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Abstract
Unsupervised cross-modal hashing (UCMH) has been commonly explored to support large-scale cross-modal retrieval of
unlabeled data. Despite promising progress, most existing approaches are developed on convolutional neural network and
multilayer perceptron architectures, sacrificing the quality of hash codes due to limited capacity for excavating multi-modal
semantics. To pursue better content understanding, we break this convention for UCMH and delve into a transformer-based
paradigm. Unlike naïve adaptations via backbone substitution that overlook the heterogeneous semantics from transformers,
we propose a multi-granularity learning framework called hugging to bridge the modality gap. Specifically, we first construct
a fine-grained semantic space composed of a series of aggregated local embeddings that capture implicit attribute-level
semantics. In the hash learning stage, we innovatively incorporate fine-grained alignment with these local embeddings to
enhance global hash code alignment. Notably, this fine-grained alignment only facilitates robust cross-modal learning without
complicating global hash code generation at test time, thus fully maintaining the high efficiency of hash-based retrieval. To
make the most of fine-grained information, we further propose a differentiable optimized quantization algorithm and extend
our framework to hugging+. This variant neatly integrates quantization learning into the fine-grained alignment during
training, producing quantization codes of local embeddings as a gift at test time, which can augment the retrieval performance
through an efficient reranking stage. We instantiate simple baselines with contrastive learning objectives for hugging and
hugging+, namely HuggingHash and HuggingHash+. Extensive experiments on 4 text-image retrieval and 2 text-video
retrieval benchmark datasets show the competitive performance of HuggingHash and HuggingHash+ against state-of-
the-art baselines. More encouragingly, we also validate that hugging and hugging+ are flexible and effective across various
baselines, suggesting their universal applicability in the realm of UCMH.

Keywords Unsupervised cross-modal hashing (UCMH) · Transformers · Image retrieval · Video retrieval · Vector of locally
aggregated descriptors (VLAD) · Optimized product quantization (OPQ)
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1 Introduction

Cross-modal retrieval aims to retrieve relevant items from
one modality using queries from another modality, e.g. to
retrieve images by text, which plays an essential role in
multimedia search and recommendation. Ever-increasing
multi-modal data raises the concern about search efficiency.
Hashing has become a popular indexing solution because
Hamming descriptors can significantly reduce index storage
and accelerate distance computation with fast XOR opera-
tions (Li et al., 2020; Song et al., 2020; Liu et al., 2019; Zhang
et al., 2023b). We can roughly categorize existing efforts on
cross-modal hashing (CMH) into unsupervised and super-
vised methods. Unsupervised methods (Yu et al., 2021a; Su
et al., 2019; Hu et al., 2020; Tu et al., 2023) exploit natural
multi-modal co-occurrence for hashing. In contrast, super-
vised methods (Chen et al., 2021; Cao et al., 2018; Jiang and
Li, 2017; Zhang et al., 2023a) can leverage full supervision,
e.g. ground-truth labels, to better preserve semantic informa-
tion in hash codes. While supervised methods usually show
impressive performance, they are less favored in real-world
applications due to the expensive annotation cost. Therefore,
we pay attention to the unsupervised methodology alterna-
tively.

The performance of unsupervised cross-modal hashing
(UCMH) is inherently subject to multimedia understand-
ing. Although deep neural networks have made remarkable
progress in hashing, the advances have yet to be fully
exploited. State-of-the-art approaches (Wang et al., 2020b;
Hu et al., 2020; Su et al., 2019; Yu et al., 2021a; Zhu et
al., 2023) mainly adopted classic convolutional neural net-
works (CNNs), e.g. VGGNet (Simonyan and Zisserman,
2015) andAlexNet (Krizhevsky et al., 2012), to extract visual
features and used multilayer perceptrons (MLPs) to encode

Fig. 1 Semantic alignment paradigms for transformer-based unsu-
pervised cross-modal hashing. a Handshaking means aligning global
representations of class tokens (i.e.,[CLS]).bHugging further exploits
fine-grained alignment using content tokens. Fine-grained alignment
serves as an auxiliary task to bridge themodality gap and can effectively
improve global hash code generation without extra test-time overhead.
Additionally, we further extend hugging to produce local quantization
codes for efficient reranking, which is a bonus from fine-grained align-
ment

text information. These designs are sub-optimal to capture
semantic information from visual and language modalities,
and they also suffer from limited generalizability. To improve
UCMHandkeep pacewith the development of deep learning,
one promising direction is to take advantage of transform-
ers (Vaswani et al., 2017).

In the past few years, transformers have made inspir-
ing successes in natural language processing (Devlin et al.,
2019; Liu et al., 2019c; Yang et al., 2019) and computer
vision (Dosovitskiy et al., 2021; Carion et al., 2020; Liu
et al., 2021b), sparking explorations toward better content
understanding and semantic extraction. Pre-trained on large-
scale corpora (Krizhevsky et al., 2012; Zhu et al., 2015),
transformers can serve as versatile experts that are effective
and generalizable for various downstream tasks (Shin et al.,
2022).We have learned about recent progress in transformer-
based image (Li et al., 2022; Lu et al., 2021; Dubey et al.,
2022) and video hashing (Li et al., 2021b; He et al., 2021;
Wang et al., 2023) that can verify the efficacy of transformers
in hashing. Nevertheless, we find transformers-based cross-
modal hashing remains under-explored. Although lately (Yu
et al., 2022) have proposed a CLIP-based (Radford et al.,
2021) approach with impressive results, its success was
mainly attributed to the off-the-shelf well-aligned transform-
ers. Differently, in this paper, we pursue a general solution
with unaligned transformers.

Pre-trained transformers provide solid semantic extrac-
tion for each modality, but UCMH still remains non-trivial.
The main challenge is to bridge heterogeneous modalities
so that the hash codes can be well aligned. Analogous
to existing CNN-MLP-based UCMH models, we can train
transformer-based models to produce hash codes via the
global representation tokens (i.e., [CLS]). A simple way to
learn is to align the global tokens using the objectives in exist-
ing UCMHmethods. We liken this global alignment strategy
to handshaking, as shown in Fig. 1a. In practice, handshak-
ing is effective as expected but can be improved to reduce the
modality gap. Note that transformer is a sequential architec-
ture that arranges inputs as sequences. It naturally provides
a set of content tokens (e.g. words of a text or patches of an
image) with fine-grained and structural semantics, which can
capture heterogeneous modality knowledge but was usually
overlooked.

Toenhance transformer-basedUCMHlearning,wepresent
amulti-granularity alignment framework dubbed hugging, as
illustrated in Fig. 1b. Besides global alignment using hash-
ing representations from [CLS] tokens, we further develop
fine-grained alignment based on the content tokens. Particu-
larly, we construct another shared latent space with semantic
structure via a GhostVLAD (Zhong et al., 2018) module.
Content tokens in this space are softly aggregated into a
series of parameterized clusters, each representing a latent
topic or semantic concept. Locally (i.e., cluster-wise) con-
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trastive (Chen et al., 2020a; He et al., 2020) alignment serves
as an auxiliary objective for model training without requir-
ing external supervision or hints (e.g. object regions in a
picture or parsed components in a text). In contrast with
handshaking, hugging enables synergy between global and
fine-grained alignment in training, providing effective regu-
larization to enhance the cross-modal consistency of hash
codes. Interestingly, we find it improves retrieval perfor-
mance and transferability, even though fine-grained parts do
not engage in the forward process of the global part in infer-
ence. In other words, hugging will not bring extra inference
overhead to global hash code generation. We will provide
in-depth experimental analyses on the effectiveness of fine-
grained alignment in Sect. 4.3.2.

Moreover, we extend the hugging framework to make the
best of fine-grained representations. Note that in the above
version of hugging, fine-grained alignment was discarded in
inference to maintain the efficiency of hash-based retrieval.
It leads to a major limitation on the usage of fine-grained
representations. We left the solution as future work in our
preliminary work (Wang et al., 2022b). Fortunately, we now
find an effective quantization-based solution to turn fine-
grained representations into profit while reconciling efficient
retrieval. To be specific, for each locally aggregated cluster,
we incorporate a learnable optimized quantization module
to compress continuous embeddings while retaining maxi-
mal semantics. We adopt asymmetric-quantized contrastive
learning to align quantized representations, achieving fine-
grained alignment and quantization learning by one objec-
tive. We call this quantization-based adaptation by hugging+
to avoid name confusion. Despite involving lossy compres-
sion with fine-grained semantics, hugging+ still keeps the
benefit of enhancing global hash codes. Additionally, it
allows for generating fine-grained quantization codes during
inference, which can be taken as another bonus to improve
retrieval performance. In particular, we adopt the common
practice of appending a reranking stage (ZhongZhong et al.,
2017; Ye et al., 2022) to the retrieval pipeline, in which we
first retrieve a moderate subset of relevant items using global
hash codes and then rerank the subset according to the fine-
grained similarity computed with quantized representations.
Wehighlight twomerits of hugging+ regardingpractical two-
stage retrieval systems: (i) It enables more efficient reranking
because quantization largely reduces the storage overhead
for fine-grained representations and also accelerates similar-
ity computation. (ii) It learns a holistic model to produce
multi-granularity representations for different stages via just
one pass, saving the effort of independent development for
multiple retrieval stages. Besides keeping consistent with
common practice, we choose to rerank using fine-grained
representations rather than fusing multi-granularity similar-
ity in one-stage retrieval for two reasons: (i) Decoupling
global and fine-grained ranking improves retrieval efficiency

as it iterates fine-grained similarity computation within a
small relevant subset rather than the entire database. (ii) Two-
stage retrieval is more robust than one-stage retrieval with
the fusion-based strategy. Empirically, we find it sensitive to
determine the fusion weights of global and fine-grained sim-
ilarities for one-stage retrieval. Luckily, this weighting issue
is naturally avoided in two-stage retrieval.

