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Abstract
Urban regeneration is an important strategy for land redevelopment, to address the urban decay in cities. Among many tasks,
urban layout is the foundation for urban regeneration. In this paper, we target a new task called function-aware urban layout
regeneration, and propose UrbanEvolver, a function-aware deep generative model for the task. Given a target region to be
regenerated, our model outputs a regenerated urban layout (i.e., roads and buildings) for the target region by considering
the function (i.e., land use type) of the target region and its surrounding context (i.e., the functions and urban layouts of the
surrounding regions). UrbanEvolver first extracts implicit regeneration rules from the target function and the surrounding
context by encoding them separately in different scales through the function-layout adaptive (FA) blocks, and then constrains
the regenerated urban layout based on the learned regeneration rules. To enforce the regenerated layout to be valid and to
follow the road structure, we design a set of losses covering both pixel-level and geometry-level constraints. To train our
model, we collect a large-scale urban layout dataset covering more than 147 K regions under 1300 km2 with rich annotations,
including functions, region shapes, urban road layouts, and urban building layouts. We conduct extensive experiments to
show that our model outperforms the baseline methods in generating practical and function-aware urban layouts based on the
given target function and surrounding context.

Keywords Urban regeneration · Urban layout regeneration · Function-aware generative model

Communicated by Arun Mallya.

Yiming Qin, Nanxuan Zhao have contributed equally to this work.

Corresponding author: Bin Sheng. Rynson Lau and Bin Sheng lead
this project.

B Bin Sheng
shengbin@sjtu.edu.cn

Yiming Qin
yiming_qin@sjtu.edu.cn

Nanxuan Zhao
nanxuanzhao@gmail.com

Jiale Yang
yangjiale@sjtu.edu.cn

Siyuan Pan
pansiyuan@sjtu.edu.cn

Rynson W. H. Lau
Rynson.Lau@cityu.edu.hk

1 Department of Computer Science and Engineering, Shanghai
Jiao Tong University, Shanghai, China

2 Department of Computer Science, University of Bath, Bath,
UK

3 Department of Computer Science, City University of Hong
Kong, Kowloon, HKSAR, China

1 Introduction

Decaying and underused urban regions in a city may damage
the image, liveability and productivity of the city (Amirtah-
masebi et al., 2016). To address this problem, a complex
urban regeneration plan is typically needed, of which coming
outwith an urban layout is one of the essential tasks.Anurban
layout basically contains the shape and position of roads and
buildings. Given a target region for layout regeneration, there
aremany factors that can influence the result (Amirtahmasebi
et al., 2016). Among them, the target function (i.e., the land
use type) and the surrounding context (i.e., the functions,
urban layouts and region shapes of the surrounding regions)
play the key roles. The target function characterizes the lay-
out of a region (Groenewegen et al., 2009). For example,
an industrial region typically has a more regular and sparse
layout, while a residential region tends to have an irregular
and dense layout. The surrounding regions also influence the
layout regeneration, especially near the boundary (Parish &
Müller, 2001; Groenewegen et al., 2009). For example, the
boundary of the target region tends to have dense and low-
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Fig. 1 Urban layout regeneration process. Given a target region with
its function and surrounding context (where the color of each surround-
ing region indicates its function category) as shown on the left, our
function-aware urban layout regenerator, UrbanEvolver, automatically

regenerates the urban layout (i.e., road and building layouts) of the tar-
get region as shown in the middle, which matches the user-specified
function and the surrounding regions. 3D models can be further added
to the target region as shown on the right

class flats if it is next to an industrial region, but spare houses
if it is next to a park. However, urban layout regeneration
is a tedious and time-consuming task, even for experienced
designers. In this work, we aim to ease the burden by taking
the first step to learn the function-aware layout regeneration
from data.

Traditional works ( Parish and Müller (2001); Weber et
al. (2009); Lipp et al. (2011)) generate urban layouts in vec-
tor format through hand-crafted rules, which have limited
representation power. Recent works (Belli & Kipf, 2019;
Chu et al., 2019; Mi et al., 2021) adopt data-driven methods
for generating urban road layouts in vector format. However,
because of the surging computational resources for modeling
the relationship among road nodes, these methods can only
generate urban road layouts based on limited local statistics.
It becomes even more difficult to adapt to model the context
(i.e., function and the surrounding region) in our task.

To this end, we propose UrbanEvolver, a function-aware
urban layout regeneration method. Given a target region to
be regenerated, UrbanEvolver regenerates the layout of the
target region conditioned on the target function and the sur-
rounding context, as shown in Fig. 1. It first implicitly learns
the regeneration rules (e.g., the characteristics of different
target functions) from the target function and the surround-
ing context. To achieve this, our model first extracts features
from the functional map and the surrounding context and
then fuses these features through our novel function-layout
adaptive (FA) block.However, it is difficult to learn the regen-
eration rules directly from the natural vector data which
are represented with an adjacency matrix of thousands of
dimensions.We build pixel-level data by rendering the region
shapes/functions as a functional map and the urban layouts
as an urban layout map to facilitate efficient learning, while
leaving the connectivity information of the target region in
vector format to facilitate accurate learning. Unlike the func-
tional map in (Ovsjanikov et al., 2012), our functional map
is a bird’s eye view land-use (function) planning map that

indicates the functions of the target region and surrounding
regions. Hence, we regenerate the urban layout of the target
region in a hybrid way by utilizing both vector and pixel data
for balancing between computational efficiency and accu-
rate supervision. Through training, our model learns how to
extract effective fused features, i.e., implicit representation,
and map them to urban layouts.

To supervise the model training, we design a set of losses,
including both geometry-level and pixel-level constraints,
taking advantage of knowledge from the two domains.While
the geometry-level losses help constrain the regenerated
results based on road networks and junctions, the pixel-level
losses aim at increasing the realism and diversity of the regen-
erated layouts.

To facilitate learning and evaluation, we have collected a
large-scale urban layout dataset that covers more than 147K
regions from the Open Street Map (OSM) (OpenStreetMap
contributors, 2017). Our dataset has rich annotations, includ-
ing region shapes and functions, urban road layouts, and
urban building layouts. We evaluate our method on our
dataset for urban layout regeneration, based on visual and
structural quality. Results show that our proposed model can
regenerate a valid and function-aware urban layout condi-
tioned on the target function and surrounding context. Our
method also outperforms the baseline methods in regenerat-
ing urban layouts. Our main contributions are as follows:

• We make the first effort to study the function-aware
urban layout regeneration task, and propose an end-to-
end function-aware deep model, UrbanEvoler, for urban
layout regeneration.

