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Abstract
Deep learning models are vulnerable to adversarial examples. As one of the most threatening types for practical deep learning
systems, physical adversarial examples have received extensive attention in recent years. However, due to the insufficient
focus on intrinsic characteristics such as model-agnostic features, existing studies generate adversarial perturbations with
unsatisfactory transferability on attacking different models. Motivated by the viewpoint that attention reflects the intrinsic
characteristics of the recognition process, we propose the Transferable Attention Attack (TA2) method to generate adversarial
camouflages with strong transferable attacking ability by taking advantage of visual attention mechanism, i.e., triplet attention
suppression. As for attacking, we generate transferable adversarial camouflages by distracting the model-shared similar
attention patterns from the target to non-target regions, therefore promoting the transferable attacking ability. Furthermore,
we enhance the attacking ability by converging the model attention of the non-ground-truth class, which exploits the lateral
inhibition of visual models and activates the model perception for wrong classes. Besides, considering the visually suspicious
appearance, we also introduce human attention to help improve their visual naturalness. We conduct extensive experiments in
both the digital and physical worlds for classification tasks and comprehensively investigate the effectiveness of the discovered
model attention mechanism, demonstrating that our method outperforms state-of-the-art methods.

Keywords Physical adversarial camouflage · Model attention distraction · Lateral inhibition mechanism · Human attention
evasion

Communicated by Oliver Zendel.

B Xianglong Liu
xlliu@buaa.edu.cn

Jiakai Wang
wangjk@mail.zgclab.edu.cn

Zixin Yin
yzx835@buaa.edu.cn

Yuxuan Wang
yxwang1231@buaa.edu.cn

Jun Guo
junguo@buaa.edu.cn

Haotong Qin
qinhaotong@buaa.edu.cn

Qingtao Wu
wqt8921@haust.edu.cn

Aishan Liu
liuaishan@buaa.edu.cn

1 Introduction

Deep neural networks (DNNs) have achieved remarkable
performance across wide areas of applications, e.g., com-
puter vision (Krizhevsky et al., 2012; Jin et al., 2021; Jia et
al., 2021; Li et al., 2021), natural language (Sutskever et al.,
2014), and acoustics (Mohamed et al., 2012), etc, but they
are vulnerable toadversarial examples (Szegedy et al., 2013).
These elaborately designed perturbations are imperceptible
to humans but can easily lead DNNs to wrong predictions,
which pose a strong security challenge to deep learning appli-
cations in both the digital and physical world (Goodfellow et
al., 2014; Eykholt et al., 2018; Liu et al., 2020; Zhang et al.,
2021).
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In the past years, several works have been proposed to per-
form adversarial attacks in different scenarios under diverse
settings (Kurakin et al., 2017; Dong et al., 2018; Athalye et
al., 2017). Though bringing significant challenges for deep
learning, adversarial examples are also valuable for under-
standing the behaviors of DNNs, which provide insights into
the blind spots and help to construct robust models (Ilyas et
al., 2019; Tsipras et al., 2019; Li et al., 2021; Zhang et al.,
2020). Generally, adversarial attacks can be divided into two
categories: digital attacks, which attack DNNs by perturb-
ing the input data in the digital space; and physical attacks,
which attack DNNs by modifying the visual characteristics
of the real object in the physical world. In contrast to the
attacks in the digital world (Jia et al., 2019; Xie et al., 2019;
Inkawhich & Wen, 2019; Zhang et al., 2019), adversarial
attacks in the physical world faces great challenges since the
complex physical constraints and conditions (e.g., lighting,
distance, camera, etc), which impairs the attacking ability of
generated adversarial perturbations (Elsayed et al., 2018). In
this paper,wemainly focus on the challenging physicalworld
attack task, which is significantly meaningful to deploying
deep learning applications in practice.

Though several attempts have been adopted to perform
physical attacks (Liu et al., 2020; Huang et al., 2020; Liu
et al., 2019), existing works pay insufficient attention to the
intrinsic characteristics, such as model-agnostic and human-
specific patterns. Thus, there is still a significant distance to
satisfying adversarial attacking ability among different mod-
els. Especially, the limitations can be summarized as (1) the
existing methods ignore the common patterns amongmodels
and generate adversarial perturbations using model-specific
clues (e.g., gradients and weights of a specific model), which
fails to attack across different target models. In other words,
the transferability of adversarial perturbations isweak,which
impairs their attacking abilities in the physical world; (2)
current methods generate adversarial perturbations with a
visually suspicious appearance which is poorly aligned with
human perception and even attracts human attention. For
example, painted on the adversarial camouflage (Huang et
al., 2020), the classifiermisclassifies the car into a bird. How-
ever, as shown in Fig. 1a, the camouflage apparently contains
bird-like but not natural features (e.g., bird head, bird eyes),
which attracts human attention.

To address the above-mentioned problems, this paper pro-
poses the Transferable Attention Attack (TA2) by exploiting
both the model and human attention for generating transfer-
able and visually-natural adversarial camouflages.Regarding
the attacking ability, inspired by the biological observa-
tion that cerebral activities between different individuals
share similar patterns when stimulus features are encoun-
tered (Evans et al., 1999) (i.e., selected attention (Tricoche
et al., 2020)), we perform transferable adversarial attacks
by suppressing the attention patterns shared among different

Fig. 1 a shows the unnatural appearance of camouflages generated by
previous work (i.e., UPC (Huang et al., 2020)). b is the painted car
that commonly exists in the physical world. c shows the adversarial
example (classified as pop bottle) generated by existing work (i.e.,
CAMOU (Zhang et al., 2019)) and its corresponding attention map. d
shows the adversarial example (classified as Shih-Tzu) generated by
our TA2 and its confused attention map

models. Specifically, we distract the model-shared similar
attention from target to non-target regions inside the model
attention maps via exploiting the idea of connected graphs.
Thus, influenced models will be misclassified by not pay-
ing attention to the objects in the target regions. Since our
generated adversarial camouflage captures model-agnostic
structures, it can transfer among different models, which
improves the transferability. Based on the above elaboration,
we further exploit the model attention with a novel approach
to improve the attacking ability, i.e., considering the lateral
inhibition mechanism, which is the ability of adjacent recep-
tors to inhibit each other (Blakemore et al., 1970). In practice,
we achieve this goal by converging the wrong model atten-
tion and activating the model predictions to false class (i.e.,
non-ground-truth or target class), so-called lateral attention
inhibition. Since this special design is also based on biolog-
ical observation (i.e., the lateral inhibition mechanism), it
can be easily combined with the model attention distraction
strategy and achieve better attacking ability. As for the visual
naturalness, psychologists have found that the bottom-up
attention of human vision will alert people to salient objects
(e.g., distortion) (Connor et al., 2004). Thus, we try to evade
this human-specific visual attention by generating adversar-
ial camouflage which contains a high semantic correlation to
scenario context. As a result, the generated camouflage can
get rid of the visually suspicious appearance (e.g., salient to
human perception) and be natural in terms of human vision.
Fig. 1c is the adversarial camouflage generated by CAMOU
(Zhang et al., 2019) which is suspicious to human vision due
to the semantic missing. By contrast, our generated adversar-
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ial camouflage is able to yield amore natural appearancewith
the semantic information “smile face”, as shown in Fig. 1d.

