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Abstract
Video recognition (action recognition) in an open world is quite challenging, as we need to handle different settings such as
closed-set, long-tail, few-shot, and open-set. The majority of existing works often address each individual setting separately
using various frameworks. However, these separate investigations would ignore the possibility of knowledge sharing across
different settings, and stymie progress in video recognition as well as its application in the real world. By leveraging semantic
knowledge from noisy text descriptions crawled from the Internet, we focus on the general video recognition (GVR) task
of solving recognition problems of different settings within a unified framework. The core contribution of this paper is
twofold. First, we build a comprehensive video recognition benchmark to facilitate the research of GVR, called Kinetics-Text.
This dataset covers the mentioned four common settings, and provides multi-source text descriptions for all action classes for
utilizing external textual knowledge from the Internet. Second, inspired by theflexibility of language representation,we analyse
the correspondence between the video and text descriptions of its category and present a unified visual-linguistic framework
(VLG) to solve the problem of GVR with an effective two-stage training paradigm. Our VLG is first pre-trained on video and
language datasets to learn a shared feature space, and then devises a flexible bi-modal attention head to collaborate high-level
semantic concepts under different settings. Extensive results show that our VLG obtains the state-of-the-art performance
under four settings, and the superior performance demonstrates the effectiveness and generalization ability of our proposed
framework. We hope our work makes a step towards the general video recognition and could serve as a baseline for future
research. Code and datasets have been released in https://github.com/MCG-NJU/VLG.
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1 Introduction

Similar to image classification, the existing video recogni-
tion (action recognition) tasks are roughly grouped into four
settings: closed-set (Kay et al., 2017; Carreira et al., 2019;
Monfort et al., 2019, 2021), long-tail (Zhang et al., 2021c),
few-shot (Zhu & Yang, 2018, 2020c; Zhu et al., 2021) and
open-set (Acsintoae et al., 2021; Wang et al., 2021c), to
mimic the realistic scenarios in practice. With multiple video
benchmarks (Kay et al., 2017; Soomro et al., 2012; Goyal et
al., 2017; Caba Heilbron et al., 2015; Carreira et al., 2019),
a number of works (Wang et al., 2016; Liu et al., 2021b;
Arnab et al., 2021; Zhang et al., 2021c; Zhu & Yang, 2018,
2020c; Bao et al., 2021) have been developed to study video
recognition in these diverse scenarios.

Though various video benchmarks and frameworks have
been established in the last few years, most existing works
still follow a closed-set learning setting, where all the cate-
gories are pre-defined. Such method is unrealistic for many
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real-world applications, such as automatic tagging of web
videos, where information regarding new video categories is
not available during training. It is thus very challenging for
closed-setmethods to train a classifier for recognizing unseen
or unfamiliar categories. In addition, most works (Feichten-
hofer et al., 2016; Carreira & Zisserman, 2017; Tran et al.,
2018; Kumar Dwivedi et al., 2019; Shu et al., 2018) focus
on addressing individual settings separately with different
frameworks. These separate investigations would ignore the
potential sharing of knowledge among different settings, and
severely impede the advance in video recognition as well
as its application in the real world. Accordingly, we aim to
present a single video benchmark covering all these settings,
and propose a simple framework to handle these different
sub-problems by leveraging semantic knowledge from noisy
text description crawled from the Internet.

Since some works (Radford et al., 2021; Jia et al., 2021;
Li et al., 2022; Yuan et al., 2021) have shown the efficacy of
using natural language to supervise the visual representation
learning, we intend to draw some extra knowledge (i.e., web
text information) into our benchmark to facilitate the devel-
opment of GVR. The extra web knowledge is expected to
provide new cues for GVR. However, obtaining the paired
text data for each video is prohibitively expensive. As shown
in the Fig. 1, we observe that there are some connections
between the video and text descriptions of its correspond-
ing category. Specifically, the text descriptions for a specific
video category exhibit some high-level semantic concepts to
represent the static characteristics (e.g., scene) in space and
dynamics (e.g., the steps to shooting) in time. In this sense,

we hope that the text descriptions of video categories could
provide useful clues to learn a more general representation
for GVR under different settings. As a result, we build a new
benchmark Kinetics-Text by extending the original Kinet-
ics (Carreira &Zisserman, 2017) dataset to provide abundant
text descriptions per-category in our benchmark to facilitate
the research of GVR by crawling from the Internet. More-
over, in order to dig deeply into the general video recognition
problem, we also hope this new video benchmark can cover
a wide range of settings including closed-set, long-tail, few-
shot and open-set (as shown in the Fig. 1). Accordingly, we
curate different sub-datasets from theKinetics-Textwith four
sub-settings: Kinetics-Close, Kinetics-LT, Kinetics-Fewshot
and Kinetics-Open, to mimic the video distribution of differ-
ent scenarios in real-world applications. Thees four kinds of
sub-set on Kinetics-Text aim to provide a solid benchmark
to verify the performance of video recognition models under
different distributions.

Instead of dealing with each setting of video recognition
with different methods, we develop a unified framework to
address general video recognition. The unified framework
would greatly reduce theworkof hand-crafted design specific
to each setting, and potentially increase its generalization
ability due to the comprehensive consideration of all settings.
We find some recent visual-linguistic representation works,
e.g. CLIP (Radford et al., 2021) andALIGN (Jia et al., 2021),
can learn transferable visual models from natural language
supervision, and show a promising performance on image
recognition under different settings. However, there is still a
lack of work to bridge the gap between video and text for

Fig. 1 Video label distribution of different scenarios and different
modalities. As shown in the left, videos in GVR tasks have arbitrary
distributions similar to natural data, such as closed-set, long-tail, few-
shot and open-set. Most works only focus on coping with one aspect

of them, while our method can use a unified framework to address the
GVR task by combining the advantages of video and text modalities.
The right part of the figure provides intuitive explanations for the cor-
respondence between the videos and text modalities
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general recognition under different scenarios. we consider
using text as the supervision signals to learn a new video
representation for general recognition scenarios, including
long-tail, zero-shot, few-shot, and fully-supervised. Accord-
ingly, we develop a video-language framework for general
video recognition, termed as VLG. VLG could benefit from
the visual-linguistic models pretrained on the large-scale
image-text pairs (e.g., CLIP (Radford et al., 2021)), and
connect video and text through customized temporal mod-
eling. Our VLG leverages the rich semantic information of
web text descriptions to guide the spatio-temporal feature
learning. Specifically, our method primarily contains four
components: (1) The frame encoder to learn the visual repre-
sentation for each frame. (2) The temporal module to model
temporal features across frames for video domain adaption;
(3) The language encoder to learn the textual representation
for each sentence of category description. (4) The bi-modal
attention head to perform general video recognition under
different settings. As text descriptions are directly collected
from the Internet, they may include some noisy information.
Thus we design a two-stage procedure to train our VLG:
Stage I is to perform video-language pretraining, adapting
the encoders from the image domain to the video domain
to learn a visual-linguistic representation. Stage II filters out
noisy texts and trains the bi-modal attention module to pro-
duce our final prediction. As demonstrated in experiments,
our proposed VLG can effectively handle GVR under differ-
ent settings of closed-set, long-tail, few-shot, and open-set.

In summary, we make the following contributions:

1. We formulate the task of general video recognition
(GVR) and establish a comprehensive benchmark to
fairly test the performance of video recognition mod-
els under different data distributions. The benchmark for
general video recognition comprises closed-set, long-tail,
few-shot and open-set, which shows different data distri-
bution in practice.

2. To facilitate the research of GVR, we extend the origi-
nal Kinetics into Kinetics-Text by elaborately collecting
abundant text descriptions for each category. These extra
textual knowledge exhibits more rich and high-level
semantic concepts to represent the characteristics both
in time and space, and contributes to the development of
GVR.

3. We develop a unified video-language framework for
general video recognition (VLG), which leverages the
extensive web textual knowledge to effectively handle
GVR under our customized two-stage learning strategy.

4. Extensive experiments demonstrate the effectiveness of
our VLG on the Kinetics-Text for general video recogni-
tion under four settings.

We hope the findings together with the open-source code
can inspire and facilitate future research on general video
recognition, which enables us to examine the generalization
ability of video recognition models in real-world applica-
tions.

2 RelatedWork

2.1 Video Representation

Video recognition has made rapid progress from the early
hand-craft descriptors (Dollár et al., 2005;Klaser et al., 2008;
Wang et al., 2013) to current deep networks. Deep neural
networks can capture more general spatio-temporal repre-
sentation from early two-stream networks, 3D-CNNs, and
light-weight temporal modules to current transformer-based
networks. Two-stream networks (Feichtenhofer et al., 2016;
Simonyan & Zisserman, 2014; Wang et al., 2016) used two
inputs of RGB and optical flow to separately model appear-
ance andmotion information in videoswith a late fusion. Cao
et al. (2020a) also proposed a composite two-stream frame-
work based on a pre-training multi-channels self-attention
model. 3D-CNNs (Carreira & Zisserman, 2017; Diba et
al., 2018; Feichtenhofer et al., 2019; Stroud et al., 2020a)
proposed 3D convolution and pooling to model space and
time jointly. Light-weight temporal modules (Tran et al.,
2018; Xie et al., 2018; Zhou et al., 2018; Jiang et al., 2019;
Kumawat et al., 2021; Li et al., 2020b; Liu et al., 2021b)
were designed as simple but powerful plugins to achieve the
trade-off between efficacy and efficiency. Recently, several
works (Arnab et al., 2021; Bertasius et al., 2021; Neimark
et al., 2021; Fan et al., 2021) try to employ and adapt strong
vision transformers to encode the spatial and temporal fea-
tures jointly. The aforementioned methods mostly focus on
addressing the video recognition problem only using visual
modality in a supervised way, while ignoring the potentiality
of natural language.

2.2 Visual-Textual Learning

Visual-Textual Pretraining has made great progress on sev-
eral down-stream vision tasks. Mori et al. (1999) utilized
paired text documents to connect images and words. Frome
et al. (2013) and Weston et al. (2011) explored the image-
text representation with class name annotations. Zhang et
al. (2021b) obtained stronger visual embeddings from large
object detectors, using visual-linguistic pretraining. Li et al.
(2020a) learned powerful representation from a large-scale
language corpus, with a visual-textual transformer. vadjust

123



International Journal of Computer Vision

Aligned with the success of image-language learning,
lots of efforts have been made toward video-language learn-
ing (Miech et al., 2020a; Li & Wang, 2020a; Stroud et al.,
2020b; Wang et al., 2021b; Ju et al., 2022). Li and Wang
(2020b) learned powerful video representation from large-
scale video-text pairs, with a contrastive learning method
of CPD. Miech et al. (2020b) proposed a new learning
loss to address misalignments inherent in narrated videos.
Akbari et al. (2021) proposed a framework for learning mul-
timodal representations for unlabeled data. Some works also
focus on a specific type of downstream tasks, e.g. video-text
VQA (Wang et al., 2020;Kant et al., 2020; Singh et al., 2019),
video-text retrieval (Dong et al., 2021; Liu et al., 2021a; Yang
et al., 2020). Specifically, Wang et al. (2021b) and Ju et al.
(2022) adopted prompt engineering to reformulate their tasks
into the same format as the pretraining objectives.

Video and language pretraining has also been an exten-
sively studied topic. Wang et al. (2023) introduced an
effective token rolling operation to encode temporal repre-
sentations from video clips in a non-parametric manner. Xu
et al. (2021) introduced new pretraining masking schemes
to better mix across modalities and maintain separability
for each modality. Zhu and Yang (2020a) and Zhu et al.
(2020) directly modeled both global and local visual cues
for fine-grained visual and linguistic relation learning in a
self-supervised way. Ruan and Jin (2022) also provided a
comprehensive overview of transformer-based pre-training
methods for Video-Language learning.