• We propose a function-layout adaptive (FA) block to
extract implicit urban layout regeneration rules, and a
set of pixel-level and geometry-level loss functions to
help ensure the generation of valid urban layouts while
minimizing the computational costs.
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• We collect a large-scale urban layout dataset covering
147K regions of 1300 km2 with rich annotations, includ-
ing region shapes and functions, urban road layouts, and
urban building layouts.

• Wedemonstrate the effectiveness of ourmethod on urban
layout regeneration through extensive experiments. We
show that our model can capture the urban layout char-
acteristics of different target functions. We also show the
practical usage of our model via several applications.

2 RelatedWork

2.1 Urban Layout Design

Urban layout is important to the design of a city, and has
attracted a lot of research. Earlier works mainly considered
city modeling using traditional procedural modeling tech-
niques, while recent works focused on urban road layout
generation with deep learning techniques. We discuss in
detail these two directions of work.

Traditional City Modeling. Parish and Müller (2001)
proposed a city generation method based on the L-system. It
generated urban layouts from scratch and procedurally cre-
ated them based on hand-crafted rules. Their method was
refined by Weber et al. (2009), which procedurally gener-
ated a city with realistic geometric configurations such as
parcel boundaries, street widths and building footprints. On
the other hand, Lechner et al. (2006) procedurally gener-
ated the distribution of land uses, placement of buildings and
roads of the city based on an agent-basedmethod when given
a terrain description for the whole city. Lipp et al. (2011) pro-
posed a method for editing and merging urban layouts, using
both procedural modeling and manual editing. This allows
intuitive manipulation, including drag, drop, translation and
rotation, on urban layouts. Given a region and design ele-
ments such asmajor roads, lakes and parks, Yang et al. (2013)
utilized hierarchical domain splitting to generate street lay-
outs and parcel layouts.

All these existing city generation methods are mainly
based on procedural modeling, and generate urban layouts
from scratch without taking into account the surround-
ing context. Procedural modeling methods are limited to
hand-crafted rules, which are inflexible and less expressive,
requiring a lot of human laboring efforts. Unlike city gen-
eration, urban layout regeneration aims to regenerate a new
urban layout for a target region, which is surrounded by other
existing regionswith different/same functional purposes. The
new layout for the target region should be constrained by the
target function and the surrounding context, rather than just
ensuring the validity within the target region only. To address
this new task, we propose a deep learning based approach
in this work to learn the complex regeneration rules from

the target function and the surrounding context, and build a
function-aware regenerative model to regenerate the urban
layout of the target region based on the learned regeneration
rules.

Urban Road Layout Generation. Chen et al. (2008) uti-
lized a tensor field approach to generate the whole street
network. However, it required expertise to manually create
a tensor field in order to obtain a desired urban road layout.
Aliaga et al. (2008) generated a complete street network con-
ditioned on examples of aerial-view imagery. They utilized a
random walk based algorithm to generate the street network
according to the attributes of the intersection points. Groe-
newegen et al. (2009) procedurally generated a street network
based on high-level user inputs, such as city size, location and
historic background. Nishida et al. (2016) also proposed an
example-driven procedural urban road generation method. It
generated urban road layouts by merging patches extracted
from examples. An edge and point mergingmethod was used
to ensure connectivity among the patches.

In recent years, deep learning based methods have been
introduced to urban road layout design. StreetGAN (Hart-
mann et al., 2017) is an example-based road layout generation
method. It synthesized urban road layouts by reproducing
the style of the reference patches from scratch. However, this
method has difficulties in generating coherent global patterns
and may not produce valid road structures. (Chu et al., 2019)
treated an urban road layout as a graph, in which a node rep-
resents a junction and an edge represents a road. However,
their method generated road layouts based on local statis-
tics and city style, rather than huge and complex geographic
data. RoadNetGAN (Owaki & Machida, 2020) used GANs
to generate a road network based on an input real urban road
layout.

While the above methods focus on generating urban road
layouts, most of the deep learning-based methods focus
more on generating style-based urban road layouts, such
as London-style, New York-style or Beijing-style, or local
statistics. Unlike these methods, our deep generative model
regenerates urban layouts including urban road and build-
ing layouts in an end-to-end manner. Our regenerated results
are constrained by the target function and the surrounding
context, rather than local heuristic connectivity.

2.2 General Layout Design

In layout design, different conditions are added to the design
process in order tomeet different layout design requirements.
We divide layout design into 2D and 3D layout design tasks.

2D Layout Design. There are many tasks in the domain,
and one of themost important tasks is graphic design (includ-
ing documents, posters and webpages) layout generation.
González-Morcillo et al. (2010) utilized evolutionary com-
putation and fuzzy logic to maximize the graphic design
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quality through cost functions and design principles and
constraints. O’Donovan et al. (2014) proposed a single-
page graphic design method based on nonlinear inverse
optimization learned from example layouts. Yang et al.
(2016) formulated visual-textual presentation typography as
an energy optimization problem in perception and seman-
tics. Pang et al. (2016) rearranged the Web elements on
an input webpage according to the user-specified element
reading order. LayoutGAN (Li et al., 2019) arranged the
graphic elements to a good quality layout conditioned on
semantic and spatial relations. Zheng et al. (2019) proposed
the first multi-modal interactive graphic layout generation
model conditioned on both visual and textual contents. Based
on Zheng et al. (2019), Ueno and Satoh (2021) produced
continuous and gradual magazine layout style changes con-
ditioned on two given layout styles and an interpolation
coefficient. Vinci (Guo et al., 2021a) produced a poster layout
given a product image and taglines.

There are also other layout design tasks. For textural lay-
out, based on a visual saliency map of a natural image,
SmartText (Zhang et al., 2020) generated a textual layout over
the natural image. For photo layout, Atkins (2008) arranged
photos on a rectangular canvas based on designed criteria.
Ryu et al. (2010) placed photos in the grid based on temporal
and spatial information. For image scene layout, Lee et al.
(2018) proposed a model to place a new object instance with
a valid layout by considering the scene context of the input
semantic map. Qiao et al. (2019) completed an image given
only a few foreground objects. Given a labeled set of objects,
LayoutVAE (Jyothi et al., 2019) predicted the locations and
sizes of the objects to produce a natural image scene layout.
Hudson and Zitnick (2021) synthesized images through a
sequential process that contains two stages: a planning phase
and an execution phase.