Note that we extend our prior conference publication,
which mainly concentrated on dual attention suppression,
i.e., model-shared attention distraction and human-specific
attention evasion. In this paper, we enhance our previous
Dual Attention Attack (DAS) framework by further inves-
tigating the latent attention mechanism (i.e., class lateral
inhibition) of the DNN architecture. Inspired by the human
lateral inhibition observation and designed a class-wise lat-
eral inhibition strategy, we are surprised to find that the
attacking ability of the adversarial camouflages is signifi-
cantly improved. Based on the improvements, we conducted
more extra experiments and providedmore in-depth analysis.
Also, we introduce several more novel compared methods
as baselines in our experiments. The experimental results
demonstrate the superiority of our proposed method and
reveal some insights for the current DNN architecture.More-
over, we have to highlight the contributions of this paper in
(1) the attention mechanism in deep models is investigated
further, which can be a solid foundation for the community
to understand the model behavior, and (2) Benefited from
the model-shared attention attack, we provide a more pow-
erful attacking approach to perform transferable adversarial
attacks.

To sum up, our main contribution can be concluded as
follows:

• To the best of our knowledge, we are the first to explore
and exploit the shared attention characteristics among
models for generating adversarial camouflages.

• We comprehensively investigate the shared model atten-
tion, once again providingmore evidence about the latent
correlations betweenDNNmodels and humanvision sys-
tems and revealing the possibility of jointly exploiting
various attention characteristics.

• We conduct extensive experiments in both the digital and
physical worlds on the basic classification task, demon-
strating that our proposed method outperforms other
SOTA methods.

The structure of the paper is illustrated as follows: Sect. 2
introduces the related works; Sect. 3 describes the proposed
framework andmethodology; Sect. 4 demonstrates the effec-
tiveness of the proposed method by thorough experiments;
Sect. 5 provides some additional discussions and sugges-
tions; and Sect. 6 summarizes the whole contributions and
provides the conclusion.

2 RelatedWork

Adversarial examples are elaborately designed perturba-
tions that are imperceptible to humans may mislead DNNs

(Szegedy et al., 2013; Goodfellow et al., 2014). In the past
years, a long line of works has been proposed to develop
adversarial attack strategies (Kurakin et al., 2018; Eykholt et
al., 2018; Liu et al., 2019; Wei et al., 2019; Duan et al., 2020;
Liu et al., 2020), (Zhang et al., 2019; Huang et al., 2020;
Wang et al., 2022; Duan et al., 2022; Suryanto et al., 2022).
In general, there are several ways to categorize adversarial
attack methods, e.g., targeted or un-targeted attacks, white-
box or black-box attacks, etc. Based on the domain in which
the adversarial perturbations are produced and employed,
adversarial attacks can be divided into digital attacks and
physical attacks.

Digital attacks generate adversarial perturbations for input
data in the digital pixel domain. Szegedy et al. (2013)
first introduced adversarial examples and used the L-BFGS
method to generate them. By leveraging the gradients of tar-
get models, Goodfellow et al. proposed the Fast Gradient
Sign Method (FGSM) Goodfellow et al. (2014) which can
generate adversarial examples quickly. Moreover, Madry et
al. (2017) proposed ProjectedGradientDecent (PGD),which
is currently the strongest first-order attack. Based on the gra-
dient information, a series of attack approaches have been
proposed (Kurakin et al., 2018; Dong et al., 2018; Xie et al.,
2019; Wu et al., 2020; Dong et al., 2019). For example, Wu
et al. exploit the back-propagated gradients to approximate
the model attention and attack the focused region (Wu et al.,
2020). And the Kazemi introduce the structural-enhancing
algorithms to allow for larger distortions size than common
�p counterpart compared with PGD (Kazemi et al., 2023).
Although these attacks achieve substantial results in the dig-
ital world, their attacking abilities degenerate significantly
when introduced into the physical world.

On the other hand, physical attacks aim to generate adver-
sarial perturbations by modifying the visual characteristics
of the real object in the physical world (Duan et al., 2020;
Athalye et al., 2017; Zhang et al., 2019; Eykholt et al., 2018;
Huang et al., 2020), (Wang et al., 2022; Duan et al., 2022;
Suryanto et al., 2022). To achieve the goal, several works first
generate adversarial perturbations in the digital world, then
perform physical attacks by painting the adversarial cam-
ouflage on the real object or directly create the perturbed
objects. By constructing a rendering function, Athalye et al.
(2017) generated 3D adversarial objects in the physicalworld
to attack classifiers. However, this exploratory work only
aims at thewhite-box attack, ignoring the transferable attack-
ing requirements in practice. Recently, Huang et al. (2020)
proposed the Universal Physical Camouflage Attack (UPC),
which crafts camouflage by jointly fooling the region pro-
posal network and the classifier. Aiming at universal attack,
UPC shows weak black-box attacking performance and an
unnatural appearance. Duan et al. (2020) generate adversar-
ial examples with natural style while showing insufficient
tranferability. Besides, this study also adopts huge perturba-
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tion strength, i.e., imposing adversarial noises on the whole
image. Wang et al. (2022) propose a robust Full-coverage
Camouflage Attack (FCA) to fool detectors and Duan et al.
(2022) propose theCoatedAdversarial Camouflage (CAC) to
attack the detectors in arbitrary viewpoints. These two works
adopt a relevant big perturbation region (full camouflage cov-
erage on objects) in 3D environments, making them not so
practical and feasible in real scenarios. This year, Suryanto et
al. (2022) propose the Differentiable Transformation Attack
(DTA) for generating a robust physical adversarial pattern on
a target object to camouflage with a wide range of transfor-
mations. However, this study is full short of the consideration
of visual naturalness, leading to suspicious camouflage. And
Zhang et al. (2022) propose the Transferable Physical Attack
(TPA) to generate physically adversarial textures with sepa-
rable attention.Another line ofwork tries to performphysical
adversarial attacks by generating adversarial textures in 2D,
i.e., patches (Brown et al. 2017), which confine the noise to
a small and localized patch without perturbation constraint
(Liu et al., 2019, 2020; Feng et al., 2021). For example, Feng
et al. (2021) is a pioneer study that introduces the few-shot
learning into physical adversarial examples generation and
active considerable attacking ability on unseen models and
unseen class. While, this attack perturbs the textures in a full
image, making it not flexible in the real world. Overall, the
2D-oriented physical adversarial attacks are notwell-suitable
for real scenarios due to the special characteristics of physical
space.

To sum up, despite achieving certain results, existing
methods still show shortages in effectively balancing trans-
ferable attacking ability and visually-natural appearance.We
believe that it is valuable to further investigate the transfer-
able adversarial camouflages for more satisfying physical
adversarial attacking performance, not only for more feasi-
ble attacking but also for further understanding the model
behaviors.

3 Framework

In this section, we first provide the definition of the problem
and then elaborate on our proposed framework.

3.1 Problem Definitions

Given a deep neural network Fθ and an input clean image I
with the ground truth label y, an adversarial example Iadv in
the digital world can make the model conduct wrong predic-
tions as follows:

Fθ (Iadv) �= y s.t . ‖I − Iadv‖ < ε, (1)

where || · || is a distance metric to quantify the distance
between the two inputs I and Iadv sufficiently small.

In the physical world, let (M,T) denote a 3D real object
with a mesh tensorM, a texture tensorT, and ground truth y.
The input image I for a deep learning system is the rendered
result of the real object (M,T) with environmental condi-
tion e ∈ ℵ (e.g., camera views, distance, illumination, etc.)
from a renderer R by I = R((M,T), e), where the ℵ is the
environmental set. To perform physical attacks, we generate
Iadv = R((M,Tadv), e) through replacing the original T
with an adversarial texture tensor Tadv , which has different
physical properties (e.g., color, shape). Thus the definition of
our problem can be depicted as:

Fθ (Iadv) �= y s.t. ‖T − Tadv‖ < ε, (2)

where we ensure the naturalness of the generated adversarial
camouflage in the physical world by ε.

In this paper, we mainly discuss adversarial attacks in the
physical world and generate an adversarial camouflage (i.e.,
texture), which is able to fool the real deep learning systems
when it is painted or overlaid on a real object.

