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Abstract
Out-Of-Distribution (OOD) detection has received broad attention over the years, aiming to ensure the reliability and safety
of deep neural networks (DNNs) in real-world scenarios by rejecting incorrect predictions. However, we notice a discrepancy
between the conventional evaluation vs. the essential purpose of OOD detection. On the one hand, the conventional evaluation
exclusively considers risks caused by label-space distribution shifts while ignoring the risks from input-space distribution
shifts. On the other hand, the conventional evaluation reward detection methods for not rejecting the misclassified image in
the validation dataset. However, the misclassified image can also cause risks and should be rejected. We appeal to rethink
OOD detection from a human-centric perspective, that a proper detection method should reject the case that the deep model’s
prediction mismatches the human expectations and adopt the case that the deep model’s prediction meets the human expec-
tations. We propose a human-centric evaluation and conduct extensive experiments on 45 classifiers and 8 test datasets. We
find that the simple baseline OOD detection method can achieve comparable and even better performance than the recently
proposed methods, which means that the development in OOD detection in the past years may be overestimated. Additionally,
our experiments demonstrate that model selection is non-trivial for OOD detection and should be considered as an integral
of the proposed method, which differs from the claim in existing works that proposed methods are universal across different
models.
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1 Introduction

A fundamental component of application safety is modeling
the expected operational domain, which provides boundaries
for when it is sensible to trust the application and when it is
not. However, it is challenging to define such an operational
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domain for machine learning programs, especially for visual
classifiers based on Deep Neural Networks (DNNs), which
could lead to potentially catastrophic consequences in real-
world applications.

Out-of-distribution (OOD) detectionmethods (Hendrycks
&Gimpel, 2017; Liu et al., 2020; Yang et al., 2021, 2022) are
developed to determine the application scope of deep models
in real-world scenarios, working on the same eventual goal
of detecting risk cases that deep models can’t give reliable
predictions on. There have been plenty ofworks on designing
a criterion to construct the application scope of deep models,
including deriving the criterion from the features extracted
by the model (Lee et al., 2018; Sun et al., 2022), the outputs
of the model (Hendrycks & Gimpel, 2017; Liu et al., 2020),
the combination of features and outputs (Wang et al., 2022),
and the gradient of the model (Huang et al., 2021).

Existing OOD detection methods have achieved satisfac-
tory performance on conventional evaluations (Huang & Li,
2021; Sun et al., 2021; Huang et al., 2021; Sun & Li, 2022),
which roughly consider the whole validation dataset of the
model as the in-distribution dataset and the dataset that has
disjoint labels with respect to the in-distribution dataset as
the out-of-distribution dataset. We notice that there exists
a discrepancy between the conventional evaluation and the
essential goal of OOD detection that enhances the reliability
and safety of deep models.

First, the “distribution" in the “in-distribution" in the con-
ventional evaluation is defined over the whole validation
dataset or the training dataset (Hendrycks & Gimpel, 2017;
Sun et al., 2021) of the deep model, and the conventional
evaluations reward OOD detection methods for not detect-
ing the misclassified images in the validation dataset. This
does not meet humans’ safety needs because the misclassi-
fied input can also threaten the security of the model and
should be rejected rather than kept. Second, the conventional
evaluations exclusively focus on the risk caused by the label-
space-shifted inputs (Huang & Li, 2021; Yang et al., 2021)
that belong to new categories. However, the input-space
shifts (Huang et al., 2021; Hendrycks & Dietterich, 2018;
Hendrycks et al., 2021a) where inputs can be corruption-
shifted or domain-shifted but retain the label information of
the original datasetmay also cause risks for classification. It is
challenging for conventional evaluation to determine to what
extent input space data variation should be regarded as out
of distribution and rejected. Roughly rejecting or adopting
all the input-space-shifted images is unreasonable because
deep models can reliably handle part of the input-space-
shifted images, and the risk comes from the misclassified
part. Figure1 shows that the conventional evaluation may
not be suitable to determine which cases humans wish to
reject or keep.

In this paper, we appeal to rethink OOD detection from a
human-centric perspective, which can provide proper solu-

tions for the above two dilemmas of conventional evaluation.
First, according to human security needs, examples that the
OOD detector regards as “in-distribution" should be reliable
examples of the deep model. Thus, the “distribution" in “in-
distribution" should be defined over the images on which
the deep model’s prediction meets the human expectation
in the training dataset rather than over the whole training
dataset or validation dataset like conventional evaluations.
Second, we extend the evaluation of OOD detection to con-
sider both label-space and input-space shifts. Specifically,
we propose the OOD detection methods to reject the input
on which the model’s prediction mismatches human expec-
tations and keep the input on which the model’s prediction
meets human expectations.

In practice, we use the ground-truth labels annotated by
humans of the dataset as alternatives to human expectations.
As shown in Fig. 1, from the human-centric perspective, the
OOD detector should keep making predictions on images
that can be correctly classified by the model even though the
input space of the image is shifted but should reject images
that models can not make correct predictions on. The human-
centric evaluation method is more in line with the essential
purpose of OOD detection and the safety requirements of
humans.