Recently, CLIP (Radford et al., 2021) and ALIGN (Jia et
al., 2021) adopted simple noisy contrastive learning to obtain
visual-linguistic representation from large-scale image-text
web data. Inspired by this progress, there are also a lot of
CLIP-based video understanding works. Ni et al. (2022)
incorporated cross-frame attention mechanism and multi-
frame integration transformer to enhance the spatio-temporal
capability. Lin et al. (2022b) employed a lightweight Trans-
former decoder and learned a query token to dynamically
collect frame-level spatial features from the CLIP image
encoder, and adopted a local temporal module in each
decoder layer to discover temporal clues from adjacent
frames and their attention maps. Pan et al. (2022) used com-
monly adopted primitive operators for enabling a less studied
parameter-efficient image-to-video transfer learning. Wu et
al. (2023) revised the role of the linear classifier and replaced
the classifier with different kinds of projection matrix from
the pre-trained CLIP model. Luo et al. (2022) transferred the
knowledge of the CLIP model to video-language retrieval in
an end-to-end manner. Bain et al. (2022) found that simply
using the baseline of weighted-mean of frame embeddings
via query-scoring can achieve better performance for long
video retrieval. Kahatapitiya et al. (2023) guided the learned
latent space with freely-available auxiliary semantic infor-
mation in the form of visually-grounded texts (e.g., object or

scene information).Qian et al. (2022) designed a cross-modal
fusion mechanism to aggregate complimentary multimodal
information from video, audio, and optical flow for multi-
modal open-vocabulary video classification.

However, these methods cannot exploit the values of the
noisy text descriptions data from the Internet, leading to an
unsatisfactory performance on real-world applications. To
mitigate these issues, Tian et al. (2022) proposed to adopt
class-wise text descriptions for long-tailed image recog-
nition, while our method seeks to learn video-language
representations and further extends the framework to varied
video recognition settings. Furthermore, our framework only
utilizes a simple temporal module, which can be replaced
with a more advanced spatiotemporal modeling module to
further enhance the model’s recognition capabilities.

2.3 General Video Recognition

While GVR has not been defined in the existing literature,
we briefly summarize these sub-tasks of GVR: long-tailed
classification, few-shot learning and open-set classification.

Long-tailed classification has been extensively studied
based on re-sampling data, re-weighting loss, and transfer
learning. Re-sampling data (Buda et al., 2018; Chawla et al.,
2002; Chu et al., 2020; Drumnond & Holte, 2003; Han et al.,
2005; Shen et al., 2016) aims to generate a class-balanced
distribution, re-weighting loss (Cao et al., 2019; Cui et al.,
2019; Huang et al., 2016; Khan et al., 2017; Wang et al.,
2017; Tan et al., 2020) focuses on developing specific loss
functions, and transferring strategy (Kang et al., 2019; Liu
et al., 2019; Yin et al., 2019; Zhou et al., 2020; Zhu & Yang,
2020b) manages to transfer knowledge learned from head
classes to tail classes. Specifically, Zhang et al. (2021c) pro-
posed to dynamically sample frames for long-tailed video
recognition.

As for Few-shot classification, it can be roughly divided
into generative methods, initialization based methods, and
metric based methods. Generative methods (Zhang et al.,
2018; Kumar Dwivedi et al., 2019) generate additional task-
specific training data to finetune a networks, initialization
based methods (Finn et al., 2017, 2018) provide great initial-
ization to learn novel classes quickly with gradients updates,
and metric based methods (Bishay et al., 2019; Cao et
al., 2020b; Zhu & Yang, 2018; Vinyals et al., 2016; Snell
et al., 2017) compare the query set and support set with
fixed feature representations. Specifically, Zhu andYang Zhu
& Yang (2018) proposed compound memory network to
obtain an optimal video representation in a larger space, and
Kumar Dwivedi et al. (2019) conditioned a conditional gen-
erative adversarial network with class prototype vectors to
synthesize additional examples for novel categories.

Open-set recognition derives from face recognition (Li &
Wechsler, 2005) and is firstly formalized in (Scheirer et al.,
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2012). In the early stage, lots of works (Scheirer et al., 2012,
2014; Jain et al., 2014) design variants of support vector
machine (SVM) to reject unknown classes. With the recent
development of deep learning, methods based on deep neu-
ral networks (Bendale & Boult, 2016; Ge et al., 2017; Ditria
et al., 2020; Neal et al., 2018; Oza & Patel, 2019; Sun et
al., 2020) are widely used in open-set recognition. As for
open set video recognition, Shu et al. (2018) proposed ODN
to gradually append new classes to the classification head,
Krishnan et al. (2018), Subedar et al. (2019) and Krishnan et
al. (2020) adopted Bayesian deep learning to acknowledge
unknown classes, and Bao et al. (2021) incorporated evi-
dential learning for large-scale and uncertainty-aware video
recognition.

Compared with some current visual-linguistic approaches
(Wang et al., 2021b; Ju et al., 2022; Ni et al., 2022; Lin et al.,
2022b; Pan et al., 2022) for tasks related to video recognition,
our method can not only provide a comprehensive video-
language representation to bridge the gap between videos
and texts in different cases, but also effectively utilize noisy
web text annotations in practical applications.

3 The Kinetics-Text Benchmark

To leverage textual content to enhance video representation,
we extend the original Kinetics400 dataset by crawling text
descriptions for each category from the Internet to form a
more comprehensive video benchmark called Kinetics-Text.
In addition, to simulate the real-world video recognition
from different scenarios, we further curate the Kinetics-Text
into different kinds of sub-datasets, consisting of Kinetics-
Close, Kinetics-LT, Kinetics-Fewshot, and Kinetics-Open.
The dataset has been released in https://github.com/MCG
-NJU/VLG.
Text descriptions The text descriptions are mainly crawled
fromWikipedia (Wikipedia, 2022) and wikiHow (wikiHow,
2022). Following Tian et al. (2022), we first use the label
name as the keyword to search for the best matching entry.
Then, we filter out some unrelated parts of the entries, such
as "references", "external links", and "bibliography", etc., to
obtain the external text descriptions for each class. In addi-
tion, we also append 96 prompt sentences for each class as
basic descriptions, which are generated by filling the pre-set
templates, like ‘a video of a {label}’, with label
names. In Fig. 8, we display a part of text descriptions col-
lected for our benchmarks. We see that it is inevitable to
include some noisy text descriptions, since these texts are
all crawled from the Internet without fine-grained cleaning.
In addition, we also report the detailed statistics of the col-
lected text descriptions in Table 1. It can be seen that the text
quantity of different classes varies significantly.

Kinetics-Close We directly adopt the original Kinetics400
(Kay et al., 2017) for closed-set setting, which contains daily
activities and has around 250k trimmed videos covering 400
categories. These clips last around 10s, and only the RGB
frames are used to capture the visual cues, without transcripts
and audio. Because of the expirations of some YouTube
links, some original videos are missing over time. Our copy
includes 240436 training videos and 19796 validation videos.
Kinetics-LT For the long-tailed case, we construct the
Kinetics-LT dataset, which is a long-tailed version of Kinet-
ics400 by sampling a subset following the Pareto distribu-
tion (Reed, 2001) similar to ImageNet-LT (Liu et al., 2019),
with 930 ∼ 5 videos per class from the 400 classes of Kinet-
ics400 dataset. Videos are randomly selected based on the
distribution values of each class, and the 400 classes are ran-
domly split into 109 many-shot classes, 209 medium-shot
classes, and 82 few-shot classes. These splits are non-
overlapping. We randomly select 20 training videos per class
from the original training set as the validation set. The origi-
nal validation set of Kinetics400 is used as the testing set in
this paper. The dataset specifications are shown in Fig. 2.
Kinetics-Fewshot For the few-shot case, we conduct two
kinds of few-shot settings, i.e., 5-shot-5-way and 5-shot-C-
way. For the 5-shot-5-way setting, we adopt the few-shot
version of Kinetics (Zhu & Yang, 2018, 2020c), which has
been frequently used to evaluate few-shot video recognition
in previous works (Zhu & Yang, 2018, 2020c; Bishay et
al., 2019; Zhang et al., 2020; Cao et al., 2020b; Perrett et al.,
2021). In this setup, 100 videos from100 classes are selected,
with 64, 12 and 24 classes used for train/val/test. We conduct
200 trialswith randomsamplings, to ensure the statistical sig-
nificance. For the 5-shot-C-way setting, we follow (Ju et al.,
2022) to sample 5 videos from all categories to construct the
training dataset, and measure the performance on the stan-
dard validation set, i.e. all videos from all categories in the
validation set of Kinetics400. For statistical significance, we
also conduct 10 random sampling rounds to choose training
videos.
Kinetics-Open For open-set video classification, previous
benchmarks will adopt UCF-101 testing set as known sam-
ples, and the testing splits of HMDB-51 andMiT-v2 datasets
as two sources. Note there are a few overlapping classes
between UCF-101 and the other two datasets, which will
lead to information leakage during training. Therefore, we
split the Kinetics400 into two parts, with 250 categories for
training and the remaining 150 categories for evaluation. The
250-150 split setting was inspired by Ju et al. (2022), which
divided Kinetics700 into a 400 train split and a 300 open-set
val split. Following a similar rationale, we applied a propor-
tionate split to Kinetics400, resulting in the 250-150 split
setting. Videos in the training set and validation set are from
different categories.
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Fig. 2 The dataset statistics of Kinetics-LT. In this dataset, videos are randomly selected based on values of Pareto distribution for each class. The
400 classes are randomly split into 109 many-shot classes, 209 medium-shot classes, and 82 few-shot classes

Table 1 Detailed statistics of
the text descriptions

Datasets Nmin Nmax Nmean NMed Mmin Mmax Mmean MMed LAvg

Kinetics400 7 634 143 99 252 20340 4011 2605 28

where Nmin, Nmax, Nmean, and NMed denote for minimum, maximum, mean, and median number of sentences
of classes respectively. Mmin, Mmax, Mmean, and MMed denote for minimum, maximum, mean, and median
number of words of classes respectively. LAvg denotes the average number of tokens per sentence

4 Method

Wefirst introduce the architecture of our proposed framework
in Sect. 4.1, and then discuss its training strategy in Sect. 4.2.
Finally, we present how to adapt our framework for different
tasks in Sect. 4.3.

4.1 Overview

To effectively connect the video and language such that
language concepts can relate to visual representations for
general video recognition, we adopt a transformer-based net-
work architecture (Radford et al., 2021), consisting of a video
encoderΦvideo(·) and a language encoderΦtext(·), to provide
the visual representation and linguistic representation respec-
tively. Specifically, the video encoderΦvideo(·) is constructed
with a frame encoder Φimg(·) followed by a temporal mod-
uleΦtemp(·), which aggregates spatial features obtained from
Φimg(·) over the temporal dimension.

As shown in the top of the Fig. 3, we first randomly sample
a batch of videos V = {Vi }Ni=1, and the corresponding text
sentences T = {Ti }Ni=i , where Vi and Ti are of the same class,
N denotes the batch size, and each video contains F frames
V = {Ii }Fi=1. For textsT , they are fed to the language encoder
Φtext(·) to yield text embeddings ET , while for videos V ,
they are fed to the video encoder Φvideo(·) to yield video
embeddings EV , by extracting frame features with Φimg(·)

and then aggregating features along the temporal dimension
with Φtemp(·):

ET
i = Φtext(Ti ), (1)

EV
i =Φvideo(Vi )=Φtemp(

{
Φimg(I1), ..., Φimg(IF )

}
). (2)

After that, we use a bi-modal attention head to aggregate
the visual and linguistic features and then obtain the final
prediction, as shown in the bottom of Fig. 3.

As raw text descriptions crawled from the Internet are
noisy, it is necessary to obtain the salient sentences (namely,
clean text descriptions) described in Sect. 4.2. The salient
sentences reduce the impacts of noises for final prediction,
which has been demonstrated in experiments in the Sect. 5.7.
The bi-modal attention head dynamically fuses the video
embeddings and text embeddings of salient sentences based
on the attention weights. specifically, given video embed-
ding EV ∈ R

D and salient text embeddings of a certain class
ET ∈ R

M×D , we first calculate the query Q̃ ∈ R
D , key

K̃ ∈ R
M×D and value Ṽ ∈ R

M×D of the attention opera-
tion.

