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Abstract
Despite the tremendous progress in zero-shot learning (ZSL), the majority of existing methods still rely on human-annotated
attributes, which are difficult to annotate and scale. An unsupervised alternative is to represent each class using the word
embedding associated with its semantic class name. However, word embeddings extracted from pre-trained language models
do not necessarily capture visual similarities, resulting in poor zero-shot performance. In this work, we argue that online
textual documents, e.g., Wikipedia, contain rich visual descriptions about object classes, therefore can be used as powerful
unsupervised side information for ZSL. To this end, we propose I2DFormer+, a novel transformer-based ZSL framework that
jointly learn to encode images and documents by aligning both modalities in a shared embedding space. I2DFormer+ utilizes
our novel Document Summary Transformer (DSTransformer), a text transformer, that learns to encode a sequence of text into
a fixed set of summary tokens. These summary tokens are utilized by a cross-model attention module that learns finegrained
interactions between image patches and the summary of the document. Consequently, our I2DFormer+ not only learns highly
discriminative document embeddings that capture visual similarities but also gains the ability to explain what regions of the
image are important for the decision. Quantitatively, we demonstrate that I2DFormer+ significantly outperforms previous
unsupervised semantic embeddings under both zero-shot and generalized zero-shot learning settings on three public datasets.
Qualitatively, we show that our methods lead to highly interpretable results. Furthermore, we scale our model to the large
scale zero-shot learning setting and show state-of-the-art performance on two challenging ImageNet benchmarks.

Keywords Zero-shot Learning · Multimodal Learning · Transformers

1 Introduction

“What does a tiger look like? It is a fierce animal that looks
like a scary, big cat with stripes." Tigers are not native to
Japan, yet when the travelers coming from China described
them in relation to native animals, it inspired a range of his-
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toric paintings depicting tigers in Japan. Humans possess
an impressive ability to imagine and identify unseen objects
from pure language descriptions. In computer vision, the
ability to predict unseen classes is called zero-shot learn-
ing, which can be achieved by transferring knowledge from
seen classes using auxiliary side information (or semantic
embeddings) e.g., attributes (Vyas et al., 2020), word embed-
dings (Frome et al., 2013), etc.Although remarkable progress
has been made, most of prior works (Vyas et al., 2020; Akata
et al., 2015; Xian et al., 2018; Zhu et al., 2019; Narayan et al.,
2020; Chen et al., 2021) rely on human annotated attributes
as the side information. While attributes are appealing, they
are often costly to annotate (Song et al., 2018; Yu et al., 2013;
Wah et al., 2011) and scale to large datasets. Towards unsu-
pervised semantic embeddings (Socher et al., 2013; Frome
et al., 2013; Akata et al., 2015), word embeddings can be
easily obtained from pre-trained language models (Penning-
ton et al., 2014). Yet, they often do not reflect fine-grained
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visual similarities, thus limiting the performance (Akata et
al., 2015).

The goal of this work is to learn visually aligned unsuper-
vised semantic embeddings from online textual documents
for zero-shot image classification. With the advent of the
Internet, the collective knowledge of humans about the world
has been distilled into online encyclopedias like Wikipedia.
These encyclopedias present a rich source of fine-grained
auxiliary information for a model.While the entries (referred
to as documents)may describe an object classwith rich visual
details, they tend to contain a lot of noise. For example, an
entry for ‘horse’ can define its appearance as well as inter-
esting historic events it participated in. While the former is
helpful for a visual model, the latter might introduce noise
making it challenging to fully exploit this knowledge.

This work is an extension of our previous NeurIPS22
work I2DFormer (Naeem et al., 2022). In this work, we
propose an extension of I2DFormer called Image to Docu-
ment Transformer+ (I2DFormer+) that learns to align image
and document pairs with their global representations as well
as with token-wise representations of its summary features,
i.e., image patches and summary tokens. As a result, with-
out any image-level language supervision, our model is able
to develop an understanding of different parts of an animal,
its habitat, etc, leading to a more discriminative semantic
embedding. We summarise our contributions as:

1. Wepropose a novel text transformerDocument Summary
Transformer (DSTransformer). DSTransformer takes as
input a text sequence and a set of learnable tokens.
DSTransformer learns to summarize the text into a fixed
set of output tokens.

2. With DSTransformer, we improve upon our novel Image
to Document Attention (I2D Attention) module (Naeem
et al., 2022) that learns to identify visually discrim-
inative properties in a document leading to a more
discriminative semantic embedding. With the introduc-
tion ofDSTransformer, thememory footprint of attention
remains constant allowing for scalability to large datasets
like ImageNet.

3. Our model I2DFormer+ consistently improves the SOTA
in unsupervised semantic embeddings on four challeng-
ing datasets, i.e., AWA2, CUB, FLO and ImageNet.
Moreover, we qualitatively demonstrate that our model
learns highly interpretable results.

4. We show that the learned document embedding can
be used with any existing ZSL model to significantly
improve its performance. To the best of our knowledge,
I2DFormer Naeem et al. (2022) and I2DFormer+ are the
first methods to learn an attention-based embedding from
noisy documents for ZSL without relying on any pre-
trained part localization model or attribute vocabulary.

5. We adapt our model on the ImageNet scale. I2DFormer+
sets a new SOTA on ImageNet scale zero-shot learning
on two challenging dataset splits.