3.2 Framework Overview

To generate visually-natural physical adversarial camouflage
with strong transferability and strong attacking ability, we
propose a novel adversarial camouflage generation frame-
work based on biology vision principles and mechanisms, in
which we exploit both the model and human attention and
further exploit the lateral inhibition mechanism. The overall
framework can be found in Fig. 2.

Regarding the transferability for attack, inspired by the
biological observation, we suppress the similar attention
patterns shared among models. Specifically, we generate
adversarial camouflage by distracting the attention of mod-
els from target to non-target regions (e.g., background) via
connected graphs. Since different deep models yield simi-
lar attention patterns towards the same object, our generated
adversarial camouflage can capture themodel-agnostic struc-
tures and transfer them to different models.

Based on the shared model attention, we further inves-
tigate this biological attention mechanism and perform a
class lateral inhibition attack to active strong attacking
ability. In detail, we first converge the model attention to
the non-ground-truth class. And then we further activate
the latent neural representation of the same class with the
attention-converged class. Both strategies are intended to
fully investigate and take advantage of the latent similarities
between biological neural networks and artificial neural net-
works. This approach has well compatible with the previous
model attention distraction strategy and so as to effectively
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Fig. 2 The framework of our TA2 method. Based on the intrinsic atten-
tion mechanism, we first distract the model attention characteristic by
fully exploiting the similar attention patterns of models and forcing the
“heat”regions away from the target object with loss function Ld . And
then we converge the model attention of the non-ground-truth class to,

therefore, further activate the latent neural representation and inhibit
that of the ground-truth class for better attacking ability. Besides, we
evade the human-specific visual attention mechanism by correlating the
appearance of adversaries to the context scenario to generate visually-
natural adversarial camouflage

improve the attacking ability of the generated adversarial
camouflage.

As for the visual naturalness, we aim to evade the human-
specific bottom-up attention in human vision (Connor et
al., 2004) by generating visually-natural camouflage. By
utilizing a seed content patch P0, which has textures with
perceptual correlations to the scenario context, the generated
adversarial camouflage, in this case, can be more unsuspi-
cious and natural to human perception by preserve the shape
information, to wit, evade the human-specific attention cor-
relations, therefore leading to more natural camouflage.

3.3 Model Attention Distraction

Biologists have found that the same stimulus features (i.e.,
selected attention) yield similar patterns of cerebral activ-
ities among different individuals (Evans et al., 1999) (i.e.,
similar characteristics of the neuron hyper-perception). Since
artificial neural networks are implemented from the human
central nervous system (Hentrich, 2015), it is also reasonable
for us to assume that DNNs may have the same character-
istics, i.e., different models have similar attention patterns
towards the same objects when making the same predictions.
Based on the above observations, we consider improving the
transferability of adversarial camouflages by capturing the
model-agnostic attention structures.

Visual attention techniques (Zhou et al., 2016) have been
long studied to improve the explanation and understanding
of deep learning behaviors, such as CAM (Zhou et al., 2016),
Grad-CAM (Ramprasaath, 2017), and Grad-CAM++ (Chat-

topadhay et al., 2018). When making predictions, a model
pays most of its attention to the target objects rather than
meaningless parts. Intuitively, to successfully attack amodel,
we directly distract the attention of models from the salient
objects. In other words, we distract the model-shared sim-
ilar attention map on the salient area to other regions and
force the attention weights to distribute uniformly through
the entire image. Thus, the model may fail to focus on the
target object and make the wrong predictions.

Specifically, given an object (M,T), an adversarial texture
tensorTadv to be optimized, and a certain label y, we get Iadv

byR and then compute the attentionmapSy with an attention
module A as

Sy = A(Iadv, y). (3)

More precisely, the attention module A is

A(I, y) = relu

⎛
⎝∑

k

∑
i

∑
j

α
ky
i j · relu(

∂ py

∂ Ak
i j

) · Ak
i j

⎞
⎠ , (4)

where α
ky
i j is the gradient weights for a particular class y and

activation map k, py is the score of the class y, Ak
i j is the

pixel value in position (i, j) of the k-th feature map, relu(·)
denotes the relu function, and the · is a dot multiplication
sign. Note that the attention module can be an arbitrary deep
model rather than the target model.

Given the attention map Sy calculated by Eq. (3), we aim
to distract the attention region and force the model to focus
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on non-target regions. Intuitively, the pixel value of the atten-
tion map represents to what extent the region contributes to
model predictions. To decrease the attention weights of the
salient object and disperse these attention regions, we obtain
inspiration from the connected graph, which contains a path
between any pair of nodes within the graph. In an image,
a region with attention weights for each pixel higher than
a specific threshold can be deemed as a connected region.
We utilize the four-way flood-fill algorithm (Smith, 1979) to
obtain the connected regions. Specifically, for each pixel that
is unmarked but above the threshold in the attention map Sy ,
we recursively mark its four-direction neighbors above the
threshold as in the same connected regions.

To distract the attention using the connected graph, we
consider the following two tasks: (1) decrease the overall
connectivity by separating connected graphs into multiple
sub-graphs; (2) reduce the weight of each node within a
connected sub-graph. To achieve these goals, we propose
attention distraction loss as

Ld = 1

K

∑
k

Gk

N − Nk
, s.t. Gk ⊆ Sy, (5)

where Gk is the sum of pixel values in the region correspond-
ing to k-th connected graph in Sy , N is the total pixel number
of the Sy , and Nk is the total pixel number of Gk .

By minimizing Ld , the salient region in the attention map
becomes smaller (i.e., distracted) and the pixel values of the
salient regions become lower (i.e., no longer “heated”), lead-
ing to the “distracted” attention map.

3.4 Lateral Attention Inhibition

Lateral inhibition, which inspires a considerable number of
deep vision techniques (Tao et al., 2021), is one of the basic
principles of information processing and plays an important
role during information processing in the nervous system.
Due to the fact that the shared model attention draws lessons
from biological knowledge, it is reasonable for us to further
combine it with the lateral inhibition mechanism and further
improve the attacking ability of the adversarial camouflages.
Specifically, we attempt to improve the attacking ability of
the generated adversarial camouflages through the lateral
attention inhibition approach, leading joint attacks with our
attention distraction attack strategy in the meantime.

Furthermore, for a deep neural network model, its recog-
nition capability is highly correlated to perceptual ability.
Therefore, model attention, which represents the model per-
ception to a certain class, can be exploited to perform
additional attacks considering the lateral inhibition mecha-
nism. In general, a DNNmodel can be regarded as a complex
vision system, which exhibits human-like traits of attention
(Zhou et al., 2016). Thus, we once again employ the model-

shared similar attention but perform an opposite operation,
to wit, converge the model attention of a non-ground-truth
class. The rationale behind this behavior is to force themodel
to activate the latent neural representation of the false label,
thus paying its attention to the wrong class and influencing
the attention of true label in turn, i.e., lateral attention inhi-
bition.

Specifically, to accurately converge the model attention of
a non-ground-truth class c, we firstly introduce a regionmask
m, which indicates the region to be covered by the adversarial
camouflage (the region is de facto that of the target object).
Then we acquire the saliency map of the object region by a
simply element-wise multiplication � operation. Thus, the
lateral inhibition loss can be formulated as

Ll = (1 − m) � Sc

m � Sc
,

Sc = A(I, c), (6)

where the Sc means the attention map of a non-ground-truth
c, in practice, we set the c as the class of the seed patch P0

under a classifier (i.e., the c = Fθ (P0)), 1 is a matrix that all
elements are set as 1. In this equation during optimization,
the sum value of the target region in the saliency map (i.e.,
denominator) will be maximized and the sum value of the
non-target region (i.e., numerator) will be minimized.