We have conducted extensive empirical evaluations of
OOD detection methods with various model architectures,
including MLP, CNN, and the recent transformer-based
model ViT. Our results lead to two major conclusions. First,
the baseline method maximum softmax probability (MSP
(Hendrycks&Gimpel, 2017)) achieves comparable and even
better performance on different distribution-shifted cases
when compared to recent popular OOD detection alterna-
tives. This finding suggests that the efforts over the years
may be overestimated and not have intrinsically addressed
human safety concerns, and demonstrates that the need for
rethinking in this fieldmay outweigh the need to propose new
detection methods. Second, model architecture and train-
ing regime selection matter in OOD detection. Some OOD
detection methods almost fail on a certain model but may
achieve the best performance on another model. This finding
reflects that ignoring the selection ofmodels and claiming the
universality across different models, like the existing OOD
detection methods, may not be rigorous.

The main contributions of our paper are summarized as
follows:

• We provide a novel OOD detection evaluation method
from a human-centric perspective that takes whether
the model’s prediction meets human expectations into
account.

• We found that current progress in OOD detection might
have been overestimated. Most advanced methods tailor-
made for OOD detection are still on par with or even
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Fig. 1 Images in the blue area are validation images of the ResNet-
50 pretrained on ImageNet (Deng et al., 2009). Images in the yellow
area are input-space-shifted images that retain the label information
of the original dataset (including corruptions and stylized versions).
Images in the green area are label-space-shifted images that belong
to new categories of the model. “Correctness" means whether the
model’s prediction matches the human expectation (the ground truth

label). Conventional evaluations roughly regard all validation images
as in-distribution images and exclusively consider the risk caused by
label-space shifts while ignoring the risk caused by input-space shifts.
Our human-centric evaluation proposes to reject the risk from both the
input space shift and the label space shift and keep making predictions
on the images that can be correctly classified by the model

worse than the baseline method maximum softmax prob-
ability (MSP) under the human-centric evaluation.

• We found that the training regime and model architec-
ture selection matter in OOD detection, which should
be regarded as an integral part of the proposed method
rather than claiming the proposed method is universal
across different models.

The rest of the paper is organized as follows. Section II
summarizes the literature related to OOD detection methods
and evaluation methods. In Section III, we first provide the
formulation of the OOD detection task. Then, we introduce
the conventional evaluation method and analyze its draw-
backs. After that, we appeal for attention to the discrepancy
between the existing evaluationmethod and the essential goal
of the OOD detection task. Moreover, we propose to take
the model’s performance into account and rethink the OOD
detection task from a human-centric perspective. In Section
IV, we first conduct OOD detection experiments with exist-
ing methods on different model architectures, which shows
that the simple baseline methodmaximum softmax probabil-
ity (MSP) beats the other recent methods from the literature.
Then, we investigate the influence ofmodel capacity, training
strategy, and model calibration on detection performance.
Section V gives some conclusive results.

2 RelatedWork

It is well known that a deep neural network can yield unre-
liable predictions on anomalous inputs from an unknown
distribution. When adopted in safety-critical systems such
as medical diagnosis or autonomous driving, it is essential
to detect examples that the classifier likely fails to make
proper predictions. The task of OOD detection is to distin-
guish the out-of-distribution input (on which the prediction
is unreliable) from the in-distribution (ID) input (on which
the prediction is reliable). OOD detection has received wide
attention because it is critical to ensuring the safety of deep
neural networks.

2.1 OOD DetectionMethods

Directly estimating the density of the examples can be a nat-
ural approach to quantify the uncertainty of inputs, which
explicitly models the distribution of ID examples with prob-
abilistic models and distinguishes the OOD vs. ID examples
through the likelihood (Nalisnick et al., 2018; Kobyzev et
al., 2020; Zisselman et al., 2020; Serrà et al., 2019; Ren et
al., 2019; Xiao et al., 2020; Kirichenko et al., 2020). How-
ever, thesemethods require costly training of the probabilistic
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models, and performance lags behind the classification-based
approaches (Huang & Li, 2021).

The classification-based approaches, including confi-
dence enhancement methods and post-hoc methods, use the
classifier or a part of the classifier (e.g., feature extractor) to
construct a criterion for OOD detection.

Confidence enhancement methods propose retraining the
classifier to enhance the sensitivity toOODexamples. Taking
advantage of the adversarial training optimization technique,
Hein et al. (2019) endow low confidence to the examples
far away from the training data and high confidence to the
training data. Moreover, some methods introduce a set of
collected OOD examples into the training process to enhance
theuncertainty estimation and enforce lowconfidence around
the OOD examples (Hendrycks et al., 2018; Papadopoulos
et al., 2021; Chen et al., 2021). The correlations between the
collected and real OOD examples have a great influence on
the performance of these outliers exposure methods (Wu et
al., 2021).