2 RelatedWorks

Zero-shot Learning aims to generalize a model trained on
seen classes onto a disjoint set of unseen classes using shared
auxiliary information available for both sets (Vyas et al.,
2020). Several methods in this direction learn a compati-
bility function between the image and the class embedding
space (Romera-Paredes and Torr, 2015; Naeem et al., 2021;
Changpinyo et al., 2016; Mancini et al., 2022; Akata et al.,
2015; Zhang et al., 2017; Xian et al., 2016; Mancini et al.,
2021). Another competing line of work uses generative mod-
els like GANs to learn the feature space of seen and unseen
classes (Xian et al., 2018, 2019; Zhu et al., 2019, 2018;
Verma et al., 2018; Schonfeld et al., 2019). A complementary
line of work focuses on learning improved visual-semantic
embeddings (Liu et al., 2018; Zhang et al., 2017; Jiang et
al., 2016; Cacheux et al., 2019) and training better image
encoders (Ji et al., 2018; Zhu et al., 2019; Xu et al., 2020).
Semantic embeddings are a crucial building block for all
of these methods. However, despite its importance, it is a
less studied topic. Human labeled attributes (Xian et al.,
2018; Patterson et al., 2014; Wah et al., 2011; Farhadi et al.,
2009; Naeem et al., 2022) have become the de-facto seman-
tic embedding for most methods. However, they are hard and
expensive to scale as they require human experts (Song et al.,
2018; Yu et al., 2013; Wah et al., 2011).
Zero-shot dataset transfer Zero-shot dataset transfer has
emerged as a popular topic since the success of CLIP (Rad-
ford et al., 2021). CLIP trains a two tower transformer model
for vision and language. These two transformers interact at
the output layer with a dot product. Being trained on web-
scale dataset of 400 million image and captions, CLIP shows
great dataset transfer properties. Severalworks have followed
up on CLIP with better training strategies (Cui et al., 2022),
incorporating patch to word attention (Yao et al., 2022) and
incorporating unsuperivsed training (Li et al., 2021). Several
works have built upon the generalization abilities of CLIP by
extending it to segmentation (Ghiasi et al., 2022; Lüddecke
andEcker, 2022) and detection (Gu et al., 2021). Theseworks
train a student network to learn the feature distribution of the
visual encoder of CLIP and use the text encoder of CLIP to
generate the classifiers resulting in inheriting some of open
set abilities of theCLIPmodel.While zero-shot dataset trans-
fer is a very promising topic, it differs fromour task in amajor
way. The CLIP model is trained on a web-scale dataset and
hence observes almost all visual concepts while training. In
zero-shot image classification, we have a strong constraint
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that the model should not have observed any instance of the
zero-shot classes.
Learning semantic embeddings with minimal supervision
aims to use cheap to obtain side information to learn a seman-
tic embeddingwithminimal label information. Severalworks
have explored using text corpora as an alternative source of
semantic embeddings. Some approaches include using word
embeddings from pretrained language models (Yamada et
al., 2020; Pennington et al., 2014; Mikolov et al., 2013) and
knowledge graphs (Wang et al., 2018; Kampffmeyer et al.,
2019; Bucher et al., 2017; Naeem et al., 2021; Mancini et al.,
2022) to encode semantic similarities. Another line of work
aims to directly learn semantic embeddings from documents
containing information about classes. Earlier works in this
direction used TF-IDF (Salton andBuckley, 1988) to directly
embed the document in a joint image space (Elhoseiny et al.,
2013). Successive works have focused on reducing the noise
in the document by using predefined attribute vocabulary (Al-
Halah and Stiefelhagen, 2017), learning better weights for
TF-IDF embeddings (Qiao et al., 2016) or complementing
these embeddings with a part detection network (Elhoseiny
et al., 2017;Zhuet al., 2018).Recentworks have incorporated
Transformer based languagemodels to directly embed a doc-
ument to a semantic embedding (Kil and Chao, 2021; Bujwid
and Sullivan, 2021). However, all these works either learn
the semantic embedding against the global image represen-
tation or use a pretrained part detector for the human-labeled
attributes to filter the relevant details. VGSE (Xu et al.,
2022) instead proposes to directly learn semantic embed-
dings from images of seen classes and extrapolate them to
the unseen classes by measuring their class name similari-
ties. Our model, I2DFormer instead uses both the knowledge
in text documents and the images of seen classes to learn a
semantic embedding and ZSL model.
Learning cross-modal attention between image and text to
ground text in images without region level supervision has
been a long-studied problem in visual question answering,
image captioning, etc. Das et al. (2017); De Vries et al.
(2017); Rohrbach et al. (2016, 2017). Methods in this line
of work learn a mapping between the region level features
from an image and its caption. More recently, Transform-
ers (Vaswani et al., 2017) have made a breakthrough in
this field with models like ViLBERT (Lu et al., 2019) and
FILIP (Rohrbach et al., 2017) that learn a cross-modal atten-
tion to learn cross modal embeddings. They show that the
grounding of text in the image naturally emerges as a by-
product (Xu et al., 2022). However, these works rely on
having access to image-level text which is expensive to
obtain. Our model instead addresses the much more chal-
lenging problem of learning a cross-modal embedding and
attention from images and their class-level text document.

3 Image to Document Transformer
(I2DFormer)

In this section,we re-introduce our previouswork I2DFormer
Naeem et al. (2022) for clarity since it is the base for
I2DFormer+. The vast majority of existing ZSL works uti-
lize either human-annotated attributes or word embeddings
as auxiliary information.We instead utilize the textual collec-
tion of encyclopedia (wiki) entries of classes as side informa-
tion given the wealth of free document collections describing
object classes available on the internet. I2DFormer is a pure-
transformer based ZSL framework that learns to align image
anddocument pairswith their global representations andwith
token-wise representations i.e., image patches and document
words. In the following section we introduce I2DFormer+,
that improves the scalability of I2DFormer by learning sum-
mary tokens to encode documents. We show an overview of
our method in Fig. 1.
NotationsWe define the classes that are included in the train-
ing set as seen classes Ys , and the classes that are excluded
from training as unseen classes Yu . Let T = {(x, y,d)‖x ∈
X s, y ∈ Ys,d ∈ Ds} be our training set where x denotes an
RGB image from the training imagesX s , y is its label belong-
ing to the seen classes Ys , d is a document e.g., Wikipedia
article, containing textual descriptions of the object class y,
andDs is a collection of documents describing seen classes.
At test time, another collection of documents Du describing
the unseen classes Yu will be made available to the model.
This simulates an internet query to fetch extra information
about an unseen class. Those documents will be used as the
side information to connect seen and unseen classes. The task
of ZSL is to make a prediction among only unseen classes,
while GZSL needs to predict both seen and unseen classes.

3.1 I2D Global: Learning Joint Image-Document
Embeddings with Transformer

Our model is a dual-stream transformer architecture. The
model learns an embedding function F , an image trans-
former (Dosovitskiy et al., 2021), for images, and G, a docu-
ment transformer (Vaswani et al., 2017), for text documents.
The first part of our model learns a global compatibility
between the Image and the Document by our Image to Doc-
ument(I2D) Global module. On the image side, given an
input image x ∈ R

H×W×C , we reshape it into a sequence of
flattened 2D patches xp ∈ R

N×(P2×C), where (H ,W ) is the
size of an input image withC as the RGB channels, (P, P) is
the size of each image patch, and N = HW/P2 is the resul-
tant number of patches. Moreover, we append a CLS token
to xp as the input to the image transformer to learn a global
image representation. Inspired by LiT (Zhai et al., 2022), we
use a pretrained frozen image transformer (Dosovitskiy et al.,
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Fig. 1 I2DFormer+, our novel Transformer based model, uses noisy
documents as auxiliary information to learn a zero-shot model. Our
Document Summary Transformer takes a document and a set of learn-
able summary and CLS tokens to extract the local summary and global
class information contained in the document. The first part of themodel,
I2D Global, learns to encode images and noisy documents to a shared
embedding space using the output embedding corresponding to the CLS

token. In order to distill discriminative local information from the docu-
ment, our I2DAttentionmodule(Naeem et al., 2022) learns fine-grained
interactions between image patches and document words. I2DFormer
uses the output of the tokenized input document for I2DAttention while
I2DFormer+ uses the output corresponding to the learnable summary
tokens. Together, the two modules learn a highly discriminative docu-
ment semantic embedding I2DEmb

2021). This is followed by a learnable feature projection layer
that maps the image embeddings to a joint image-document
embedding space with dimensionality r . The image encoder
F outputs fCLS(x) ∈ R

r as the global image feature and
f p(x) ∈ R

N×r as the patch-wise image embedding for the
input image where r is the feature dimension.

On the document side, given a document d consisting of
M words, we get its token-wise input feature representation
with a pretrained word embedding model. Note that we use
words and tokens interchangeably as we use GloVe word
features as tokens (Pennington et al., 2014). Since each doc-
ument consists of a typically long sequence of words, we
further pass this feature representation through a learnable
MLP as a token projection layer to reduce the feature dimen-
sion and the memory footprint, yielding dt ∈ R

M×r , where r
is the feature dimension as the output of the token projection
layer. Our learnable document transformer consists of trans-
former encoder blocks with multi-head attention.We append
a CLS ∈ R

r token to this sequence and pass it through the
document transformer to get gCLS(d) ∈ R

r as the global
document embedding and gt (d) ∈ R

M×r as the word-wise
text embedding for the input document. We later refer to
the learned gCLS(d) as a document embedding (semantic
embedding) I2DEmb that can be used by any ZSL method.