3DLayout Design. For house layout,Merrell et al. (2010)
utilized a Bayesian network trained on real-world data to
design floor plans for residential buildings. Merrell et al.
(2011) incorporated the layout guidelines as terms in a den-
sity function and proposed a hardware-accelerate Monte
Carlo sampler to generate the furniture layout based on
the density function. Fisher et al. (2011) represented indoor
scenes as graphs, and then defined a kernel between relation-
ship graphs to compare common virtual substructures and
capture the similarity between their corresponding scenes.
Fisher et al. (2012) introduced Bayesian networks and Gaus-
sian mixtures to build a probabilistic model for 3D object
arrangements from examples. Yu et al. (2011) encoded the
relationships of furniture objects as a cost function and opti-
mized it using aMetropolis-Hastings state search step. Fisher
et al. (2015) synthesized an indoor scene layout conditioned
on a coarse geometric scene representation and human activ-
ities. Henderson et al. (2017) generated furniture layouts by
exploiting the learned joint (co-occurrence) statistics from a

database, using the room shape, size and object placement
as conditions. HouseGAN (Nauata et al., 2020) utilized a
graph as conditions, where nodes represent room types and
edges represent room relationships, to generate house lay-
outs. (Nauata et al., 2021) improved on (Nauata et al., 2020)
and introduced a new condition, 2D segmentation mask, to
enable iterative design refinement. Graph2Plan (Hu et al.,
2020) first retrieved a house layout from the database based
on the user-specified room counts and other constraints, and
then generated different types of house layouts conditioned
on the building boundary. For building layout, Building-
GAN (Chang et al., 2021) generated multi-story building
layouts conditioned on a program graph. Gupta et al. (2021)
proposed LayoutTransfomer for diverse domains layout gen-
eration conditioned on the learned contextual relationships,
such as 2D graphic layout and 3D objects layout.

For other tasks,Campen et al. (2012) constructedquad lay-
outs on manifold surfaces based on careful construction of
the layout graph’s combinatorial dual. Umetani et al. (2012)
proposed an interactive design framework to provide active
guidance for designing geometrically and physically valid
models. Panozzo et al. (2013) optimized the force layouts
both geometrically and topologically to find a self-supported
structure. Ripon et al. (2013) solved themulti-objective facil-
ity layout problem using the variable neighborhood search.
Peng et al. (2014) tiled a domain with a set of deformable
templates using a two-step layout algorithm including a dis-
crete step and a continuous step. Chen et al. (2015) utilized a
multi-objective genetic algorithm to optimize the wind farm
layout to increase the power output.

Unlike all these layout design works, we focus on urban
layout regeneration in this paper, and condition our regener-
ated urban layout on the given target function and surround-
ing context.

3 Our Dataset

To learn the urban layout regeneration task, a well-designed
urban layout dataset is needed. Although there are some pub-
licly available datasets (AmazonWebServices, 2016;Belli&
Kipf, 2019) for urban layout design, they only contain urban
road layout information without other annotations. However,
urban layout regeneration requires not only urban road lay-
out but also functions (i.e., land use types), region shapes
and urban building layout, which existing datasets do not
provide. Thus, we collect a large-scale urban layout dataset
with rich annotations to facilitate our task.

Initial Collection.We collect data from Open Street Map
(OSM) (OpenStreetMap contributors, 2017), which contains
diverse annotations to build our dataset. As an open-sourced
website, the annotations are labeled by contributors vol-
untarily. Thus, OSM often contains incomplete markers in
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underpopulated regions. In order to obtain complete and rich
annotations, we collect our dataset mainly from the Greater
London area, using a scale of 1:200. We utilize scripts and
OSM’s application programming interface (API) to obtain
geographical data.

We select 12 functions from OSM: commercial, indus-
trial, residential, retail, education, sustenance, healthcare,
public related, recreational, natural, station, and mixed-use.
These 12 functions are commonly used in cities (not coun-
tryside) according to (OpenStreetMap, contributors, 2017;
Lenormand et al., 2015). A function indicates the purpose for
which an area of land is being used, and different functions
can be classified based on the layout image, road density,
building density, 4-way crossing proportion and connectiv-
ity index (Alhalawani et al., 2014). Each function may be
assigned to different regions of a city, while each region rep-
resents a connected area covered by a single function.

In the initial raw format, the road layout, building layout
and region shapes are all represented by a sequence of latitude
and longitude coordinates.

Pre-processing. From the raw data, we note that if a wide
road crosses a single functional region, the region can be
annotated as multiple regions. To remove this problem, we
employ a polygon merging method (Žalik, 2001) to merge
adjacent fragmented regions into a one. Specifically, if two
regions share the same function and their distance is smaller
than a given threshold, they are merged into a single region
along the nearest edge.

As mentioned earlier, to train our model, we use the vec-
tor data of the target region for accurate supervision and the
pixel-level data of the surrounding regions for efficient com-
putation. Thus, we also represent our dataset in pixel format.
Compared with the vector data, the pixel-level data can be
more efficiently processed by CNNs. For the urban road lay-
out, we plot the roads on a binary image, where a 1 indicates
a road pixel. Similar to the urban road layout, we also plot
all buildings with each sample on a binary image, and the
function on another image (i.e., each pixel stores a value
ranging between [0, 11]). We show an example of our pre-
processed dataset in Fig. 2 and the statistics of the whole
dataset in Table 1.

In summary, our large-scale urban layout dataset contains
more than 147K regions covering 1,300 km2 with rich anno-
tations, including function, region shape, urban road layout,
and urban building layout.

4 Our Method

Given a target region R, we aim to regenerate the urban lay-
out L of region R, based on a given target function t and
surrounding context S. We define the output urban layout
L = {Lr , Lb} as a collection of road layout Lr and build-
ing layout Lb. While the target function t determines the
main properties of the final layout, the surrounding context
S (i.e., the functions and layout of the surrounding regions)
guides the generation of local details, especially for the lay-
out near the boundary of the target region. We follow the
general strategy (Parish & Müller, 2001) by first predicting
the road layout, and then the building layout afterwards.

To guide the regeneration process, we first discuss how
we extract implicit regeneration rules from the inputsR from
(t, S) ⇒ R in Sect. 4.1. We then discuss how we regenerate
the layout of the target region based on these extracted rules
in Sect. 4.2. The overall framework of our UrbanEvolver is
shown in Fig. 3.

4.1 Regeneration Rules Extraction

Since an urban layout may contain thousands of elements,
such as roads and buildings, directly learning the regener-
ation rules from vector data consumes a large amount of
computational resources. For example, a large number of
irregular buildings need an ultra-high dimensional matrix to
store. We thus render the vector data in pixel format for a
more efficient learning of the regeneration rules. We repre-
sent the target function t and functions of the surrounding
regions together as a functional map M f = {M f s + t × R}
and the urban layout of surrounding regions as a surrounding
layout map Mls , where M f s indicates the functional map of
surrounding regions.