We instantiate hugging and hugging+ strategies by build-
ing HuggingHash and HuggingHash+ models, respec-
tively, with a simple contrastive learning objective for
global alignment. Experiments on text-image and text-video
retrieval datasets show that HuggingHash and Hugging-
Hash+ can outperform state-of-the-art UCMH methods
integrating transformers in handshaking style. Besides, we
adapt several state-of-the-art approaches with hugging and
hugging+, demonstrating their flexibility and general effec-
tiveness on UCMH when utilizing transformers.

Our contributions are summarized as follows.

• We highlight the significance and provide a detailed
study on transformer-based UCMH, which can serve as
a research basis for this promising new direction.

• Unlike straightforward ideas that only align global hash
codes (i.e., handshaking in Fig. 1), we propose hugging
with multi-granularity alignment for transformer-based
UCMH. It shows a positive synergy for cross-modal
alignment during training and improves retrieval perfor-
mance and transferability of global hash codes without
extra inference overhead.

• We further extend hugging to hugging+ that combines
a novel optimized quantization with fine-grained align-
ment. It not only keeps the benefit of improving global
hash codes but also enables fine-grained quantization
code generation as a gift. By reranking with fine-grained
quantization codes, the inference benefits more from
the hugging+ training strategy while still enjoying high
retrieval efficiency.

• We conduct extensive experiments on text-image and
text-video retrieval datasets, showing that hugging and
hugging+ help to outperform state-of-the-art baselines
with handshaking. Moreover, we demonstrate the effi-
cacy and flexibility of hugging and hugging+ to exiting
UCMH methods when utilizing transformers.

ExtensionNotesComparedwith our preliminarywork (Wang
et al., 2022b), this paper has been improved and further
studied from three aspects. (i) Technical extension. First,
we further investigate how fine-grained alignment promotes
global hash code learning. The details can be found in
Sect. 4.3.2, including the comparison of handshaking and
hugging in three aspects: training dynamics, visualization
and clustering analysis of the fine-grained latent space, and
attention visualization. We believe they can provide readers
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with a deeper understanding of hugging’s efficacy. Second,
hugging drops fine-grained parts in inference and hence
falls short of leveraging fine-grained representations. This
limitation was unresolved in our preliminary paper. In this
paper, we fulfill an effective solution by extending hugging to
hugging+, where firstwe integrate quantization learningwith
fine-grained alignment in training and then take fine-grained
quantization codes as a bonus for efficient reranking in infer-
ence. Our new solution obtains a better tradeoff between
retrieval efficacy and efficiency. Third, we contribute a new
approach to fine-grained quantization by transforming the
classical solution of the orthogonal matrix in Optimized
Product Quantization (OPQ) (Ge et al., 2013) into a series
of learnable Householder matrices. This integration seam-
lessly incorporates OPQ into the deep learning pipeline,
enhancing fine-grained semantic preservation and quantiza-
tion quality. This contribution can benefit various existing
quantization approaches. (ii) Experimental extension. We
include new results on one text-image retrieval (Chua et al.,
2009) and two text-video retrieval datasets (Xu et al., 2016;
Chen and Dolan, 2011). We join two state-of-the-art and
open-sourced approaches (Zhu et al., 2023; Tu et al., 2023)
in the investigation of transformer-based UCMH. We also
conduct qualitative analysis and extensive ablation studies to
justify the efficacy of our design. (iii) Survey extension. We
update the survey of related work and add more discussion
on the relation and differences to the latest papers.

2 RelatedWork

2.1 Hashing for Fast Visual Search

Hashing aims to transform high-dimensional data into com-
pact binary codes while preserving semantic information,
which has been extensively studied in visual search due to
fast retrieval speed and low storage cost (Wang et al., 2016,
2018). According to different strategies on distance (or simi-
larity) computation, it can be subdivided into binary hashing
and quantization. Specifically, binary hashing (Datar et al.,
2004)1 transforms continuous embeddings into the Ham-
ming space such that distances can be quickly computedwith
bitwise operators. Quantization (Jégou et al., 2011) divides
embedding space into disjoint clusters and approximates
each data point by the nearest centroid. By pre-computing the
inter-centroid distances in a lookup table, the search speed
can be greatly accelerated.

1 Binary hashing is sometimes called hashing for short when quanti-
zation is regarded as a parallel concept to hashing. But to be precise,
quantization should be regarded as a subordinate concept to hashing as
it essentially produces a hash function.

To preserve semantic information, traditional binary hash-
ing (Datar et al., 2004; Weiss et al., 2008; Heo et al., 2012;
Gong et al., 2013) and quantization (Ge et al., 2013; Babenko
and Lempitsky, 2014; Zhang et al., 2014; Kalantidis and
Avrithis, 2014; Martinez et al., 2016) approaches adopted
various heuristic strategies that are sensitive to the statisti-
cal property of application data and inflexible to adapt to
new data. More effectively, deep binary hashing (Liong et
al., 2015; Zhu et al., 2016; Liu et al., 2019) and quantiza-
tion (Cao et al., 2017; Yu et al., 2020) approaches jointly
optimized deep feature extraction and hashing (or quantiza-
tion) in an end-to-end fashion, which have been shown to
outperform traditional approaches in image retrieval (Shen
et al., 2019; Zhang et al., 2019; Wang et al., 2021; Cui et
al., 2021; Sun et al., 2022), video retrieval (Li et al., 2021b,
2022a; Zeng et al., 2022; Wang et al., 2023), multi-modal
retrieval (Zheng et al., 2020; Tan et al., 2022), and cross-
modal retrieval (Chen et al., 2018; Sun et al., 2019; Shen et
al., 2021; Li et al., 2021; Tu et al., 2022).

From a practical perspective, we present a hybrid hash-
ing framework that includes binary hashing and quantization
for two-stage efficient retrieval. Here we discuss the rela-
tions to existingwork fromdifferent aspects and highlight the
insights in our design. (i) (Shi and Chung, 2021) proposed
a similar two-stage inference pipeline to our hugging+ that
learned binary hashing and quantization at once for prelim-
inary ranking and further reranking, respectively. Neverthe-
less, this approach was not designed for transformer-based
hashing. Besides, both binary hashing and quantization in
it are built on the same global features, which tends to
homogenize the two stages and thereby limits the perfor-
mance gain. Differently, hugging+ develops global hashing
and fine-grained quantization, which leverages heteroge-
neous, coarse-to-fine semantics to maximize the gain. In
addition, both global and fine-grained components can be
mutually promoted in hugging-style training, leading to a
win-win situation in inference. (ii) The fine-grained quan-
tization in hugging+ follows the common practice in deep
quantization (Klein and Wolf, 2019; Yu et al., 2020; Jang
and Cho, 2021; Wang et al., 2022a) that uses a differentiable
trick (Chen et al., 2020b) to relax the optimization of prod-
uct quantization (PQ) (Jégou et al., 2011), making the whole
model end-to-end back-propagable. Furthermore, we revisit
optimized product quantization (OPQ) (Ge et al., 2013) and
introduce an isometric matrix to minimize quantization dis-
tortions. Different from OPQ, which solved the matrix by
intractable SVD decomposition, we propose a differentiable
solution based on the Householder transformation, enabling
end-to-end deep learning.
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2.2 Unsupervised Cross-Modal Hashing (UCMH)

Traditional UCMH approaches learned to transform hard-
craft features (Lowe, 2004) into binary codes by solving
linear problems, e.g. matrix factorization (Zhou et al., 2014;
Ding et al., 2016; Hu et al., 2019) and spectral decompo-
sition (Kumar and Udupa, 2011; Song et al., 2013). The
shallow features and linear solutions limited the performance
and scalability. In contrast, by leveraging deep neural net-
works (DNNs), deep UCMH approaches can capture richer
semantic information and generate better hash codes. Early
deep approaches (Hu et al., 2019; Wu et al., 2018; Hoang et
al., 2020) replaced the hand-crafted features with the deep
features and applied linear solutions as in some shallow
approaches (Kumar and Udupa, 2011; Zhu et al., 2013; Song
et al., 2013; Hu et al., 2019). To better estimate pairwise
similarity to guide hash learning during training, later deep
approaches (Su et al., 2019; Liu et al., 2020; Wang et al.,
2020b; Yang et al., 2020; Zhang et al., 2022; Yu et al., 2021a;
Zhang et al., 2021; Zhu et al., 2023; Tu et al., 2023) delved
into fusing multi-modal affinities to estimate a precise simi-
larity matrix. Besides, some recent deep approaches tried to
narrow the modality gap by adversarial learning (Zhang et
al., 2018; Li et al., 2019; Zhang and Peng, 2020), knowledge
distillation (Hu et al., 2020; Li and Wang, 2021), or self-
supervised learning (Wang et al., 2020, 2021; Hoang et al.,
2023; Mikriukov et al., 2022), showing promising results.

Note that existing deep approaches mainly used classic
AlexNet (Krizhevsky et al., 2012) or VGGNets (Simonyan
and Zisserman, 2015) to extract visual features and used
MLPs to encode text information, which fell short of seman-
tic extraction and limited hash representations. Instead, our
paper highlights the significance of transformers to UCMH
and conducts a detailed study on transformer-based UCMH.
We examine the efficacy of transformers to UCMHwith five
representative and open-sourced approaches (Su et al., 2019;
Yang et al., 2020; Yu et al., 2021a; Zhu et al., 2023; Tu et
al., 2023).More importantly,we also propose effectivemulti-
granularity hash learning strategies that provide new insights
into the transformer-based UCMH.