By calculating the above equation, we can converge the
model attention of the specific class (i.e., non-target class)
into the adversarial camouflage’s region. However, the above
equation is formulated as a division operation, which causes
unnecessary computation costs. Thus, we reformulate the
lateral inhibition loss as

Ll = log(1 − m)Sc − logm � Sc (7)

where the notations are the same as those in Eq. (6). With
this reformulation, we can still activate the model attention
to the non-ground-truth class, whereas the calculation cost
will obviously decrease.

By exploiting the lateral inhibition mechanism, we con-
verge the model attention of the non-ground-truth class and
activate the latent representation of neurons, resulting in a
better attacking ability of the generated adversarial camou-
flage.

3.5 Human Attention Evasion

Previous physical attacks might generate adversarial per-
turbations with a comparatively huge magnitude (Duan et
al., 2020; Wang et al., 2022). Since the bottom-up human
attention mechanism can alert people to salient objects (e.g.,
distortion) (Connor et al., 2004), adversarial examples, in this
case, can attract human attention due to the salient perturba-
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tions, showing suspicious appearance and lower stealthiness
in the physical world.

In this paper, we aim to generate more visually-natural
camouflage by suppressing the human visual mechanism,
which will evade human-specific attention. Intuitively, we
expect the generated camouflage to share similar visual
semantics with the context to be attacked (e.g., beautiful
paintings on vehicles are more perceptually acceptable for
humans than meaningless distortions). Thus, the generated
adversarial camouflage can be highly correlated to human
perception, which is unsuspicious to human perception.

In particular, we first incorporate a seed content patch
P0 which contains a strong semantic association with the
scenario context. We then paint the seed content patch on
the vehicle (M,T) by T0 = �(P0,T). Specifically, �(·) is
a transformation operator which first transfers the 2D seed
content patch into a 3D tensor, and then paints the car through
tensor addition.

Since humans paymore attention to shapes when focusing
on objects and making predictions (Liu et al., 2020), we aim
to further improve the human attention correlation by better
preserving the shape of the seed content patch. Specifically,
we obtain the edge patch Pedge = �(P0) using an edge
extractor � (Canny, 1986) from the seed content patch. It
should be noticed that Pedge has 0–1 value in each pixel.
After that, we simply transform the edge patch Pedge to a
mask tensor E which has the same dimension with T0.

With mask tensor E, we can distinguish the edge and non-
edge regions and limit the perturbations added to the edge
regions. Thus, the attention evasion lossLe can be formulated
as

Le = ‖(β · E + 1) � (Tadv − T0)‖22, (8)

where β · E + 1 is the weight tensor, 1 is a tensor in which
each element is 1 and its dimension is the same with E and
� denotes element-wise multiplication.

To further improve the naturalness of the camouflage,
we introduce the smooth loss Ls by reducing the difference
square between adjacent pixels (Eykholt et al., 2018). Thus,
the generated camouflage in this case will be visually cor-
related to the scenario context, leading to evading human
perceptual attention.

3.6 Overall Optimization Process

Overall, we generate the physical adversarial camouflages
through 3 kinds of parallel constraints, which respectively
aim to enhance the transferability, attacking ability, and
stealthiness to perform strong attacks. And in practice, we
generate the adversarial camouflage by jointly optimizing
all the 4 constraint loss functions mentioned above, i.e., the

model attention distraction loss Ld , the lateral inhibition
loss Ll , the human attention evasion loss Le, and smooth
loss Ls . Given a seed patch and a 3D object (M,T) and the
corresponding environmental conditions, we can obtain the
adversarial camouflage based on the above optimization pro-
cess.

Specifically, we first distract the target model from the
salient objects to the meaningless part (e.g., background),
jkand then we force the model to pay attention to the non-
ground-truth class by covering the corresponding model
attention and activating the latent neural representation.
Finally,we evade the human-specific attentionmechanismby
enhancing the strong perceptual correlation to the scenario
context. Thus, we can generate transferable and visually-
natural adversarial camouflages with strong attacking ability
by minimizing the following formulation as

minLd + Ll + λ(Le + Ls), (9)

where λ controls the balance of the attacking intensity and
natural level.

To balance the attacking ability and appearance natural-
ness, we set λ as 10−4, and set β as 8 according to our
experimental results. The overall training algorithm can be
described as Algorithm 1.

Algorithm 1 Transferable Attention Attack (TA2)
Require: environmental parameter set ℵ = {e1, e2, ...en} , 3D real
object (M,T), seed content patch P0, region mask m, neural renderer
R, attention model A, specific class label c

Ensure: adversarial texture tensor Tadv

T0 ← �(P0,T)

Pedge ← �(P0)

transform Pedge to E
initial Tadv as T0
for the number of epochs do

select minibatch environmental conditions from ℵ
for m = n/minibatch steps do

Iadv ← R((M,Tadv), em)

Sy ← A(Iadv, y)

Sc ← A(I, c)
calculate the Ld , Ll , Le and Ls
optimize the Tadv by Eqn (9)

end for
end for

4 Experiments

In this section, we first outline the experimental settings and
then illustrate the performance of our proposed attacking
framework by thorough evaluations in both the digital and
physical worlds. Besides, we discuss the detailed effective-
ness of the critical factors in our TA2 framework.
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4.1 Experimental Settings

Virtual Environment and Evaluation Metric To perform a
physical world attack, we choose CARLA (Dosovitskiy et
al., 2017) as our 3D virtual simulated environment, which is
the commonly used open-source simulator for autonomous
driving research. Based on Unreal Engine 4, CARLA pro-
vides many high-resolution open digital assets, e.g., urban
layouts, buildings, and vehicles to simulate a digital world
that is nearly the same as the real world. To evaluate the per-
formance of our proposed method, we first select the widely
used Accuracy as the metric. Facing adversarial attacks, the
Accuracy drop reflects the robustness of themodels. The big-
gerAccuracy drop, the stronger the attacking ability. Besides,
we also adopt the Attack Success Rate (ASR), which is
widely used in various existing works such as (Wang et al.,
2022), to comprehensively validate the proposed method.
Moreover, we note that the data points used during evalu-
ations are the same as those in our prior reference work.

Compared methods We choose several state-of-the-art
works in the 3D attack and physical attack literature, includ-
ing UPC (Huang et al., 2020), CAMOU (Zhang et al., 2019),
MeshAdv (Xiao et al., 2019), AdvCam (Duan et al., 2020),
FCA (Wang et al., 2022), CAC (Duan et al., 2022), TPA
(Zhang et al., 2022), and our previous conference work
[denoted as “Ours-P” (Wang et al., 2021)]. We use ResNet-
50 as the base model for the classic classification task. Note
that compared with our previous conference work, we extend
4 recent proposed methods for comparison, i.e., AdvCam,
FCA, CAC, and TPA. Moreover, since most of the com-
parisons are designed for detection tasks, we conduct fair
adaptation of their released code in our environments.