Fig. 2 A visual example of our collected dataset. Our dataset contains rich annotations on functions and region shapes, road layout and building
layout
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Table 1 The statistics of our dataset

Function Region Road Building

Total area Top 3 NN. Count Density B.C.R. Count

Residential (RES) 608.34 REC,MU,NAT 12,285 Dense 27.14 604,082

Industrial (IND) 151.02 RES,MU,REC 1789 Sparse 36.82 13,596

Commercial (COMM) 105.18 RES,MU,REC 2694 Normal 38.71 21,309

Mixed-use (MU) 98.25 RES,REC,NAT 22,388 Normal 5.53 46,280

Recreational (REC) 97.75 RES,MU,NAT 33,416 Normal 7.86 120,541

Natural (NAT) 72.60 RES,REC,MU 9473 Sparse 5.59 18,689

Retail (RETAIL) 65.53 RES,REC,MU 5693 Normal 56.40 56,021

Public-related (PUB) 44.39 RES,REC,MU 41,920 Sparse 29.14 58,044

Education (EDU) 22.83 RES,REC,MU 1199 Sparse 40.99 3,373

Healthcare (HEALTHC) 18.74 RES,REC,MU 2124 Sparse 35.69 5041

Station (STN) 18.19 RES,EDU,COMM 614 Sparse 16.47 1868

Sustenance (SUS) 14.54 RETAIL,RES,REC 13,829 Normal 35.17 29,197

Total area–the total area (km2) occupied by each function. Top 3 NN.–the top 3 nearest neighbourhood functions of each function. This value
provides guidance to the user for selecting the target function. Density–the density level of the road layout belonging to each function. We rank the
level based on (Zhang et al., 2015). B.C.R.–the building coverage ratio (%) reflects the building density of each function. Count–the total number
of regions or buildings belonging to a function

Fig. 3 Overview ofUrbanEvolver. Given a target region, UrbanEvolver
regenerates the urban layout of this target region conditioned on the
specified target function and surrounding context. UrbanEvolver gen-
erates the layout in two stages, by first generating the road layout, and
then the building layout. It first extracts the functionalmap features from

a pre-trained function encoder, learned through a reconstruction task.
The functional map features are then fused with urban layout features
through FA blocks for layout regeneration. A series of geometry-level
and pixel-level losses are designed for training
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When encoding these two maps, a straightforward solu-
tion is to use a simple unified encoder, but is not suitable
for our task. Since the functional map serves as a high-level
signal to determine the global urban layout style of the target
region and the surrounding urban layout map guides the syn-
thesis of local urban layout details, a simple unified encoder
shows poor performances in extracting information on differ-
ent domains (which is validated in Sect. 5). We thus extract
features separately from the functional map and from the
layout map through different encoders, as explained below.

Function Encoder. We represent the function (or land
use type) of each region as a functional map M f , and encode
visual clues usingCNNs.The function encoder contains three
conv layerswith kernel size 3×3 followed byReLU to extract
multi-scale features. Formally, we obtain the functional map
features as:

Ff
K
n=1 = σ(Wn(M f ) + bn), (1)

where Ff
n , σ , Wn and bn are the functional map features,

the activation layer, the weights and bias at nth layer, respec-
tively.

Urban Layout Encoder. We represent the surrounding
urban layout as a surrounding urban layout map Mls . We
use the same structure as the function encoder to encode Mls

to obtain the surrounding urban layout features Fls . As we
generate the road layout and building layout separately, we
use two separate layout encoders of the same architecture but
different inputs. For the road layout branch, the input is the
initial surrounding urban layout map Mls . For the building
layout branch, the input is a combination of Mls and the
generated road layout of the target region.

Auxiliary Task - Function Reconstruction. During
training, we find that the convergence rates are different
between the function and urban layout encoders.As the infor-
mation densities of the functional map and urban layout
are different, we introduce an auxiliary task called func-
tion reconstruction to help with the learning of functional
map features. This auxiliary task aims to reconstruct the
input functional map through an autoencoder, using the same
function encoder introduced above. In the reconstruction,
we set three conv layers with kernel size 3×3 and two
up-sample layers with scale factor 2 to obtain the recon-
structed functional map. The function encoder is fixed after
this pretraining. This further allows the two-stage regener-
ation subnets to better disentangle the (surrounding) urban
layout features, achieving better performances.

4.2 Function-Aware Urban Layout Regeneration

The layout regeneration contains two stages, following the
standard of previous works (Parish & Müller, 2001; Lipp
et al., 2011). It first regenerates the road layout, based on

Fig. 4 Structure of a function-layout adaptive (FA) block

which it then generates the building layout. This is because
the building layout is often determinedby the road layout, and
two-stage regeneration allows more dynamic manipulation
by users. As shown in Fig. 3, we adopt two networks of the
same architecture but different weights for these two stages.
For each stage,weuse the implicit regeneration rules encoded
in the functionalmap features Ff and the (surrounding) urban
layout features Fls to guide the regeneration process.

A simple way is to directly concatenate these features
before sending to the decoder. However, asmentioned above,
the functions and the surrounding urban layout play differ-
ent roles in layout regeneration. The function features learned
from the function encoder focus on the high-level semantics,
while the surrounding urban layout features learned from the
urban layout encoder focus on the local details of the urban
layout. Thus, directly using the concatenation operation is
not an effective way of fusing features in diverse distribu-
tions (Zheng, 2015), as it can weaken both the global control
by the target function and local details inferred from the sur-
rounding context.

Instead, we propose the function-layout adaptive (FA)
block to effectively extract the regeneration rules, inspired
by (Park et al., 2019). The structure of the FA block is shown
in Fig. 4. Given the functionalmap features and the surround-
ing urban layout features, the FA block adaptively fuses the
features to guarantee the local details while facilitating the
guidance from a high-level function. For each block, tomain-
tain the semantic control, the functional map features are first
passed into two different conv layers to obtain two modula-
tion parameters γ andβ. These two parameters are fusedwith
the regenerated urban layout features Fl in an element-wise
way as:

FFm = γm Sigmoid(Fm
l ) − μm

σm
+ βm, (2)

where μ and σ are the mean and standard deviation of
Sigmoid(Fl). m is the index of the FA block. Note that
Fm
l = Fls when m = 1.
As the features in various locations may not contribute

to the regeneration rules equally, we further introduce the
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position attention module (Fu et al., 2019) to our FA block.
This can model global contextual relationships and improve
semantic consistency among features. Formally, we obtain
the regeneration features Rm by:

S j i = exp(qi · k j )
∑N

i=1 exp(qi · k j )
, (3)

Rm
j = α

N∑

i=1

(S j ivi
) + FFm

j , (4)