Post-hoc methods focus on improving the OOD detec-
tion performance with the pre-trained classifiers rather than
retraining a model, which is beneficial for adopting OOD
detection in real-world scenarios and large-scale settings.
Thesemethods deriveOODcriterion fromdifferent spaces of
the deep classifier, e.g., output space (Hendrycks & Gimpel,
2017; Liu et al., 2020; Liang et al., 2018; Sun et al., 2021;
Zhu et al., 2022), feature space (Lee et al., 2018; Sun et al.,
2022), and gradient space (Huang et al., 2021). The methods
based on the output space start from a simple baseline MSP
(Hendrycks & Gimpel, 2017), which hypothesizes that the
classifier outputs a higher maximum softmax probability on
the ID example than the OOD example. ODIN (Liang et al.,
2018) introduces a large sufficiently temperature factor and
adversarial perturbation to amplify the difference between
the softmax probability between the ID and OOD examples.
Liu et al. (2020) analyze the limitations of softmax probabil-
ity in OOD detection and propose to use the negative energy
as a criterion. The negative energy is termed as the energy
score, and the examples with low energy scores are regarded
as OOD examples, and vice versa. Sun et al. (2021) and Zhu
et al. (2022) propose to rectify the features of the classifier to
improve the detection performance. Virtual-logit Matching
(ViM) (Wang et al., 2022) proposes a softmax score which
is jointly determined by the feature and the existing logits.
The methods based on the feature space suppose the features
of OOD examples should be relatively far away from that of
in-distribution classes. Lee et al. (2018) model the distribu-
tion of feature representations with a mixture of Gaussians
and propose using the feature-level Mahalanobis distance as
an OOD criterion. GradNorm (Huang et al., 2021) investi-
gates the gradient space of the classifier and shows that the
gradients of the categorical cross-entropy loss can be used as
an uncertainty measurement. KNN-OOD (Sun et al., 2022)

calculates the distance to the k-th nearest neighbor between
the features of the test input and the features of the model’s
training dataset, demonstrating the effectiveness of this non-
parametric detection metric. Galesso et al. (2022) investigate
the efficacy of non-parametric nearest-neighbor distance for
complex domains, such as semantic segmentation, and find
that model selection has quite a substantial impact on the
detection algorithm’s performance.

2.2 OOD Evaluation Datasets

OOD examples are generally one of two types: i) label-
space-shifted examples (Van et al., 2018; Xiao et al., 2010;
Cimpoi et al., 2014; Zhou et al., 2017; Hendrycks et al.,
2021b) and ii) input-space-shifted examples (Hendrycks &
Dietterich, 2018; Hendrycks et al., 2021a; Geirhos et al.,
2019). The label-space-shifted examples belong to a new
category that is different from the training dataset, therefore,
these examples would not be correctly predicted by deep
models. The label-space-shifted examples are convention-
ally used in OOD evaluation. iNaturalist (Van et al., 2018)
is a natural fine-grained dataset that contains images whose
labels are disjoint from ImageNet-1k. The Scene UNder-
standing (SUN) (Xiao et al., 2010) dataset and Places (Zhou
et al., 2017) dataset are scene recognition datasets that can
be used as label-space-shifted datasets against ImageNet.
The Describable Textures Dataset (Cimpoi et al., 2014) is
a texture dataset, which can be divided into 47 categories
according to human perception. ImageNet-O (Hendrycks et
al., 2021b) contains anomalies of unforeseen classes, which
should result in low-confidence predictions and enable us to
evaluate the out-of-distribution detection method when the
label distribution shifts. The shifts in input space (Hendrycks
&Dietterich, 2018;Hendrycks et al., 2021a, b),where images
can be corruption-shifted and domain-shifted while remain-
ing in the same label space, are commonly used to evaluate
model robustness and domain generalization performance.
ImageNet-C (Hendrycks & Dietterich, 2018) applies differ-
ent corruptions to the ImageNet validation dataset, including
noise, blur, compression, etc. ImageNet-R (Hendrycks et
al., 2021a) contains various renditions of ImageNet classes,
including art, cartoons, graffiti, sketches, etc. The conven-
tional OOD detection evaluation generally focuses on the
risk caused by the label-space shifts while ignoring the risk
from the input-space shifts.

3 OOD Evaluation

3.1 Task Formulation

Given a deep classifier to solve the classification prob-
lem with K classes whose labels are denoted as Y =
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{1, 2, . . . , K }. Let X be the input space. Let f : X �→ R
K

represent the pre-trained classifier. Suppose that the deep
classifier can give reliable predictions on the in-distribution
data and the distribution of the in-distribution data Din is
denoted as P0.

OOD detection methods aim to improve the reliability of
safety-critical deep models by filtering out the samples for
which themodel cannotmake proper predictions. Thus,OOD
detection tasks commonly determine a reject regionR based
on a criterion and a threshold. For any test input x ∈ X ,
the classifier rejects to give a prediction on the test input if
x ∈ R. One can use the classifier f or a part of f (e.g.,
feature extractor) to construct a criterion T (x; f ), where x
is the test input. Then, the reject region can be written as
R = {x : T (x; f ) ≤ γ }, where γ is the threshold.

The OOD detection criterion is required to give higher
scores for the in-distribution examples that classifiers can
make reliable predictions and give lower scores for the
out-of-distribution examples that classifiers can not han-
dle. When considering the out-of-distribution detection in
the classification task to ensure the safety of deep neural
networks, the output of the classifier can be formulated as
follows:

( f , T )(x; γ ) :=
{
Rejection, if T (x; f ) ≤ γ

f (x), otherwise.
(1)

The alarm is triggeredwhen T (x; f ) falls below the threshold
γ .

3.2 Conventional OOD Evaluation

Recently proposed OOD detection methods are commonly
assessed on conventional OOD evaluation, which uses the
FPR95 and AUROC to measure the detection performance.
The whole validation dataset of the deep model is typi-
cally considered the in-distribution dataset. The label space
of the out-of-distribution dataset is disjointed from the in-
distribution dataset.