We define a scoring function s : X × D → R that
measures the similarity of any image x and document d

pair. The scoring function computes the dot product between
global image embedding fCLS(x) and document embedding
gCLS(d), formulated as

s(x,d) = fCLS(x) · gCLS(d). (1)

The learning objective is to make the scoring function assign
high scores to correct image and document pairs and low
scores to incorrect ones. Therefore, for a particular train-
ing instance (x, y,d), and Ds the collection of documents
belonging to seen classes, we minimize the following cross-
entropy loss,

LCLS = − log

(
exp s(x,d)∑

d′∈Ds exp s(x,d′)

)
(2)

3.2 I2D Attention: Learning Image Patch to
DocumentWord Attention

Our I2D Global module essentially aligns image-document
pairs using their global representations. While this paradigm
has been popularized by influential works like CLIP (Rad-
ford et al., 2021), it relies on a large amount of image-text
pairs to learn all discriminative local features and represent
them in the output of CLS token. However, we are dealing
with a more challenging problem where the number of train-
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ing images is small (a few thousand) and there is only one
document associated with each class. Aligning two modali-
ties at a global level will be prone to overfitting and hard to
generalize to unseen classes at test time. Moreover, our doc-
uments are directly collected from the Internet and therefore
are noisy e.g., a large portion of the words are irrelevant to
visual appearance. To address these challenges, we proposed
I2D Attention (Naeem et al., 2022), a novel cross-modality
attention module, to learn fine-grained interaction between
image patches and document words, capturing local features
defined in the document such as body parts of an animal, their
habitat in the form of image background, etc. We argue that
learning these local mappings allows a model to generalize
beyond the seen classes.

Our I2D Attention module takes as inputs the patch-
wise embeddings f p(x) ∈ R

N×r of the image and the
token-wise embeddings gt (d) ∈ R

M×r of the document.
We task the model with searching for the visually-relevant
words in the documents using image patches as the queries.
More specifically, we define Q = f p(x)Wq as the image
queries, K = gt (d)Wk as the text keys to compare with, and
V = gt (d)Wv as the text values to mix with after the search,
where Wq , Wk and Wv are learnable linear transformations,
all in size r × r . The I2D Attention module estimates the
cross-modal attention A(x,d) ∈ R

N×M by computing a dot
product between every image patch and word pair followed
by a softmax,

A(x,d) = so f tmax

(
QKT

√
r

)
(3)

This attention matrix is used to compute new feature rep-
resentations f pa(x,d) ∈ R

N×r for all image patches as
linear combinations of rows of the value matrix V i.e.,
f pa(x,d) = A(x,d)V . Intuitively, this operation recom-
putes the image patch embeddings using the token-wise
embeddings of relevant words in a document. To obtain the
image-level embedding,we apply global pooling on the patch
dimension N of the new patch embeddings f pa(x,d), yield-
ing f̂ pa(x,d) ∈ R

1×r . Afterwards, we compute the local
alignment score between an image-document pair by apply-
ing a simple linear layer,

slocal(x,d) = H( f̂ pa) (4)

where H ∈ R
r×1 is a learnable linear layer.Given a particular

training example (x, y,d), we optimize the following cross-
entropy loss,

Llocal = −log

(
exp slocal(x,d)∑

d′∈Ds exp slocal(x,d′)

)
(5)

We do not use any skip connection similar to previous
cross-modal attention blocks like ViLBERT (Lu et al., 2019)
as wewant the attention weighted embedding to directly give
us a linearly separable representation. Our I2D Attention
Module searches for relevant patch features in the document
for each training class y ∈ Ys and learns to associate visual
concepts with the noisy text in the document. The classifica-
tion loss Llocal maximizes the contribution of discriminative
words in the document and minimizes the contribution of
irrelevant details about a class. Furthermore, calculating
cross-entropy over the full seen set ensures that the model
is aware of similar attributes between fine-grained classes
and can pick additional cues to separate such classes. I2D
Attention introducesminimal learnable parameters with only
4 additional linear layers and rather forces F and G to min-
imize irrelevant details in the tokenwise f p(x) and gt (d) as
well as the global fCLS(x) and gCLS(d) embeddings. This
is in contrast to architectures like ViLBERT (Lu et al., 2019)
where several self-attention layers are stacked on top of the
cross-modal module to further learn the output embedding
with self-attention. We later show in our experiments that
this can hurt the performance in our data constrained zero-
shot learning setup. Although documents have been explored
before in ZSL, prior work uses fixed document embeddings
that are encoded with TF-IDF (Elhoseiny et al., 2013; Zhu
et al., 2018; Elhoseiny et al., 2017) or extracted from a pre-
trained language model (Bujwid and Sullivan, 2021; Kil and
Chao, 2021). In contrast, our document embeddings are aided
by the attention module to identify important details and thus
are also assisted by this additional visual information.

3.3 I2DFormer+: Improving Noise Robustness and
Compute Efficiency of Local Attention

I2DFormer (Naeem et al., 2022) allows for directly learning
the class embeddings from documents by optimising for a
global and a local alignment. While the global alignment is
only dependent on the dot product with the CLS token, the
local alignment relies on an expensive cross modality atten-
tion. The computational complexity of this grows with both
the number of classes and the length of the class documents.
Since Transformer memory requirement grows quadratically
with the input sequence, this canbecomeprohibitively expen-
sive on classes with long documents or datasets with a large
number of classes such as ImageNet. Moreover, it tries to
align the full text with an image which contains noise. We
address these limitations by proposing I2DFormer+ which
extracts the local information available in a class document
into a fixed set of summary tokens. These learnable summary
tokens allow for a fixed computation cost of cross modality
alignment independent of the length of a document.
Generating Summary features from Document Each class
y is associated with a document d describing the class.
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An exhaustive search over all words of documents of each
class in I2DAttention becomes increasingly expensive as the
length of documents increase. We propose Document Sum-
mary Transformer (DSTransformer), a text transformer that
aims to learn to summarize the highly discriminative fea-
tures available in a document of a class into a fixed set
of tokens (Jaegle et al., 2021). It is important to note that
we define summary as a set of features corresponding to
learnable tokens rather than a human interpretable summary.
DSTransformer replaces the Document Transformer used in
I2DFormer Naeem et al. (2022).

Given a text document d consisting of M words, we
get its token-wise input representation with a pretrained
word embedding model. Similar to I2DFormer, we pass
this through a learnable MLP as a token projection layer
to reduce the feature dimension and memory footprint to
yield dt ∈ R

M×r . We introduce S = {s1, s2, ...sT } ∈ R
T×r

as a set of T learnable tokens that are appended to the ear-
lier tokenized representation of the document. These tokens
are introduced to summarize the discriminative information
available in each document. Given T < M , this results in
significantly reduced constant memory requirement of the
later I2D Attention independent from the length of the input
document. Moreover, we introduce a CLS ∈ R

r token that
is tasked with summarizing the global information available
in a document. S and CLS are appended to the document
of each class and passed through DSTransformer consisting
of several Transformer encoder blocks. We take the output
representation corresponding to tokens in S to get gS(d), the
local summary of the document and gCLS(d) as the global
feature of the document. The gCLS(d) is used in the I2D
Global module and gS(d) is used in the I2D Attention mod-
ule to learn global and local alignment between the image
and the document.