Q̃ = Linear(LayerNorm(EV )), (3)

K̃ = Linear(LayerNorm(ET )), (4)

Ṽ = ET , (5)
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Fig. 3 The pipeline of VLG. The framework has two training stages. In
the first stage, video-language pretraining (VLP) takes both the videos
and text descriptions of each category as inputs, learning to link the two

modalities through contrastive learning. In the second stage, embed-
dings of salient sentences, determined by the text selection ruler, are
fed into the bi-modal attention head to make final predictions

whereC is the class number, andM is themaximum num-
ber of sentences for each class, corresponding to the number
of sampled salient sentences. Next, we adopt an attention
operation to gather these M salient sentence embeddings for
G̃ ∈ R

D:

G̃ = Softmax(
Q̃ K̃ T
√
D

)Ṽ . (6)

Then,weperformbroadcasting to gather the salient sentences
embeddings over all the classes for G ∈ R

C×D , where C is
the class number. The final classification probabilities are
obtained based on the video embeddings EV and enhanced
text embeddings G:

PV = Softmax(MLP(EV )), (7)

PT = Softmax(sim(EV ,G)/τ), (8)

P = PV + PT , (9)

where P is the classification probability of the video, consist-
ing of two terms, respectively for classification probability
based on video representation PV , and classification proba-
bility based on language representation PT . sim(·, ·) denotes
cosine similarity and τ is a learned parameter.

4.2 Training

We train our framework in two stages, namely Video-
Language Pretraining (VLP) and Language-driven GVR
Finetune, and design specific loss functions, i.e. Lpre and
Lcls, respectively for pretraining and classification.
Stage I: Video-Language PretrainingWe jointly optimize the
language encoder and video encoder together with the tem-
poral module. The video features would be pulled together to
their related category descriptions with higher similarity, and
pulled away from irrelated sentences. Specifically, we use
two contrastive learning NCE losses respectively for video
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embeddings EV and text embeddings ET :

Ltext=− 1

|V+
i |

∑

Vj∈V+
i

log
exp(sim(EV

j , ET
i )/τ)

∑
Vk∈V exp(sim(EV

k , ET
i )/τ)

,

(10)

Lvideo=− 1

|T +
i |

∑

Tj∈T +
i

log
exp(sim(ET

j , EV
i )/τ)

∑
Tk∈T exp(sim(ET

k , EV
i )/τ)

,

(11)

where Lvideo and Ltext represent the video and language
losses respectively. V+

i indicates a subset of V , where all
videos are of the same category with the text Ti . Similarly,
all texts in T +

i share the same class with the video Vi .
To effectively promote our framework for learning to con-

nect the cross-modal information with limited text corpus,
we adopt CLIP (Radford et al., 2021) pretrained model as
the teacher model to distill knowledge for better visual-
linguistic representation. To aggregate the frame features
along the temporal dimension, the teacher model replaces
the temporal module with the average pooling and outputs
the same dimensions of embeddings as the student model.
Their visual-linguistic similarities are used as soft targets for
training weights associated with the student networks by the
following objective:

SV = exp(sim(EV
i , ET

i )/τ)
∑

Vj∈V exp(sim(EV
j , ET

i )/τ)
, (12)

ST = exp(sim(ET
i , EV

i )/τ)
∑

Tj∈T exp(sim(ET
j , EV

i )/τ)
, (13)

Ldist = −S′
V · logSV − S′

T · logST , (14)

where S and S′ are cosine similarity scores respectively pro-
duced by our model and the frozen CLIP model. With this
pretraining stage, our framework can not only learn great
video-language representation, but also reduce the risk of
overfitting limited text corpus data. Therefore, we optimize
the video encoder and language encoder via pretraining loss
Lpre, defined as a weighted sum of Lvideo, Ltext and Ldist:

Lpre = α · (Lvideo + Ltext) + (1 − α) · Ldist. (15)

Here, α is used to balanceLvideo,Ltext andLdist, which is set
to 0.5 in our experiments.
Stage II: Language-driven GVR Finetune In order to take
advantage of the valid semantic information and video-
language feature, the second stage aims to select the salient
sentences by filtering out the noisy texts, and then finetune
the bi-modal attention head with the ground truth label.

To filter out noisy texts, we design a training-free text
selection ruler (TSR) after obtaining the text embeddings, to
sample the most discriminative sentences for each category.
Specifically, we randomly choose λ videos of each class to
construct a video batch V ′. Then, we calculate Ltext between
each sentence and video batch V ′. Finally, we select M sen-
tences with the smallestLtext for the following classification.
Note that the TSR only needs to be performed once at stage
II.

To finetune the bi-modal attention head, we adopt two
Cross Entropy losses LCE for PV and PT (see Eqs. 7 and 8)
respectively:

Lcls = LCE(PV , y) + LCE(PT , y), (16)

where y is the ground truth label.

4.3 VLG for General Video Recognition

In most cases, given a query video and pre-selected text
embeddings of salient sentences,wefirst feed the query video
into the video encoder to obtain video embeddings. Then, the
final result is predicted with the video embeddings and text
embeddings of salient sentences through a video-language
attention head. We follow this procedure in both the close-
set setting and long-tailed setting. For the few-shot setting,
we use base videos to pretrain the encoders during the first
stage. Then, we use support videos to select salient sentences
when combining the linguistic features, or directly use the
video embeddings fromVLP for linear probe testing. For the
open-set setting, we follow the common procedure to train
the framework, and insert a post-process step, which can
be instantiated as the off-the-shelf open-set procedures (e.g.,
OpenMax (Bendale &Boult, 2016), Softmax with threshold,
etc.), to recognize the novel videos during inference.

5 Experiments

Wefirst introduce the evaluationmetrics for different settings
in Sect. 5.1 and implementation details in Sect. 5.2, before
presenting state-of-the-art results over all these four bench-
marks: Kinetics-Close, Kinetics-LT, Kinetics-Fewshot, and
Kinetics-Open, respectively in Sects. 5.3, 5.4, 5.5 and 5.6.
Next, we provide ablation studies in Sect. 5.7. Then, we
present some representative visualization in Sect. 5.8.
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5.1 EvaluationMetrics

We evaluate the performance of our framework under all
of these four benchmarks. Besides the top-1 classification
accuracy over all classes, for the long-tailed setting, we
also report the accuracy of three disjoint subsets: many-
shot classes (more than 100 training videos in each class),
medium-shot classes (20∼100 training videos in each class),
few-shot classes (less than 20 training videos in each class).
For the open-set setting, we useF-measure score as a balance
between precision and recall.

5.2 Implementation Details

Data Pre-processing If not specified, we use the segment-
based input frame sampling strategy (Wang et al., 2016) with
8 frames. During training, we follow (Wang et al., 2021b)
to process all frames to 224×224 input resolution. During
inference, we resize all frames to 256×256 and center-crop
them to 224×224.
Network Architectures If not specified, the video encoder
adopts the pre-trained CLIP (Radford et al., 2021) visual
encoder (ViT-B/16 (Sharir et al., 2021)) as our frame encoder.
For the temporal module, we use a smaller version of
the transformer with 6-layers and 8-head self-attention as
default. To indicate the temporal order, we also add learn-
able temporal positional encoding onto the frame features as
input. The language encoder also follows that of CLIP (Rad-
ford et al., 2021), which is a 12-layer transformer, and the
maximum length of text tokens is set to 77 (including[SOS]
and [EOS] tokens). We initialize the frame encoder and lan-
guage encoder with pretrained weights of CLIP (Radford et
al., 2021) during the first stage.
TrainingHyper-parameters In our implementation,wealways
train the models using an AdamW (Loshchilov & Hutter,
2017) optimizerwith the cosine schedule (Loshchilov&Hut-
ter, 2016), a weight decay of 5 × 10−2, and a momentum of
0.9 for 50 epochs. During the first stage, the size of the mini-
batch is set to 16, and α is set to 0.5. The initial learning rate
is set to 1 × 10−5 for frame encoder and language encoder,
and set to 1 × 10−3 for the temporal module. During the
second stage, the size of the mini-batch is set to 128. Both
encoders are kept frozen, and the only trainable part is the
bi-modal attention head. The learning rate of which is set to
1 × 10−3. The number of selected sentences per class M is
set to 64, and λ is set to 50. We conduct all experiments on 8
V100 GPUs.
Details for different settings For closed-set, long-tail, 5-shot-
C-way, and 5-shot-5-waywithout linear probe (see Sect. 5.5),
we adopt the proposed two-stage training pipeline. During
inference, given a query video and pre-selected text embed-
dings of salient sentences, we feed the query video into the
video encoder to obtain video embeddings. Then, the result

is predicted with the video embeddings and text embeddings
of salient sentences through a video-language attention head.

For 5-shot-5-way with linear probe, we adopt the first pre-
train stage for the base-split data training. During inference,
we directly use the visual encode with the temporal module
to perform linear probe testing.

For open-set, we adopt the first pre-train stage for the
known split video data training. During inference, we follow
the common procedure to train the framework, and insert a
post-process step, which can be instantiated as the off-the-
shelf open-set procedures (e.g., OpenMax (Bendale &Boult,
2016), Softmax with threshold, etc.), to recognize the novel
videos during inference.

5.3 Experiments on Kinetics-Close

In Table 2, we compare our proposed methods with prior
methods on Kinetics-Close, i.e. Kinetics400. There are
mainly traditional CNN-based methods (e.g., X3D, Slow-
Fast, TSM, etc.), Transformer-based methods (e.g., MViT,
ViViT, Swin-L, etc.) and CLIP-based methods (e.g., Action-
CLIP). These methods are pretrained with different strate-
gies, including random initialization, ImageNet-1K/21Kpre-
trainig, web-scale image pretraining. Compared to the CNN-
based methods pretrained on ImageNet-1K, our VLG-ViT-
B/16 surpasses TDN-R101 by 2.4% top-1 accuracy using
fewer frames and views. It can be seen that Transformer-
based methods and CLIP-based methods achieve better
performance than traditional methods. Particularly, our mod-
els achieve higher accuracy than other competitors. For
example, using only 8 frames and 1 × 1 view, our VLG-
ViT-B/16 model achieves a higher top-1 accuracy compared
to ViViT-L/16×2 (320), while using 20× fewer GFLOPs.
In addition, our method achieves 82.9% top-1 accuracy
with ViT-B/16 frame encoder, which exceeds ActionCLIP,
a CLIP-based method, with 2.5× fewer video views. For a
fair comparison, we further test our 16 frame ViT-B/16 on
the val list of ActionCLIP, and our VLG achieves a higher
accuracy performance of 83.5%. Moreover, when using ViT-
L/14 as our visual backbone, our VLG can further achieve
a higher accuracy of 86.4%, with lower resolution (224px)
and fewer computational costs than MViTv2-L (312). The
underlying reason is that the proposed temporal module can
effectively model temporal relation among video frames and
the joint language-image representation is successfully trans-
ferred to video domain with the help of our Video-Language
pretraining design.