Fm+1
l = Conv(Rm),m < K , (5)

where i and j are the position indexes. N = H × W
and K is the total number of FA blocks. The weight α is
learnable and set to be strictly positive during training. It is
gradually increased from 0, allowing the network to focus
gradually from the local to the global features (Zhang et
al., 2019). The features q, k and v are calculated through
different conv layers with FFm as input. Rather than only
considering regeneration features in a single scale, ourmodel
progressively incorporates the regeneration features in differ-
ent scales as shown in Fig. 3. We first stack four FA blocks
followed by ReLU and conv layers to progressively obtain
the implicit regeneration rules from functional map features
and surrounding layout features. To get the output of the
same size as the input, we then set the up-sample layers with
scale factor 2 to gradually increase the output size. After
up-sampling the output size, we still add the FA blocks fol-
lowed by ReLU and conv layers. Besides, to increase the
diversity of the regenerated results, we inject a noise vector
sampled from a normal distribution in the first FA block. The
regeneration featuresRK derived from the last FA block rep-
resent our learned regeneration rules. Finally, we obtain the
regenerated urban layouts L with the same size as the input.
Our regenerated urban layouts are in binary format. We can
transform them into vector format. For the road layout, we
use the line detector (Pautrat et al., 2021) to get the nodes
of the road and further obtain coordinate sequences of the
nodes. To filter noisy nodes, we merge nodes with a distance
less than 2m. For building layouts, we obtain the contours
of the buildings (Suzuki et al., 1985) and then the coordinate
sequences of contours. To avoid irregular shapes, we also
merge adjacent nodes of the contours with a distance less
than 0.5m. In this way, we obtain continuous and rational
urban layouts in vector format.

4.3 Loss Functions

To train our model, we design a set of losses mainly of two
groups: geometry-level losses and pixel-level losses. Before
discussing them in detail, we first introduce the function
loss to enable auxiliary function reconstruction for extract-

Fig. 5 Junctions (i.e., dark green circles) and lines (i.e., blue lines) of the
regenerated urban layout in the target region (within the red boundaries)
(Color figure online)

ing functional map features. Note that this is independently
trained with the following function loss:

L f = ∥
∥M f − O f

∥
∥
1 , (6)

and the weights are fixed for two-stage urban layout regen-
eration, where O f is the predicted functional map and M f

is the ground truth.
Geometry-level Losses. We keep the vector data in the

target region for accurate supervision. Geometry-level losses
mainly constrain the geometric structure within the target
region based on lines (i.e., roads) and junctions (i.e., cross-
ings), which are two key components of the urban layout, as
shown in Fig. 5.

• Junction loss: It measures how close the number and
position of junctions in the regenerated results are to those
in the ground-truth. Each junction is represented as a
single centered pixel with a value of 1, and we rely on a
junction detector (Pautrat et al., 2021) DJ to obtain the
junctions in the regenerated urban road layout Lr . We
use the binary cross entropy loss:

L j = −(G j · logDJ (Lr )+ (1−G j ) · log(1−DJ (Lr ))),

(7)

where G j is the ground-truth of junctions in the target
region.

• Line loss: It penalizes incorrect lines in the regenerated
results. To obtain the lines, we use a line detector (Pautrat
et al., 2021) DL , and compute the differences between
the regenerated lines and ground-truth lines in hough
space (Zhao et al., 2021), as:

Ll = −({H(Gl) · log(H(DL(Lr )))+
(1 − H(Gl)) · log(1 − H(DL(Lr )))}), (8)

where H(.) is the deep hough transformation to transfer
the lines from pixel space into parameter space, and Gl

is the ground-truth of lines in the target region.
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Pixel-level Losses:

• Reconstruction loss: We use the L1 loss to encourage
themodel to predict per-pixel layout accurately.We com-
pute the difference between the generated urban layout
Ol in pixel format and the ground truth Ml . Note that to
encourage modeling the connectivity among boundary
regions, we also generate the surrounding regions and
define Ol = Pls + L , where Pls is the reconstructed sur-
rounding urban layout. We further add a term to penalize
layout discrepancy within the target region, as:

Lr = ‖Ml − Ol‖1 + λr ‖R × (Ml) − L)‖1 , (9)

where λr is the penalty weight. It is set to 5 empirically.
• Perceptual loss: This loss measures the feature distance
between the ground-truth Ml and the regenerated urban
layout Ol extracted by a pre-trained VGG19 (Simonyan
& Zisserman, 2015) network. We denote φi as the activa-
tion function of the i−th layer of the pretrained network,
and define the loss as:

Lp = 1

K

k∑

i=1

1

Ci HiWi
‖φi (Ol) − φi (Ml)‖22 , (10)

where K ,Ci , Hi ,Wi are the numbers of activation layers
and channels, height and width of a particular activation.
We select relu_1_2, relu_2_2, relu_3_3, relu_4_3 lay-
ers, following the previous work (Johnson et al., 2016).

• Adversarial loss: We also add adversarial loss to pre-
dict realistic layout following the distributions of ground
truths:

La = −EOl [log(1 − D (Ol)] , (11)

where D is the discriminators.

In summary, our final loss L is formulated as:

L = λl jL j + λllLl + λlrLr + λlpLp + λlaLa, (12)

where λl j = 10, λll = 10, λlr = 20, λlp = 3 and λla = 2 in
our experiments.

5 Experiments

In this section, we compare our method with other state-of-
the-art methods qualitatively in Sec. 5.1 and quantitatively in
Sec. 5.2. We also demonstrate the effectiveness of our model
design through an ablation study in Sec. 5.3.

Implementation Details.We implement our model using
Pytorch, and we train our model on two NVIDIA RTX

Fig. 6 Example target regions in our dataset

2080TI for about five days. We set the bath size as 6 and
the initial learning rate as 0.0001. We use the Adam opti-
mizer with β1 = 0.0 and β2 = 0.9. We randomly sample
13,250 maps with a field-of-view (FoV) 1, 000 × 1, 000m2

as the training dataset, and 1,500 maps with the same FoV
(which do not overlap with the training samples) as the test
dataset, from our collected dataset. For each map, we select
the central region with a single function as the target region
and the other regions as the surrounding regions. Notably, the
target regions are divided by diverse roads resulting in a wide
variety of region shapes, as shown in Fig. 6, thus enhancing
the robustness of our model. We limit the target region to a
maximum of 25% of the entire map.

EvaluationMetrics.Weevaluate ourmodel based on sev-
eral popular metrics used in image generation tasks (Brock
et al., 2019; Choi et al., 2020; Benny et al., 2021; Sushko et
al., 2021) metrics: FID (Heusel et al., 2017), GS (Khrulkov
& Oseledets, 2018), and MS-SSIM (Wang et al., 2003).
FID utilizes InceptionV3 (Szegedy et al., 2016) to evalu-
ate the quality and diversity of the regenerated urban layout.
Like (Chu et al., 2019), we also fine-tune the InceptionV3
network on our dataset, where the input is the urban layout
of a region and the output is the function. After that, we use
the fine-tuned InceptionV3 network to extract the features
of the target urban layout for FID calculation. GS compares
the geometrical properties of the ground-truth manifold and
the regenerated urban layout data manifold. MS-SSIM eval-
uates the structural similarity of the regenerated data and the
ground-truth data at multiple scales.