3.4 Inference

Given an input image x, we search for the document d̂ that
yields the highest compatibility score,

d̂ = argmax
d′∈D

s(x,d′). (6)

The search space includes only documents of unseen classes
in zero-shot learning i.e.,D = Du , and all classes in general-
ized zero-shot learning (GZSL) i.e.,D = Ds ∪Du . The final
prediction is simply the class label associated with the docu-
ment d̂. For GZSL, we apply calibrated stacking (Chao et al.,
2016) to calibrate the activations of unseen classes on a held-
out set to reduce the bias towards seen classes. We only use
the output of the global prediction as it is computationally
cheaper and has distilled the knowledge of patch-to-token
interactions while training. The attention between image

patch and summary tokens is computed as the explainability
of the model’s decision when required.

4 Experiments on Small Scale Datasets

We conduct extensive experiments on Animals with
Attributes2 (AWA2) (Xian et al., 2018), Caltech-UCSD
Birds (CUB) (Wah et al., 2011) and Oxford Flowers (FLO)
(Nilsback and Zisserman, 2008), which are widely used
datasets in ZSL. We follow the evaluation protocol and data
splits proposed by Xian et al. (2018). Since the main focus of
this work is to learn unsupervised semantic embeddings, we
do not use any human-annotated attributes. In the following,
we first describe how documents are collected and imple-
mentation details. Then, we quantitatively compare against
SOTA unsupervised semantic embeddings methods and ZSL
methods. Finally,we showquantitative results to demonstrate
the interpretability of our method.
Collecting documents We use online sources for documents
that can be queried with minimal human supervision. These
sources contain useful knowledge about each class but might
have a lot of noise as irrelevant textual details. For AWA2,
we useA-ZAnimals [69], an animal encyclopedia. For CUB,
we use Wikipedia [70]. For FLO, we use a collection of
gardening blogs and Wikipedia [70] to collect documents
for these classes. However, we found documents for flowers
to be less focused on the patterns of petals and pistils and
rather more focused on the general description of the plant
and its taxonomic biological classification. FLO is there-
fore a challengingdataset to generalize fromdocument-based
embeddings. We adopt a simple filtering step on these col-
lected articles similar to Kil and Chao (2021). We look at the
documents for 10% of classes of each dataset and identify
sections that contain relevant information about the class.
The rest of the documents are filtered to only contain these
sections. The average size of a document is ≈400 words.
To put this into perspective, models like CLIP (Radford et
al., 2021; Yao et al., 2022) use image captions of at max 77
tokens (Radford et al., 2021; Pham et al., 2023). The long
length of the documents presents an additional challenge.
The collected documents are attached with this submission
as supplementary material.
Training Details We implement our model in PyTorch and
train on an Nvidia A100 GPU. We use the VIT/B16 check-
point trained on ImageNet 1k by Dosovitskiy et al. (2021) as
the pretrained Image Transformer. The image patch projec-
tion and token projection layers are implemented as a shallow
MLP. Maxpool or Meanpool are chosen as global pooling by
ablation. The model is trained with Adam optimizer with a
learning rate of 1e−3 and takes≈24h to converge. LCLS and
Llocal relative weights are chosen by ablation. More details
are available in the supplementary. For baseline methods,
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we use the CLS features from the same VIT/B16 checkpoint
with author’s implementations.We ablate thesemethods over
multiple hyperparameters to report the best run. For VGSE,
we use the semantic embeddings released by the original
authors (not available for FLO).

4.1 Comparison with SOTA Unsupervised Semantic
Embeddings

In this section, we compare with existing unsupervised
semantic embeddings where they are obtained without using
human supervision using the same ZSL method (our I2D
global module).
Compared semantic embeddings For GloVe (classname)
(Pennington et al., 2014), we simply extract GloVe vec-
tors of class names. This method has been adopted by many
prior ZSL methods (Norouzi et al., 2014; Frome et al., 2013;
Akata et al., 2015; Naeem et al., 2021) due to its simplicity.
For GloVe (Document) (Pennington et al., 2014), we aver-
age over the feature vectors of each word in the document.
LongFormer (Beltagy et al., 2020) is a text transformer
model trained for documents and outputs a CLS embedding
given a document. MPNet(Song et al., 2020) is the current
SOTA Sentence Transformer model(Reimers and Gurevych,
2019) trained to optimize embeddings for natural language
classification tasks. Since the original model is trained for
short sequences, we average over the individual sentence
embeddings similar to Kil and Chao (2021); Bujwid and
Sullivan (2021). TF-IDF (Salton and Buckley, 1988) stands
forTermFrequency-InverseDocument Frequency,which has
beenusedby somepriorZSLmethods (Elhoseiny et al., 2013;
Lei Ba et al., 2015). VGSE (Xu et al., 2022) learns the seman-
tic embeddings from image patches and word embeddings
of class names. Since these embedding models generate one
embedding for the whole document, we replace the Docu-
ment Transformer with an equally deep MLP.
Results From Table 1, we observe that our method
I2DFormer+ consistently outperforms all semantic embed-
ding methods in both ZSL and GZSL. Compared to GloVe
(Document) (Pennington et al., 2014), which also serves as
an input to our method (without the average over words),
the learned embedding of our model achieves an impressive
77.3% accuracy vs 61.6% on AWA2, 45.9 % vs 29.0 % on
CUB and 41.3% vs 25.8% on FLO with a relative 1.25×,
1.5× and 1.6× improvement each. This shows that our
learned document embedding assisted by our I2D attention
module significantly improves the zero-shot performance.
We see that these improvements are also consistent in GZSL
where we see a significant improvement in the HM. Similar
results are observed for other pretrained language semantic
embeddings Longformer, MPNet and TF-IDF (Beltagy
et al., 2020; Song et al., 2020; Salton and Buckley, 1988).
Since the original embeddingmodels for these baselineswere

only trainedon languagedata, the generated semantic embed-
ding is unlikely to capture the most visually discriminative
features described in the document. Our model however is
able to learn a more informed semantic embedding thanks to
supervision from the images of the seen classes. Comparing
rows 1 and 2, we see that the use of documents over class-
names leads to a major improvement as documents capture
better class similarities.

Compared to VGSE (Xu et al., 2022), a strong unsu-
pervised semantic embedding baseline, we observe that our
model again substantially outperforms it. While both VGSE
and our model exploit patch-wise similarities in images of
different classes to learn a class embedding, our model is
additionally able to complement this embedding with local-
ized information available from the documents thanks to
our I2D Attention. Finally, I2DFormer+ achieves better per-
formance than I2DFormer (Naeem et al., 2022) thanks to
our DSTransformer which reduces the noise in the summary
tokens and allows for easier visual alignment while reducing
computational cost.