To further demonstrate the superiority of the proposed
VLG, we propose CLIP-Raw and CLIP-Close as our base-
lines onKinetics-Close tomake fair comparisons. CLIP-Raw
directly adopts the original CLIP weights and model with
only prompt sentences to validate the accuracy performance,
while CLIP-Close removing language encoder consists of
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Table 2 Results on Kinetics-Close

Method Pretrain Frame Views Top-1 Top-5 GFLOPs Param (M)
(per-view)

X3D-XL (Feichtenhofer, 2020) None – 10 × 3 79.1 93.9 48.4 11.0

SlowFast, R101+NL (Feichtenhofer et al., 2019) – 16 10 × 3 79.8 93.9 234.0 59.9

MViT-B, 64×3 (Fan et al., 2021) 64 3 × 3 81.2 95.1 455.0 36.6

TSM, ResNeXt101 (Lin et al., 2019) IN-1K 8 10 × 3 76.3 – – –

TANet, R152 (Liu et al., 2021b) 16 4 × 3 79.3 94.1 242.0 –

TDN, R101 (Wang et al., 2021a) 24 10 × 3 79.4 94.4 198.0 88.0

ViViT-L/16x2 (Arnab et al., 2021) IN-21K 32 4 × 3 80.6 94.7 – –

TimeSformer-L (Bertasius et al., 2021) 8 1 × 3 80.7 94.7 2380.0 121.4

ViViT-L/16x2 (320) (Arnab et al., 2021) 32 4 × 3 81.3 94.7 3992.0 310.8

Swin-L (384) (Liu et al., 2022) 32 10 × 5 84.9 96.7 2107.0 200.0

MViTv2-L (312) (Li et al., 2021b) 40 5 × 3 86.1 97.0 2828.0 217.6

ViViT-H/16x2 (Arnab et al., 2021) JFT 32 4 × 3 84.8 95.8 – –

TokenLearner 16at18 (L/10) (Ryoo et al., 2021) - 4 × 3 85.4 96.3 4076.0 450.0

MTV-H (Yan et al., 2022) 32 4 × 3 85.8 96.6 3706.0 –

CoVeR (Zhang et al., 2021a) 16 1 × 3 86.3 – – –

CLIP-Raw, R50 (Radford et al., 2021) CLIP∗ 8 1 × 1 46.2 60.8 52.1 102.0

CLIP-Raw, ViT-B/16 (Radford et al., 2021) 8 1 × 1 55.0 67.5 144.0 150.0

CLIP-Close, R50 (Radford et al., 2021) 8 1 × 1 68.1 87.7 49.7 115.0

CLIP-Close, ViT-B/16 (Radford et al., 2021) 8 1 × 1 78.9 93.5 141.0 106.0

ActionCLIP, ViT-B/16 (Wang et al., 2021b) 16 10 × 3 82.6 96.2 563.1 141.7

VideoPrompt, ViT-B/16 (Ju et al., 2022) 16 5 × 1 76.6 93.3 – –

Text4Vis, ViT-L/14 (Wu et al., 2023) 32 4 × 3 87.1 97.4 – –

X-CLIP, ViT-L/14 (Ni et al., 2022) 8 4 × 3 87.1 97.6 658.0 –

ST-Adapter, ViT-L/14 (Pan et al., 2022) 32 1 × 3 87.2 97.6 2749.3 –

VicTR, ViT-L/14 (Kahatapitiya et al., 2023) 8 4 × 3 87.0 – 656.0 –

EVL, ViT-L/14 (Lin et al., 2022b) 16 1 × 3 87.0 – 1348.0 –

VLG, R50 CLIP∗ 8 1 × 1 72.3 90.8 76.7 148.0

VLG, ViT-B/16 8 1 × 1 81.8 95.3 148.0 121.0

VLG, ViT-B/16 16 1 × 1 82.4 95.8 282.3 121.0

VLG, ViT-B/16 16 4 × 3 82.9 96.1 282.3 121.0

VLG, ViT-L/14 8 1 × 1 85.5 96.3 650.3 371.0

VLG, ViT-L/14 8 4 × 3 86.4 97.0 650.3 371.0

Bold indicates the best result
By introducing the class-wise text descriptions, our model achieves superior performance to the existing approaches. “IN” denotes ImageNet and
"K400" denotes Kinetics400. "-" indicates the numbers are not available for us. "CLIP∗" denotes that the model is initialized with the weights
pretrained on 400M image-text pairs provided in CLIP (Radford et al., 2021). The total GFLOPs are calculated by the number of views and GFLOPs
(per-view)

the frame encoder loading CLIP pretrained weights, tem-
poral module and a linear classifier layer and is finetuned
on Kinetics-Close for 100 epochs. One can observe that our
method also gets absolute accuracy gain against the baselines
with ResNet-50 (72.3% vs. 68.1% vs. 46.2%) and ViT-B/16
(81.8% vs. 78.9% vs. 55.0%) backbones. The results are
desirable since our framework can take the advantage of the
semantic information in the text descriptions in the first step
of video-language pretraining, and is able to filter irrelated

and noisy text descriptions in the second step of Language-
driven general video recognition finetuning.

Currently, a lot of works are based on CLIP weights for
video classification, like X-CLIP (Ni et al., 2022), EVL (Lin
et al., 2022b), ST-Adapter (Pan et al., 2022), etc. Some of
these works achieve higher recognition accuracy than our
VLG. However, they usually design more complex network
modules and require more frames within a clip for tempo-
ral modeling, while our VLG only adopts a simple temporal
transformer as the temporalmodule. These improvements are
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Table 3 Results on Kinetics-LT

Method Pretrain Backbone Accuracy (%)
Overall Many Medium Few

TSN (Wang et al., 2016) ImageNet ResNet-50 47.2 59.3 49.4 23.6

TSM (Lin et al., 2019) 46.0 66.3 46.1 17.3

TANet (Liu et al., 2021b) 45.8 66.8 45.4 17.4

SlowOnly (Feichtenhofer et al., 2019) 44.8 67.7 44.1 14.4

NCM (Kang et al., 2019) CLIP∗ ResNet-50 41.8 53.0 42.3 24.6

cRT (Kang et al., 2019) 43.7 58.9 43.8 22.3

τ -normalized (Kang et al., 2019) 43.9 63.8 43.1 18.5

LWS (Kang et al., 2019) 45.1 58.6 44.8 27.1

SSD-LT (Li et al., 2021a) 48.3 59.6 49.1 30.0

PaCo (Cui et al., 2021) 50.1 60.1 50.3 35.8

CLIP-Raw (Radford et al., 2021) CLIP∗ ResNet-50 46.2 48.3 44.8 46.7

CLIP-LT (Radford et al., 2021) 53.4 70.3 53.3 31.1

VLG 60.8 71.7 60.4 47.2

CLIP-Raw (Radford et al., 2021) CLIP∗ ViT-B/16 55.0 57.1 53.7 55.5

CLIP-LT (Radford et al., 2021) 63.8 79.7 63.8 42.8

VLG 70.7 81.9 69.7 58.3

Bold indicates the best result
Traditional Long-tailed methods use the same visual backbone. CLIP∗ denotes that the model is initialized by the CLIP (Radford et al., 2021)
weights. We report the overall accuracy and the accuracy of three disjoint subsets

out scope of our paper,whose focus is on general video recog-
nition under different settings. In comparison, our framework
VLG aims at utilizing a single pipeline to address video
recognition problems under different settings, leveraging
web-scale text information, and filtering out irrelevant text
in a training-free manner. Furthermore, our framework only
utilizes a simple temporal module, which can be replaced
with a more advanced spatiotemporal modeling module to
further enhance the model’s recognition capabilities.

5.4 Experiments on Kinetics-LT

In Table 3, we can see that our VLG models are superior to
conventional vision-based methods (including re-sampling
data, re-weighting loss, and transfer learning) with the same
video encoders (ResNet-50). Since there are few long-
tailed methods specific to video domain, we re-implement
and report the performance of some representative image-
based long-tailed methods on Kinetics400-LT, such as τ -
normalized, cRT, NCM, LWS (Kang et al., 2019), PaCo (Cui
et al., 2021), and SSD-LT (Li et al., 2021a), which are
all initialized with CLIP pretrained weights to ensure the
fairness of experimental comparisons. It is worthwhile men-
tioned that we also add an additional temporal pooling for
each image-based long-tailed method without introducing
any new parameters to aggregate features along the temporal
dimension for them. In addition, we also build CLIP-LT and
CLIP-Raw as our simple baseline based on CLIP to corrob-
orate our method. CLIP-LT is built the same as CLIP-Close.

It can be seen that our proposed method is superior to
prior visual-based methods with the same backbone. For
example, using the same ResNet-50 backbone, the overall
accuracy of VLG reaches 60.8%, which outperforms SSD-
LT by 12.5 points (60.8% vs. 48.3%), and 10.7% better than
PaCo (60.8% vs. 50.1%). In addition to the overall accuracy,
our VLG also outperforms the prior visual-based long-tailed
methods on different shots settings. For example, our VLG
reaches the top-1 accuracy of 71.7%, 60.4%, 47.2% respec-
tively in the Many-shot, Medium-shot, Few-shot setting for
the Kinetics-LT dataset, which significantly surpasses the
state-of-the-art PaComethod by 11.6%, 10.3%, 11.4%points
respectively in different kinds of settings. Moreover, when
compared to CLIP baseline models, the performance of our
method is alsopromising,which is 7.4%better than theCLIP-
LT, and 14.6%better than theCLIP-Raw in the overall setting
(60.8% vs. 53.4% vs. 46.2%). Moreover, our method is 7.1%
better than theCLIP-LT, and15.6%better than theCLIP-Raw
in the medium-shot setting (60.4% vs. 53.3% vs. 44.8%).
When it comes to the few-shot setting, our method also sur-
passes the CLIP-LT and CLIP-Raw. When using ViT-B/16
as the backbone, the overall accuracy of VLG can further
boost up to 70.7%, with the top-1 accuracy of 81.9%, 69.7%,
58.3% respectively in the setting of many-shot, medium shot
and few-shot. The competitive performance of our method
can be attributed to the usage of textual knowledge from
the text descriptions, which serves as a clue to enhance the
semantic representation for the tail categories.
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Table 4 Results on
Kinetics-Fewshot

Method Backbone K-shot N-way Top-1

CMN (Zhu & Yang, 2018) ResNet-50 5 5 78.9

TARN (Bishay et al., 2019) 5 5 78.5

ARN (Zhang et al., 2020) 5 5 82.4

VLG-L 5 5 84.6

VLG 5 5 94.0

E-Prompt (Ju et al., 2022) ViT-B/16 5 5 96.4

VLG 5 5 96.9

E-Prompt (Ju et al., 2022) ViT-B/16 5 CALL 58.5

VLG 5 CALL 62.8

Bold indicates the best result
Here, CALL denotes the model is tested on all categories of the corresponding dataset, rather than only 5-way
classification. In Kinetics-fewshot, CALL = 400. “VLG-L” denotes our method with linear probe testing

5.5 Experiments on Kinetics-Fewshot

Following (Ju et al., 2022), we conduct two kinds of few-shot
settings, i.e., 5-shot-5-way and 5-shot-C-way.

5-shot-5-way For a fair comparison, this setting adopts the
publicly accessible few-shot splits. During training, we sim-
ply use the base split for our first video-language pretraining
stage, without anymeta-learning paradigms.During the eval-
uation, we report average results over 200 trials with random
sampling on the test split. Table 4 presents the average top-1
accuracy, and our method clearly achieves significant perfor-
mance. Following CLIP (Radford et al., 2021), we directly
adopt the linear probe to test the visual representation output
from the video encoder, which obtains 84.6% top-1 accuracy
and is higher than the traditional few-shot learning methods
(2.2% higher than ARN and 6.1% higher than TARN).When
combining the linguistic features, the performance can fur-
ther boost up to 94.0% top-1 accuracy. We also use the same
network settingswith textual information following (Ju et al.,
2022), and achieve better performance (96.9% vs. 96.4%),
which can be attributed to the reason that the text descrip-
tions with different expression crawled from the Internet can
serve asmore complex textual prompts than the self-designed
continuous prompts.

5-shot-C-way We further investigate a more challenging
experiment setting, which samples 5 videos from the training
set for each class as the base split, and then directly evalu-
ates the model on the standard Kinetics400 testing split. For
statistical stability, we report the average results over 10 tri-
als to ensure the reliability of results. It can be seen that
our model still obtains a superior performance (62.8% vs.
58.5%), which is also higher than (Ju et al., 2022), indicating
the robustness of our method even with fewer samples on
multiple categories.

5.6 Experiments on Kinetics-Open

Openset video recognition aims to not only accurately clas-
sify known categories which have appeared in training, but
also recognize unknown categories which are not seen in
training. Without any other modifications to our framework,
we only adopt softmax with thresholds and OpenMax (Ben-
dale &Boult, 2016) as a post-process on the prediction logits
to obtain the classification results, as described in Sect. 4.3.
In addition, we also re-implement the OLTR with the same
CLIP initialization and visual backbone (ResNet-50) as a
comparison. As shown in Table 5, we outperformOLTR (Liu
et al., 2019) among all different threshold numbers, indicat-
ing the significance of our video-language representation.
Specifically, when using the same threshold post-process
after obtaining the logits, our method surpasses OLTR sig-
nificantly with 0.120, 0,135, 0.141, 0.108 improvement on
the F-measure score respectively when the threshold is set to
0.1, 0.2, 0.3, 0.5. When switching to the OpenMax post-
process, our method can still surpasses OLTR by a large
margin. Moreover, when using the ViT-B/16 as the back-
bone, the F-measure scores of VLG can further boost up to
0.694, 0.698, 0.703, 0.721, 0.697 respectively for different
thresholds. The underlying reason is that natural language
is used to reference learned visual concepts(or describe new
ones), thus enabling zero-shot transferring of the models to
unknown categories.