Target Models In our previous study, we select com-
monly used model architectures for experiments. Specifi-
cally, Inception-V3 (Szegedy et al., 2016), VGG-19 (Zisser-
man & Simonyan, 2014), ResNet-152 (He et al., 2016), and
DenseNet (Huang et al., 2016) are employed for the classifi-
cation task. In this paper, beyond the aforementionedmodels,
we additionally introduce some other in-fashion models into
evaluation, such as ResNext-101 (Xie et al., 2017), and
GoogLeNet (Szegedy et al., 2015). Besides, considering the
various architectures in practice, we further introduce the
ViT family models (Dosovitskiy et al., 2021) (like ViT-T,
ViT-S, and Vit-B) and Deit family models (Touvron et al.,
2020) (like Deit-T, Deit-S, and Deit-B). Moreover, we also
conduct some exploratory evaluations on the large models,
such as (Su et al., 2023; Li et al., 2023, 2022, 2023). It
should be also noted that in this paper we mainly consider
the classification task in the evaluation due to its elementary
and analysis-friendly characteristics. For all the models, we
use the pre-trained version on ImageNet. Moreover, since
there exist several car types in ImageNet, e.g., taxi, and
jeep, some of them are similar to the simulated cars in

CARLA, which motivates us to set taxi, jeep, sports
car,race car,convertible, and limousine as the
correct class, making it more challenging to perform adver-
sarial attacks.

Implementation details We empirically set λ = 10−5 for
classification task, and we set β = 8. We adopt an Adam
optimizer with a learning rate of 0.01, a weight decay of
10−4, and amaximumof 5 epochs.We employ a seed content
patch (e.g., a stick smile face image) as the appearance of
the 3D object in the training process. For training details
of comparisons, we adopt the same configurations, such as
environmental settings, same vehiclemodels, same replacing
texture meshes, and same training data points, with ours for
most of the baselines to ensure the evaluation fairness. For
CAMOU and UPC, we straightly email the authors of the
studies and acquire their generated adversarial textures for
evaluation. All of our codes are implemented in PyTorch.
We conduct the training and testing processes on an NVIDIA
Tesla V100-SXM2-16GBGPU cluster. In the physical world
attack scenario, adversaries only have limited knowledge and
access to the deployed models (i.e., architectures, weights,
etc.). Considering this, we focus on attacks in full black-
box settings (i.e., the source model employed for generating
adversarial camouflages is totally different from the target
models to be attacked), therefore leading tomoremeaningful
and applicable results for physical world applications.

4.2 DigitalWorld Attack

In this section, we evaluate the performance of our generated
adversarial camouflages on the vehicle classification task in
the digital world under black-box settings.

We randomly select 155 points in the simulation environ-
ment to place the vehicle and use a virtual camera to capture
100 images at each point using different settings (i.e., angles,
and distances). Specifically, we use different distance values
(5, 10, 15, and 20), four camera pitch angle values (22.5◦,
45◦, 67.5◦, and 90◦), and eight camera yaw angle values
(south, north, east, west, and southeast, southwest, north-
east, northwest). We then collect 15,500 simulation images
with different setting combinations, and we choose 12,500
images as the training set and 3000 images as the test set. To
conduct fair comparisons, we use the backbone of ResNet-50
as attention modules in training. Besides, since some com-
pared methods perform attacks by fully coating the vehicles
with adversarial camouflages, we thus constrain the changed
textures scope of them, making it the samewith ours, i.e., top
and surroundings. Also, we additionally introduce a “Smile”
texture (the smiling face) and “Naive” texture (a common
camouflage texture adopted inUPC) to the 3Dvehicle surface
as a comparison of common noises. Some of the examples
with the generated adversarial camouflages are shown in

123



International Journal of Computer Vision

Fig. 3 The generated adversarial example. Note that we only select some sampling angles due to space limitations

Table 1 The experimental results of un-target attacks in the digital world

Method VGG-19 ResNet-152 ResNext-101 DenseNet Inception-V3 GoogLeNet

ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑
Raw 40.62 – 73.51 – 60.18 – 71.91 – 74.36 – 64.76 –

Smile 58.00 6.76 55.02 33.46 50.98 36.52 75.38 13.68 62.22 24.36 72.76 8.43

Naive 39.69 23.08 53.96 34.89 66.40 20.53 71.51 16.63 59.24 27.37 57.33 25.22

UPC (Huang et al., 2020) 38.00 42.02 48.18 41.46 58.89 27.08 65.87 23.53 42.40 44.65 65.11 24.48

CAMOU (Zhang et al., 2019) 31.46 38.61 48.93 38.91 52.71 41.65 57.56 29.97 47.51 41.38 44.58 40.71

AdvCam (Duan et al., 2020) 36.53 34.55 39.64 51.20 45.16 46.95 56.22 35.59 42.62 46.50 63.91 21.40

TPA (Zhang et al., 2022) 36.93 45.26 33.69 65.86 42.76 58.31 62.71 31.02 45.42 50.33 63.20 24.29

MeshAdv(Xiao et al., 2019) 32.44 37.93 35.33 58.12 41.78 49.46 58.04 40.60 42.31 49.71 64.04 20.74

FCA(Wang et al., 2022) 40.00 25.99 49.91 37.08 42.53 52.97 70.27 18.12 53.91 32.36 74.76 8.99

CAC(Duan et al., 2022) 39.56 29.27 38.93 50.60 38.40 57.09 70.22 21.17 46.84 41.69 66.53 14.33

Ours-P (Wang et al., 2021) 30.18 43.02 32.49 61.15 32.22 60.19 55.42 38.05 39.86 52.88 59.11 21.20

Ours 28.89 39.97 28.58 64.30 30.36 61.73 46.71 40.80 32.58 53.99 55.29 25.02

Ours and the best performance are in bold font

Fig. 3. The experimental results are illustrated in Table 1,
where we can draw several conclusions as follows:

(1) Our adversarial camouflage (“Ours”) achieves signifi-
cantly better performance than the compared baselines in
most cases on different models. Overall, our TA2 outper-
forms others by large margins, i.e., the average accuracy
drop of Ours is 27.15%, and that of UPC, CAMOU,
AdvCam, TPA, MeshAdv, FCA, CAC, and Ours-P are
respectively 11.15, 17.10, 16.88, 16.77, 18.57, 8.99,
14.14, and 22.68%. Similarly, the averageASR ofOurs is
47.63%, while the others are respectively 33.87, 38.54,
39.36, 45.85, 42.76, 29.25, 35.69, 46.08%. More pre-
cisely, themaximumaccuracy drop ofOurs even achieves
44.93% on ResNet-152. Besides, we find that the attack-
ing performances of TPA and FCA are not as strong as
they mentioned in the original papers, we attribute it to

their special design, i.e., the former aims is designed for
object detection tasks with full consideration of distract-
ing multi-layer attention, and the latter adopts a fully
coated adversarial attacking strategy (we only replace
part of the vehicle textures).

(2) For each model, we also calculate the detailed attacking
ability variance. Specifically, the accuracy drops of the
proposed TA2 on VGG-19, ResNet-152, ResNext-101,
DenseNet, Inception-V3, and GoogLeNet are respec-
tively 11.73, 44.93, 29.82, 25.20, 41.78, and 9.47%.
What’smore, comparedwithOurs-P, the attacking ability
improvement of Ours is 4.48% on average (with a max
improvement 8.71% on DenseNet). It should be noted
that the TA2 shows relevantly weak attacking ability on
GoogLeNet, a similar observation can also be witnessed
on UPC, AdvCam, TPA, MeshAdv, FCA, and CAC.
However, the CAMOU appears higher ASR and lower
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ACC (i.e., 40.71 and 44.58%),we attribute it to the poten-
tial correlation between CAMOU and GoogLeNet, i.e.,
the CAMOU learns a multi-view learning strategy, such
as jointly receiving the perturbation, the background, and
the foreground as inputs during training, which simi-
lar to the multi-scale technique in GoogLeNet. While
for Inception-V3, it adopts more training techniques
like label smoothing, and etc, possibly making it lose
the original characteristics in GoogLeNet. Overall, we
can conclude that the proposed additional class lateral
inhibition is effective in promoting the attacking abil-
ity of the generated adversarial camouflage. Also, these
experimental results indicate that the different visual
attention principles might be correlated to each other,
thus motivating us to further study the insights behind
these observations.