FPR95: the false positive rate of OOD (negative) exam-
ples when the true positive rate of in-distribution (positive)
examples is as high as 95%. Given a threshold γ , the confu-
sion matrix for OOD detection can be expressed as follows:

T P(γ ) =
n∑

i=1

(1 − yood) · I(T (xi ; f ) > γ ), (2)

FN (γ ) =
n∑

i=1

(1 − yood) · I(T (xi ; f ) ≤ γ ), (3)

FP(γ ) =
n∑

i=1

(yood) · I(T (xi ; f ) > γ ), (4)

T N (γ ) =
n∑

i=1

(yood) · I(T (xi ; f ) ≤ γ ), (5)

where yood is the OOD label which is 1 for the OOD
example and 0 for the ID example. In the conventional OOD
evaluation, the OOD example is of the unseen category that
the model hasn’t been trained on. I(Event) represent the
indicator function:

I(Event) :=
{
1, if the Event is True

0, otherwise.
(6)

The true positive rate (TPR) can be computed as:

T PR(γ ) = T P(γ )

T P(γ ) + FN (γ )
, (7)

The false positive rate (FPR) can be computed as:

FPR(γ ) = FP(γ )

FP(γ ) + T N (γ )
. (8)

AUROC: the area under the receiver operating character-
istic curve (ROC), which is the plot of TPR vs. FPR.

3.3 Drawbacks of Conventional OOD Evaluation

Existing evaluations roughly regard all the validation images
that share the same label space with the training dataset as
the in-distribution dataset and regard images of new classes
as out-of-distribution images. However, the essential goal of
the OOD task is to improve the model’s safety by detecting
examples in which models can not give reliable predictions.
Thus, there exists a discrepancy between the OOD task and
the conventional OOD evaluation.

First, regarding all the validation images (including
misclassified and correctly classified examples) as the in-
distribution dataset is contrary to the human security needs
that in-distribution images should be reliably classified.
According to the goal of OOD detection, the detection
method should assign lower scores to the unrecognizable
examples and reject to make predictions on these examples.
However, existing evaluation penalizes the OOD detection
method for assigning lower scores for misclassified exam-
ples in the validation dataset and rewards the OOD detection
method for assigning higher scores for these misclassified
examples. The discrepancy between the commonly stated
purpose of OOD detection and the evaluation method may
lead to the underestimation of some OOD detection meth-
ods. As shown in Fig. 2, the range of in-distribution data has
a significant impact on OOD detection performance. When
considering all the validation images of ImageNet (Deng et
al., 2009) as in-distribution images, the baselinemethodMSP
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Fig. 2 a The AUROC for different methods (Higher is better) on
ResNet-50. b The FPR95 for different methods (lower is better) on
ResNet-50. The Resnet-50 is pre-trained on the ImageNet dataset. The
performance is averaged on four commonly used OOD datasets (iNatu-
ralist, Places, SUN, and Textures). The gray bar indicates that we regard
all Imagenet validation examples as ID examples. The blue bar indicates
that we regard only the correctly classified examples in the Imagenet
validation as ID examples

(Hendrycks & Gimpel, 2017) lags behind other methods.
However, when eliminating the influence of the misclassi-
fied images, MSP shows comparable performance with other
recent methods. Specifically, the performance of the MSP
in FPR95 is 27.54% worse than that of GradNorm when
regarding all validation images as in-distribution images but
surpasses GradNorm by 16.55% when only regarding the
correctly classified images as in-distribution images.

Second, the conventionalOODevaluationmethod roughly
considers the risk caused by label-space-shifted examples
whose label does not belong to the categories of the training
dataset and ignores the risk caused by input-space-shifted
cases. It is unreasonable to regard input-space-shifted exam-
ples as in-distribution examples because these examples
may lead to failure of the classification and cause poten-
tial risks. It is also not advisable to arbitrarily treat all the
input-space-shifted examples as OOD examples. Consider
the following scenario: the input-space-shifted data is con-
structed by adding small Gaussian noises. Deep models can

provide reliable prediction on this input-space-shifted data,
and the OOD detector should not reject this data.

3.4 Human-Centric OOD Evaluation

Aware of drawbacks of conventional OOD detection eval-
uation, we propose to rethink the OOD detection methods
from a human-centric perspective. That is, the “distribution"
in “in-distribution" and “out-of-distribution" should indicate
the distribution of the images on which the model’s predic-
tion meets the humans’ expectations in the training dataset
rather than the distribution of the whole training dataset. We
denote this distribution as P0. “In-distribution" means the
test example is drawn from the distribution P0 where the
deep models can provide reliable predictions on. Test exam-
ples that deviate away from the distribution P0 should be
rejected. From a human-centric perspective, the examples
on which the model’s prediction mismatches the human’s
expectation should be rejected, and examples on which the
model’s prediction meets the human’s expectation should be
kept.

The ground-truth labels of images in the test datasets are
commonly annotated by humans. In practice, we use the
ground truth label of the image as an alternative to human
expectation. The confusion matrix can be reformulated as
follows with a given threshold γ :

T Pcor (γ ) =
n∑

i=1

(ycor ) · I(T (xi ; f ) > γ ), (9)

FNcor (γ ) =
n∑

i=1

(ycor ) · I(T (xi ; f ) ≤ γ ), (10)

FPcor (γ ) =
n∑

i=1

(1 − ycor ) · I(T (xi ; f ) > γ ), (11)

T Ncor (γ ) =
n∑

i=1

(1 − ycor ) · I(T (xi ; f ) ≤ γ ), (12)

where ycor indicates whether the image can be correctly
classified. ycor is 1 for the example on which the model’s
prediction matches the ground-truth label.