5.7 Ablation Study

In this subsection, we conduct extensive ablation studies on
the Kinetics-Close dataset to provide a deep analysis of our
proposed method. We compare the original VLGwith differ-
ent variants to investigate the effect of VLG’s components
and the superiority of the collected text descriptions from the
Internet. In all of these experiments, we use ViT-B/16 as the
default backbone and adopt the segment-based input frame
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Table 5 Results on
Kinetics-Open

Method Post-process F-measure
thr=0.1 thr=0.2 thr=0.3 thr=0.5 thr=0.7

OLTR, R50 (Liu et al., 2019) Threshold 0.490 0.504 0.513 0.502 0.458

VLG, R50 Threshold 0.610 0.639 0.654 0.610 0.469

VLG, R50 OpenMax 0.616 0.641 0.651 0.614 0.465

VLG, ViT-B/16 Threshold 0.657 0.672 0.694 0.721 0.697

VLG, ViT-B/16 OpenMax 0.694 0.698 0.703 0.699 0.633

Bold indicates the best result
OLTR and VLG are both initialized by CLIP weight. With the same backbone, VLG outperforms OLTR
among all thresholds

Table 6 Ablation studies on Kinetics-Close

# Pretrain CLIP Fine-tuning Top-1
Weights Head Ruler

1 � � Bi-M TSR 81.8

2 – � Bi-M TSR 76.0

3 � – Bi-M TSR 32.6

4 � � FC – 79.5

5 � � KNN – 79.9

6 � � Bi-M RAND 80.0

7 � � Bi-M BASIC 78.9

Bold indicate the best result
"Head" denotes the classification head used in stage II, "Bi-M" denotes
the bi-modal attention head, "TSR" denotes the proposed text selection
ruler, "RAND"denotes randomselection strategy, and "BASIC"denotes
only using basic prompted sentences

sampling strategywith 8 frames.All the other settings remain
the same as Sect. 5.2 unless specifically mentioned.

Video-Language Pre-training To examine the effective-
ness of our video-languagepretraining (VLP) in thefirst stage
of the framework, we remove it by directly performing the
finetuning process on the pretrained weights of CLIP (Rad-
ford et al., 2021). As reported in the #1 and #2 of Table 6,
the model with VLP outperforms the one without VLP by
5.8 points on the top-1 accuracy (81.8% vs. 76.0%). Such a
gap might be attributed to the difficulties in learning tempo-
ral information and semantic inconsistency between videos
and text representation, which can be alleviated through
the designed video-language pretrainig in our framework
and semantic information in the web texts. Additionally, we
also train our method with randomly initialized weights to
further analyze the influence of CLIP pre-trained weights
in the video-language pretraining stage. Comparing the #1
and #3 of Table 6, we can see that initializing with CLIP
pre-trained weights can significantly benefit our approach.
The model with CLIP pretrained weights outperforms the
one with randomly initialized weights by 49.2 points on
the top-1 accuracy (81.8% vs. 32.6%). This phenomenon is
mainly caused by the limited web-collected text corpus for
pre-training. Specifically, there are only 400 class descrip-
tions (about 95K sentences collected from the Internet for

per-category descriptions) for Kinetics400, and it is easy to
overfit a video to a specific set of sentences without a pre-
trained linguistic encoder. In comparison, using the CLIP
weights for pretraining is more robust, since the checkpoints
are trained on 400 million filtered web image-text pairs,
which is cleaner and almost 4K times more than our col-
lected text descriptions.

Module Design To further demonstrate the effectiveness
of the components in our framework, we also carry out some
ablation studies respectively in some vital modules (e.g.,
bi-modal attention head, text selection ruler, and temporal
module) in our VLG.

We investigate the effectiveness of bi-modal attention
head by comparing it with other recognition heads, including
FC (only video-based, with additional linear projection), and
KNN (video-language based, no additional learnable param-
eters). Specifically, FC means we directly append a linear
layer to the visual backbone for finetuning. KNN means
we apply K-Nearest Neighbors Algorithm, a non-parametric
supervised learning classifier, to the similarity scores calcu-
lated from video embedding and textual embedding after the
pre-training stage. As reported in #1, #4 and #5 of Table 6,
the proposed head performs better than FC and KNN by 2.3
and 1.9 points respectively (81.8% vs. 79.5% vs. 79.9%). It
is also notable that KNN is a video-language based bi-modal
head, which is the same as the bi-modal attention head, and
KNN also works better than FC. These phenomenons indi-
cate the superiority of bi-modal attention head and the power
of video-language representation.

Furthermore, we also study the significance of the text
selection ruler the sampled salient sentences by replacing
them with those sampled by "Random" and "Basic" strate-
gies. For "Random", we randomly select M sentences per
category from text descriptions. For "Basic", we only use the
basic prompt sentences for each category as the salient sen-
tences. As shown in Table 6, the model with TSR (See the
#1 of Table 6) outperforms the model with other strategies
on the Top-1 accuracy (81.8% vs. 80.0% vs. 78.9%), which
indicates the effectiveness of our TSR to filter out some noisy
sentences. It can be also seen that the "Random" strategy also
outperforms the "Basic" strategy, which can be attributed to
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Table 7 Ablation studies on the number of layers in Temporal Module

(a) Ablation studies of Temporal Module with different numbers of layers on Kinetics-Close
Number of layers 0 1 2 4 6 8

Top-1 Acc 79.8 80.9 81.2 81.4 81.8 80.6

(b) Ablation studies of Temporal Module with different numbers of layers on Kinetics-Fewshot

Number of layers 0 1 2 4 6 8

Top-1 Acc 96.9 96.5 95.6 95.8 96.1 95.2

Bold indicates the best result
We evaluate the Top-1 accuracy on Kinetics-Close and Kinetics-Fewshot by using different numbers of layers in the temporal module

Table 8 Effectiveness of
Distillation Loss in the first
Video-Language Pretraining
stage

Distill kind Dataset Backbone 1 − α Top-1 Many Medium Few
- Kinetics-LT ResNet-50 0 57.5 70.8 57.2 40.8

Logits Kinetics-LT ResNet-50 0.1 58.4 71.9 58.2 40.7

0.5 60.8 71.7 60.4 47.2

0.9 54.7 64.4 54.4 42.5

Feature Kinetics-LT ResNet-50 0.1 58.1 71.4 58.1 40.7

0.5 59.7 72.2 59.6 43.0

0.9 58.2 71.5 57.6 41.7

Bold indicates the best result
We evaluate the performance on Kinetics-LT to investigate the effectiveness of distillation loss

Table 9 Ablation studies of loss
terms in the second finetune
stage

(a) Ablation studies of loss terms on Kinetics-Close
Method Backbone Operation Top-1 Top-5

VLG ViT-B/16 Only PV 79.5 94.7

Only PT 80.7 95.1

PV and PT 81.8 95.3

(b) Ablation studies of loss terms on Kinetics-LT

Method Backbone Operation Overall Many Medium Few

VLG ResNet-50 Only PV 56.9 73.2 57.1 34.7

Only PT 59.8 67.2 60.2 48.8

PV and PT 60.8 71.7 60.4 47.2

Bold indicates the best result
We investigate the effectiveness of the two terms in Eq. 4 of the main body by adopting three operations:
"only PV ", "only PT ", and "both PV and PT "

the more complex expressions and rich semantic information
from the web text descriptions.

In addition, we also demonstrate the effectiveness of the
temporal module by using different numbers of layers in the
temporal module. As shown in Table 7, the model achieves
the highest top-1 recognition accuracy on Kinetics-Close
with 6 transformer layers in the temporal module. An inter-
esting phenomenon is that increasing the number of layers
in the temporal module leads to a significant rise in accuracy
performance at the beginning, but the accuracy falls when the
temporal module has more than 6 layers. It may be attributed
to the overfitting caused by using the transformer with too
many layers. In the few-shot setting, the model achieves the

highest recognition accuracy without the additional temporal
module, since there are few videos to feed the data-hungry
Transformer layers in the few-shot case.

Loss DesignWe verify the effectiveness of our loss design
respectively in the two stages in our framework.

In the first pre-training stage, we adopt the distillation
loss to reduce the risk of overfitting caused by limited text
corpus. To better investigate the effectiveness of distillation
loss, we conduct the ablation study on Kinetics-LT, which is
more appropriate than the Kinetics-Close in this case, since
it has fewer videos to avoid the influence of excessive visual
information.We useResNet-50 as the backbone forKinetics-
LT. As shown in Table 8, our method with distillation loss
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Table 10 Ablation studies of
text descriptions

(a) Ablation studies of text descriptions on Kinetics-Close
Method Backbone Operation Top-1 Top-5

CLIP-Close ViT-B/16 NO TEXT 78.9 93.5

VLG BASIC 78.9 94.8

VLG FULL 81.8 95.3

(b) Ablation studies of text descriptions on Kinetics-LT

Method Backbone Operation Overall Many Medium Few

CLIP-LT ResNet-50 NO TEXT 53.4 70.3 53.3 31.3

VLG BASIC 57.8 71.4 56.9 35.8

VLG FULL 60.8 71.7 60.4 47.2

Bold indicates the best result
"NO TEXT" denotes using no text descriptions for training, same as the CLIP-Close and CLIP-LT. "BASIC"
denotes only using basic prompted sentences for training, and "FULL" denotes using basic prompted sentences
and crawled text descriptions for training

Table 11 Ablation studies of
different splitting strategies

Method Backbone Operation Overall Many Medium Few

VLG ResNet-50 RAND 60.8 71.7 60.4 47.2

GOOGLE 61.2 71.4 62.7 44.2

"RAND" denotes using the original splits in ourKinetics-LT,which are randomly chosen. "GOOGLE" denotes
using the splits sorted by the number of entries in Google search

achieves higher performance in medium-shot, few-shot and
overall cases, compared to the onewithout distribution loss. It
indicates that the distillation loss helps the model learn better
video-language representation with limited data. To further
study the influence of distillation in the pre-training stage, we
try to use the pre-trained CLIP model as the teacher model
to distill the video and language encoder of our model at the
feature level, in addition to the logits distillation. As shown in
Table 8, both feature distillation and logits distillation with α

of 0.5 can improve the performance in many-shot, medium-
shot, few-shot and overall cases. And our method achieves
the highest performance on Kinetics-LT when using logits
distillation with the loss weight α of 0.5.

In the second finetune stage, we calculated two CrossEn-
tropy loss items as shown in Eq. 9. The first term PV is based
on the video-only embedding EV , and the second term PT

is based on the enhanced text embedding G. The first term
adopts the MLP to obtain the classification probability, and
the second term calculates the cosine similarity between the
video-only embedding EV and the enhanced text embed-
ding G. To study the effectiveness of these two terms, we
add experiments by adopting the first term, the second term,
or both in the closed-set and long-tailed set. It can be seen in
Table 9 that in the closed-set, the model with both of the two
terms performs better than the others, indicating the power of
video-language representation when given abundant training
data. In the long-tailed case, the model with only PV per-
forms well in the "Many" case but performs poorly in the
"Few" case, while the model with only PT performs well

in the "Few" case but performs poorly in the "Many" case.
By contrast, the model with both of the two terms serves as
the trade-off without sacrificing too much performance for
all cases, and further improves the overall accuracy for the
long-tailed datasets. Therefore, we hold that both the two
terms are necessary.

Dataset To further verify the rationality of the design of
ourKinetics-Text benchmark,we also carry out ablation stud-
ies for the collected text descriptions and the splits for the
labels in the Kinetics-LT.

We study the significance of our collected text descriptions
by replacing them with "Using no sentences" operation and
"Only using basic prompted sentences" operation, both in
Kinetics-Close and Kinetics-LT. As shown in Table 10, using
the extra class-wise text description crawled from Wiki and
Wikihow can significantly improve the performance in both
Kinetics-Close and Kinetics-LT. Specifically, in the few-shot
classes of Kinetics-LT, one can observe that VLG with both
basic prompted sentences and crawled text description gets
absolute accuracy gain against VLGwith only basic prompts
and VLG without text descriptions (47.2% vs. 35.8% vs.
31.3%). It indicates the validity of text descriptions from the
Internet, and effectiveness of leveraging abundant semantic
knowledge to make up for the lack of video data.