4.2 Comparing with SOTA ZSLMethods

In this section, we compare our full model I2DFormer+ with
existing SOTA zero-shot models across baseline embeddings
and our learned document embedding. For a fair comparison,
we evaluate those methods with the same VIT/B16 image
features. The GloVe baseline refers to encoding the docu-
ment with the average over the per token GloVe embeddings.
We show in Table 2 that our new method I2DFormer+ and
I2DFormer (Naeem et al., 2022), and their learned document
embeddings I2DEmb+ and I2DEmb (Naeem et al., 2022)
achieve SOTA performance.
Compared to baselines, our model I2DFormer+ or our
learned embedding consistently outperform all baseline
ZSL methods and embeddings to establish a new SOTA.
I2DFormer+ achieves SOTA ZSL performance on CUB
and FLO, the fine-grained datasets. On CUB, I2DFormer+
achieve an impressive 45.9% compared to the closest
43.7% of APN that also uses our I2DEmb+. On FLO,
I2DFormer+ achieves 41.3% compared to the closest 40.1%
of f-VAEGAN-D2 that again uses our I2DEmb+. In GZSL,
on CUB, I2DFormer+ achieves 45.3% HM compared to
the closest 42.2% of f-VAEGAN-D2 (I2DEmb). On FLO,
I2DFormer+ achieves an impressive 51.8% HM compared
to the closest 50.5% of APN (I2DEmb+). We would like to
emphasize that our model is outperforming both the gener-
ative baselines in GZSL on these two datasets. Generative
models have previously been shown to be the most competi-
tive baselines in these datasets. However, since I2DFormer+
learn a fine-grained attention between the image patches and
the words in the article, it is able to outperform these base-
lines with this extra knowledge without requiring feature
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Table 1 Comparing our I2DFormer+ with unsupervised semantic embedding methods using the same image feature and method (our I2D Global
module)

Semantic
Embedding

Source Zero-Shot Learning Generalized Zero-Shot Learning

AWA2 CUB FLO AWA2 CUB FLO

T1 T1 T1 u s H u s H u s H

GloVe(Pennington
et al., 2014)

CLSN 52.1 20.4 21.6 42.1 75.3 54.0 16.2 43.6 23.6 14.4 88.3 24.8

GloVe(Pennington
et al., 2014)

DOC 61.6 29.0 25.8 49.5 78.1 60.6 23.8 62.6 34.5 14.7 91.0 25.3

LongFormer
(Beltagy et al.,
2020)

DOC 44.2 22.6 8.8 41.6 81.8 55.2 19.9 41.0 26.8 8.8 89.8 16.0

MPNet(Song et al.,
2020)

DOC 61.8 25.8 26.3 58.0 76.4 66.0 20.6 44.3 28.2 22.2 96.7 36.1

TF-IDF(Salton and
Buckley, 1988)

DOC 46.4 39.9 34.0 29.6 87.6 44.2 29.0 52.1 37.3 28.9 94.8 44.3

VGSE(Xu et al.,
2022)

IMG + CLSN 69.6 37.1 - 56.9 82.8 67.4 27.6 70.6 39.7 - - -

I2DFormer(Ours)
(Naeem et al.,
2022)

IMG + DOC 76.4 45.4 40.0 66.8 76.8 71.5 35.3 57.6 43.8 35.8 91.9 51.5

I2DFormer+ (Ours) IMG + DOC 77.3 45.9 41.3 69.8 83.2 75.9 38.3 55.2 45.3 36.9 86.9 51.8

In ZSL, we report top-1 accuracy (T1) on unseen classes, in GZSL on seen/unseen (s/u) classes and their harmonic mean (H). We consider semantic
embeddings that are either directly extracted (with a pretrained language model) or learned from different sources including classnames (CLSN),
document (DOC), a combination of image and classnames (IMG+CLSN), and a combination of image and document (IMG+DOC). Our newmodel
I2DFormer+ significantly improves on the baselines to set a new SOTA for unsupervised class embeddings.
Bold refers to the best performance result as normal in Computer Vision community

generation. On AWA2, a coarse classification dataset, we
see that I2DFormer+ achieves SOTAperformance among the
Discriminative baselines. However, the best performance is
achieved by the Generative baseline f-VAEGAN-D2 using
I2DEmb on this dataset. f-VAEGAN-D2 with I2DEmb
achieves the best ZSL accuracy of a remarkable 85.1%vs. the
closest 84.0% achieved by the same method with I2DEmb+.
In GZSL, f-VAEGAN-D2 with I2DEmb achieves SOTA
with an impressive HM of 77.2% followed by 75.9% of the
same method with I2DFormer+ embeddings. These base-
lines are only able to outperform I2DFormerwith our learned
I2DEmb+ and I2DEmb.

4.3 Ablation Study

What kind of Patch to Word Attention is required in ZSL?We
study the importance of learning patch to word attention for
Document based embeddings in Table 3. We see that while
only training I2DGlobal can learn a competitive ZSL model,
it significantly improves and achieves SOTA performance
with the introduction of our I2D Attention module (Naeem
et al., 2022) in I2DFormer+.We see a relative 14%, 16%, and
8% improvement over I2DGlobal. This validates our hypoth-
esis that the patch to word attention distills its knowledge to

the globalI2DEmb+, improving its performance. In the same
table, we also ablate over 2 competing cross-modal attention
modules. FILIP (Yao et al., 2022) is a recent method that pro-
poses to associate each image patch to itsmost attendedword.
We see that this hurts the performance when using noisy
Documents. ViLBERT (Lu et al., 2019) proposes a cross-
modal attention module which is paired with a self-attention
block (Vaswani et al., 2017) to learn an image embedding.We
see that while this improves the performance over I2DGlobal
on AWA2, it leads to worse performance on our fine-grained
datasets CUB and FLO potentially due to the bigger model
requiring more training data. Our I2D Attention outperforms
both these baselines and achieves SOTA performance.
What kind of input text representation works best for
I2DFormer+?We ablate over several pretrained word/ token
representations to be used as an input to our Document Sum-
mary Transformer (DSTransformer) in Table 4 and note that
GloVe (Pennington et al., 2014) achieves the best result. We
observe that the Transformer based language models Long-
Former (Beltagy et al., 2020) performmuch worse than older
baselines Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). We conjecture that this is due to the
DSTransformer having limited text data for the seen classes
while training. Transformer-based models generate different
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Table 2 Comparing I2DFormer+ with baseline ZSL methods, under various unsupervised semantic embeddings we see that our model and
embeddings (I2DEmb+ and I2DEmb) set a new SOTA

Type ZSL Model Semantic
Embeddings

Zero-Shot Learning Generalized Zero-Shot Learning

AWA2 CUB FLO AWA2 CUB FLO

T1 T1 T1 u s H u s H u s H

Generative GAZSL(Zhu et al.,
2018)

GloVe 63.7 37.5 20.9 22.2 90.8 35.6 5.93 36.2 10.2 8.38 97.3 15.4

VGSE 74.7 35.7 - 29.5 93.8 44.9 10.5 51.8 10.5 - - -

I2DEmb(Ours) 83.1 42.9 34.2 56.8 94.7 71.0 15.9 50.4 24.1 28.8 90.1 43.7

I2DEmb+ (Ours) 77.0 43.0 36.2 45.9 86.7 60.0 16.8 59.0 26.2 29.1 98.3 44.9

f-VAEGAN-D2
(Xian et al., 2019)

GloVe 70.7 31.8 32.1 65.7 69.5 67.6 23.9 55.7 33.5 25.0 99.0 39.9

VGSE 75.0 40.7 - 70.8 79.0 74.7 32.7 57.5 41.7 - - -

I2DEmb(Ours) 85.1 41.9 36.9 73.2 81.7 77.2 33.4 57.3 42.2 30.0 97.3 45.8

I2DEmb+ (Ours) 84.0 35.5 40.1 67.8 86.2 75.9 33.2 57.4 42.1 32.4 98.7 48.8

Discriminative SJE(Akata et al.,
2015)

GloVe 56.6 27.1 13.1 41.3 83.4 55.3 14.4 51.6 22.5 4.6 93.2 8.7

VGSE 70.1 31.6 - 49.9 84.8 62.8 23.1 57.5 33.0 - - -

I2DEmb(Ours) 72.6 38.2 33.4 55.8 82.6 66.6 25.0 56.2 34.6 18.5 87.1 30.5

I2DEmb+ (Ours) 72.8 40.2 39.8 66.8 80.2 72.9 30.3 52.1 38.3 34.6 92.7 50.4

APN(Xu et al., 2020) GloVe 73.8 20.7 15.2 57.6 84.6 68.5 19.6 32.6 24.5 12.8 39.4 19.3