We propose to measure the error rate at different thresh-
olds. The threshold is estimated on the correctly classified
images in the training dataset (in-distribution images). The
error comes from two aspects: one is the assignment of recog-
nizable examples to the reject region (FNcor ), and the other
is the failure to reject unrecognizable examples (FPcor ).

The detection error rate (DER) can be fomulated as:

DER(γ ) = FNcor (γ ) + FPcor (γ )

T Pcor (γ ) + FNcor (γ ) + FPcor (γ ) + T Ncor (γ )
.

(13)
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Algorithm 1 Human-Centric Evaluation.
Require: Classifier f , in-distribution training dataset Din =
{xi , yi }Ni=1, a test dataset Dtest , an OOD criterion T (x; f ) and per-
centage p.
� Estimate the reject region :
ID_Scores = [ ]
for i = 1, 2..., N do

score = T (xi ; f )
Add score to ID_Scores

end for
γ=quantile(ID_Scores, p)
� Measure the DER on Dtest :

DER(γ ) = FNcor (γ )+FPcor (γ )
T Pcor (γ )+FNcor (γ )+FPcor (γ )+T Ncor (γ )

Lower DER indicates better OOD detection performance.

Our evaluation method is outlined in Alg. 1. It is worth
noting that our human-centric OOD evaluation method dif-
fers from the conventional evaluation method in two aspects.
First, the data used to estimate the reject region is differ-
ent. OOD detection is a single-sample testing task, and the
reject region should be determined by known in-distribution
examples. We regard correctly classified examples in the
training dataset as in-distribution examples and choose the
threshold according to the scores of these examples. The con-
ventional evaluation estimates the rejection threshold based
on the model’s validation dataset in which the misclassified
images may lead to the underestimation of the reject region.

Second, the criterion for judging whether the detection
result is correct is different. The conventional evaluation
requires the OOD detection methods to assign lower scores
for the images with unseen categories of the model, while
our human-centric evaluation requires OOD detection meth-
ods to assign lower scores for the images that the model
can not provide a reliable prediction. Figure3 illustrates the
difference between our human-centric evaluation and the
conventional evaluation. Our human-centric OOD evalua-
tion broadens the scope of evaluating the OOD detection
performance from exclusively detecting risks caused by
label-space-shifted images to detecting risks causedbymulti-
type distribution-shifted cases.

4 Experiments

4.1 Implementation

We evaluate different OOD detection methods with human-
centric evaluation in Alg. 1. We name the DER (in Eq. (13))
whose threshold γ is chosen at the 1st and 5th percentile
of scores of the correctly classified images in the training
dataset (in-distribution data) of the deep model as DER99
and DER95. The threshold of DER95 means that 95% of in-
distribution examples’ scores are higher than this threshold.

Fig. 3 a The conventional evaluation aims to evaluate the performance
of the OOD detection method on distinguishing the label-space-shifted
images from the validation dataset (which is regarded as an in-
distribution dataset). bOur human-centric evaluation takes the model’s
performance into account and aims to evaluate the performance of the
OOD detection method in rejecting the misclassified images and keep-
ing the correctly predicted images

An OOD detection method should assign higher scores than
the threshold to examples for which the model can make
reliable predictions and lower scores than the threshold to
examples that the model can not properly handle. All exper-
iments in this paper are run on Tesla V100.

Algorithms.We evaluate nine OOD detection methods in
our experiments:

• MSP score (Hendrycks & Gimpel, 2017) uses the max-
imum softmax probabilities as the criterion score and
supposes deep models assign higher probabilities to in-
distribution examples.

• Mahalanobis score (Lee et al., 2018) computes the min-
imum Mahalanobis distance between the feature of the
test example and the class-wise centroids.

• KL-Matching (Hendrycks et al., 2022) uses the mini-
mum KL-divergence between the softmax and the mean
class-conditional distributions as the OOD indicator.

• Energy score (Liu et al., 2020) proposes an energy func-
tion that maps the logit outputs to a scalar through a
convenient logsumexp operator. Examples with higher
energy are considered OOD examples.

• ReAct (Sun et al., 2021) proposes to rectify the activation
before calculating the Energy score.

• GradNorm (Huang et al., 2021) is an OOD detection
method utilizing information extracted from the gradient
space.

• KNN (Sun et al., 2022) demonstrates the efficacy of
the non-parametric nearest-neighbor distance for OOD
detection.

• ViM (Wang et al., 2022) considers both the class-agnostic
score from feature space and the In-Distribution (ID)
class-dependent logits in OOD detection.