(3) We found that FCA works comparatively worse than
other baselines in many cases. For example, the FCA
achieves only 25.99, 18.12, and 8.99%ASR on VGG-19,
DenseNet, and GoogLeNet, respectively. We conjecture
the reason might be that FCA is primarily designed for
fully coated adversarial camouflage, which might adapt
not well in these partially coated settings. Moreover, the
CAC also shows a similar performance to the FCA. By
carefully reviewing the correlated works, we found that
the CAC is also designed for fully coated adversarial
attacks in the 3D environment. Besides, we find that the
UPC performs not so well as it performs in the physical
world, which should be attributed to its physical elabo-
ration, i.e., physical simulation, therefore showing worse
attacking ability in the digitalworld. By contrast, ourTA2

attack exploits the intrinsic visual attentionmechanism to
perform stronger attacking, therefore not only achieving
considerable attacking ability in the digital world but also
keeping acceptable performance in the physical world
consistently. That also means, this intrinsic characteris-
tic among deep models plays a critical role during the
decision-making process de facto.

4.3 PhysicalWorld Attack

As for the physical world attack, we conduct several experi-
ments to validate the practical effectiveness of our generated
adversarial camouflages. Due to the limitation of funds and
conditions, we print our adversarial camouflages with an HP
Color LaserJet Pro MFPM281fdw printer and stick them on
a toy car model with different backgrounds to simulate the
real vehicle painting. To conduct fair comparisons, we take
960 pictures of the toy car model on various environmen-
tal conditions (i.e., 8 directions {left, right, front, back and
their corresponding intersection directions}, 3 angles {0◦,
45◦, 90◦}, 4 scenarios {3 indoor conditions, 1 outdoor con-
dition}, and 10 kinds of textures {Raw, 9 compared methods,

Fig. 4 The adversarial examples in the physical world for attacking toy
cars. To show the diversity of the sampling environment, we select 4
physical adversarial camouflages that sampled from 3 indoor environ-
ments and 1 outdoor environment, with different distances and angles.
These adversarial samples are respectively predicted as mousetrap,
waffle, Mustela nigripes, and car wheel

and Ours }) for each kind of physical camouflages, using
a Huawei P40 phone. It should be noted that we did not
deliberately search for scenes with significant differences in
lighting, but there are natural differences in lighting intensity
in the selected background environments. Here we provide
some adversarial examples sampled from the physical world
as shown in Fig. 4.

The evaluation results can be witnessed in Table 2. Com-
pared with other methods, the TA2 shows competitive trans-
ferable attacking ability, which is significantly better than the
baselines, including Ours-P. More precisely, Ours achieves
ACC of 33.33% on VGG-19, 20.83% on ResNet-152,
21.88% on ResNext-101, 36.46% on DenseNet, 38.54%
on Inception-V3, and 46.88% on GoogLeNet, respectively.
Moreover, compared with the SOTA method TPA (Zhang et
al., 2022) and Our-P, Ours enjoy stronger physical adversar-
ial attacking ability due to the further exploitation of visual
attention mechanism. Besides, it should be noted that both
the TPA and Ours-P utilize the model attention distraction
strategy. However, our TA2 considers taking advantage of
this kind of attention mechanism in a more comprehensive
perspective, i.e., attention distraction and class lateral inhi-
bition, which jointly activate strong attacking performance
due to the latent correlation inside the model attention mech-
anism.

In addition, we also test the generated adversarial cam-
ouflages on some on-sale devices that are employed for
roadblocks surveillance. Specifically, we purchase a Hikvi-
sion DS-2CD7167EWD-IZ detector that can take pictures
and then capture the vehicles inside the frame for record-
ing. For realizable tests, we adopt various testing settings.
Specifically, test the detecting device by sampling from dif-
ferent visual angles, i.e., horizontal, vertical, and inclined.
As shown in Fig. 5, we can find that the physical adversar-
ial camouflages are allowed to mislead the unknown models
deployed in the on-sale roadblocks surveillance device suc-
cessfully, under different angles and environmental settings.
Beyond thequantitative physical experiments,webelieve this
physical qualitative experiment can demonstrate the strong
physical attacking ability of the proposed TA2 method con-
vincingly.
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Table 2 The experimental results in the physical world

Method VGG-19 ResNet-152 ResNext-101 DenseNet Inception-V3 GoogLeNet

ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑ ACC↓ ASR↑
Raw 60.42 – 50.00 – 58.33 – 61.46 – 57.29 – 61.46 –

UPC (Huang et al., 2020) 46.88 31.03 32.29 45.83 41.67 41.07 42.71 37.29 55.21 18.18 56.25 11.86

CAMOU (Zhang et al., 2019) 45.83 32.76 34.38 45.83 44.79 35.71 50.00 27.12 53.13 20.00 52.08 22.03

AdvCam (Duan et al., 2020) 44.79 31.03 28.13 54.17 38.54 44.64 50.00 25.42 50.00 27.27 54.17 15.25

TPA (Zhang et al., 2022) 40.63 32.76 25.00 54.17 32.29 51.79 43.75 33.90 48.96 27.27 53.13 15.25

MeshAdv (Xiao et al., 2019) 44.79 34.48 27.08 50.00 32.29 50.00 55.21 18.64 50.00 30.91 55.21 13.56

FCA (Wang et al., 2022) 41.67 32.76 27.08 54.17 32.29 58.93 51.04 25.42 47.92 27.27 56.25 10.17

CAC (Duan et al., 2022) 39.58 36.21 25.00 52.08 28.13 57.14 54.17 20.34 53.13 25.45 46.88 25.42

Ours-P (Wang et al., 2021) 40.63 36.21 25.00 58.33 36.46 50.00 46.88 33.90 39.58 43.64 54.17 16.95

Ours 33.33 46.55 20.83 62.50 21.88 69.64 36.46 47.46 38.54 41.82 46.88 25.42

Ours and the best performance are in bold font

Fig. 5 The experimental example in the physical world by employ-
ing the on-sale roadblock surveillance device. We test the transferable
attacking ability from different visual angles under indoor conditions

4.4 Human Perception Study

Since one of the critical components in the proposed TA2, the
human attention evasion loss is designed for better visual nat-

uralness, it is necessary for us to evaluate the naturalness of
our generated adversarial camouflage. For this purpose, we
conduct a human perception study on one of the most com-
monly used crowdsourcing platforms in mainland, China,
i.e., WJX. In detail, we adversarially perturb our 3D car
object using different methods (i.e., UPC, CAMOU, Adv-
Cam, TPA, MeshAdv, FCA, CAC, Ours-P, and Ours) and
acquire the adversarial textures. Then we replace the tex-
ture of the car in specific meshes using these camouflages
and get the rendered images for the human perception stud-
ies of Naturalness. Specifically, all participants come from
theWJX crowdsourcing platforms and independently decide
whether to participate in this experiment. Each experimen-
tal participant is required to take the experiment seriously
and receives a reward of 0.5$ upon completion of the exper-
iment. The participants are asked to score the naturalness of
the camouflage from 1 to 10. In particular, we collect the
responses from 165 participants.