2.3 Transformers for Multimedia Retrieval

Recently, transformers (Vaswani et al., 2017) have made
remarkable progress in CV (Dosovitskiy et al., 2021; Car-
ion et al., 2020; Liu et al., 2021b) and NLP (Devlin et al.,
2019; Liu et al., 2019c; Yang et al., 2019) tasks, triggering
the surge toward better multimedia understanding. In cross-
modal retrieval, the potential of transformers has beenwidely
explored (Shin et al., 2022). Single-stream retrieval meth-
ods (Lu et al., 2019; Song and Soleymani, 2019; Li et al.,
2020a; Gao et al., 2020; Yu et al., 2021b; Bao et al., 2022b;
Radenovic et al., 2023) designed unified models with fully

cross-modal interaction. Albeit the superior performance,
the quadratic complexity of pairwise interaction limited their
retrieval efficiency. Dual-streammethods developed separate
encoders for modality-specific representations, in which the
core is to align the representations between modalities. Most
dual-stream methods (Liu et al., 2019b; Gabeur et al., 2020;
Radford et al., 2021; Liu et al., 2021a; Yang et al., 2021;
Patrick et al., 2021; Bain et al., 2021; Luo et al., 2022; An et
al., 2023; Liu et al., 2023; Lin et al., 2023) globally aligned
the aggregation tokens (e.g. [CLS]) with metric learn-
ing (Liu, 2009) or contrastive learning (Chen et al., 2020a),
where negative sampling strategies have been extensively
investigated to enhance representation learning. To reduce
the modality gap, many recent works further excavated fine-
grained semantics from content tokens (e.g. text words or
image patches) and designed various fine-grained interaction
strategies, augmenting cross-modal learning and relevance
estimation. For instance, Messina et al. (2021); Yao et al.
(2022); Wu et al. (2023) measured cross-modal token-wise
relevance and aggregated the fine-grained scores by pool-
ing strategies. Wang et al. (2021b) developed a global–local
fusion approach that combines global and local similari-
ties for alignment and retrieval. Fang et al. (2023) proposed
an uncertainty-adaptive approach that models cross-modal
interaction as a distribution matching procedure. Jin et al.
(2023b) designed a text-frame attention module to enhance
cross-modal interaction and proposed a novel generative
retrieval approach based on diffusion mechanism. Zala et
al. (2023); Jin et al. (2023a) adopted a hierarchical perspec-
tive to model cross-modal interaction at different levels, such
as entity, action, and event, where Jin et al. (2023a) also
introduced a novel Banzhaf Interaction mechanism to refine
cross-modal correspondence. In general, these fine-grained
approaches help to achieve better performance but sacrifice
retrieval efficiency, because their test-time efficacy essen-
tially relies on complex similarity computation.

In the specific field of hashing-based retrieval, recent
advances in image (Lu et al., 2021; Li et al., 2022; Dubey
et al., 2022; Chen et al., 2022) and video hashing (Li et al.,
2021b; He et al., 2021; Zeng et al., 2022; Wang et al., 2023)
have also revealed the effectiveness of uni-modal transformer
hashing. In the cross-modal scenario, CLIP-based (Radford
et al., 2021) hashing approaches have emerged recently for
text-image and text-video retrieval. SACH (Yu et al., 2022)
and DCMHT (Tu et al., 2022) are two latest approaches
for supervised and unsupervised text-image hashing. Despite
impressive results, their successes mainly relied on off-the-
shelf well-aligned transformers. Besides, Tu et al. (2022)
further leveraged ground-truth labels to guide hash learn-
ing. CLIP4Hashing (Zhuo et al., 2022) adapted CLIP for
text-video UCMH, where the text and video encoders were
only aligned via global hash representations. In contrast,
we proposed effective and general solutions for UCMH
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with unaligned transformers. By adopting multi-granularity
alignment in training, we effectively enhance the cross-
modal consistency, producing better hash representations
than CLIP4Hashing.

3 Methodology

3.1 Problem Formulation andModel Overview

Given an unlabeled training setD of ND naturally coexisted
dual-modal (e.g. text-image or text-video) pairs, our goal is to
learn a pair of modality-specific hash encoders that encode
texts and images (or videos) as L-bit semantic-preserving
binary codes for cross-modal retrieval.

To this end, we construct a HuggingHash model using
the hugging framework, as illustrated in Fig. 2. Specifically,
given a training pair, we first preprocess the text and the
image (or video) as the input tokens for transformers. Then,
we extract features with transformers and get the output
embeddings from the [CLS] and content tokens (Sect. 3.2).
Next, we forward the [CLS] tokens to the hash modules
and produce text and image (or video) hash code vectors.
Meanwhile, we project the embeddings of content tokens
to a cross-modal latent space. Finally, we conduct multi-
granularity alignment, including global alignment based on
the hash codes (Sect. 3.3.1) and fine-grained alignment based
on latent local representations (Sect. 3.3.2), to bridge text
and visual modalities. We further design learnable optimized
quantization collaborating with the fine-grained alignment to
make the best of fine-grained representations (Sect. 3.3.3).
In inference, we obtain hash codes through the global branch
and enable the generation of fine-grained quantization codes
(Sect. 3.4.1).We take global hash codes for preliminary rank-
ing (Sect. 3.4.2) and also provide optional reranking with
fine-grained quantization codes (Sect. 3.4.3).

3.2 Base Encoders

3.2.1 Text Encoder

For each text sample, we tokenize it into word pieces and
construct content tokens. Then we append a [CLS] token
and form the text input. Denote the token sequence of the i th
text in a mini-batch B by Ti = {ti,[CLS], ti,1, ti,2, · · · , ti,K t

i
},

where K t
i is the number of content tokens2 for the i th text.

We pad the sequence to a fixed length, add position embed-

2 We define content tokens as those non-special tokens. Any special
tokens, including classification ([CLS]), ‘end-of-sentence’ ([EOS]),
padding ([PAD]), mask ([MASK]), and ‘out-of-vocabulary’ ([UNK]),
will be removed from transformer’s output token sequence.

dings and forward it to the BERT (Devlin et al., 2019)
encoder f t(·; θ tf ) to compute the token embeddings, namely

xti,[CLS] ∈ R
Dt

and {xti,k}
K t
i

k=1 ⊂ R
Dt
. We can formulate the

whole process by

xti,k = f t(Ti ; θ tf )k, k = [CLS], 1, 2, · · · , K t
i . (1)

3.2.2 Image Encoder

For each image sample, we use the ViT (Dosovitskiy
et al., 2021) pre-processor to patchify it into a fixed
number (e.g. 196) of content tokens and add a [CLS]
token to form the image input. We denote the token
sequence of the i th image in a mini-batch B by Vi =
{vi,[CLS], vi,1, vi,2, · · · , vi,K v}, where K v is the number of
content tokens. We then add position embeddings and for-
ward them to the ViT f v(·; θvf ) to compute embeddings,

namely xvi,[CLS] ∈ R
Dv

and {xvi,k}K
v

k=1 ⊂ R
Dv
. Analogous

to the text side, we summarize the image feature extraction
process by

xvi,k = f v(Vi ; θvf )k, k = [CLS], 1, 2, · · · , K v. (2)

3.2.3 Video Encoder

In addition to text-image retrieval, HuggingHash also sup-
ports hash-based text-video retrieval tasks. To be concise, we
reuse the notations in Sect. 3.2.2 and assign analogous defini-
tions to them. Given the i th video in a mini-batch B, we first
adopt ViT as the spatial encoder to extract frame-level fea-
tures vi,1, vi,2, · · · , vi,K v , where K v is the number of sam-
pled frames. We append a temporal [CLS] token to frame
features, add temporal positional embeddings, forming the
input token sequence Vi = {vi,[CLS], vi,1, vi,2, · · · , vi,K v}.
Then, we build a lightweight self-attention layer upon Vi to
capture temporal semantics, producing output embeddings
by xvi,[CLS] ∈ R

Dv
and {xvi,k}K

v

k=1 ⊂ R
Dv
. We denote the

whole video encoder by f v(·; θvf ), and formulate the encod-
ing process by

xvi,k = f v(Vi ; θvf )k, k = [CLS], 1, 2, · · · , K v. (3)

3.3 Hugging: Multi-granularity Alignment with
Transformers for Hash Learning

Transformers provide better multimedia understanding to
facilitate hash learning, but aligning heterogeneous knowl-
edge between different modalities is challenging.We present
hugging, a multi-granularity alignment framework to tackle
the challenge. In addition to the global alignment for hash
codes, we design fine-grained alignment using GhostVLAD
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Fig. 2 The pipeline HuggingHash. During training, it integrates
global alignment based on hash codes and fine-grained alignment with
a GhostVLAD (Zhong et al., 2018) module. We design embedding-
based (Sect. 3.3.2) and quantization-based (Sect. 3.3.3) objectives as
alternatives for fine-grained alignment. The synergy of global and fine-
grained alignment shows a positive effect on both components during

learning. In inference, we obtain hash representations for retrieval via
the global branch. Quantization-based fine-grained alignment further
enables fine-grained quantization code generation as a bonus, which
can be exploited to refine retrieval results by efficient reranking. Best
viewed in color

(Zhong et al., 2018) with content tokens. The global align-
ment provides direct guidance on hash code learning, while
the fine-grained alignment supplies effective regularization
to reduce the modality gap.