The Kinetics-LT is curated by sampling a subset fol-
lowing the Pareto distribution and its categories are also
randomly split into different parts (many-case, medium-case,
few-case), which is similar to ImageNet-LT (Liu et al., 2019).
To demonstrate the rationality of the label splitting in our
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Fig. 4 Absolute accuracy score of our method over the baseline using ViT-B/16 as the backbone on Kinetics-LT. Our method enjoys more
performance gains in classes with fewer video samples

Kinetics-LT, we adopt another strategy to re-split the classes
into different parts according to their number of entries in
Google search. As shown in the Table 11, there are no
apparent changes in the recognition results, indicating the
rationality of our label splitting in the long-tailed case. The
reason for this phenomenon can be that themeaning of "Long
tail" to a model consists in the distribution of the fed training
data rather than the natural characteristics, and our video-
language framework is also capable of using the class-wise
text descriptions as a bridge to enhance the representation for
the categories with fewer samples.

5.8 Visualization

Class-level Performance Improvement In Fig. 4, we visu-
alize the class-level performance improvement on Kinetics-
LT, which is measured by the absolute accuracy gains of our
method against the baseline, both of which use ViT-B/16 as
the visual backbone. We observe that our VLG outperforms
the baseline on all cases of the Kinetics-LT dataset. Specifi-
cally, comparedwith themany-shot classes andmedium-shot
cases, there are more gains in the few-shot classes, indicat-
ing the introduced text descriptions can help mitigate the
long-tail problem. It can be attributed to the rich semantic
knowledge brought from the web text descriptions for the
video representation in few-shot cases.

Visualization of PerformanceWe use a radar chart to sum-
marize the results across all regimes in Fig. 5. The shape and
area of the radar chat can serve as the total result to quan-
tify the effectiveness and generalization ability of VLG. We

Fig. 5 Radar chat to measure the performance across all regimes. It can
be seen that VLG outperforms current state-of-the-art methods for all
settings

compare our method with current state-of-the-art methods
in the radar chat, indicating the superiority of VLG over all
settings.

Case Analysis For more case analysis about the caption
and categories, we present example videos and captions,
along with their corresponding scores, for Kinetics400 cat-
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Fig. 6 The Top-10 classes in Kinetics400 that gain the highest and
lowest classification scores. Categories with poor classification perfor-
mance often have less related textual descriptions and typically involve
subtle actions (e.g., headbutting, slapping, faceplanting, etc.) that occur

in a brief moment, making it difficult to capture salient frames during
the frame sampling process. Corresponding samples are provided in
Fig. 10

Fig. 7 The Top-10 classes in Kinetics400 that have the highest and lowest median of text loss Ltext. By comparing Figs. 6 and 7, it can be observed
that categories with the highest median of text loss (e.g., headbutting, throwing ball, high kick, etc.) tend to have poorer classification performance
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Fig. 8 Examples of text descriptions crawled from Wikipedia and wikiHow for Kinetics400. Both useful and redundant information can be found
in this text corpus
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Fig. 9 More visualization of text descriptions with corresponding Ltext. The values of Ltext reflect the saliency of these sentences, indicating the
effectiveness of our proposed TSR

123



International Journal of Computer Vision

egories with the best and worst performance in Fig. 6 and
Fig. 10. It can be inferred that the quality of the text
descriptions corresponding to the categories, as well as the
property of actions, will determine the final classification
accuracy. Categories with poor classification performance
often have less related textual descriptions to the visual
frames. For example, the text description in Wikipedia of
label ’faceplanting’ refers to a takedown move in profes-
sional wrestling, rather than the act of landing face first, as
a result of an accident or error. In addition, categories with
poor classification performance tend to involve subtle actions
(e.g., headbutting, slapping, throwing ball, etc.) that occur in
a brief moment, making it difficult to capture salient frames
during the frame sampling process over the whole video.

Additionally,we also calculate themedianof text lossLtext

for each category and illustrate the distribution of categories
with the highest and lowest median of text lossLtext in Fig. 7.
It can be observed that categories with the highest median of
text loss (e.g., headbutting, throwing ball, high kick, etc.) tend
to havepoorer classificationperformance,which corresponds
to the analysis on Fig. 6. Accordingly, we can use the median
of text loss Ltext for each category to quantify the level of
noise.

Visualization of Text Corpus In this section, we provide
some visualization of the collected text corpus in Fig. 8. It
can be seen that these texts contain not only some noisy

information within them, but also some static characteristics,
dynamic evolution, and logical definition of the correspond-
ing categories. In addition, to intuitively demonstrate the
effectiveness of our text selection ruler (TSR), we provide
some examples of sentences reserved or dropped by our TSR
of different categories in Fig. 9. We observe that our method
can sample useful texts or filter out the useless ones. It can
also be seen that VLG can learn specific concepts or steps for
each class, such as "Bow hunting" for "archery" and "queen
cells" for "bee keeping". The salient sentences commonly
contain these words of specific concepts in the category.

5.9 Additional Experiments

To validate the generalization of VLG, we conducted exper-
iments on the commonly used UCF-101 and HMDB-51
datasets for few-shot tasks. We use the same data splits from
STRM (Thatipelli et al., 2022).

It can be seen from theTables 12 and13 that despite using a
relatively simple spatiotemporal information modeling mod-
ule, our proposedmethod still achieves good performance on
UCF-101 and HMDB-51 (VLG-L). It is also noted that on
the HMDB51 dataset, the few-shot results are not very good
when linear probe testing is not used. This could be due
to the fact that most labels in HMDB51 are vague general-
izations of actions (e.g., kick, push, throw), with relatively

Table 12 Results on
UCF101-Fewshot

Method Backbone K-shot N-way Top-1

GenApp (Mishra et al., 2018) ResNet-50 5 5 78.6

ProtoGAN (Kumar Dwivedi et al., 2019) 5 5 80.2

ARN (Zhang et al., 2020) 5 5 83.1

HF-AR (Kumar & Narang, 2021) 5 5 86.4

HyRSM (Wang et al., 2022) 5 5 94.7

STRM (Thatipelli et al., 2022) 5 5 96.8

VLG-L 5 5 90.4

VLG 5 5 93.8

Here, we use ’VLG-L’ to denote our method with linear probe testing, and use ’VLG’ to denote our proposed
two-stage training framework

Table 13 Results on
HMDB51-Fewshot

Method Backbone K-shot N-way Top-1

GenApp (Mishra et al., 2018) ResNet-50 5 5 52.5

ProtoGAN (Kumar Dwivedi et al., 2019) 5 5 54.0

ARN (Zhang et al., 2020) 5 5 60.6

HF-AR (Kumar & Narang, 2021) 5 5 62.2

HyRSM (Wang et al., 2022) 5 5 76.0

STRM (Thatipelli et al., 2022) 5 5 77.3

VLG-L 5 5 76.0

VLG 5 5 34.2

Here, we use ’VLG-L’ to denote our method with linear probe testing, and use ’VLG’ to denote our proposed
two-stage training framework
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Fig. 10 More visualization of categories with best and worst accuracy performance. The top four lines correspond to the categories with the best
classification performance, while the bottom four lines correspond to the categories with the worst classification performance
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little visual commonality across HMDB51 videos, making
it difficult to correspond to specific textual descriptions.
The overly ambiguous labels in HMDB51 make it challeng-
ing to find well-matched textual descriptions on platforms
like Wiki and WikiHow. Furthermore, there are hierarchical
relationships between categories (e.g., "sword" v.s. "sword
exercise"), causing a single description to correspond to two
labels.

6 Conclusions and FutureWork

Video recognition in an open and wild world is extremely
difficult. Despite the fact that multiple video benchmarks
and works have been developed to study video recognition in
various scenarios, these separate investigations would ignore
the possibility of knowledge sharing across settings, leading
to inefficiency and impeding progress in video recognition
as well as its application in the real world.

In this paper, we have studied the general video recogni-
tion (GVR) under four different settings: close-set, long-tail,
few-shot and open-set. The GVR task enables us to exam-
ine the generalization ability of a video recognition model in
real-world applications. To facilitate the research of GVR,
we build comprehensive video benchmarks of Kinetics-
GVR containing text descriptions for all action classes.
Then, we propose a unified visual-linguistic framework
(VLG) to accomplish the task of GVR. In particular, we
present an effective two-stage training strategy to effectively
adapt the image-text representation to video domain for
GVR. Extensive results demonstrate that our VLG obtains
the state-of-the-art performance under all settings on the
Kinetics-GVR benchmark.

Although our VLG achieves superior performance on
multiple general video recognition settings, it still needs
a two-stage training paradigm and cannot be end-to-end
trained. To tackle this, we can apply reinforcement learn-
ing with reward functions (Lin et al., 2022a; Meng et al.,
2020) or gumbel-softmax tricks (Jang et al., 2016) to further
improve the non-differentiable text selection parts. In addi-
tion, it might be difficult to crawl suitable descriptions of
labels from Wiki or WikiHow for subtle actions, like "Put
the glass on top of the table". Probably, it needs to participle
phrases and crawl definitions from some dictionary websites
as supplementary to improve the text descriptions. In sum-
mary, we hope the empirical findings and insights presented
in this work could pave theway for future research on general
video recognition which is still a nascent research topic.
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C. (2021). Vivit: A video vision transformer. In Proceedings of
the IEEE/CVF international conference on computer vision (pp.
6836–6846)

Bain, M., Nagrani, A., Varol, G., & Zisserman, A. (2022). A
clip-hitchhiker’s guide to long video retrieval. arXiv preprint
arXiv:2205.08508

Bao,W.,Yu,Q.,&Kong,Y. (2021). Evidential deep learning for open set
action recognition. In Proceedings of the IEEE/CVF international
conference on computer vision (pp. 13349–13358)

Bendale, A., & Boult, T. E. (2016). Towards open set deep networks.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1563–1572)

Bertasius, G., Wang, H., & Torresani, L. (2021). Is space-time attention
all you need for video understanding? In ICML, vol 2 (pp. 4)

Bishay, M., Zoumpourlis, G., & Patras, I. (2019). Tarn: Temporal atten-
tive relation network for few-shot and zero-shot action recognition.
arXiv preprint arXiv:1907.09021

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study
of the class imbalance problem in convolutional neural networks.
Neural Networks, 106, 249–259.

Caba Heilbron, F., Escorcia, V., Ghanem, B., & Carlos Niebles, J.
(2015). Activitynet: A large-scale video benchmark for human
activity understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 961–970)

Cao, D., Xu, L., & Chen, H. (2020a). Action recognition in untrimmed
videos with composite self-attention two-stream framework. In
Pattern recognition: 5th Asian conference, ACPR 2019, Auckland,
New Zealand, November 26–29, 2019, Revised Selected Papers,
Part II 5 (pp. 27–40). Springer

Cao, K., Wei, C., Gaidon, A., Arechiga, N., & Ma, T. (2019). Learning
imbalanced datasets with label-distribution-aware margin loss. In
Advances in neural information processing systems 32

Cao, K., Ji, J., Cao, Z., Chang, C. Y., &Niebles, J. C. (2020b). Few-shot
video classification via temporal alignment. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
(pp. 10618–10627)

Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? A
new model and the kinetics dataset. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 6299–
6308)

Carreira, J., Noland, E., Hillier, C., & Zisserman, A. (2019). A short
note on the kinetics-700 human action dataset. arXiv preprint
arXiv:1907.06987

Chawla, N. V., Bowyer, K.W., Hall, L. O., & Kegelmeyer, W. P. (2002).
Smote: Synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research, 16, 321–357.