As shown in Table 3, the average naturalness score is up to
3.982, which is above the score of the comparison methods
due to our human attention evasion mechanism. However,
since this improved work mainly focuses on the further
mining and utilization of the model’s attention to improve
the attack capability, the lateral inhibition loss inevitably
affects the human attention evasion loss, leading to a decrease
in naturalness, which is intuitively manifested as a lower
naturalness score than our previous work’s adversarial cam-
ouflage (Wang et al., 2021), i.e., Ours-P.We believe that there
exists a trade-off between aggressiveness and naturalness,
which has also been observed by previous works (Duan et al.,
2020; Jia et al., 2022). Overall, we think that the proposed
TA2 achieves comparable performance in both naturalness
and attack ability.
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Table 3 The naturalness results
of human perception study

Question UPC CAMOU AdvCam TPA MeshAdv FCA CAC Ours-P Ours

Naturalness 3.909 2.982 3.970 3.897 3.952 3.873 3.691 4.224 3.982

Table 4 The ablation study on attention distraction portion

Models (%) Setting

Raw Ld Ll Ld + Ll

VGG-19 40.62 30.18 29.38 28.89

ResNet-152 73.51 32.49 29.07 28.58

ResNext-101 60.18 32.22 32.04 30.36

DenseNet 71.91 55.42 49.47 46.71

Inception-V3 74.36 39.86 34.71 32.58

GoogLeNet 64.76 59.11 56.44 55.29

The bold values indicate the best attacking performance (i.e., the lowest
accuracy)

4.5 The Effect of Different Loss Terms

Different loss terms play different roles, so we conduct an
ablation study to further investigate the effect of loss terms.
However, in our previous conference work (Wang et al.,
2021), we have drawn some meaningful conclusions about
the effectiveness of the model attention distraction loss Ld

and human attention evasion loss Le, i.e., Ld mainly pro-
vides a transferable attacking ability in our previous DAS
method and the human attention evasion provides the natural
appearance. Therefore, we only further investigate the effec-
tiveness of the newproposed loss termLl and the correlations
between attention loss functions, i.e., Ld and Ll .

Specifically, we optimize the adversarial camouflage
using functionLd ,Ll , andLd+λLl respectively (withLe and
Ls fixed).As shown inTable 4, the accuracy shows significant
drops (i.e., 22.68% on average underLd setting and 25.71%
on average under Ll setting among the 6 different mod-
els), showing the positive influence of the proposed attention
mechanism-based loss functions. Further, there is an inter-
esting observation that the Ll seems has stronger attacking
ability compared with Ld , which verifies some visual expe-
rience that attracting one’s attention is much easier than
distracting. Besides, we can clearlywitness that the attacking
ability achieves the peak value whenLd andLl are employed
together. That means, the attention mechanism behind deep
models plays a critical role during decision-making, and the
correlations among different attention principles might be
able to be guided into cooperation.

To sum up, this ablation demonstrates that jointly distract-
ing the model attention of the target class and activating the
model attention of the non-target class can further improve
the attacking ability of adversarial camouflage, revealing that
the attention mechanism in deep models is worth investigat-
ing.

Fig. 6 Ablation on studying the effectiveness of λ. The various lines
represent the trend of accuracy change under different λ values

4.6 The Effect of Hyperparameter

Regarding the hyperparameter λ, we believe that it still con-
trols the level of the semantic correlation with the context,
i.e., naturalness. Though we have verified this viewpoint in
the prior conference work, it is necessary for us to conduct
ablations on λ once again due to the updated loss functions
that might make some differences. We evaluate the effective-
ness of λ on a ResNet-50 model using Accuracy and SSIM.
Specifically,we set theλ as 0, 10−6, 10−5, 2×10−5, 5×10−5,
10−4, 10−3, 10−2, 10−1, and 1, respectively. As illustrated
in Fig. 6, the model accuracy first increases and then keeps a
stable value as λ increases. For all different models, although
the details are not identical, the trend remains basically con-
sistent. From the results, we can draw the conclusion that
λ controls the attacking intensity of the generated adversar-
ial camouflage, i.e., when λ gets bigger, the accuracy gets
bigger, which means the lower attacking ability and better
appearance according to our prior conclusion. And in this
paper, we set the λ as 10−4 based on the ablation.

5 Discussion

In this section, we discuss the discovered model attention
mechanism and fully investigate the correlations among
attention under different labels. Also, we conduct exper-
iments on studying the targeted attacking ability and the
transferability of the adversarial camouflages on more dif-
ferent models We believe that this will provide more insights
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Fig. 7 a is the attentionmap on 6 different models to a particular image.
b is a heat map drawn according to the SSIM values

for us and promote the understanding of deep neural net-
works.

5.1 The Shared Attention amongModels

In this part, we conduct a detailed analysis of attention
through both qualitative and quantitative studies to validate
the effectiveness of the model attention distraction.

Firstly, we conduct a qualitative study by visualizing the
attention regions of 6 different models toward the same
image on several layers. As shown in Fig. 7a, different DNNs
show similar attention patterns towards the same image.
And for different layers, this observation is consistent. That
means different models pay their attention to similar regions,
inspiring us that the shared attention can be deemed as a
model-agnostic characteristic.

We then conduct a quantitative study by calculating the
structural similarity index measure (SSIM) (Wang et al.,
2004), which is a well-known quality metric used to mea-
sure the similarity between two images (Horé & Ziou, 2010).
Specifically, we generate the attention maps of a specific
image (i.e., Panda) on all 6 different models and calculate
the SSIM values between each pair of the attention maps
on different models. As shown in Fig. 7b, different models
demonstrate comparatively high similarities of the attention
maps.

In addition, we further visualize the attention maps by
changing the model predictions (i.e., class). As shown in
Fig. 8, when changing the class label, the attention map is
distracted from the salient objects and becomes more sparse
over the entire image. Finally, we visualize the attention dif-
ferences before and after attacks as shown in Fig. 9. It can be
observed that the attention of the model is distracted away
from the salient regions.

In summary, we can draw several conclusions as follows:
(1) different DNNs show similar attention patterns towards
the same class in a specified image; (2) we can attack a DNN

Fig. 8 The visualization of attention maps on the same image panda
with different target labels using ResNet-152. The attention maps differ
significantly when different target labels are provided to the model

Fig. 9 The attention maps before and after attacking, which indicated
that the model attention is distracted significantly. Note that we only
employ the proposed distraction loss, evasion loss, and smooth loss for
getting rid of the influence of lateral inhibition loss

adversarially to wrong predictions by distracting its attention
under a specific class label, i.e., the ground-truth label.

5.2 The Correlation among Classes

In this part, we further investigate the latent correlation
between different classes by activating the model attention
under different class labels in turn, therefore excavating the
insights behind the model attention mechanism.

Specifically, we try to study the latent correlation ofmodel
attention with different classes from 2 aspects, i.e., (1) acti-
vate the attention to non-ground-truth class then observe
the model attention differences of ground-truth classes, and
(2) activate the model attention to different non-ground-
truth classes then observe the detailed variance (i.e., the
confidence variance) of ground-truth ones. In detail, we
first observe the attention map with the ground-truth label
before and after activating the model attention of the ran-
domly selected class labels, i.e., c = Washing machine,
Hinder, Handkerchief, Puma, and Kangaroo. By
calculating the saliency map, we provide the model atten-
tion variance under the target class label as Fig. 10, where
we can conclude that the model attention of different classes
will influence each other. More precisely, from the atten-
tion maps we find that the salient region of Panda will be
confused when the attention of other class is activated on a
certain model, i.e., lateral inhibition.