3.3.1 Global Alignment

Weapply global alignment to the hash codes. First,we project
and convert the output embeddings of the aggregation tokens
(i.e., [CLS]) into binary hash codes:

hti = tanh
(
α · φt(xti,[CLS])

) ∈ [−1,+1]L , (4)

hvi = tanh
(
α · φv(xvi,[CLS])

) ∈ [−1,+1]L , (5)

bti = hti − sg
(
hti − sgn(hti )

) ∈ {−1,+1}L , (6)

bvi = hvi − sg
(
hvi − sgn(hvi )

) ∈ {−1,+1}L , (7)

where φt and φv are modality-specific projections that trans-
form R

Dt
-dimensional text features and R

Dv
-dimensional

visual features into an L-dimensional shared latent space,
respectively. α > 0 is a factor in controlling the smooth-

ness of the tanh outputs. hti and h
v
i are smoothed hash codes.

sgn(·) is the sign function that outputs +1 for positive input
and −1 otherwise on each element. sg(·) is the stop gradient
operator that is the identity function in the forward pass but
drops gradient for variables inside it during the backward
pass. Equations (6) and (7) allow us to directly pass the gra-
dient straight through (Bengio et al., 2013) the binary hash
codes, i.e., bti and bvi . In HuggingHash, we adopt the con-
trastive learning loss (van den Oord et al., 2018; He et al.,
2020; Chen et al., 2020a) for global alignment, namely

�
�tv
GA,i = − log

exp(Mii/τ)
∑|B|

j=1 exp(Mi j/τ)
, (8)

�
�vt
GA,i = − log

exp(Mii/τ)
∑|B|

j=1 exp(Mji/τ)
, (9)

LGA = 1

2|B|
|B|∑

i=1

(
�

�tv
GA,i + �

�vt
GA,i

)
, (10)

where B denotes a mini-batch. Mi j = cos(bti , b
v
j ). τ > 0 is

the temperature hyper-parameter.
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Fig. 3 Embedding-based fine-grained alignment

3.3.2 Fine-Grained Alignment with Locally Aggregated
Descriptors

Wepresent a clustering-based strategywithGhostVLAD(Zhong
et al., 2018) for fine-grained alignment. Our basic idea is to
exploit concept-aware semantics and enable concept-aware
alignment in the latent space. Specifically, we first project the
output embeddings of the content tokens into a shared latent
space, namely,

zti,k = ψ t(xti,k), k = 1, 2, · · · , K t
i , (11)

zvi,k = ψv(xvi,k), k = 1, 2, · · · , K v, (12)

where ψ t and ψv are the projections that transform R
Dt
-

dimensional text features and R
Dv
-dimensional visual fea-

tures into an D-dimensional fine-grained shared latent space,
respectively. We denote the collections of latent embeddings

for text and visual content tokens as Z t
i = {zti,k}

K t
i

k=1 and

Zv
i = {zvi,k}K

v

k=1, respectively.
Then,we use aGhostVLADmodule to learn Nc+1 cluster

centroids,
{
c0, c1, c2, · · · , cNc

}
. In particular, we designate

c0 as the “ghost” centroid to filter noise, e.g. uninformative
words in a sentence and background features for an image or
a video. Each other centroid is expected to represent a latent
concept or attribute, such as color, scene, etc., contributing to
a partial description of the object. We forward Z t

i and Zv
j to

the GhostVLAD, where each token is viewed as composites
of different concepts andwill be softly assigned to all clusters.
We use assignment scores to estimate the relevance of a token
to all concepts or attributes. For instance, the assignment
score of the text token zti,k w.r.t. the nth cluster is computed
by

ati,k,n = exp(BatchNorm(w�
n z

t
i,k))

∑Nc
n′=0 exp(BatchNorm(w�

n′ zti,k))
, (13)

where BatchNorm(·) is batch normalization (Ioffe and
Szegedy, 2015) and W = [w0,w1, · · · ,wNc] is a trainable

parametermatrix. Suppose the nth cluster is associatedwith a
latent concept of ‘animal’, then ati,k,n indicates the relevance
of the text token zti,k to ‘animal’, e.g. 70%.

After clustering, we aggregate modality-wise residual
embeddings at each cluster except the “ghost” cluster. For
the nth cluster, we aggregate residual embeddings of Z t

i and
Zv

j respectively by

r ti,n =
K t
i∑

k=1

ati,k,n · (zti,k − cn), (14)

rvj,n =
K v∑

k=1

avj,k,n · (zvj,k − cn). (15)

In Eqs. (14) and (15), each residual embedding represents the
token semantics conditioned by the concept associated with
the cluster. For instance, (zti,k − cn) may represent that given
the concept of ‘animal’, the token is about the ‘cat’. Notably,
assignment scores and residual embeddings are designed
to capture different information, i.e., concept relevance and
concept-aware semantics, respectively. So we decouple them
by using independent parameters for the assigner and cen-
troids. Tokens with high relevance scores do not necessarily
approach the centroid. Then the aggregated embedding
can depict the total semantics of the whole token sequence
w.r.t. the concept associated with the cluster. For example,
r ti,n may indicate how the text input Z t

i is relevant to ‘ani-
mal’ and what ‘animal’ it tells.

Finally, we define fine-grained alignment as aligning
aggregated local representations from text and vision cluster
by cluster, and introduce the cluster-wise contrastive learning
loss as

�
�tv
FA(n),i = − log

exp(mn
ii/τ)

∑|B|
j=1 exp(m

n
i j/τ)

, (16)

�
�vt
FA(n),i = − log

exp(mn
ii/τ)

∑|B|
j=1 exp(m

n
ji/τ)

, (17)

LFA(n) = 1

2|B|
|B|∑

i=1

(
�

�tv
FA(n),i + �

�vt
FA(n),i

)
, (18)

LFA = 1

Nc

Nc∑

n=1

LFA(n), (19)

where mn
i j = cos(r ti,n, r

v
j,n) is the fine-grained similarity of

Z t
i andZv

j w.r.t. the nth cluster.We illustrate this embedding-
based alignment in Fig. 3. As each aggregated representation
is expected to capture both concept relevance (distribution
statistics of assignment) and concept-aware semantics (resid-
ual embedding), cluster-wise alignment serves as a strong
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Fig. 4 The training and inference processes of quantization-based fine-grained alignment

signal to regularize cross-modal consistency concept by con-
cept, thus fulfilling fine-grained alignment.
Remark: Criteria for choosing clustering algorithm The
choice of clustering algorithm is crucial for the fine-grained
alignment. Our selection criteria include the following: (i)
End-to-end optimization capability is mandatory, as we fun-
damentally train neural networks to achieve cross-modal
alignment.Unfortunately,wefind thatmost classic clustering
algorithms likeDBSCAN(Ester et al., 1996), do notmeet this
requirement. Other preferences, in decreasing order, include:
(ii) Interpretability in the latent space, such as latent topics
for text and visual concepts for images. It is preferable to
capture the correlation between samples and latent informa-
tion. (iii) Adequate robustness to noise, since we often lack
detailed fine-grained annotations, such as correspondences
between text words and image regions, which necessitates
noise reduction and key information extraction. (iv) Simplic-
ity and efficiency, as slow or complex algorithms will hinder
training efficiency. (v) The output of the clustering algorithm
should also support concise and efficient fine-grained cross-
modal alignment.

We opt for GhostVLAD because it meets all these criteria.
Specifically, (i)GhostVLADis derived fromNetVLAD(Arand-
jelovic et al., 2016), itself a trainable neural network module
successfully applied to tasks like place recognition (Arand-
jelovic et al., 2016), image retrieval (Humenberger et al.,
2022), and face recognition (Zhong et al., 2018). (ii)
GhostVLAD produces interpretable results. It learns a fixed
number of cluster prototypes in the latent space, serving as
indicators of fine-grained concepts. By adaptively aggregat-
ing residuals of each content tokenw.r.t. each cluster centroid,
it provides representationsw.r.t. different latent concepts that
aid comprehensive sample descriptions. (iii) GhostVLAD

employs an information aggregation process that reduces
sensitivity to noise introduced by individual tokens. Besides,
compared to NetVLAD, it introduces ghost (i.e., idle) clus-
ters, enhancing noise filtering through end-to-end training.
(iv) The design of GhostVLAD is GPU-friendly, consisting
of common deep learning operators and only requiring a sin-
gle pass for clustering, as opposed to multiple iterations in
k-means. (v) Utilizing GhostVLAD’s output for cross-modal
alignment is simple and efficient. The output comprises
fixed-size representations w.r.t. the number of local clus-
ters, irrespective of the number of content tokens. Alignment
is achieved through one-to-one matching w.r.t. each local
cluster, avoiding exhaustive cross-interaction between two
embedding sets and thus promoting conciseness and effi-
ciency.

3.3.3 Optimized Quantization Learning for Fine-Grained
Representations

When the training is equipped with embedding-based fine-
grained alignment, the fine-grained parts have to be discarded
in inference tomaintain the efficiency of hash-based retrieval.
It falls short of leveraging fine-grained representations and
has yet to be resolved in our preliminary work (Wang et al.,
2022b). Here we provide a quantization-based solution to
this problem, which aims to align fine-grained cross-modal
correspondence and learn quantized representations jointly.

Suppose at the nth local head of fine-grained align-
ment, we have a D-dimensional continuous-value embed-
ding rn to be quantized with M sub-codebooks, namely
D1
n, D

2
n, · · · , DM

n . The mth sub-codebook Dm
n consists of

K sub-codewords dmn,0, d
m
n,1, d

m
n,K−1 ∈ R

d . The problem of
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product quantization (Jégou et al., 2011) is given by

r̂n = argmin
dn∈D1

n×D2
n×···×DM

n

‖rn − dn‖22 . (20)

Let RD ≡ R
Md , where M and d are both positive integers.