• DICE (Sun&Li, 2022) ranksweights of themodel based
on ameasure of contribution and selectively uses themost
salient weights to derive the output for OOD detection.
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Datasets. We evaluate the OOD detection methods by
detecting the risk caused by both the input-space-shift and
label-space-shift cases. We regard the correctly classified
images in the training dataset of ImageNet (Deng et al., 2009)
as the in-distribution dataset. We consider 8 test datasets,
including Textures (Cimpoi et al., 2014) which contains 47
categories of textures, iNaturalist (Van et al., 2018) which
contains 5089 natural fine-grained categories, Places (Zhou
et al., 2017) which contains more than 400 different types of
scene environments, SUN (Xiao et al., 2010) which con-
tains 397 categories of scene environments, ImageNetV2
(Recht et al., 2019) which is independent of existing models,
ImageNet-C (Hendrycks &Dietterich, 2018) which contains
different corruption versions (weather, noise, brightness, et
al.) of ImageNet, ImageNet-R (Hendrycks et al., 2021a)
which contains different stylized versions (art, sketch, car-
toon, et al.) of ImageNet and ImageNet-Val which represents
the validation dataset of ImageNet. The label ycor (in Eq.
(9)) for the label-space-shifted datasets Textures, iNaturalist,
Places, and SUN is 0 because the label space of these datasets
is disjoint from the training dataset of the deep model and
the deep model can not make correct predictions. The label
ycor for the datasets ImageNet-C, ImageNet-R, ImageNetV2,
and ImageNet-Val indicates whether the model’s prediction
meets the ground-truth label.

Model Architectures. We extensively conduct exper-
iments on 45 deep models with various model archi-
tectures, from Multilayer Perceptron (MLP) based model
ResMLP (Touvron et al., 2022), classical CNNmodels (VGG
(Simonyan & Zisserman, 2015), ResNet (He et al., 2016),
DenseNet (Huang et al., 2017), MobileNet-V2 (Sandler et
al., 2018), NASNet (Zoph et al., 2018), the InceptionV4
(Szegedy et al., 2017) and the squeeze-and-excitation net-
work (Hu et al., 2018)) to the latest transformer models (ViT
(Dosovitskiy et al., 2021), Swin (Liu et al., 2021) and DeiT
(Touvron et al., 2021)). The pre-trainedCNNmodels are pro-
vided by torchvision 0.10.0 (Paszke et al., 2019), and other
pre-trained models are provided by timm 0.4.12 (Wightman,
2019).

4.2 Results on Different Architectures

Prevalent OOD detection evaluations exclusively focus on
the risk caused by a part of distribution shifts (label space
shift) and ignore the risk caused by the input space shift.
For the first time, we evaluate the existing detection methods
on a variety of models and different distribution-shift cases,
hoping to draw general methodological conclusions.

Tables 1 and 2 show the detection performance results on
different model architectures. For each model architecture,
we report the OOD detection performance of different meth-
ods on each test dataset and the average performance on eight
datasets. We draw two main conclusions from our results:

From a human-centric perspective, no method can
consistently outperform MSP by a significant margin.
Research on OOD detection originates from a simple base-
line MSP (Hendrycks & Gimpel, 2017; Yang et al., 2021)
and receives increased attention. However, our experiment
results reveal that the development of OOD detection in the
past five years may be overestimated. In Table 1, the base-
linemethodMSPachieves state-of-the-art performance in the
average DER99 on VGG19, ResNet-50, and MobileNet-V2.
When considering VGG19 as the classifier, MSP surpasses
the recently proposed ReAct and ViM by 1.87% and 36.5%
in DER99, respectively. On other models, although MSP is
not the best one, it only lags behind the best method to a
small extent. Specifically, when considering Swin-B as the
classifier, MSP lags behind the best method ViM by 0.14%
but surpasses ReAct and GradNorm by 2.62% and 34.03%,
respectively.

Model architecture matters in detection methods.
Besides ignoring the performance of the model, the existing
methods also ignore the influence of the model architecture.
The existingmethods are always evaluated on several models
and then claim to be universal across different models. We
conduct experiments on a variety of model architectures and
find that the impact of model architecture on detection meth-
ods can be fatal. For instance, KNN surpasses MSP by 4.9%
with SENet154 in the average DER99 but its performance
drops dramatically with ResNet50. That is to say, although
KNN performs well with the SENet154, it’s unreliable to use
KNN as the OOD detection algorithm to improve the secu-
rity of the ResNet50 model. Similarly, ViM performs poorly
with VGG19, and the detection error rate (DER99) is even
over 98%when evaluated on the iNaturalist dataset, but it can
achieve the best performance in the Swin model. Contrary
to prior works that arbitrarily claim their method is universal
and performs well across different model architectures, we
suggest the proposedOODdetectionmethod takes themodel
selection strategy into consideration.

We do not claim that any of these recently proposed meth-
ods cannot possibly improve the detection performance, but
getting detection performance improvements is challenging
and should regard the model architecture as an integral part
of the proposedmethod. The newly proposed OOD detection
methods should remain true to their original aspiration, aim-
ing to improve the safety and reliability of the deep models
rather than distinguishing the difference between datasets.
The future research direction of OOD detection can be to
design detection methods that are more in line with human
needs and guarantee the safety of the deep models facing
different distribution-shifted cases.
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Fig. 4 The influence of the model’s capacity on OOD detection meth-
ods (Lower DER99 indicates better detection performance). We choose
VGG, ResNet, DenseNet, ViT, and Swin with different capacities. The

performance is averaged on eight test datasets. The horizontal axis rep-
resents the accuracy of different models

4.3 The Influence of Model Capacity

Generally, the model capacity is positively correlated with
the classification accuracy. For example, the classifica-
tion accuracy of models ResNet-18, ResNet-34, ResNet-50,
ResNet-101, and ResNet-152 increases. Then, how does the
model’s capacity affect the performance of OOD detection
methods? In this subsection, we investigate the influence of
model capacity on the OOD detection methods.