Further, we then investigate the effect of activating the
attention of different non-target classes. Here, we select 4
coarse-grained categories, including vehicle, animal, plant,
and human. For each category, we select 20 classes, the
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Fig. 10 The variance before and after activating the attention of the non-
ground-truth class. The originalmodel attention under the label “Panda”
shows significant differences when activating other class labels, e.g.,
“Washing machine”, “Hinder”, and “Handkerchief”, etc. This observa-
tion strongly supports that human visual lateral inhibition is de facto
existing in deep models also. Note that we calculate these attention
maps on ResNet-152

detailed classes can be found in Table 5. In this study,
we quantitatively evaluate the model average confidence of
the target class after activating the model attention with
non-ground-truth labels. Specifically, we exploit the lat-
eral inhibition loss to activate a specific class with certain

iterations and then record the model confidence of the
ground-truth class. In detail, we select the panda” as object
class and sample 50 images for evaluation. We report the
average confidence (50 images) of the class “panda” as shown
in Fig. 11a. It can be concluded that for different coarse cat-
egories, the lateral inhibition influence is quite different, i.e.,
the different box plots. More precisely, we conjecture that
the similar class (but not the same) might achieve higher lat-
eral inhibition effectiveness, i.e., the “animal” achieves the
lower average confidence, due to the possible latent corre-
lations behind the model behavior such as shared attention.
Besides, we further report the overall average confidence on
all 1000 classes (i.e., 999 non-ground-truth classes) as shown
in Fig. 11b. It can be also found that the different classes
indeed make differences in the performance of model atten-
tion lateral inhibition.

5.3 The Target Attacking Ability

In our main experiments as shown in Sect. 4.2, we only
evaluate the untargeted attacking ability of the proposed
TA2 method. Beyond this, the targeted attacking ability of
adversarial examples is another focus aspect. For example,
compared with misleading a car for a pedestrian, misclas-
sifying it as a straight-ahead sign might cause more serious
consequences. Thus, we provide additional results about the

Table 5 The selected non-ground-truth class labels

Category Classes

Animal

Tench Cock Ostrich Goldfinch Robin

Bald eagle Tree frog American lobster Golden retriever Doberman

Hyena Red fox Tiger cat Marmot Zebra

Macaque Coho Llama Ox Hog

plant

Guacamole Head cabbage Broccoli Cauliflower Zucchini

Spaghetti squash Acorn squash Butternut squash Cucumber Artichoke

Bell pepper Cardoon Mushroom Strawberry Orange

Lemon Pineapple Banana Custard apple Pomegranate

Vehicle

Airliner Ambulance Beach wagon Bicycle-built-for-two Cab

Electric locomotive Fireboat Fire engine Forklift Garbage truck

Go-kart Golfcart Lifeboat Minivan Motor scooter

Mountain bike Police van Racer Recreational vehicle School bus

tool

Backpack Ballpoint Barrel Baseball Basketball

Bathing cap Beer bottle Binoculars Broom Coffee mug

Goblet Golf ball Hammer Hatchet Mitten

Mouse Pencil sharpener Ping-pong ball Screwdriver Soccer ball

All classes can be basically divided into 4 categories
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Fig. 11 The investigation of the lateral inhibition mechanism. a is
the average confidence of class “panda” after activating some selected
classes. b is the overall average confidence of “panda” after activating
non-ground-truth classes

targeted attacking ability of the proposed adversarial attack
in this section by misleading the models to predict the input
as the designated label.

However, our proposed TA2 is not designed for perform-
ing targeted attacks, since there exists no hard label in our
training scheme to mislead models into specific labels (the
lateral attention inhibition loss is a soft direction that can
not be employed for targeted attack directly). Therefore, we
introduce the cross-entropy loss function into the optimiza-
tion process of TA2 to mislead the models to predict the
target class. Besides, considering the proposed lateral atten-
tion inhibition is also correlated with the class labels, we set
the attacked class to be the same as the non-ground-truth c.
As a result, our TA2 method obtains a targeted attack success
rate of 3.42% in VGG-19, 14.22% in ResNet-152, 15.07%
in ResNext-101, 1.51% in DenseNet, 0.09% in Inception-
V3, and 2.04% in GoogLeNet. According to the results, we
can summarize: (1) the targeted attacking ability of the pro-
posed TA2 is not very satisfactory. Since the exploited model
perception is not fully studied, attacking with this mecha-
nism might not be powerful for targeted adversarial attacks,
while also indicating that there is a space to exploit the model
perception for targeted attacks. (2) Though showing limited
attacking performance, the TA2 achieves a comparable tar-
geted attacking ability with the AdvCam method, which is
the only one that evaluates targeted attacking performance
in the baselines. Specifically, under targeted attack, the Adv-
Cam achieves about 2% ∼ 8% ASR under similar settings to
ours.

5.4 Attack on Diverse Architectures

Beyond theDNNarchitectures, there also exist several differ-
ent but popular model architectures for classification tasks,
such as vision transformers (ViTs) and large vision language
models (LVLMs). For comprehensively evaluating the trans-
ferable attacking ability of the proposed TA2 framework, it is
reasonable for us to conduct the assessment on thementioned
architectures and in turn draw more realizable conclusions.

Table 6 The experimental results in the attacking on vision transform-
ers

Models ASR↑
ViT-T ViT-S ViT-B DeiT-T DeiT-S DeiT-B

TA2 36.56 33.12 32.99 24.20 24.24 25.97

Table 7 The experimental results in the attacking on large vision lan-
guage models

Models ASR↑
PandaGPT-13b Otter Blip2-6.7b Blip2-2.7b Blip

TA2 7.53 36.49 0.18 11.55 29.75

Specifically, considering the time limitations and compu-
tation constraints, we select several in-fashion models that
have different architectures and can be employed for the
classification task. Specifically, for ViTs, we select the ViT-
T, ViT-S, ViT-B, Deit-T, Deit-S, and Deit-B. For LVLMs,
we select the PandaGPT-13b, Otter, Blip, Blip2-2.7b, and
Blip-6.7b. Note that for both ViTs and LVLMs, the selected
models include different architectures and parameter num-
bers. The experimental results are shown in Tables 6 and 7,
respectively. To sum up, we draw some conclusions from the
aspect of the transferable attacking ability on diverse model
architectures, including (1) the proposed TA2 shows cer-
tain transferable attacking capabilities across different model
architectures. For example, the ASR of the proposed method
achieves 29.51% on average for ViTs and 17.1% on LVLMs.
However, comparedwith theASR inCNN-basedmodels, the
attacking transferability appears significant drop (−18.13%
on ViTs and −30.54% on LVLMs), which means that the
model attentionmight exist a bigger difference among CNNs
and ViTs/LVLMs. (2) For LVLMs, the larger models show
better robustness to the proposed adversarial camouflages.
For example, in ViTs, the ASR on Blip2−6.7 is much lower
than that on Blip2−2.7. And both of them show better
defense than Blip. We think that this observation indicates
that the models with large scales might result in a less eas-
ily perturbed model perception, therefore promoting defense
against attention-driven attacks.

6 Conclusion

In this paper, we propose the Transferable Attention Attack
(TA2) to generate adversarial camouflage in the physi-
cal world inspired by the human attention mechanism.
To improve the transferable attacking ability of adversar-
ial camouflages, we first distract the model-shared similar
attention from target to non-target regions. For further pro-
moting attacks, we then converge the model attention of
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the non-target class to laterally inhibit the model perception
to the ground-truth category. To generate more visually-
natural camouflage, we suppress human attention by evading
human-specific bottom-up attention. We conduct extensive
experiments on classification tasks in both the digital and
physicalworld (including evaluations on on-sale surveillance
devices) under totally black-box settings. Besides, we also
provide several discussions and analyses to help fully under-
stand the proposed method, such as introducing diverse ViTs
and LVLMs as attacking models. The experimental results
demonstrate that our TA2 attack shows considerable attack-
ing performance compared with baselines.

In the future, we are interested in investigating the attack
abilities of our adversarial camouflage using a real vehicle
in a real-world scenario. Using projection or 3D printing, we
might simply paint our camouflage on a real-world vehicle.
Further, we would also like to investigate the effectiveness
of our generated camouflage to improve model robustness
against different noises. We believe that the model attention
mechanism is worth investigating in other vision scenarios
and tasks and promoting a better understanding of explain-
able artificial intelligence.
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