We divide rn into M equal-length d-dimensional segments,
i.e., rn ≡ [r1n, r2n, · · · , rMn ]. Then, the original problem
in Eq. (20) can be re-formulated into M independent sub-
problems. For example, the mth sub-problem is defined as

r̂mn = argmin
dmn,k∈Dm

n

∥
∥rmn − dmn,k

∥
∥2
2
. (21)

By imposing
∥∥rmn

∥∥
2 = ∥∥dmn

∥∥
2 (e.g. L2 normalization), Eq.

(21) can be re-written as

r̂mn = argmax
dmn,k∈Dm

n

〈
rmn , dmn,k

〉
, (22)

where 〈·, ·〉 denotes the inner product operator.
To enable end-to-end deep learning, we follow the com-

mon practice of deep quantization approaches (Klein and
Wolf, 2019; Yu et al., 2020) that relax the Eq. (22) by soft-
max trick, producing

r̂mn =
K−1∑

k=0

pmn,kd
m
n,k, (23)

pmn,i = exp(β · 〈rmn , dmn,k〉)
∑K−1

k′=0 exp(β · 〈rmn , dmn,k′ 〉)
. (24)

pmn,k ∈ [0, 1]K is the codeword selection probability
w.r.t. Dm

n . β > 0 is a scaling factor such that Eq. (23) approx-
imates Eq. (22) when β → +∞.

As pointed out by a classic approach, optimized product
quantization (OPQ) (Ge et al., 2013), the way to divide rn
into r1n, r

2
n, · · · , rMn (i.e., sub-space partition) is important to

the quantization quality. However, existing deep quantization
practices have not considered this aspect, whichmay result in
large quantization distortions. Inspired by OPQ, we further
design optimized quantization learning that introduces an
isometric rotation matrix Pn ∈ R

D×D to optimize the sub-
space partition in Eq. (20), leading to

r̂n = argmin
dn∈D1

n×D2
n×···×DM

n

‖Pn rn − dn‖22 ,

s.t. P�
n Pn = I .

(25)

I denotes the identity matrix.
Note that in OPQ, the problem of Eq. (25) is solved

by SVD decomposition, which is intractable for the end-
to-end deep learning pipeline. Differently, we design a

back-propagatable solution to Eq. (25). First, we set a series
of trainable parameters un,1, un,2, · · · , un,Nh and transform
them into orthogonal Householder matrices, namely

Hn,h = I − 2
un,hu�

n,h
∥∥un,h

∥∥2
2

, 1 ≤ h ≤ Nh ≤ D. (26)

Then, we parameterize Pn by a product of Nh Householder
matrices, giving

Pn =
Nh∏

h=1

Hn,h . (27)

In practice, we implement Pn rn in Eq. (25) by applying Nh

iterations:

rn,0 : = rn, (28)

rn,h := rn,h−1 − 2un,h
∥∥un,h

∥∥2
2

· u�
n,h rn,h−1,

1 ≤ h ≤ Nh ≤ D,

(29)

Pn rn : = rn,Nh . (30)

After the isometric rotation, we apply Eqs. (23) and (24) as
trainable quantization.

Analogous to embedding-based fine-grained alignment,
here we introduce how to align fine-grained representations
and train the optimized quantization module simultane-
ously. We denote the quantized representations of r ti,n and

rvi,n by r̂ ti,n and r̂vi,n , respectively. Besides, we define the
asymmetric-quantized similarity by

m̂n, �tv
i j = cos(r ti,n, r̂

v
j,n), (31)

m̂n, �vt
i j = cos(rvi,n, r̂

t
j,n). (32)

Finally, as illustrated in Fig. 4a, we define the asymmetric-
quantized contrastive learning loss for fine-grained align-
ment as

�̂
�tv
FA(n),i = − log

exp(m̂n, �tv
i i /τ)

∑|B|
j=1 exp(m̂

n, �tv
i j /τ)

, (33)

�̂
�vt
FA(n),i = − log

exp(m̂n, �vt
i i /τ)

∑|B|
j=1 exp(m̂

n, �vt
i j /τ)

, (34)

L̂FA(n) = 1

2|B|
|B|∑

i=1

(
�̂

�tv
FA(n),i + �̂

�vt
FA(n),i

)
, (35)

L̂FA = 1

Nc

Nc∑

n=1

L̂FA(n). (36)
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The reason we choose the asymmetric-quantized loss (Jang
and Cho, 2021) rather than the symmetric one (Wang et al.,
2022a) is to optimize the AQS-based (i.e., based on asym-
metric quantization similarity, as shown in Fig. 5) retrieval
directly. To distinguish the quantization-based fine-grained
alignment from the embedding-based counterpart, we call
the hugging with optimized quantization learning by hug-
ging+. Accordingly, we instantiation of hugging+ is dubbed
HuggingHash+.

3.3.4 Learning Objectives

Here we summarize the learning objectives of Hugging-
Hash and HuggingHash+ as follows:

LHuggingHash = LGA + λLFA + γRquant, (37)

LHuggingHash+ = LGA + λL̂FA + γRquant,

Rquant = 1

2|B|
|B|∑

i=1

(∥∥bti − hti
∥∥2
2 + ∥∥bvi − hvi

∥∥2
2

)
. (38)

Rquant is the quantization loss of hash codes. λ, γ > 0 are the
hyper-parameters to balance different loss terms. The hug-
ging and hugging+ frameworks are flexible and compatible.
By replacing LGA (Eq. (10)) with other hashing objectives,
we can easily extend them to other UCMH methods.

3.4 Indexing and Retrieval

3.4.1 Encoding Global and Fine-Grained Indices

Without loss of generality, we take text-to-image retrieval as
an example to describe how HuggingHash and Hugging-
Hash+ produce indices (i.e., hash-based representations) in
inference.

We encode database images with the image hash encoder,
which comprises a patchifier, a ViT, and the image hashmod-
ule. We denote the global hash codes of the i th image by
bvi ∈ {−1,+1}L , which can be taken as the global index.

Meanwhile, if the hugging+ training framework is adopted,
we can take fine-grained representations as a gift frommulti-
granularity alignment. In addition to the forward process of
global index generation, there is no need for another pass
to get fine-grained indices of the same instance. Instead, in
the same forward pass, we retain output embeddings of local
heads and compress them with corresponding quantization
modules. As illustrated in Fig. 4b, at the nth local head, we
first apply the isometric rotationmatrix Pn to the local image
embedding rvi,n , which can be efficiently implemented by
Eqs. (28) to (30), and obtain the rotated embedding r̃vi,n We

divide r̃vi,n into M segments, namely r̃v,1i,n , r̃v,2i,n , · · · , r̃v,Mi,n .
Then, we find the sub-codeword index of each segment. Take

the mth segment as an example:

kv,mi,n = argmax
0≤k<K

〈r̃v,mi,n , dmn,k〉. (39)

Next, we collect the indices {kv,mi,n }Mm=1 and convert them into
a binary code vector qvi,n . We take it as quantization codes
w.r.t. the nth local head.

3.4.2 Ranking in the Hamming Space

Given a text query, we forward it to the text hash encoder,
which comprises a tokenizer, a text transformer, and the
text hash module. We denote the query hash codes as btq ∈
{−1,+1}L . Hamming distance between btq and bvi is defined
by

dH(btq, b
v
i ) = 1

2

(
L − bt�q bvi

)
. (40)

By leveraging bit-wise operators (i.e., XOR), retrieval effi-
ciency can be largely improved.

We rank the database images according to the Hamming
distance. The smaller the distance, the higher the ranking. As
shown in Fig. 5, if we only consider single-stage retrieval or
adopt the vanilla hugging strategy, we directly return the top-
ranked IDsw.r.t.Hamming distance. Otherwise, we reserve a
portion of the top-ranked images in the whole database, ND′
in total, for a fine-grained reranking stage.

3.4.3 Reranking with Fine-Grained Quantization Codes

Suppose the text query Tq produces an embedding r tq,n at the
nth local head.Wefirst apply the isometric rotationmatrix Pn

to r tq,n by Eqs. (28) to (30), and obtain the rotated embed-

ding r̃ tq,n . Then, we divide r̃ tq,n into M segments, namely

r̃ t,1q,n, r̃
t,2
q,n, · · · , r̃ t,Mq,n . Next, we adopt Asymmetric Quantiza-

tionSimilarity (AQS) (Jégou et al., 2011) as themetric,which
computes the similarity between r̃ tq,n and the quantized rep-
resentation of the i th database item, r̂vi,n , by

AQS(r̃ tq,n, r̂
v
i,n) =

M∑

m=1

〈r̃ t,mq,n, r̂v,mi,n 〉
∥∥
∥r̃ t,mq,n

∥∥
∥
2

(41)

=
M∑

m=1

〈r̃ t,mq,n, dmn,kv,mi,n
〉

∥∥∥r̃ t,mq,n
∥∥∥
2

, (42)

where kv,mi,n is the sub-codeword index of r̂v,mi,n in the mth
sub-codebook, obtained by Eq. (39). We can set up a lookup
table Tq,n ∈ R

M×K w.r.t. each r̃ tq,n , which stores the pre-

computed similarities between the segments of r̃ tq,n and all

sub-codewords. Specifically, Tm
q,n,k = 〈r̃ t,mq,n, dmn,k〉/‖r̃ t,mq,n‖2.
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Fig. 5 The hash-based retrieval pipeline. Given a query text, we first use global hash codes to rank the database. We can directly take the top-ranked
results or enable a further reranking stage with fine-grained quantization codes