We also evaluate our model using city planning based
metrics. Inspiredby (Alhalawani et al., 2014;Chuet al., 2019;
Chen et al., 2021), we introduce connectivity index (CI), road
layout similarity (RS), connectivity to surrounding layouts
(CSL), building pattern similarity (BS), layout diversity (LD)
and layout classification (LC).

• CI measures howwell the regenerated road network con-
nects the destinations. We compute it as the ratio of the
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number of links to the number of road nodes as:

C I =
∑N

i valence(v̂i )

N
, (13)

where v̂ is the node in the regenerated road network,
valence(·) is the valence of the node, N is the number
of nodes. Note that the minimum rational CI is 1.4 under
urban layout design guidelines (Alhalawani et al., 2014),
and a low CI indicates that there are a lot of broken roads.

• RS measures how well the regenerated road layouts
match the characteristics of target road layouts. It is com-
puted as the ratio of the total number of regenerated roads
minus the total number of ground-truth target roads to the
number of testing samples as:

RS =
∑N

i | num(Lr ) − num(Gl) |i
N

, (14)

where Lr and Gl are the regenerated and ground-truth
target urban road layouts. num(·) is the total number of
roads. N is the total number of testing samples.

• CSL measures the continuity between the regenerated
roads and surrounding roads. We compute the average
distance between the end node of the regenerated roads
and its closest end node of surrounding roads on the
region boundary as:

CSL =
∑N

i ‖ vi − v̂i ‖
N

(15)

where v̂ is the end node of the regenerated roads. v is
its closest end node of the surrounding roads. N is the
number of nodes on the boundary.

• BS evaluates the morphological and spatial similarity of
buildings between regenerated and ground-truth build-
ing layouts. We first model the building layout using the
Delaunay triangulation (DT) graph (Lee & Lin, 1986),
where nodes are morphological properties (shapes) and
edges are spatial relations. We then transform the DT
graph from spatial domain to frequency domain based
on Graph Fourier Transform. Finally, we compute BS as
the deviation between regenerated andGT target building
layouts w.r.t. the frequency domain features as:

μ = (μo1 − μg1)
2 + · · · + (μon − μgn)

2

+ (μom−n+1)
2 + · · · + (μgm)2

BS = √
μ,

(16)

where μo and μg are frequency signals of regenerated
and ground-truth building layouts.

• LD (Chu et al., 2019) measures the diversity of the regen-
eratedurban layouts.Wecompute the percentageof urban

layouts in one map falling outside the 20m vicinity of
the urban layout in the other map, and vice versa. The
elements included in the urban layouts we used in LD
consist of road-related elements: roads and intersections,
and building-related elements: building footprints and
distributions.

• LC measures the degree to which the characteristics
of the regenerated layouts match the characteristics of
the layouts of the specified functions using layout clas-
sification. The characteristics include road width, road
style, building shape and building distribution. We uti-
lizemulti-module layout features including layout image,
road density, building density, 4-way crossing propor-
tion and connectivity index to classify the function of the
regenerated urban layouts (Alhalawani et al., 2014) and
obtain the accuracy as the LC score. The 4-way crossing
proportion means the proportion of 4-way crossing w.r.t.
all intersections.

Note that we utilize 10-fold cross-validation for evalua-
tion. The metrics are computed on the test dataset with 1500
maps.

Baselines. To the best of our knowledge, ours is the first
work aiming to perform the function-aware urban layout
regeneration task. By regarding the surrounding urban layout
map as a damaged image and the target region as the hole,
image inpainting shares some similarities with our problem.
We thus treat several state-of-the-art (SOTA) image inpaint-
ing methods both unconditionally and conditionally as our
baselines. In addition, apart from comparing to our data-
driven learning methods, we also compare our method with
the traditional rule-based methods.

• Unconditional image inpainting methods: PConv (Liu et
al., 2018), FeatEq (Liu et al., 2020), SPN (Zhang et al.,
2021) and LaMa (Suvorov et al., 2022).We train all these
methods using their official released codes on our train-
ing dataset.We concatenate the surrounding urban layout
map and the functional map together along the channel
dimension for feeding into these methods.

• Conditional image inpainting methods: EdgeConnect
(Nazeri et al., 2019) and CTSDG (Guo et al., 2021b).
Instead of filling the holes based on only the damaged
images, these methods take an edge map as a condition
for guiding the inpainting. To train these methods, we
adopt the same approach used by the unconditional image
inpainting methods, but also take the functional map as
a conditional input.

• Rule-based method: CityEngine (Kelly, 2021).
CityEngine is a SOTA method based on a rule-based
urban synthesis approach (Parish & Müller, 2001). The
parameters used in the rules need to bemanually adjusted
through an interface. For fair comparisons, we assign the
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necessary values based on the statistics from our train-
ing dataset, such as the angle, the crossing ratio and the
range of the road length, and on different target func-
tions. Directly setting the parameters is not sufficient,
and we further manually merge the regenerated urban
layout with the surrounding for smooth transition along
the boundary. Specifically, we combine adjacent points
and remove artificial lines one by one to ensure that the
joints are smooth. As this is a labor-intensive task, we
only compare with this method qualitatively.

5.1 Qualitative Results

UrbanRoadLayoutRegeneration.Weshow the qualitative
results in Fig. 7. We can see that SPN and EdgeConnect fail
to regenerate urban road layouts. The target regions either
remain empty or become unreasonably dense. FeatEq also
regenerates unreasonably dense structures only at the centers
of the target regions. Although PConv, CTSDG and LaMa
can regenerate urban road layouts, they fail to produce geo-
metric structures that are similar to the ground truths. PConv
regenerates repetitive layout patterns within some urban lay-
outs, as pointed by the arrows. CTSDG and LaMa produce
lots of noise, causing a lot of broken and dotted roads, which
are impractical in real life. The main reason for the failure of
these baseline methods is that they are designed for natural
images, which have rich texture and structural information.
In contrast, urban road layouts have sparse structures with-
out any textures. For example, due to the lack of texture
information, SPN cannot obtain effective semantic priors to
facilitate layout regeneration. Besides, for the conditional
image inpainting methods, our functional map is very dif-
ferent from the original edge map used as the “condition”,
as the edge map tends to impose local constraints, while our
functional map tends to provide global guidance. This shows
that all these existing methods developed for relevant tasks
are not suitable for our task.