Figure4 illustrates the performance of OOD detection
methods in models with different capacities. We found an
interesting phenomenon that there is no monotonous rela-
tionship between the performance of detection methods and
model capacity. When using the DenseNet model as the clas-
sifier, the performance of GradNorm becomes worse with
the increase in model capacity. When using ViM to conduct
OOD detection, its performance with the model ResNet101
is 6.67% better than with the smaller model ResNet50
and 1.92% better than with the larger model ResNet152.

Additionally, KNN in the Swin-S(mall), Swin-B(ase), Swin-
L(arge) performs better than in the Swin-T(iny), but KNN in
the Swin-B(ase) performs worse than in the Swin-S(mall).

On the whole, the accuracy of the model and the OOD
detection performance are positively correlated.Models with
higher accuracy tend to achieve a lower OOD detection error
rate (DER99). The model ViT-L16 which obtains the best
Top-1 accuracy, also performs the best in OOD detection.
The model ResNet-18, whose Top-1 accuracy is the worst,
performs poorly in OOD detection. However, there are also
some anomalies. ViT-T16 can achieve better Top-1 accuracy
than ResNet-101. MSP and ViM perform better in ResNet-
101 than in ViT-T16, while GradNorm and KNN perform
worse in ResNet-101 than in ViT-T16.
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Fig. 5 The DER99 for different methods (lower is better) on different
robust models. The horizontal axis represents the perturbation strength
in training themodel, e.g. "0.1" represents the robust model trainedwith
�2 perturbation ε = 0.1. The red dotted line indicates the test accuracy
of the robust model. The performance is averaged on eight test datasets

4.4 The Influence of Training Regimes

4.4.1 Does Adversarial Robustness Contribute to OOD
Detection?

Adversarial training (Salman et al., 2020) is efficient in
improving the adversarial robustness and the safety of deep
neural networks. To find out whether adversarial training
can improve the OOD detection performance of the model,
we conduct experiments in terms of different perturbation
strengths (constraints of l2 norm bound). In Fig. 5, we evalu-
ate the OOD detection performance on eight adversarially
pre-trained ResNet-50. When the strength of adversarial
training is small, it slightly impactsOODdetection.However,
when the strength of adversarial training is high, the OOD
detection performance of this model decreases dramatically.
Specifically, the DER99 of MSP on the model adversarially
trained with strength ε = 1 is 15.32% worse than that on the
normal model. MSP almost performs the best on different
robust models.

4.4.2 Does Training Strategy Contribute to OOD Detection?

Various studies have focused on training strategies to increase
the model’s performance in classification tasks. To find out
the influence of the training strategies on OOD detection,
we further consider different strategies, including training
with Styled ImageNet (SIN) (Geirhos et al., 2019), training
with the mixture of Styled and natural ImageNet (SIN-
IN) (Geirhos et al., 2019), training with the augmentation
method Augmix (Hendrycks et al., 2020), training with the
augmentationmethodAutoAugment (Limet al., 2019), train-
ing with additive Gaussian and Speckle noise (ANT (Rusak
et al., 2020)), and training with the knowledge distillation
method MEALV2 (Shen & Savvides, 2020) that achieves
80%+ Top-1 accuracy on ResNet-50. As shown in Fig. 6, the
most beneficial training strategies for different OOD detec-

Fig. 6 The influence of the training strategies on OOD detection.
Lighter color indicates better performance (lower DER99). The per-
formance is averaged on eight test datasets

tionmethods are different.MSP andKNNperform the best in
themodel trainedwith theMEALV2strategy.GradNormout-
performs ViM in the ANT strategy-trained model, whereas
ViMoutperformsGradNorm in theAutoAug strategy-trained
model.

Furthermore, we have conducted experiments to inves-
tigate the relationship between the accuracy of models
trained with different strategies on the input-space-shifted
test dataset and the OOD detection performance when using
thesemodels. The results are illustrated in Fig. 7.When using
ImageNet-C as the test dataset, the model trained with the
Augmix strategy achieves higher accuracy than the normal
ResNet-50. However, the MSP, Energy, and ViM detection
algorithms perform worse with the model trained with the
AugMix strategy than with the normal ResNet-50. When
using ImageNetV2 as the test dataset, models trained with
the SIN-IN and MEALV2 training strategies achieve lower
accuracy than normalResNet-50.However,when using these
two models with lower accuracy for OOD detection, the per-
formance of the detection algorithms is comparable to or even
better than using the normal ResNet-50. To sum up, models
trained with different strategies exhibit varying classification
abilities on input-space-shifted examples, and the relation-
ship between this classification ability and OOD detection
capability is not necessarily monotonous. We think that this
is because detection metrics are derived from the model’s
output space, feature space, or gradient space and do not
depend on the model’s classification performance.

4.4.3 Does Knowledge Distillation Contribute to OOD
Detection?

In Fig. 8, we investigate whether knowledge distillation can
improve the detection performance of different methods.
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Fig. 7 The relationship between themodel’s classification performance
on the input-space-shifted examples and the OOD detection perfor-
mance

We consider the CNN-based model ResNet-50, MLP-based
models ResMLP-12 and ResMLP-24, transformer-based
models DeiT-T and DeiT-B, and their distilled versions. We
find that MSP’s performance on the distilled model is better
than that on the normal model. The influence of the distil-
lation on other methods is inconsistent in different models.
For instance, the performance of KNN improves by 26.95%
when using the distilled ResNet-50 instead of the normal
ResNet-50, while its performance degrades by 8.96% when
using the distilled DeiT-B instead of the normal DeiT-B.