Table 1 Dataset information and settings

Dataset Text style Setting reference #Train #Query #Database Evaluation metric

Text-Image Retrieval

Flickr25K (Huiskes and Lew, 2008) Hashtags Li et al. (2019) 5000 2000 18,015 MAP@All

NUSWIDE (Chua et al., 2009) Hashtags Yu et al. (2021a) 5000 2000 184,577 MAP@All

MSCOCO (Lin et al., 2014) Sentence Wang et al. (2020b) 122,558 1000 122,558 MAP@All

Wiki (Rasiwasia et al., 2010) Article Wang et al. (2020b) 2173 693 2173 MAP@50

Text-Video Retrieval

MSRVTT (Xu et al., 2016) Sentence Zhuo et al. (2022) 9000 1000 1000 R@{1,5,10}, MdR

MSVD (Chen and Dolan, 2011) Sentence Zhuo et al. (2022) 1,200 670 670 R@{1,5,10}, MdR

Hence, AQS can be efficiently computed by summing some
items from lookup table according to the indices {kv,mi,n }Mm=1
converted from quantization codes qvi,n , i.e.,

AQS(r̃ tq,n, r̂
v
i,n) =

M∑

m=1

Tm
q,n,kv,mi,n

. (43)

The fine-grained similarity between the text query Tq and
fine-grained quantization codes of the i th database images,
{qvi,n}Nc

n=1, is computed by summing up Nc local similarity
scores, namely

sQ(Tq, {qvi,n}Nc
n=1) =

Nc∑

n=1

AQS(r̃ tq,n, r̂
v
i,n). (44)

As shown in Fig. 5, if the hugging+ strategy is adopted,
we can further rerank the filtered subset D′ obtained from
Sect. 3.4.2 according to Eq. (44). The higher the score, the
higher the ranking. Finally, we return the top-ranked images
in the reranked list as retrieval results. Since ND′ � ND and
the reranking is quantization-based, it keeps high efficiency
of hash-based retrieval.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

We conduct experiments on four commonly used text-image
datasets in cross-modal hashing:
Flickr25K (Huiskes and Lew, 2008) It contains 25,000
image-text pairs with 24 annotated labels. Each pair con-
tains an image and the associated textual tags. We filter out
data without labels and use 20,015 pairs in our experiment.
The tag information for each image is represented as a 1,386-
dimensional bag-of-words vector.
NUSWIDE (Chua et al., 2009) It provides 186,577 image-
tag pairs from the top-10 concepts. The tag information is
represented as a 1,000-dimensional bag-of-words vector.
MSCOCO (Lin et al., 2014) It consists of 123,558 image-
sentence pairs from 80 object categories. Each image is
associated with 4 sentences describing its content. Each text
is represented as a 2,000-dimensional bag-of-words vector.
Wiki (Rasiwasia et al., 2010) It composes of 2,866 docu-
ments from 10 categories. Each document contains an image
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and a text with at least 70 words. An 128-dimensional SIFT
feature vector is provided for each image, and each text is
represented as a 10-dimensional topic vector.

In addition, following (Zhuo et al., 2022), we conduct
experiments on two text-video datasets:
MSRVTT (Xu et al., 2016) It consists of 10,000 video clips,
each is annotated with 20 captions. The average video dura-
tion is 15 s and the frame rate is 30FPS.We follow the setting
of Zhuo et al. (2022) and report the results on the 1K-A test
set (Yu et al., 2018).
MSVD (Chen and Dolan, 2011) It contains 1,970 video clips
and each clip is associatedwith about 40 captions. Thedataset
is split into train, validation, and test sets with 1,200, 100,
and 670 clips, respectively. In testing, we follow Zhuo et al.
(2022) to select the fifth caption for each clip, resulting in
bidirectional one-to-one retrieval.

The data splits are described in Table 1.

4.1.2 Implementation Details

Our implementation is based on PyTorch (Paszke et al.,
2019) with 4 NVIDIAGTX 3080Ti (12GB)GPUs.We adopt
the standard metric, mean average precision (MAP@N ), to
evaluate text-image retrieval tasks. For text-video retrieval
tasks, use recall (R@N ) and median rank (MdR) of the
ground-truth items as the evaluation metrics. For compar-
ison, shallow approaches take bag-of-words features and
hand-crafted visual descriptors (e.g. SIFT (Lowe, 2004)) as
text and image inputs, respectively. Deep approaches use
CNN (e.g. AlexNet (Krizhevsky et al., 2012)) features as
image inputs. For transformer-based approaches, we use pre-
trained BERT (Devlin et al., 2019) (‘bert-base-uncased’)
and ViT (Dosovitskiy et al., 2021) (‘vit-base-patch16-224’)
as default transformers on text-image retrieval tasks. For
text-video retrieval tasks, we follow Zhuo et al. (2022);
Luo et al. (2022) that use the pre-trained CLIP (Radford et
al., 2021) (‘clip-vit-base-patch32’) to initialize the text and
frame encoders. The dimensions of token embeddings are
Dt = Dv = 768. Maximum numbers of text tokens are set
to 128 for text-image retrieval tasks and 32 for text-video
retrieval tasks. The dimension of fine-grained alignment
space, D, is set to 128 for text-image retrieval tasks and
512 for text-video retrieval tasks. The batch size is set to
32. Following the practice of Luo et al. (2022), we take
Adam (Kingma and Ba, 2015) as the optimizer with a learn-
ing rate of 1e-7 for pretrained text and image transformers
and a learning rate of 1e-4 for other modules. For text-video
retrieval tasks, we uniformly select 1 frame per second from a
raw video and randomly sample 12 frames from the selected
ones as the video input. Other default settings are as fol-
lows: (i) The loss weights in Eqs. (37) and (38) are λ = 0.2
and γ = 1. (ii) The smoothness factor in Eqs. (4) and (5)
is α = 0.5. (iii) The scaling factor in Eqs. (23) and (24)

is β = 1. (iv) The temperature factor in contrastive learn-
ing objectives is τ = 0.2. (v) The number of active clusters
in GhostVLAD is Nc = 7. (vi) For the quantization mod-
ule, we set the codeword number of each sub-codebook,
K = 256, such that each local embedding is encoded by
M log2 K = 8M bits (i.e., M bytes). (vii) For text-image
retrieval tasks, we set M = 4 sub-codebooks in each quanti-
zation module, producing 32-bit quantization codes at each
local head. For text-video retrieval tasks, we setM = 32 sub-
codebooks in each quantization module, leading to 256-bit
quantization codes at each local head. (viii) The number of
Householder transformations in Eq. (27) is Nh = D/8 = 16.
(ix) In the two-stage retrieval pipeline, we set the reranking
size ND′ = 0.1ND .

4.2 Comparison with State-of-the-art Approaches

4.2.1 On Text-Image Retrieval

The comparison is with 15 UCMH baselines: (i) 5 shal-
low methods: CVH (Kumar and Udupa, 2011), IMH (Song
et al., 2013), CMFH (Ding et al., 2016), FSH (Liu et
al., 2017), ACQ (Irie et al., 2015). (ii) 10 SOTA deep
methods: DBRC (Hu et al., 2019), UGACH (Zhang et
al., 2018), UCH (Li et al., 2019), DJSRH (Su et al.,
2019), UKD-SS (Hu et al., 2020), SRCH (Wang et al.,
2020b), DSAH (Yang et al., 2020), DGCPN (Yu et al.,
2021a), CIRH (Zhu et al., 2023), UCHSTM (Tu et al.,
2023). To explore the impact of transformers on UCMH,
we adapt the open-sourced implementation of 5 represen-
tative baselines, i.e., DJSRH, DSAH, DGCPN, CIRH, and
UCHSTM, by using the same backbones as HuggingHash
and HuggingHash+. There are two differences between
HuggingHash and HuggingHash+: (i) In training, Hug-
gingHash adopts embedding-based fine-grained alignment
objective (i.e., Eq. (19)) while HuggingHash+ adopts
quantization-based objective (i.e., Eq. (36)). (ii) In infer-
ence,HuggingHash only produces global hash codes, while
HuggingHash+ further supplies fine-grained quantization
codes. HuggingHash executes retrieval by ranking with
hash codes only, while HuggingHash+ further enable an
efficient reranking stage (as shown in Fig. 5) to refine the
retrieval results.
PerformanceTable 2 reports theMAP results under different
numbers of hash bits. The same methods in the ‘Transform-
ers’ block outperform those in the ‘CNN + MLP’ block by
considerable margins. It verifies that pre-trained transform-
ers provide better modality understandings than CNNs and
MLPs, thus contributing to high-quality hash codes. Besides,
on all settings, HuggingHash outperforms transformer-
based baselines that only consider global alignment. In terms
of global alignment for hash codes, although Hugging-
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Fig. 6 Top-N precision curves of 64-bit hashing methods

Fig. 7 Multi-dataset (Flickr25K-MSCOCO) evaluation with different 64-bit UCMH methods. Transformers and the hugging improve generaliz-
ability and robustness. Besides, HuggingHash shows the best zero-shot results