VGSE 74.0 34.3 - 65.0 72.4 68.5 23.2 52.9 32.1 - - -

I2DEmb(Ours) 74.5 40.6 35.4 65.5 76.9 70.7 30.0 49.9 37.5 32.0 85.3 46.5

I2DEmb+ (Ours) 74.8 43.7 39.7 70.9 71.2 71.1 37.2 45.2 40.8 36.3 83.0 50.5

I2DFormer(Ours)
(Naeem et al.,
2022)

I2DEmb (Ours) 76.4 45.4 40.0 66.8 76.8 71.5 35.3 57.6 43.8 35.8 91.9 51.5

I2DFormer+ (Ours) I2DEmb+ (Ours) 77.3 45.9 41.3 69.8 83.2 75.9 38.3 55.2 45.3 36.9 86.9 51.8

In ZSL, we report top-1 accuracy (T1) on unseen classes, in GZSL on seen/unseen (s/u) classes and their harmonic mean (H). Best embedding
results within a method are underlined
Best results overall are bolded

Table 3 Ablation over I2DFormer+

Model AWA2 CUB FLO

I2DGlobal 69.4 37.2 37.2

I2DGlobal + FILIP(Yao et al., 2022) 67.3 35.7 38.3

ViLBERT(Lu et al., 2019) 75.0 29.9 21.3

I2DFormer+ 77.3 45.9 41.3

The proposed I2DGlobal module greatly benefits from the addition of
I2DAttention to achieve SOTA performance. Comparing against FILIP
and VilBERT cross-modal attention, we see that I2DAttention achieves
SOTA
Bold refers to the best performance result as normal in Computer Vision
community

word features for the sameword with self-attention (Vaswani
et al., 2017). Documents of unseen classes use the same and
additional vocabulary in new sentences causing a distribution
shift in their input representation.

Table 4 Ablating over input embeddings for our Document Summary
Transformer we see that older models like Word2Vec and GloVe serve
as better input representation than modern Transformer-based language
models

Input Embedding AWA2 CUB FLO

LongFormer(Beltagy et al., 2020) 53.9 39.8 26.1

Word2Vec(Mikolov et al., 2013) 75.0 44.6 39.0

GloVe(Pennington et al., 2014) 77.3 45.9 41.3

Bold refers to the best performance result as normal in Computer Vision
community

Ablation between Global and Local Scores I2DFormer+
learns a global score s in the I2DGlobal module and a local
score slocal in the I2DAttention module. We additionally
report the performance and ablation with slocal in Table 5.
Comparing row 1 and row 2, we see that only training the
individual block already results in a competitivemodel.How-
ever, I2D Global achieves better performance as learning
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Table 5 Ablation on the scoring heads of I2DFormer+ on the I2DGlobal and I2DAttention modules

Model Scoring Zero-Shot Learning Generalized Zero-Shot Learning

AWA2 CUB FLO AWA2 CUB FLO

T1 T1 T1 u s H u s H u s H

I2D Global s 69.4 37.2 37.2 59.1 79.7 67.8 28.5 59.1 38.4 28.4 88.2 43.0

I2D Attention slocal 65.7 37.1 25.8 61.1 73.1 66.6 27.5 50.2 35.5 24.1 93.7 38.3

I2DFormer+ slocal 75.3 45.0 39.2 65.1 81.9 72.5 35.2 51.9 41.7 33.3 95.8 49.5

I2DFormer+ s 77.3 45.9 41.3 69.8 83.2 75.9 38.3 55.2 45.3 36.9 86.9 51.8

I2DGlobal computes the global score s and I2DAttention computes the local score slocal . We observe that jointly training both leads to the best
performance for both slocal and s setting a SOTA. In ZSL, we report top-1 accuracy (T1) on unseen classes, in GZSL on seen/unseen (s/u) classes
and their harmonic mean (H)
Bold refers to the best performance result as normal in Computer Vision community

Table 6 Ablating over number of summary tokens for our Document
Summary Transformer we see that our AWA achieves the best results
at 128 while CUB and FLO achieve the best results at 256 tokens

Summary Tokens AWA2 CUB FLO

64 75.2 45.8 39.5

128 77.3 45.3 39.6

256 75.6 45.9 40.9

Bold refers to the best performance result as normal in Computer Vision
community

cross-modal attention is a harder task than matching global
embeddings. Comparing row 2 and 3, we see that combining
both modules lead to a major improvement in slocal as it dis-
tills the knowledge of the global embedding. We see that the
two modules of I2DFormer+ have a symbiotic relationship
where both greatly benefit from joint training and achieve a
boost in performance. Comparing rows 3 and 4, we see that
the global score s achieves better performance as it addition-
ally uses global information of the image and the document
and sets the state-of-the-art.
Ablation over Summary Tokens We ablate over the number
of summary tokens in Document Summary Transformer in
Table 6. These tokens summarise the local information avail-
able in the document into a fixed set of tokens used for cross
modal alignment in our I2DAttention module.We notice that
for AWA, we get the best performance at 128 tokens. For the
twofinegrained datasetsCUBandFLO, the best performance
requires more tokens and is achieved at 256 tokens.

4.4 Qualitative Results

Document Transformer attention for I2DEmb+ We look at
the learned attention over documents of unseen classes in
Table 7 and plot the top 8 most attended words across the
Document Transformer attention heads for I2DEmb+. On
AWA2,we see that class name is complementedwith human-
like labelled attributes for these classes such as the color of the

animal, type of the feet, and habitat etc. For the fine-grained
datasets, CUB and FLO, we see that for similar classes like
the two warblers, the model learns similar attributes like
“ruby-crowned” as well as discriminating “tiger stripes” vs
“chestnut patterns”.We confirm our hypothesis that a learned
document embeddingwill focus on discriminating properties
of the class from the noisy document.
Visualizing Document word to Image attention as the col-
umn of the attention matrix in Fig. 2a, we see the impressive
localization ability of I2DFormer Naeem et al. (2022) for
the top attended words in I2DEmb. We see that the model
is able to localize the unseen classes horse and giraffe in
the image despite never observing them while training. The
discriminating properties like the hoofed legs are also local-
ized in the image. For CUB, we see that between the two
very similar images of two unseen classes, the model iden-
tifies the yellow bottom as an important property from the
two different documents of the ground truth class. However,
the model is further able to identify the discriminative tiger
stripes of the Cape May Warbler to differentiate it from the
Tropical Kingbird which has gray-green feathers leading to
correct classification. Finally, on FLO, the localization abil-
ity of I2DFormer remains consistent where the Peruvian lily
is identified by localizing it as a Lily and identifying its
stripped and curved petals. Similarly for Globe Thistle, the
model is able to differentiate the sharp teeth, soft and wrin-
kled parts of the flower. The prevalence of these words as
top attended words in the document transformer and their
impressive localization verifies our hypothesis that the atten-
tion module distills its knowledge to the CLS head. A model
that does not learn patch to word attention can miss these
properties if they are not deemed important among the seen
classes.
Visualizing Summary Token to Image attention in
I2DFormer+ reveals similar interpretability to I2DFormer
Naeem et al. (2022). Since I2DFormer+ abstracts the doc-
uments information into a fixed set of tokens, this attention
is computed against each token as shown in Fig. 2b. We visu-
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Table 7 Top attended words for
I2DEmb+ for unseen classes in
the Document Transformer
consist of discriminative
properties available in the
document