123

https://www.deepmind.com/open-source/kinetics.
https://www.deepmind.com/open-source/kinetics.
http://arxiv.org/abs/2111.08644
http://arxiv.org/abs/2205.08508
http://arxiv.org/abs/1907.09021
http://arxiv.org/abs/1907.06987


International Journal of Computer Vision

Chu, P.,Bian,X., Liu, S.,&Ling,H. (2020). Feature space augmentation
for long-tailed data. In European conference on computer vision
(pp. 694–710). Springer

Cui, J., Zhong, Z., Liu, S., Yu, B., & Jia, J. (2021). Parametric con-
trastive learning. In Proceedings of the IEEE/CVF international
conference on computer vision (pp. 715–724)

Cui, Y., Jia, M., Lin, T. Y., Song, Y., & Belongie, S. (2019). Class-
balanced loss based on effective number of samples. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 9268–9277)

Diba, A., Fayyaz,M., Sharma,V., Arzani,M.M., Yousefzadeh, R., Gall,
J., & Van Gool, L. (2018). Spatio-temporal channel correlation
networks for action classification. In Proceedings of the European
conference on computer vision (ECCV) (pp. 284–299)

Ditria, L., Meyer, BJ., & Drummond, T. (2020). Opengan: Open set
generative adversarial networks. In Proceedings of the Asian con-
ference on computer vision

Dollár, P., Rabaud, V., Cottrell, G., & Belongie, S. (2005). Behavior
recognition via sparse spatio-temporal features. In 2005 IEEE
international workshop on visual surveillance and performance
evaluation of tracking and surveillance (pp. 65–72). IEEE

Dong, J., Li, X., Xu, C., Yang, X., Yang, G., Wang, X., & Wang, M.
(2021). Dual encoding for video retrieval by text. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. https://doi.
org/10.1109/TPAMI.2021.3059295

Drumnond, C., & Holte, R. (2003). Class imbalance and cost sensitiv-
ity: Why undersampling beats oversampling. In ICML-KDD 2003
workshop: Learning from imbalanced datasets, vol 3

Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., & Feicht-
enhofer, C. (2021).Multiscale vision transformers. InProceedings
of the IEEE/CVF international conference on computer vision (pp.
6824–6835)

Feichtenhofer, C. (2020). X3d: Expanding architectures for efficient
video recognition. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 203–213)

Feichtenhofer, C., Pinz,A.,&Zisserman,A. (2016). Convolutional two-
streamnetwork fusion for video action recognition. InProceedings
of the IEEE conference on computer vision and pattern recognition
(pp. 1933–1941)

Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast net-
works for video recognition. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 6202–6211)

Finn, C., Abbeel, P.,&Levine, S. (2017).Model-agnosticmeta-learning
for fast adaptation of deep networks. In International conference
on machine learning, PMLR (pp. 1126–1135)

Finn, C., Xu, K., & Levine, S. (2018). Probabilistic model-agnostic
meta-learning. In Advances in neural information processing sys-
tems 31

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Ranzato, M.,
&Mikolov, T. (2013). Devise: A deep visual-semantic embedding
model. In Advances in neural information processing systems 26

Ge, Z., Demyanov, S., Chen, Z., & Garnavi, R. (2017). Generative
openmax for multi-class open set classification. arXiv preprint
arXiv:1707.07418

Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., West-
phal, S., Kim, H., Haenel, V., Fruend, I., Yianilos, P., Mueller-
Freitag, M., & et al. (2017). The" something something" video
database for learning and evaluating visual common sense. In Pro-
ceedings of the IEEE international conference on computer vision
(pp. 5842–5850)

Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-smote: A new
over-samplingmethod in imbalanced data sets learning. In Interna-
tional conference on intelligent computing (pp. 878–887). Springer

Huang, C., Li, Y., Loy, C. C., & Tang, X. (2016). Learning deep rep-
resentation for imbalanced classification. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp.
5375–5384)

Jain, LP., Scheirer, W. J., & Boult, T. E. (2014). Multi-class open set
recognition using probability of inclusion. InEuropean conference
on computer vision (pp. 393–409). Springer

Jang, E., Gu, S., & Poole, B. (2016). Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144

Jia, C., Yang,Y., Xia, Y., Chen,Y. T., Parekh, Z., Pham,H., Le, Q., Sung,
Y. H., Li, Z., & Duerig, T. (2021). Scaling up visual and vision-
language representation learning with noisy text supervision. In
International conference on machine learning, PMLR (pp. 4904–
4916)

Jiang,B.,Wang,M.,Gan,W.,Wu,W.,&Yan, J. (2019). Stm: Spatiotem-
poral and motion encoding for action recognition. In Proceedings
of the IEEE/CVF international conference on computer vision (pp.
2000–2009)

Ju, C., Han, T., Zheng, K., Zhang, Y., & Xie, W. (2022). Prompting
visual-languagemodels for efficient video understanding. InEuro-
pean conference on computer vision (pp. 105–124). Springer

Kahatapitiya, K., Arnab, A., Nagrani, A., & Ryoo, M. S. (2023). Victr:
Video-conditioned text representations for activity recognition.
arXiv preprint arXiv:2304.02560

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., &
Kalantidis, Y. (2019). Decoupling representation and classifier for
long-tailed recognition. arXiv preprint arXiv:1910.09217

Kant, Y., Batra, D., Anderson, P., Schwing, A., Parikh, D., Lu, J., &
Agrawal, H. (2020). Spatially aware multimodal transformers for
textvqa. In European conference on computer vision (pp. 715–
732). Springer

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijaya-
narasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., & et al.
(2017). The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950

Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., & Togneri,
R. (2017). Cost-sensitive learning of deep feature representations
from imbalanced data. IEEETransactions onNeural Networks and
Learning Systems, 29(8), 3573–3587.

Klaser, A., Marszałek, M., & Schmid, C. (2008). A spatio-temporal
descriptor based on 3d-gradients. In BMVC 2008-19th British
machine vision conference (pp. 275–1). British Machine Vision
Association

Krishnan, R., Subedar, M., & Tickoo, O. (2018). Bar: Bayesian
activity recognition using variational inference. arXiv preprint
arXiv:1811.03305

Krishnan, R., Subedar, M., & Tickoo, O. (2020). Specifying weight
priors in Bayesian deep neural networks with empirical Bayes.
InProceedings of the AAAI conference on artificial intelligence,
34, 4477–4484.

Kumar, N., & Narang, S. (2021). Few shot activity recognition using
variational inference. arXiv preprint arXiv:2108.08990

Kumar Dwivedi, S., Gupta, V., Mitra, R., Ahmed, S., & Jain, A. (2019).
Protogan: Towards few shot learning for action recognition. InPro-
ceedings of the IEEE/CVF International conference on computer
vision workshops

Kumawat, S., Verma, M., Nakashima, Y., & Raman, S. (2021). Depth-
wise spatio-temporal STFT convolutional neural networks for
human action recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.
3076522

Li, F., & Wechsler, H. (2005). Open set face recognition using trans-
duction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(11), 1686–1697.

Li, T., &Wang, L. (2020a). Learning spatiotemporal features via video
and text pair discrimination. arXiv preprint arXiv:2001.05691

Li, T., &Wang, L. (2020b). Learning spatiotemporal features via video
and text pair discrimination. CoRR arXiv: 2001.05691

123

https://doi.org/10.1109/TPAMI.2021.3059295
https://doi.org/10.1109/TPAMI.2021.3059295
http://arxiv.org/abs/1707.07418
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/2304.02560
http://arxiv.org/abs/1910.09217
http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1811.03305
http://arxiv.org/abs/2108.08990
https://doi.org/10.1109/TPAMI.2021.3076522
https://doi.org/10.1109/TPAMI.2021.3076522
http://arxiv.org/abs/2001.05691
http://arxiv.org/abs/2001.05691


International Journal of Computer Vision

Li, T., Wang, L., & Wu, G. (2021a). Self supervision to distillation for
long-tailed visual recognition. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 630–639)

Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu,
H., Dong, L., Wei, F., & et al. (2020a). Oscar: Object-semantics
aligned pre-training for vision-language tasks. In European con-
ference on computer vision (pp. 121–137). Springer

Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., & Wang, L. (2020b). Tea:
Temporal excitation and aggregation for action recognition. InPro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition (pp. 909–918)

Li, Y., Wu, CY., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feicht-
enhofer, C. (2021b). Improved multiscale vision transformers for
classification and detection. arXiv preprint arXiv:2112.01526

Li, Z., Fan, Z., Tou, H., & Wei, Z. (2022). Mvp: Multi-stage vision-
language pre-training via multi-level semantic alignment. arXiv
preprint arXiv:2201.12596

Lin, J., Gan, C., & Han, S. (2019). Tsm: Temporal shift module for
efficient video understanding. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 7083–7093)

Lin, J., Duan, H., Chen, K., Lin, D., & Wang, L. (2022a) Ocsampler:
Compressing videos to one clip with single-step sampling. In Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition (pp. 13894–13903)

Lin, Z., Geng, S., Zhang, R., Gao, P., de Melo, G., Wang, X., Dai, J.,
Qiao. Y., & Li, H. (2022b) Frozen clip models are efficient video
learners. In European conference on computer vision (pp. 388–
404). Springer

Liu, Y., Chen, Q., & Albanie, S. (2021a) Adaptive cross-modal proto-
types for cross-domain visual-language retrieval. In Proceedings
of the IEEE/CVFconference on computer vision andpattern recog-
nition (pp. 14954–14964)

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., & Yu, S. X. (2019)
Large-scale long-tailed recognition in an open world. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 2537–2546)

Liu, Z., Wang, L., Wu, W., Qian, C., & Lu, T. (2021b) TAM: Temporal
adaptive module for video recognition. In ICCV (pp. 13688–
13698). IEEE

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., & Hu, H. (2022)
Video swin transformer. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition (pp. 3202–3211)

Loshchilov, I., & Hutter, F. (2016) Sgdr: Stochastic gradient descent
with warm restarts. arXiv preprint arXiv:1608.03983

Loshchilov, I., & Hutter, F. (2017) Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101

Luo, H., Ji, L., Zhong, M., Chen, Y., Lei, W., Duan, N., & Li, T. (2022).
Clip4clip: An empirical study of clip for end to end video clip
retrieval and captioning. Neurocomputing, 508, 293–304.

Meng, Y., Lin, CC., Panda, R., Sattigeri, P., Karlinsky, L., Oliva, A.,
Saenko, K., & Feris, R. (2020). Ar-net: Adaptive frame resolu-
tion for efficient action recognition. In European conference on
computer vision (pp. 86–104). Springer

Miech, A., Alayrac, J. B., Smaira, L., Laptev, I., Sivic, J., & Zisserman,
A. (2020a). End-to-end learning of visual representations from
uncurated instructional videos. In CVPR

Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., & Zisserman,
A. (2020b). End-to-end learning of visual representations from
uncurated instructional videos. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 9879–
9889)

Mishra, A., Verma, V. K., Reddy, M. S. K., Arulkumar, S., Rai, P., &
Mittal, A. (2018) A generative approach to zero-shot and few-shot
action recognition. In 2018 IEEE winter conference on applica-
tions of computer vision (WACV) (pp. 372–380). IEEE

Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S.
A., Yan, T., Brown, L., Fan, Q., Gutfreund, D., Vondrick, C.,
et al. (2019). Moments in time dataset: One million videos for
event understanding. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(2), 502–508.

Monfor, M., Pan, B., Ramakrishnan, K., Andonian, A., McNamara, B.
A., Lascelles, A., Fan, Q., Gutfreund, D., Feris, R., & Oliva, A.
(2021). Multi-moments in time: Learning and interpreting models
for multi-action video understanding. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence. https://doi.org/10.1109/
TPAMI.2021.3126682

Mori, Y., Takahashi, H., & Oka, R. (1999). Image-to-word transforma-
tion based on dividing and vector quantizing images with words.
In First international workshop on multimedia intelligent storage
and retrieval management (pp. 1–9). Citeseer

Neal, L., Olson, M., Fern, X., Wong, W. K., & Li, F. (2018). Open set
learning with counterfactual images. In Proceedings of the Euro-
pean conference on computer vision (ECCV) (pp. 613–628)

Neimark, D., Bar, O., Zohar, M., & Asselmann, D. (2021). Video trans-
former network. In Proceedings of the IEEE/CVF international
conference on computer vision (pp. 3163–3172)

Ni, B., Peng, H., Chen, M., Zhang, S., Meng, G., Fu, J., Xiang, S., &
Ling, H. (2022) Expanding language-image pretrained models for
general video recognition. In European conference on computer
vision (pp. 1–18). Springer

Oza, P., &Patel, V.M. (2019). C2ae: Class conditioned auto-encoder for
open-set recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 2307–2316)

Pan, J., Lin, Z., Zhu,X., Shao, J.,&Li,H. (2022). St-adapter: Parameter-
efficient image-to-video transfer learning. Advances in Neural
Information Processing Systems, 35, 26462–26477.