Hash adopts a simple contrastive learning objective (i.e., Eq.
(10)) that is much simpler than the baselines, the supe-
rior results it shows indicate the effectiveness of exploring
multi-granularity alignmentwith transformers beyond global
alignment itself. Moreover, by making better use of fine-
grained quantization codes, HuggingHash+ can further
surpass HuggingHash, especially at those top positions, as
we can learn from the MAP@50 results on the Wiki dataset.
It suggests the value of leveraging fine-grained semantics
in transformers. We also illustrate the precision curves of
different approaches to give a more intuitive understanding.
As shown in Fig. 6, HuggingHash reaches higher preci-
sion than other baselines significantly. Within the range of
reranking, HuggingHash+ refines the retrieval results such
that the matched items are ranked higher precisely. There-
fore, we can see a further gain within the reranking range.
Note thatHuggingHash+ provides both coarse-grained and
fine-grained representations by learning one unified model.
This property is beneficial to practical search systems (Asadi
and Lin, 2013) where ranking is multi-stage and consists of a
series of independent models. On the other hand, as rerank-
ingwill consumemorememory (or storage) and computation

compared to one-stage hash-based retrieval, the efficacy-
efficiency tradeoff should depend on the application scenario.
Transferability Transferability is an important but often
ignored target in practice, reflecting the domain general-
izability from offline training to online serving. Here we
conduct a multi-dataset (Flickr25K-MSCOCO) evaluation
with five representative baselines and the proposed mod-
els. We compare standard (i.e., train and test on the same
dataset) and zero-shot performance (i.e., train and test on
different datasets). We also investigate different backbones.
To deal with different vocabularies between two datasets,
we replace the bag-of-words features with the word2vec (Le
andMikolov, 2014) features as the text inputs. “BERT+ViT”
indicates transformer-based variants using global alignment.
“BERT+ViT+Hugging” and “BERT+ViT+Hugging+” indi-
cate the variants with hugging or hugging+, respectively.

The results are shown in Fig. 7. We can learn that
transformers not only boost in-domain performance but
also improve generalizability. The proposed hugging and
hugging+ strategies can further improve the zero-shot perfor-
mance in most cases. Besides, although combining hugging
with SOTA baselines yields competitive results, we notice
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that HuggingHash and HuggingHash+ show better zero-
shot performance. We conjecture that contrastive learning
objectives help to produce more transferable hash codes.

4.2.2 On Text-Video Retrieval

The comparison is with 14 baselines: (i) 7 representative
embedding-based text-video retrieval methods: CE (Liu et
al., 2019b), MMT (Gabeur et al., 2020), Support-Set (Patrick
et al., 2021), HiT (Liu et al., 2021a), CLIP (Radford et al.,
2021), T2VLAD (Wang et al., 2021b), and CLIP4Clip (Luo
et al., 2022). (ii) 1 hash-based text-video retrieval method
with non-transformer backbone: S2Bin (Qi et al., 2021).
(iii) 5 UCMH methods originally designed for text-image
retrieval: DJSRH (Su et al., 2019), DSAH (Yang et al.,
2020), DGCPN (Yu et al., 2021a), CIRH (Zhu et al., 2023),
and UCHSTM (Tu et al., 2023). (iv) 1 state-of-the-art
transformer-based UCMH method tailored for text-video
retrieval: CLIP4Hashing (Zhuo et al., 2022). In particular, we
follow Zhuo et al. (2022) to adopt pre-trained CLIP (Radford
et al., 2021) as the text and video frame encoder, which is
also a popular practice in text-video retrieval literature (Luo
et al., 2022). Although pretrained CLIP is well-aligned for
text-image tasks, we argue that it is not aligned for text-
video retrieval. It needs to be improved to understand the
correspondence between language and temporal dynamics,
e.g. whether an object is moving from left to right or other-
wise. In HuggingHash and HuggingHash+, we design a
temporal self-attention layer based on the image-level frame
embeddings to enhance this aspect.We also adapt theUCMH
baselines in (iii) by using the same backbones as Hugging-
Hash and HuggingHash+.
Performance Table 3 presents the results under differ-
ent numbers of hash bits. Some findings are as below.
(i) CLIP provides useful cross-modal knowledge to bridge
the modality gap but is not well-aligned for text-video
retrieval. Though vanilla CLIP alone can outperform CE
and SupportSet, it is insufficient to understand text-video
correspondence and shows inferior results than HiT on
most metrics. Through temporal-aware training, CLIP4CLIP
shows higher recall than other embedding-based approaches;
2048-bit CLIP4Hashing outperforms vanilla CLIP. (ii) The
text-image hashing objectives are inadequate for one-to-one
text-video retrieval due to the unsatisfied basic assump-
tion. Despite the same backbone, we can see that all the
compared baselines from text-image retrieval achieve signif-
icantly lower recall than HuggingHash. One of the reasons
is that most text-image hashing objectives are based on
the assumption that one query is associated with multi-
ple matched items given the same labels. Differently, in
text-video retrieval, one query is expected to match only
one item, which leads to an extremely sparse similarity
matrix, hence limiting the performance of text-image hashing

Fig. 8 Storage (memory) overhead and average query time of different
text-to-video retrieval models

approaches. (iii) Hugging is more effective than handshak-
ing. The strong baseline, CLIP4Hashing, can be regarded
as a handshaking approach as it only designs global align-
ment. Our HuggingHash outperforms it by considerable
margins. Besides, T2VLAD develops multi-granularity sim-
ilarity in training and inference, which can also be regarded
as a practice of hugging. Without large-scale cross-modal
pretraining, T2VLAD even outperforms vanilla CLIP. The
success highlights the efficacyofmulti-granularity similarity.
Nevertheless, we note that it depends on high-dimensional
continuous embeddings of global and local semantics, which
incurs much more computation and storage overhead. The
efficiency is a major weakness of T2VLAD, as we will show
below. (iv) Hugging+ can further improve retrieval perfor-
mance beyond hugging. Similar to the observation on the
text-image retrieval, we can find thatHuggingHash+ shows
relatively better results than HuggingHash in most cases.
The advantage of reranking is more pronounced in the case
of shorter code length, e.g. 256 and 512, while fading for
longer bit length, e.g. 2048. Two main factors contribute to
the observed results. First, longer hash code lengths enhance
semantic information capacity, making fine-grained rerank-
ing less necessary for global retrieval. Besides, as hash codes
become longer, the impact of complementing themwith fine-
grained quantization codes diminishes, particularly evident
with 2048-bit hash codes.
Comparison with T2VLAD Using the Same Encoders
SinceHuggingHash,HuggingHash+ and T2VLAD share
similar network modules, comparing them using the same
text encoder and visual encoder can be worthy. We report
the results in Table 4. As the source code for T2VLAD is
currently unavailable, we replicated the model based on our
HuggingHash. Specifically, since we only utilized CLIP
features for video, we set the global alignment to have one
expert. Notably, the original T2VLAD paper employed a
bidirectional max-margin ranking loss with a margin of 0.02
for training. To align our experiments, we also present results
using the contrastive learning loss for training, denoted as
T2VLAD∗.
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We can learn from Table 4 that T2VLAD outperforms
HuggingHash (or HuggingHash+) notably for lower val-
ues of D. This outcome reflects the higher capacity of
T2VLAD’s representation compared to HuggingHash (or
HuggingHash+). For instance, at D = 256, T2VLAD uses
higher-dimensional embeddings, including 256-dimensional
floating-point and 3584-dimensional local embeddings. In
contrast, HuggingHash (or HuggingHash+) relies on
256-bit binary global hash codes. As D increases, Hug-
gingHash andHuggingHash+ gradually approach or even
surpass T2VLAD variants. For instance, at D = 2048,
HuggingHash andHuggingHash+ surpass T2VLAD, and
T2VLAD∗ slightly outperforms them. This can be attributed
to the risk of overfitting in T2VLAD’s high-dimensional fea-
ture space and the potential impact of global–local similarity
balance on T2VLAD’s performance. In contrast,Hugging-
Hash and HuggingHash+ separate these aspects, avoiding
competition.

In termsof global retrieval,HuggingHash (orHugging-
Hash+) employs D bits per item andXORoperations over D
bits for similarity calculation. In contrast, T2VLAD utilizes
a D-dimensional global embedding and 7 512-dimensional
local embeddings, incurring over 32 times the storage and
memory overhead of hash-based methods. T2VLAD also
involvesmore time-consumingfloating-pointmultiplications
for similarity calculations. Consequently, T2VLAD exhibits
significantly longer retrieval times. For real-world large-scale
retrieval scenarios, efficiency is crucial alongside perfor-
mance.Notably,HuggingHash+ reduces overhead by using
lightweight quantized codes instead of embeddings, and
reorders only a small portion (e.g. top 10%) of the glob-
ally hashed list based on quantized representations, resulting
in faster retrieval.