Classname Top attended words for I2DEmb

AWA2 Blue Whale enourmous, polar, greyish, massive, blue, smooth,
water, whale

Sheep fluffy, grass, wooly, horns, rams, stocky, hooves,
sleeker

Seal blubber, saltwater, fur, seal, ocean, frigid, elongated,
pinnipeds

Giraffe hoofed, mammals, woodlands, leaves, markings,
reddish, pigmented, mane

CUB Green Violetear black, shining, bronzy, green chest, colibrim,
canopy, glittering

Tropical Kingbird dark color, gray, rural, venezuela, gray-green
feathers, flycatcher, gray-headed, kingbird

Cape May Warbler tiger stripes, short-tailed, decurved, ruby-crowned,
white, olive, cape, yellowish

Chestnutsided Warbler crown, wingbars, markings, plumage, brushy, oak,
warbler, green

FLO Pink Primrose wildflower, primrose, four-petaled, glabrous, bloom,
buttercups, ranunculus, amapola

Globe Thistle sticky, weed, daisy, wooly, thistles, sharp toothed,
wrinkled, florets

Peruvian Lily lobes, tuber, stripped, flecked, purple, streaked,
curving petals, resupinate

Tiger lily ornamental, tiger, capsules, bulblets, lilium,
tigrinum, pollinated, lily

alize three tokens per example and see that the model has
abstracted various concepts in a summary token. For AWA,
we see that the model focus on the horse, its background and
identifying features like hoofed legs similar to I2DFormer.
Similarly for Giraffe, the model looks at the giraffe in the
image, the leaves in the background and the discriminative
patterns on the fur. For CUB, the model focus on the bird and
the patterns on the feather and the tail, and the environment
the bird is found in. Finally, this interpretability remains con-
sistent on FLOwhere themodel focuses on the petals of King
Protea, its large central part and the surrounding leaves. Sim-
ilarly for Spear Thistile, the model focuses on the top flower
and the various spiky structures on the body. It is important
to note that this interpretability emerges without any paired
image level supervision. Moreover, we see that the summary
token encode the local information available in the document
and provide similar cues to I2DFormer Naeem et al. (2022)
at significantly reduced computational cost for attention.

5 Experiments on Large Scale Dataset

ImageNet is a challenging benchmark for zero-shot image
classification methods as it tasks the model to train on 1000
classes and generalize to 500 additional classes. Due to
the difficulty of the task, most works exclude this dataset

and as a result the performance has saturated in recent
years. We conduct large scale experiments on two differ-
ent splits of ImageNet dataset. Both the splits consist of the
same training classes from ImageNet1k. The first split called
MP500 (Xian et al., 2018) consists of unseen classes from
the most populated classes in ImageNet21k which are not
part of ImageNet1k. The second split called Generic Object
ZSLDataset (GOZ) (Hascoet et al., 2019) takes amore struc-
tured approach to construct the evaluation set. Namely, they
only contain test classes that are not direct neighbor of train-
ing classes in WordNet, have high quality word embeddings
and have sufficient number of images. The GOZ split also
contains a total of 500 unseen classes.
Collecting documentsWeuseWikipedia as the source of doc-
uments for ImageNet similar to baseline works Bujwid and
Sullivan (2021); Kil and Chao (2021). However, since Ima-
geNet consists of a large number of classes, some of which
are very similar, we can not directly rely on the results of
Wikipedia’s python API as it can map multiple classes to
the same document as also reported by Bujwid and Sulli-
van (2021). Moreover, some classes in ImageNet have vague
names. For example, the class consisting of OLEDMonitors
with synset id “n03854506" has the english name OLED in
WordNet; however, thewikipedia article for OLEDdescribes
the technical details of OLED technology and not the dis-
plays. Matching articles manually for a large number of
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Fig. 2 Visualizing Image Attention we see that our model I2DFormer
has learned to localizewords in the imagewithout anypairedpatch-word
supervision. This learned attention differentiates the two similar birds in
the second rowby identifying and localizing tiger stripes and gray-green

as discriminative properties. Similar abilities emerge in I2DFormer+
where themodel learns this interpretability against the summary tokens.
These summary tokens have encoded the local information available in
the document into a fixed set of tokens

classes is not scalable.We construct an automated pipeline to
match a class in ImageNet with the most suitable document
on Wikipedia.

Given a class name in ImageNet, we queryWikipedia and
store all documents corresponding to the search result after
performing section filtering as proposed by Bujwid and Sul-
livan (2021). We utilize a pretrained CLIPmodel (Radford et
al., 2021) to do unsupervised matching between a class and
the document that best describes it. Since CLIP is trained for
short text sequences, its text encoder only supports a max-
imum sentence length of 77 tokens. For a given document,
we split it into its sentences. If a sentence is longer than

77 tokens, we further split it into chunks smaller than the
maximum input tokens. We get the text embedding for each
of these and mean over them to get the embedding of the
document. We sample 100 images from the class and com-
pute their visual embedding using the visual embedder of the
pretrained CLIP model. We compute a dot product between
each image and the document embeddings to measure their
compatibility with the images of the class. We average over
the number of images and match the class with the document
that results in thehighest compatibility across the100 images.
Moreover, we also ensure that if a document is matched with
a class, it is not used for matching with a subsequent class.
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Table 8 Comparing our I2DFormer+ with unsupervised semantic embedding methods using the same image feature and method (our I2D Global
module)

Semantic Embedding Source Zero-Shot Learning Generalized Zero-Shot Learning

MP500 GOZ MP500 GOZ

T1 T1 u s H u s H

GloVe (Pennington et al., 2014) CLSN 16.9 9.1 15.3 40.7 22.2 8.7 37.4 14.1

GloVe (Pennington et al., 2014) DOC 19.4 11.6 17.3 45.1 25.0 10.6 42.4 17.0

LongFormer (Beltagy et al., 2020) DOC 18.8 11.4 16.2 43.5 23.6 10.5 38.5 16.5

MPNet (Song et al., 2020) DOC 19.7 10.3 17.1 40.2 24.0 9.5 37.9 15.2

TF-IDF (Salton and Buckley, 1988) DOC 19.0 10.3 16.3 37.3 22.6 9.3 36.0 14.8

I2DFormer(Ours) (Naeem et al., 2022) IMG + DOC 23.2 15.5 19.5 43.7 26.7 13.4 41.5 20.3

I2DFormer+ (Ours) IMG + DOC 24.5 17.6 20.9 46.0 28.7 15.5 45.2 23.1

In ZSL, we report top-1 accuracy (T1) on unseen classes, in GZSL on seen/unseen (s/u) classes and their harmonic mean (H). We consider semantic
embeddings that are either directly extracted (with a pretrained language model) or learned from different sources including classnames (CLSN),
document (DOC), and a combination of image and document (IMG+DOC). Our models I2DFormer+ and I2DFormer significantly improves on the
baselines to set a new SOTA for unsupervised class embeddings
Bold refers to the best performance result as normal in Computer Vision community

We repeat this process for all classes in our ImageNet splits
to collect their documents. We have attached the collected
documents with the source files of the manuscript.
Computing the Loss over sampled negatives We compute
LCLS , the global alignment loss and LLocal , the local align-
ment loss over the set of seen classes Ys available while
training on small scale datasets. However, this becomes com-
putationally expensive on Large Scale datasets as the number
of classes increases. We address this by proposing a sampled
negatives based loss rather than computing the loss over all
the classes in Ys . Given a batch of randomly sampled train-
ing examples from label set Ys , we define Yb as the set of
labels that are represented in the batch. We additionally sam-
ple negatives not present in the batch to define Yn . For each
training batch, these negatives are randomly sampled and the
loss is computed against the label set Yb ∪Yn for both LCLS

and LLocal .
Training DetailsWe train I2DFormer+ and I2DFormer with
a compute budget of a single A100 GPU similar to our small
scale experiments. We use a batch size of 16 for training and
sample 200 additional negatives for batch-wise loss com-
putation. The number of summary tokens are fixed to 128.
I2DFormerNaeem et al. (2022) is only able to be trainedwith
20 negatives due to needing costly local attention over the full
document. The model is trained with Adam Optimizer with
a learning rate of 1e−3 and takes 7 days to converge to the
reported numbers. LCLS and LLocal relative weights chosen
by ablation.