The rule-based method, CityEngine, can regenerate valid
urban road layouts, but are limited only to a few styles
because of the hand-crafted modeling rules. In addition, as it
requires manually merging the regenerated urban road lay-
out with the surrounding, the regeneration process can be
tedious and time-consuming. Instead, our method can regen-
erate valid urban road layouts with rich styles. For example,
in the first three columns of Fig. 7, even for the same function
(i.e., residential), our model can regenerate different urban
road layouts to match the different surrounding contexts in
style and orientation near the boundaries.

CompleteUrbanLayoutRegeneration.As regenerating
the urban building layout on the invalid road layout is mean-
ingless, we only compare with PConv, CTSDG and LaMa
that can regenerate feasible urban road layouts. The regen-
erated results are shown in Fig. 8. We can see that PConv,

CTSDG and LaMa fail to regenerate valid building layouts
not only because of the artifacts in the synthesized road lay-
outs, but also due to the lack of an effective mechanism for
correlating the functions and the building layouts. In con-
trast, our method can regenerate valid urban layouts, which
are close to the ground truths for both roads and buildings.

To demonstrate the effectiveness of our model and its
generality, we show the results of our method in regenerat-
ing urban layouts under different user-specified functions in
Fig. 9. Ourmethod can regenerate urban layoutswith rational
geometric structures while maintaining the functional char-
acteristics (e.g., road density and building size). For example,
roads in residential regions have a higher density than those
in commercial and mixed-use regions, and buildings in com-
mercial regions have larger footprints. Even under the same
function, our model is able to regenerate diverse results for
the same input design scenario, as shown in Fig. 10. We
also find that our method can regenerate urban layout with
multi-functions in the target region as a condition. We show
a few such examples to demonstrate the generalization of our
model in Fig. 11.

5.2 Quantitative Results

We measure the performances of the compared methods
quantitatively first on urban road layout regeneration as
shown in Table 2, and then on complete urban layout
regeneration (including both roads and buildings) as shown
in Table 3. We can see that our model outperforms all the
baselines on all three metrics for the urban layout regenera-
tion task (i.e., including both roads and buildings).

The quantitative results of city planning based metrics are
shown in Table 4. The results show that compared with the
baselines, our method regenerates more rational and diverse
urban layouts, including road layouts and building layouts.
PConv, CTSDG and LaMa regenerate a lot of broken roads,
resulting in low CI scores. Besides, as PConv and CTSDG
regenerate many empty areas, i.e., they cannot regenerate
urban layouts, their LD scores are extremely high. The low
RS, low BS and high LC scores indicate that our method can
regenerate the desired urban layouts following the implicit
representation of the regeneration rules. The low CSL score
indicates that our method regenerates continuous roads near
the boundary.

5.3 Ablation Study

In this subsection, we examine the effectiveness of our key
model components, including the function-layout adaptive
(FA) block, the geometry-level losses and the pixel-level
losses.
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Fig. 7 Comparison with baselines for urban road layout regeneration. The target regions are indicated with yellow boxes. We highlight the
regenerated result within the red box on the right of each image. The target function is shown at the top of each column (Color figure online)
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Fig. 8 Comparison with baselines for the complete urban layout regeneration. The complete urban layout includes the urban road layout and the
urban building layout. The target function is shown at the top of each column

5.3.1 The Effect of the FA Block

To evaluate the effectiveness of the FA block, we create two
variants:

• w/o FA Blocks, by replacing the FA blocks with vanilla
convolutional layers and directly concatenating the sur-
rounding urban layout features and functional map fea-
tures during the regeneration;

• w/o Position Attention, by removing the position atten-
tion module in the FA blocks.

Results of the qualitative comparison are shown in Fig. 12.
Wecan see that by removing theFAblocks, themethod regen-
erates broken roads with artifacts and irregular buildings. It
also fails to regenerate distinguishable urban layouts based
on different input functions, e.g., the regenerated layouts are
nearly the same in the second row of Fig. 12. By only remov-
ing the position attention module within each FA block, the
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Fig. 9 Urban layout regeneration results by our method under different
input target functions. Note how the regenerated urban layouts in the
target region change according to the input target function. The target

regions are indicated by yellow boxes. We highlight the results within
the red box on the right of each image (Color figure online)

Fig. 10 Diverse results regenerated for each design scenario (with the same target region and function). The target regions are indicated by yellow
boxes. We highlight the results within the red box on the right of each image (Color figure online)

results become better but still contain obvious artifacts, such
as broken roads.

We further show the feature maps computed by the last
second layer of the function-aware regenerator, with and
without the attention module, in Fig. 13. We keep the spatial
dimensions and visualize the mean values across the channel
for each featuremap. (Warmer colors indicate higher values.)
As can be seen, after adding the position attention module,

our model can focus more on the target regions to ensure
the quality of the regenerated results. In summary, our FA
blocks can effectively fuse the global features from the func-
tions, and local features from the surrounding urban layout.
We further show the quantitative evaluation in Table 5. The
performance drops of “w/o FA Blocks” and “w/o Position
Attention” indicate the necessity of our FA blocks in the
function-aware urban layout regeneration task.
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Fig. 11 Urban layout regeneration with multi-function target regions.
Yellow boxes indicate the target regions (Color figure online)

Table 2 Comparison with baselines for urban road layout regeneration

Metrics FID ↓ GS ↓ MS-SSIM ↑
PConv 23.63 25.08 0.73

FeatEq 30.49 34.88 0.66

SPN 35.44 46.95 0.65

EdgeConnect 151.08 90.15 0.45

CTSDG 33.05 41.80 0.66

LaMa 22.12 20.70 0.75

Ours 17.58 10.32 0.83

Best results are highlighted in bold

Table 3 Comparison with baselines for complete urban layout regen-
eration

Metrics FID ↓ GS ↓ MS-SSIM ↑
PConv 34.76 45.89 0.65

CTSDG 38.55 52.81 0.63

LaMa 32.11 40.43 0.66

Ours 30.57 35.70 0.68

Best results are highlighted in bold

5.3.2 The Effects of Losses

The effect of geometry-level losses. We compare the per-
formances of our model without each of the geometry-level
losses, i.e., w/o L j and w/o Ll . We show the qualitative
results in Fig. 14 and quantitative results in Table 5. Without
trainingon the junction lossL j , a structured roadnetwork and
buildings can hardly be formed. Without training on the line
loss Ll , the model may regenerate broken roads with noise,

Table 4 Quantitative results of our methods and the baselines

Metrics CI↑ CSL ↓ RS ↓ BS↓ LC↑ LD ↑
PConv 1.53 5.64 103.46 0.65 0.17 0.95

CTSDG 1.23 9.37 90.50 0.78 0.13 0.93

LaMa 1.92 3.64 50.23 0.55 0.32 0.30

Ours 3.22 1.32 11.63 0.28 0.75 0.62

Best results are highlighted in bold
We evaluate CI (the minimum rational CI is 1.4 under urban layout
design guidelines),RS,CSL,BS,LDandLC.Extremely highLDscores
indicate failure regeneration

causing invalid building layouts. For example, a building is
generated on a road crossing as pointed to be a blue arrow
in Fig. 14c. These results indicate that the junction detector
helps the model learn road structural details, while the line
detector helps the model generate continuous roads.