Perrett, T., Masullo, A., Burghardt, T., Mirmehdi, M., & Damen, D.
(2021). Temporal-relational crosstransformers for few-shot action
recognition. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition (pp. 475–484)

Qian, R., Li, Y., Xu, Z., Yang, M. H., Belongie, S., & Cui, Y. (2022).
Multimodal open-vocabulary video classification via pre-trained
vision and language models. arXiv preprint arXiv:2207.07646

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., & Clark, J., et al. (2021). Learn-
ing transferable visual models from natural language supervision.
In International conference onmachine learning (pp. 8748–8763).
PMLR

Reed, W. J. (2001). The pareto, zipf and other power laws. Economics
letters, 74(1), 15–19.

Ruan, L., & Jin, Q. (2022). Survey: Transformer based video-language
pre-training. AI Open, 3, 1–13.

Ryoo, M. S., Piergiovanni A, Arnab, A., Dehghani, M., & Angelova,
A. (2021). Tokenlearner: What can 8 learned tokens do for images
and videos? arXiv preprint arXiv:2106.11297

Scheirer, W. J., de Rezende, R. A., Sapkota, A., & Boult, T. E. (2012).
Toward open set recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 35(7), 1757–1772.

Scheirer, W. J., Jain, L. P., & Boult, T. E. (2014). Probability models
for open set recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(11), 2317–2324.

Sharir, G., Noy, A., Zelnik-& Manor, L. (2021). An image is
worth 16x16 words, what is a video worth? arXiv preprint
arXiv:2103.13915

Shen, L., Lin, Z., & Huang, Q.(2016). Relay backpropagation for effec-
tive learning of deep convolutional neural networks. In European
conference on computer vision (pp. 467–482). Springer

Shu, Y., Shi, Y., Wang, Y., Zou, Y., Yuan, Q., & Tian, Y. (2018). Odn:
Opening the deep network for open-set action recognition. In 2018
IEEE international conference on multimedia and expo (ICME)
(pp. 1–6). IEEE

123

http://arxiv.org/abs/2112.01526
http://arxiv.org/abs/2201.12596
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1711.05101
https://doi.org/10.1109/TPAMI.2021.3126682
https://doi.org/10.1109/TPAMI.2021.3126682
http://arxiv.org/abs/2207.07646
http://arxiv.org/abs/2106.11297
http://arxiv.org/abs/2103.13915


International Journal of Computer Vision

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional net-
works for action recognition in videos. In Advances in neural
information processing systems 27

Singh,A., Natarajan,V., Shah,M., Jiang,Y., Chen,X., Batra, D., Parikh,
D., & Rohrbach, M. (2019). Towards VQA models that can read.
In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (pp. 8317–8326)

Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for
few-shot learning. In Advances in neural information processing
systems 30

Soomro, K., Zamir, A. R., & Shah, M (2012). Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402

Stroud, J., Ross, D., Sun, C., Deng, J., & Sukthankar, R. (2020a). D3d:
Distilled 3d networks for video action recognition. In Proceedings
of the IEEE/CVF winter conference on applications of computer
vision (pp. 625–634)

Stroud, J.C,Ross,D.A., Sun,C.,Deng, J., Sukthankar,R.,&Schmid,C.
(2020b). Learning video representations from textual web super-
vision. CoRR abs/2007.14937, https://arxiv.org/abs/2007.14937,
2007.14937

Subedar,M., Krishnan, R.,Meyer, P. L., Tickoo, O., &Huang, J. (2019).
Uncertainty-aware audiovisual activity recognition using deep
Bayesian variational inference. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 6301–6310)

Sun, X., Yang, Z., Zhang, C., Ling, K. V., & Peng, G. (2020). Condi-
tional gaussian distribution learning for open set recognition. In
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (pp. 13480–13489)

Tan, J., Wang, C., Li, B., Li, Q., Ouyang, W., Yin, C., & Yan, J. (2020).
Equalization loss for long-tailed object recognition. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 11662–11671)

Thatipelli, A., Narayan, S., Khan, S., Anwer, R. M., Khan, F. S.,
& Ghanem, B. (2022). Spatio-temporal relation modeling for
few-shot action recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp.
19958–19967)

Tian, C., Wang, W., Zhu, X., Dai, J., & Qiao, Y. (2022). VL-LTR:
Learning class-wise visual-linguistic representation for long-tailed
visual recognition. In European conference on computer vision
(pp. 73–91). Springer

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M.
(2018). A closer look at spatiotemporal convolutions for action
recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 6450–6459)

Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D., et al. (2016).
Matching networks for one shot learning. In Advances in neural
information processing systems 29

Wang, H., Kläser, A., Schmid, C., & Liu, C. L. (2013). Dense tra-
jectories and motion boundary descriptors for action recognition.
International Journal of Computer Vision, 103(1), 60–79.

Wang, J., Ge, Y., Yan, R., Ge, Y., Lin, K. Q., Tsutsui, S., Lin, X., Cai,
G., Wu, J., & Shan, Y., et al. (2023). All in one: Exploring uni-
fied video-language pre-training. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 6598–
6608)

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., & Gool, L.
V. (2016). Temporal segment networks: Towards good practices
for deep action recognition. In European conference on computer
vision (pp. 20–36). Springer

Wang, L., Tong, Z., Ji, B., &Wu,G. (2021a). TDN: Temporal difference
networks for efficient action recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
(CVPR) (pp. 1895–1904)

Wang, M., Xing, J., & Liu, Y. (2021b). Actionclip: A new paradigm for
video action recognition. arXiv preprint arXiv:2109.08472

Wang,W., Feiszli,M.,Wang,H.,&Tran,D. (2021c).Unidentified video
objects: A benchmark for dense, open-world segmentation. InPro-
ceedings of the IEEE/CVF international conference on computer
vision (pp. 10776–10785)

Wang, X., Liu, Y., Shen, C., Ng, C. C., Luo, C., Jin, L.,& Chan, C. S.,
Hengel, A., & Wang, L. (2020). On the general value of evidence,
and bilingual scene-text visual question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 10126–10135)

Wang, X., Zhang, S., Qing, Z., Tang, M., Zuo, Z., Gao, C., Jin, R., &
Sang, N. (2022). Hybrid relation guided set matching for few-shot
action recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 19948–19957)

Wang, Y. X., Ramanan, D., & Hebert, M. (2017). Learning to model the
tail. In Advances in Neural Information Processing Systems 30

Weston, J., Bengio, S.,&Usunier,N. (2011).Wsabie: Scalingup to large
vocabulary image annotation. InTwenty-second international joint
conference on artificial intelligence

wikiHow. (2022). wikhow, the most trusted how-to site on the inter-
net. https://www.wikihow.com/Main-Page, Retrieved from May
19, 2022

Wikipedia. (2022). Wikipedia, the free encyclopedia. https://www.
wikipedia.org/, Retrieved from May 19, 2022

Wu, W., Sun, Z., & Ouyang, W. (2023). Revisiting classifier: Transfer-
ring vision-languagemodels for video recognition. InProceedings
of the AAAI conference on artificial intelligence, 37, 2847–2855.

Xie, S., Sun, C., Huang, J., Tu, Z., & Murphy, K. (2018). Rethink-
ing spatiotemporal feature learning: Speed-accuracy trade-offs in
video classification. In Proceedings of the European conference
on computer vision (ECCV) (pp. 305–321)

Xu, H., Ghosh, G., Huang, P. Y., Arora, P., Aminzadeh, M., Feicht-
enhofer, C., Metze, F., & Zettlemoyer, L. (2021). VLM: Task-
agnostic video-language model pre-training for video understand-
ing. arXiv preprint arXiv:2105.09996

Yan, S., Xiong, X., Arnab, A., Lu, Z., Zhang, M., Sun, C., & Schmid, C.
(2022). Multiview transformers for video recognition. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 3333–3343)

Yang, X., Dong, J., Cao, Y., Wang, X., Wang, M., Chua, T. S. (2020).
Tree-augmented cross-modal encoding for complex-query video
retrieval. In Proceedings of the 43rd international ACM SIGIR
conference on research and development in information retrieval
(pp. 1339–1348)

Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2019). Feature
transfer learning for face recognition with under-represented data.
In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (pp. 5704–5713)

Yuan, L., Chen, D., Chen, Y. L., Codella, N., Dai, X., Gao, J., Hu, H.,
Huang, X., Li, B., & Li, C. et al. (2021). Florence: A new founda-
tion model for computer vision. arXiv preprint arXiv:2111.11432

Zhang, B., Yu, J., Fifty, C., Han, W., Dai, A. M., Pang, R., & Sha, F.
(2021a). Co-training transformerwith videos and images improves
action recognition. arXiv preprint arXiv:2112.07175

Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P. H., & Koniusz, P.
(2020). Few-shot action recognition with permutation-invariant
attention. In European conference on computer vision (pp. 525–
542). Springer

Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., &
Gao, J. (2021b). Vinvl: Revisiting visual representations in vision-
language models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 5579–5588)

Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., & Song, Y. (2018).
Metagan: An adversarial approach to few-shot learning. In
Advances in neural information processing systems 31

123

http://arxiv.org/abs/1212.0402
https://arxiv.org/abs/2007.14937
http://arxiv.org/abs/2109.08472
https://www.wikihow.com/Main-Page
https://www.wikipedia.org/
https://www.wikipedia.org/
http://arxiv.org/abs/2105.09996
http://arxiv.org/abs/2111.11432
http://arxiv.org/abs/2112.07175


International Journal of Computer Vision

Zhang, X., Wu, Z., Weng, Z., Fu, H., Chen, J., Jiang, Y. G., & Davis, L.
S. (2021c). Videolt: Large-scale long-tailed video recognition. In
Proceedings of the IEEE/CVF international conference on com-
puter vision (pp. 7960–7969)

Zhou, B., Cui, Q., Wei, X. S., & Chen Z. M. (2020). Bbn: Bilateral-
branch network with cumulative learning for long-tailed visual
recognition. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition (pp. 9719–9728)

Zhou, Y., Sun, X., Zha, Z. J., & Zeng, W. (2018). Mict: Mixed 3d/2d
convolutional tube for human action recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition
(pp. 449–458)

Zhu, L., & Yang, Y. (2018). Compound memory networks for few-shot
video classification. In Proceedings of the European conference
on computer vision (ECCV) (pp. 751–766)

Zhu, L., & Yang, Y. (2020a). Actbert: Learning global-local video-text
representations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 8746–8755)

Zhu, L., &Yang, Y. (2020b). Inflated episodic memory with region self-
attention for long-tailed visual recognition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp 4344–4353

Zhu, L., & Yang, Y. (2020). Label independent memory for semi-
supervised few-shot video classification. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(1), 273–285.

Zhu, Y., Li, X., Liu, C., Zolfaghari ,M., Xiong, Y., Wu, C., Zhang, Z.,
Tighe, J., Manmatha, R., & Li, M. (2020). A comprehensive study
of deep video action recognition. arXiv preprint arXiv:2012.06567

Zhu, Z., Wang, L., Guo, S., & Wu, G., (2021). A closer look at few-
shot video classification: A new baseline and benchmark. arXiv
preprint arXiv:2110.12358

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/2012.06567
http://arxiv.org/abs/2110.12358

	VLG: General Video Recognition with Web Textual Knowledge
	Abstract
	1 Introduction
	2 Related Work
	2.1 Video Representation
	2.2 Visual-Textual Learning
	2.3 General Video Recognition

	3 The Kinetics-Text Benchmark
	4 Method
	4.1 Overview
	4.2 Training
	4.3 VLG for General Video Recognition

	5 Experiments
	5.1 Evaluation Metrics
	5.2 Implementation Details
	5.3 Experiments on Kinetics-Close
	5.4 Experiments on Kinetics-LT
	5.5 Experiments on Kinetics-Fewshot
	5.6 Experiments on Kinetics-Open
	5.7 Ablation Study
	5.8 Visualization
	5.9 Additional Experiments

	6 Conclusions and Future Work
	Acknowledgements
	References