5.1 Comparison with SOTA Unsupervised Semantic
Embeddings on ImageNet

In this section, we compare with existing unsupervised
semantic embeddings where they are obtained without using
human supervision using the same ZSL method (our I2D
global module). We report the results in Table 8.
Results From Table 8, we observe that our method
I2DFormer+ consistently outperforms all semantic embed-
ding methods in both ZSL and GZSL. We see similar
conclusion to the small scale setting where replacing the
GloVe (Classname) with GloVe (Document) results in a
large boost in performance. This further validates our hypoth-
esis that documents serve as better auxiliary information
compared to class names. I2DFormer+ significantly outper-
forms GloVe (Document), the initialization embedding of
I2DFormer+. I2DFormer+ achieves 24.5% ZSL accuracy
on MP500 vs 19.4 of GloVe and 17.6% ZSL accuracy on
GOZ compared to 11.6% of GloVe. We see similar consis-
tent improvements in the GZSL setting where I2DFormer+
shows impressive gains in the HM. This further validates our
hypothesis that a learnable document embeddingwill outper-
form a frozen embedding model like GloVe. We see similar
results in other pretrained language semantic embeddings
Longformer, MPNet and TF-IDF (Beltagy et al., 2020;
Song et al., 2020; Salton andBuckley, 1988). These language
onlymodels are not trained on any visual data and hence they
are less likely to capture the most visually relevant features
described in text. Our model however benefits from both our
learnable text transformer aswell as our crossmodel attention
block I2DAttention which learns to extract the most visu-
ally relevant information. Finally, comparing I2DFormer+ to
I2DFormer Naeem et al. (2022), we see that the I2DFormer+
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Fig. 3 Comparing I2DFormerwith baseline ZSLmethods on ImageNet
Mp500 split, we observe that our model consistently outperforms all
baselines to set a new state-of-the-art in the challenging large scale
zero-shot learning setting

achieves better performance across both the splits of Ima-
geNet. We attribute this improvement to DSTransformer’s
ability to reduce noise in the document into a fixed set of
summary tokens and the computational cost improvements
of I2DFormer+. This allows I2DFormer+ to process more
negatives for each training sample compared to I2DFormer
at the same computational budget.

5.2 Comparison with SOTAModels onMP500

We compare I2DFormer+ and I2DFormer Naeem et al.
(2022) with ZSL results reported by Bujwid and Sullivan
(2021) on the MP500 splits.
Results From Fig. 3, we observe that I2DFormer+ con-
sistently outperforms all baseline methods to set a new
state-of-the-art on ImageNet scale zero-shot image classifi-
cation. I2DEmb+ achieve an impressive zero-shot accuracy
of 24.5 % compared to the previous best reported result of
19.87% of CADA-VAE with wikipedia article (Bujwid and
Sullivan, 2021). We attribute this improvement to the ability
of ourmodel to directly learn a class embedding from the doc-
ument text with global and fine-grained alignment with the
twomodules of our model. Baseline models are limited them
to the information available in the pretrained embedding and
can not further extract fine-grained knowledge. We make the
same observation as in the small scale experiments where
I2DFormer+ outperforms the generative baseline. Finally
as we compare I2DFormer+ with I2DFormer Naeem et al.
(2022), we observe that our architecture improvements trans-
late to improvement in performance. I2DFormer+ achieves a
ZSL accuracy of 24.5% compared to 23.7% of I2DFormer.

Table 9 Comparing I2DFormer+ with baseline ZSL models on chal-
lenging GOZ split of ImageNet, we observe a significant improvement
in the GZSL setting

Model Aux Info ZSL (%) GZSL (%)

CONSE (Norouzi et
al., 2014)

Classname 10.65 0.12

DEVISE (Frome et
al., 2013)

Classname 11.15 7.87

ESZSL (Romera-
Paredes and Torr,
2015)

Classname 13.54 4.59

GCN-6 (Wang et al.,
2018)

Classname 9.58 4.81

GCN-
2 (Kampffmeyer et
al., 2019)

Classname 14.09 4.96

ADGPM
(Kampffmeyer et
al., 2019)

Classname 14.10 4.9

I2DFormer+ (Ours) Wiki 17.6 23.1

I2DFormer+ achieves a 3× improvement over the closest GCN based
baseline ADGPM
Bold refers to the best performance result as normal in Computer Vision
community

5.3 Comparison with SOTAModels on GOZ

Most works in Large Scale zero-shot learning have focused
on the older splits of ImageNet proposed by Xian et al.
(2018). While these splits have driven progress in the field,
they comewith somemajor limitations. Splits such asMP500
do not take parent and child relations in WordNet tree. As
a result, several zero-shot classes are direct children or par-
ent of training classes. In zero-shot prediction, these classes
are picked as nearest neighbors to seen classes and gives
a false sense of improvement. Moreover, ImageNet21k con-
sists of several classes that have low quality images or are not
well represented in Wikipedia which impacts the quality of
their pretrained word embedding. As a result, these classes
are bound to have low accuracy due to data or embedding
quality. These issues are analysed by Hascoet et al. (2019)
to propose a new zero-shot split of ImageNet that consists
of unseen classes that are sufficiently different from train-
ing classes, have good quality of image data and have good
quality word embeddings.We compare I2DFormer+with the
results reported by author in Hascoet et al. (2019) in Table 9.
We report the zero-shot accuracy and the harmonic mean in
generalized zero-shot setting.
Results We observe from Table 9 that I2DFormer+ out-
performs all baselines to set a new state-of-the-art on this
more challenging split too. I2DFormer+ significantly outper-
forms the previous DEVISE (Frome et al., 2013) with a 3×
improvement to achieve a HM of 23.1% compared to 7.87%
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of the baseline. Similarly on ZSL accuracy, I2DFormer+
achieves 17.6% compared to 14.10% of ADGPM.

6 Conclusion

We propose I2DFormer+, a fully Transformer based frame-
work for learning semantic embeddings from noisy docu-
ments. Our I2D Global module learns a shared embedding
space between an image and document embeddings. This is
assisted by our I2D Attention module learns local features
about the class defined in the document without any paired
image-level captions. Our DSTransformer summarizes the
most discriminative global and local information available in
a document into a fixed set of learnable tokens. This leads to
performance improvement while reducing the computational
complexity of our local attention. As a result, our full model
I2DFormer+ achieves SOTA performance on both ZSL and
GZSL with respect to baseline semantic embedding base-
lines and zero-shot models. In addition, our model develops
an impressive ability to identify and localize discriminative
properties of a class in the image. Finally, we show that the
learned embeddings from our model can further improve all
zero-shot methods.
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