The effect of pixel-level losses. Similarly, we remove
each of the pixel-level losses in this experiment, which
include: reconstruction loss w/o Lr , perceptual loss w/o Lp,
and adversarial lossw/oLa . We show the quantitative results
in Table 5 and qualitative results in Fig. 14. By removing
Lr , the regenerated roads and buildings are often incomplete
with artifacts. For example, in the 2nd row of Fig. 14d, the
road width is not consistent; it may suddenly become wider
near a junction. Besides, with the help of the perceptual loss
Lp and the adversarial loss La , the regenerated results have
closer distribution with the ground truth, further improving
the regeneration performances.

With all the suggested geometry-level and pixel-level
losses, our model can achieve the best performance on all
three metrics in the urban layout regeneration task.

6 Other Applications

In this section, we demonstrate more applications enabled by
our model.

6.1 Other Cities

We regenerate urban layouts in other cities, such as Paris,
Madrid and Shanghai. For this experiment, we have collected
the urban layout data of Paris, Madrid and Shanghai from
OSM. After fine-tuning our model on these data, we regen-
erate urban layouts as shown in Fig. 15.

6.2 Interactive Regeneration

UrbanEvolver supports different types of interactive urban
layout regeneration, not only limited by changing the input
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Fig. 12 The effects of the FA block and the position attention module. RES and COMM are functions, indicating residential and commercial,
respectively

Fig. 13 Visualization of the feature maps derived from the second last
layer of the function-aware regenerator, with and without the position
attention module. A warmer color indicates a higher value

function as shown in Fig. 9. Here, we show another type of
control, by conditioning on the user-specified main roads.

Main roads determine the structure and characteristics of
an urban layout (Aliaga et al., 2008), making such an appli-
cation practical. Our model can allow users to customize the
regenerated results through specifying the main roads, with-
out re-training. This can be achieved by removing regions
occupied by the specified main roads from the input target
region mask. As shown in Fig. 16, our model can regener-
ate the urban layout constrained on the specified main roads.
For example, in the 1st row of Fig. 16, Result 1 produced by
the user-specified Main Road 1 can preserve the ring-style
main roadwell. Result 2 has a very different regenerated road
layout due to the change in the user-specified roads in Main
Road 2. As a result, the building layout is also changed to
match with the regenerated urban road layout.

Table 5 Quantitative results of
urban road layout / complete
urban layout regeneration by
ablating key components of our
model

Metrics FID ↓ GS ↓ MS-SSIM ↑
w/o FA 25.90/36.67 30.28/49.55 0.68/0.64

w/o Position Attention 18.58/35.46 14.59/46.70 0.79/0.64

w/o L j 19.97/36.51 18.40/48.08 0.81/0.63

w/o Ll 19.16/33.97 16.24/42.51 0.84/0.65

w/o Lr 18.31/31.89 13.07/39.32 0.81/0.67

w/o Lp 17.66/31.67 10.70/38.44 0.83/0.66

w/o La 17.70/31.07 11.42/37.06 0.82/0.67

Ours 17.58/30.57 10.32/35.70 0.83/0.68

Best results are highlighted in bold

Fig. 14 Ablation study on different losses. The blue arrow in c highlights an incorrectly generated red building, which is located at a crossroad.
The blue arrows in d highlight places where the road width is inconsistent, e.g., it may suddenly become wider near a junction (Color figure online)
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Fig. 15 Regenerated urban layouts of other cities, Paris (top), Madrid (middle), and Shanghai (bottom)

Fig. 16 Interactive urban layout regeneration, controlled by user-specified main roads. Main Road 1 and Main Road 2 are two scenarios of
user-specified roads, while Result 1 and Result 2 are the corresponding regenerated urban layouts

6.3 Conditional Sketch Inpainting

We consider the application of our model beyond urban
regeneration to conditional sketch inpainting. In this exper-
iment, we train our model on the Sketch dataset (Eitz et al.,
2012) and irregular mask dataset (Kargly, 2017). We use the
object class as the functional map and the unfinished sketch
as the surrounding context. The results are shown in Fig. 17.
In general, our method can complete the unfinished parts of
the sketches reasonably well.

Fig. 17 Sketch inpainting. In general, our model can complete the
unfinished sketches well

123



International Journal of Computer Vision (2024) 132:3408–3427 3425

Fig. 18 Modeling 3D urban layout from the regenerated urban layout. b shows different views of the assembled 3D city models, given the
regenerated urban layout from our model a

Fig. 19 Failure case. When there is insufficient context, our method
may fail to regenerate urban layouts

6.4 Modeling 3D City

Compared to 2D urban layout, 3D urban layout can provide
more realistic scenes with richer details, which may allow
city planners, government officials and other participants
to view and manipulate in a more intuitive manner (Chen,
2011). Based on our regenerated urban layout (i.e., including
urban road and urban building layouts), we can easily place
3D models through SketchUp1 to build a 3D city model, as
shown in Fig. 18. We collect a lot of 3D models as a 3D
model dataset, and then use SketchUp to construct a 3D city
from these models, according to our regenerated urban lay-
out. For the 3D buildings in the 3D model dataset, we collect
many prefab 3D building models and categorize them based
on their functions. As a result, the building types and heights
are indirectly determined by the function. The 3D road mod-
els are generated by Street Generator (str, 2009) based on the
regenerated road layouts.

1 www.sketchup.com.

7 Conclusion

In this paper, we target to address a new task called function-
aware urban layout regeneration. The core design of our
proposed model UrbanEvolver is to generate a function-
aware valid urban layout with the function-layout adaptive
block and a set of geometry-level and pixel-level losses. A
large-scale urban layout dataset is collected for training and
supporting further research. Experiments have demonstrated
the effectiveness of our model. Our automatic urban layout
regeneration method significantly reduces the costs of urban
layout regeneration.

Ourmethod also has limitations.When there is insufficient
context, our approachmay fail to regenerate urban layouts, as
shown in Fig. 19. Besides, since our dataset covers mostly of
flat terrains, our method may not produce urban layouts that
best represent landscapes of mountains and hills. In addition,
our method is also not able to regenerate detailed urban road
layout information, such as traffic signs, traffic lights and
bus stops. As a future work, we are looking into ways to
regenerate urban layouts with more details.
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