These results shed light on the fact that the model archi-
tecture and training regime should also be considered when
designing the OOD detection algorithm.

4.5 The Influence of Model Calibration

Model calibration (Guo et al., 2017) refers to the accuracy
with which the probability output by the deep model reflects
its predictive uncertainty, aiming to ensure that the output
class probabilities are consistent with what would naturally
occur. Model calibration can be measured by Expected Cali-
bration Error (ECE) (Naeini et al., 2015) andOverconfidence
Error (OE) (Thulasidasan et al., 2019). The OOD detection
task aims to derive a detectionmetric from themodel’s output
space (Hendrycks & Gimpel, 2017), features space (Wang et
al., 2022), or gradient space (Huang et al., 2021) and set a
threshold to determine whether an example is in-distribution

Fig. 8 The influence of the distillation onOOD detection. Lighter color
indicates better performance (lower DER99). The performance is aver-
aged on eight test datasets

Fig. 9 The influence of the model calibration on OOD detection meth-
ods. We use the Expected Calibration Error (ECE) and Overconfidence
Error (OE) as calibration metrics

or out-of-distribution. It is essentially a binary classification
task (Hendrycks & Gimpel, 2017) and does not require the
calibration of the model’s output. The conventional evalua-
tion method evaluates whether the detection algorithm can
identify the label-space-shifted examples as OOD exam-
ples, while our human-centric evaluation method requires
the detection algorithm to identify both label-space-shifted
examples and misclassified input-space-shifted examples as
OOD examples.

We conduct experiments to investigate howmodel calibra-
tion affects the performance of OOD detection methods. As
shown in Fig. 9, models with better calibration may perform
better when using metrics derived from the model’s output
space for OODdetection, but their performancemay not nec-
essarily be better when using other types of OOD detection
metrics. Specifically, models trained with the MEALV2 and
AugMix strategies exhibit better calibration, with ECE val-
ues of 1.65% and 1.69%, respectively. Simultaneously, their
detection performance is superior tomodels obtained through
other training strategies when using the MSP detection met-
ric derived from the model’s output space. However, when
using the ViM detectionmetric derived from themodel’s fea-
tures space, themodel trainedwithMEALV2performsworse
than the model trained with AutoAug, even though its ECE
is 3.72% lower than the model trained with AutoAug.
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Fig. 10 The influence of model selection on OOD detection perfor-
mance under conventional evaluation metric FPR95 and our DER95.
The performance is averaged on four label-space-shifted test datasets

4.6 The Influence of Model Selection in
Conventional Evaluation

In this section, we investigate whether model selection also
significantly influences the detection performance of dif-
ferent detection algorithms under conventional evaluation
metrics. As shown in Fig. 10, we simultaneously evaluate
different detection methods using the conventional evalua-
tion metric FPR95 and our human-centric evaluation metric
DER95. Considering that the conventional evaluation met-
ric FPR95 is only applicable to label-space-shifted examples,
we conduct experiments on four label-space-shifted datasets:
iNaturalist, Places, SUN, and Textures, and illustrate the
average results.

From the experimental results,we canobtain the following
findings: Firstly, whether using the conventional evaluation
metricFPR95or our proposedDER95, the influenceofmodel
accuracy on OOD detection performance does not exhibit a
monotonic relationship. In other words, a model with higher
accuracy may not perform better in OOD detection tasks.
Secondly, when using the conventional evaluation metric
FPR95, an OOD detection algorithm that performs well on
a particular deep model may not generalize well to another
model. For example, when using ResNet-50, the FPR95 of
GradNorm is lower than other detection algorithms, indi-
cating better performance than other algorithms. However,
when using DenseNet-201, the detection performance of the
GradNorm algorithm is inferior to that of other algorithms.
Thirdly, when assessed with different evaluation metrics, the
model selection has varying effects on the evaluation results
of detection algorithms. When evaluated using the conven-
tional evaluation metric FPR95, the ViM detection algorithm
performs better with DenseNet-201 compared to ResNet-50.
However, when evaluated using our DER95 metric, the ViM
detection algorithm with DenseNet-201 is inferior to that
with ResNet-50. These findings demonstrate the importance
of model selection on the performance of the detection algo-
rithm, which not only holds true when using our proposed

DER as an evaluation metric but also holds true when using
conventional evaluation metrics.

5 Conclusion

Current deep learning systems yield uncertain and unreli-
able predictions when facing distribution-shifted examples.
Various OOD detection methods have been proposed to
improve the reliability and safety of deep models in real-
world applications over the years. Thiswork does not propose
a novel detection method but analyzes the drawbacks of
the conventional evaluation and proposes a human-centric
evaluation method that is more in line with the essential
goal of OOD detection to investigate how practical existing
OOD detection methods are in aiding the safety problem of
human needs. We have conducted extensive experiments on
nine OOD detection methods with forty-five different mod-
els. Our results draw two major conclusions. First, though
existing works have made substantial progress under the
conventional evaluation, the newly proposed detection algo-
rithms have not shown a clear advantage over the baseline
method when considering a human-centric evaluation. Sec-
ond,model architectures and training regimesmatter inOOD
detection and should be considered integral when design-
ing new detection methods. We hope our findings motivate
researchers to rethink OOD detection from a human-centric
perspective and develop OOD detection methods that can
reject risks both from the label-space shifts and input-space
shifts.
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