 3D
mask faces from HiFiMask and convert them into their cor-
responding live ones. This cross-label generation results are
shown in the first column of Fig. 5a. We also conduct the
intra-dataset generation on another 3D mask FAS dataset,
namely MARsV2 in the second column. It is clear that some
selected live face images are converted into high-fidelity
ThatsMyFace mask style images, which could alleviate the
high expense of the ThatsMyFace mask data collection issue
and facilitates data diversity during training.

4.6.2 Cross-domain Generation

In this study, we assume that cross domain datasets indicate
the FAS datasets have the same PA types but different dis-
tribution. For instance, both OULU-NPU and SiW datasets
contain print and replay attack images but with serious
domain shifts. Figure5b shows the process we transform the
live face images from OULU-NPU into replay attack style
images from SiW. Besides, we conduct the cross-domain
experiments on two 3D mask FAS datasets MARsV2 and

HiFiMask. Live faces from MARsV2 are transformed into
plaster mask style images of HiFiMask with strong percep-
tive quality.

4.6.3 Expanding-PA Generation

Here we utilize CG-FAS to conduct generation across two
datasets which contain different presentation attack types.
For example, we are able to convert the live face images from
OULU-NPU into the plaster mask style images of HiFiMask.
As shown in Fig. 5c, such generated 3D mask attacks are
visually high-quality. Besides, we can also convert live face
images fromHiFiMask into print attack style of SiW dataset.
These generated face images contain obvious print features
(e.g., color distortion) and show the ability of expanding PA
types by our proposed CG-FAS.

4.6.4 T-SNE Visualization

Fig. 6 shows t-SNE visualization result on the protocol 1
training set of OULU-NPU dataset. As illustrated, live and
generated live images obey similar distribution, as do PA
and generated PA images. This similarity suggests that the
generated images effectively extend the boundary of the orig-
inal dataset, thereby serving as beneficial augmentations for
training FAS models.
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Fig. 6 Result of t-SNE visualization on OULU-NPU dataset. Circle
markers represent samples from the original dataset, while triangle
markers represent CG-FAS generated images

5 Conclusion and FutureWork

In this study, we propose a novel Interchange Bridge matrix,
which could convert a live face into a 3D high-fidelity mask,
replay, print, or other extra physical presentation attacks.
Correspondingly, it can also restore a specific physical pre-
sentation attack to a live face. Served as an augmentation
manner, we put forward CG-FAS to promote the training
of FAS models. To validate CG-FAS, we conduct exper-
iments on both existing FAS benchmarks and a proposed
cross-domain attack benchmark. Experimental results show
that CG-FAS outperforms existing generation methods with
a clear margin.

Vision Foundation Models (VFMs) like Stable Diffusion
model also show impressive result in this study. Fine-tuning
VFM on downstream tasks is widely studied but less used in
face anti-spoofing domain. In the future, we seek for effective
adaption of VFMs on FAS research.
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