Although HuggingHash and T2VLAD share similar
network modules and aligned model settings from table
4, the results serve as references rather than fair compar-
isons. Fair comparison remains challenging due to differing
design considerations and operational mechanisms. Hug-
gingHash andHuggingHash+ prioritize efficient retrieval,
focusing on representational size constraints and seman-
tic preservation within limited resources. Our fine-grained
alignment enhances global alignment for improved cross-
modal semantics in hash codes without altering generation
and retrieval. The quantization option enhances reranking
for performance refinement while maintaining efficiency.
T2VLAD prioritizes performance optimization, resulting in
disparities in representation and efficiency. Its straightfor-
ward global–local fusion employs fine-grained alignment,
capturing multi-granularity semantics at the cost of effi-
ciency.
Efficiency of hash-based retrieval Efficiency is an impor-
tant target for retrieval since it highly relates to the scalability
of the search system. Here we show results about this
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rarely investigated aspect in text-video retrieval. The com-
parison is with 6 embedding-based text-to-video retrieval:
CE, MMT, SupportSet, HiT, T2VLAD, and CLIP4Clip, on
the MSRVTT dataset. The manners of models are as fol-
lows: (i) CE represents an instance by 9 768-dimensional
embeddings and a 9-dimensional weighting vector; (ii)
MMT represents an instance by 7 512-dimensional embed-
dings and a 7-dimensional weighting vector; (iii) SupportSet
represents an instance by a 1024-dimensional embedding;
(iv) HiT represents an instance by a 2048-dimensional
embedding; (v) T2VLAD represents an instance by 9 768-
dimensional local embeddings and a 768-dimensional global
embedding; (vi) CLIP4Clip represents an instance by a
512-dimensional embedding; (vii) Hash-based approaches
represent an instance by a fixed-length hash code vec-
tor; we take HuggingHash as a showcase. A 256-bit code
can be encoded by 32 bytes for compact storage; (viii)
HuggingHash+ represents an instance by a fixed-length
global hash code and 7 256-bit local quantization codes.
Since MSRVTT only contains 10k videos, we duplicate the
videos to simulate a large database. We evaluate: (i) the
average query time, including the time for text encoding
time on GPU and nearest neighbor search on CPU; and
(ii) the storage overhead for offline-computed video rep-
resentations. We experiment with an NVIDIA GTX 3080
Ti (12GB) and Intel� Xeon� Platinum 8269CY CPU @
2.50GHz (104 cores). The results are shown in Fig. 8.We can
see that hash-based approaches reduce storage (or memory)
overhead and accelerate retrieval, especially on large-scale
data. For example, on a 1M-size database, HuggingHash
(2048-bit) consumes ∼241× and ∼16× less of storage and
accelerate ∼23.6× and ∼1.5× of query speed, compared
with T2VLAD and CLIP4Clip, respectively. Compared with
vanilla hash-based retrieval, though HuggingHash+ con-
sumes more computation and storage due to the fine-grained
quantization-based reranking, overall, it still achieves a good
trade-off between efficacy and efficiency.

4.3 Model Analyses

4.3.1 Ablation Study

Recall that HuggingHash is trained with multi-granularity
alignment objectives (Eq. (37)) and uses global hash codes to
rank and retrieve items.HuggingHash+ extendsHugging-
Hash by replacing embedding-based fine-grained alignment
loss with quantization-based loss (Eq. (38)) and further
reranks top-10% hash-ranked results with fine-grained quan-
tization codes (Fig. 5).

To understand the contributions of different modules
in HuggingHash and HuggingHash+, we construct 8
variants for analysis. The modifications of these variants
are listed below. 3 variants of HuggingHash: (i) Hug-

gingHash\LFA removes the embedding-based fine-grained
alignment loss (Eq. (19)), producing a handshaking model.
(ii) HuggingHash∪Emb_ReR enables top-10% reranking in
retrieval by leveraging fine-grained embeddings. (iii) Hug-
gingHash∪PQ_ReR enables top-10% reranking in retrieval
by leveraging fine-grained embeddings and OPQ (Ge et al.,
2013). We adopt the FAISS (Johnson et al., 2021) imple-
mentation of OPQ as a post-compression on the extracted
embeddings. 5 variants of HuggingHash+: (i) Hugging-
Hash+

\LGA
removes the global hash alignment loss (Eq. (10))

and only trains a fine-grained quantization model. Since
it does not produce global hash codes, in inference, we
use the quantization codes to rank the whole database. (ii)
HuggingHash+

FG_R follows the hugging+ training strategy
but changes the retrieval process. Instead of the two-stage
ranking, it leverages fine-grained quantization codes to
rank the whole database. (iii) HuggingHash+

\ReR follows
the hugging+ training strategy but disables the top-10%
reranking in inference. It slightly differs from standard
HuggingHash on the fine-grained alignment of training.
Concretely, it uses a quantization-based loss (Eq. (36)) while
HuggingHash uses an embedding-based loss (Eq. (19)).
(iv) HuggingHash+

\Pn
removes the rotation matrix, Pn in

Eq. (25), of each local quantization module. (v) Hugging-
Hash+

Fuse_R only changes the retrieval process. Instead of the
two-stage ranking, it directly fuses multi-granularity similar-
ity scores with the (IV) strategy in fig. 10 to rank the whole
database. (vi) To further investigate the global–local bit allo-
cation strategy, we attempt to reallocate all the bits from
the fine-grained quantization in the hugging+ mechanism
to global hashing, thereby deriving a long-bit handshaking
model. We designate the new model ID as 2∗. We also cate-
gorize different variants into 5 types according to the retrieval
process: (A) Rank thewhole databasewith global hash codes.
(B) Rank the whole database with fine-grained quantiza-
tion codes. (C) Rank the whole database with global hash
codes, and then rerank top-10% results with fine-grained
quantization codes. (D) Rank the whole database with global
hash codes, and then rerank the top-10% results with fine-
grained embeddings. (E) Rank the whole database by fusing
multi-granularity similarities from global hash codes and
fine-grained quantization codes.

Performance results on MSCOCO (text-image) and
MSRVTT (text-video) are reported in table 5.We number the
variantswith IDs for easy reference. Similar to Fig. 8, we also
measure the storage and computational efficiency of different
variants to give amore comprehensive comparison, as shown
in Fig. 9.We can obtain several conclusions from the ablation
results. (i) Global alignment and fine-grained alignment pro-
mote each other; both of them are indispensable for achieving
a positive synergy in hugging and hugging+. Comparing
Models 1 and 2, we can learn that the fine-grained alignment
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Fig. 9 Storage (memory) overhead and average query time of differ-
ent types of HuggingHash (or HuggingHash+) variants. Showcased
task: text-to-video retrieval. The lengths of hash codes and quantization
codes are 2048-bit and 7 × 256-bit, respectively. The results under 10
million items are extrapolated

loss is significant in improving the quality of hash codes.
Note that Models 1 and 2 share the same retrieval type and
are consistent in retrieval efficiency; in other words, hugging
will not bring extra inference overhead to global hash-based
retrieval. In Sect. 4.3.2, wewill conduct more empirical anal-
yses to understand this implicit efficacy of hugging. Besides,
Models 6 and 7 share the same type that ranks the whole
database with 224-bit (7 × 32) fine-grained quantization
codes on MSCOCO and with 1792-bit (7 × 256) codes on
MSRVTT,whereasModel 6 learns by fine-grained alignment
only and Model 7 learn by hugging+. As Model 7 outper-
formsModel 6 by considerable margins, we learn that global
alignment can improve fine-grained alignment as well. (ii)
Quantization in hugging+ facilities the efficient usage of fine-
grained semantics. In contrast toModel 1, Model 5 leverages
fine-grained semantics and improves retrieval performance
effectively. Although it relatively underperforms Model 3,
the major benefit of high efficiency by integrating quantiza-
tion should not be overlooked. Take text-to-video reranking
as a showcase, as shown in Fig. 9, Model 5 consumes only
∼ 1/60 the storage (memory) overhead and half of retrieval
time the Model 3 requires in a database of 10 million. (iii)
Jointly learning quantization and fine-grained alignment in
hugging+ helps to achieve a better trade-off between effi-
cacy and efficiency.By learningfine-grained embeddings and
using OPQ to post-compress the learned embeddings, Model
4 shows slight performance gains on 1 in most scenarios, but
is still inferior to 5 that jointly learns optimized quantization
and fine-grained alignment. The underlying reason is that
end-to-end learning of quantized representations can reduce
semantic distortion, thus producing better fine-grained quan-
tization codes whilemaintaining high efficiency. (iv) In some
scenarios, quantization can serve as another regularization
to enhance the synergy between global and fine-grained
alignment. For example, Model 8 with quantization-based
fine-grained alignment loss shows superior results than
Model 1 on MSCOCO, but this phenomenon does not hold

true on MSRVTT. (v) Shorter bit-length retrieval benefits
more from the fine-grained reranking. Comparing Models
5 and 8, we learn that reranking improves retrieval perfor-
mance in most cases. In particular, on MSRVTT, we observe
that reranking shows more performance gains on shorter bit-
lengths, e.g. 256- and 512-bit, while its efficacy fades on
longer ones, e.g. 2048-bit video-to-text retrieval. The reason
is that we fix the bit-length of fine-grained quantization codes
by default, e.g. 7×256-bit on MSRVTT, which is less effec-
tive in providing more complementary semantics beyond
long and sufficient global hash codes. (vi) Two-stage pipeline
is more efficient and robust than multi-granularity fusion-
based retrieval. To exploit multi-granularity semantics for
retrieval, another natural design is Model 10, which fuses
global and fine-grained similarity scores for more precise
estimation. However, we can see from Fig. 9 that fusion-
based retrieval requiresmore than twice the time of two-stage
retrieval, which becomes expensive in large-scale scenarios.
Moreover, the retrieval performance is also sensitivew.r.t. the
adopted fusion strategy. As shown in Fig. 10, the efficacy of
different fusion strategies varies in different cases, which
can increase the labor of careful choosing. Under the default
fusion strategy (i.e., (IV) in Fig. 10), the gains from fusion
are still unsure. For example, compared with a handshak-
ing Model 8, Model 10 does not gain performance in half
of the retrieval tasks on MSCOCO. On MSRVTT, while it
brings remarkable improvements under 256 bits thanks to
the fine-grained similarity scores, the advantages of Model
10 over Model 8 shrink rapidly as bit-length raises and even
turn into clear disadvantages under 2048 bits due to biased
similarity estimation. In contrast, Model 5 with the two-
stage strategy shows more stable improvement over Model
8, thus preferable to the fusion-based strategy. (vii) Hugging
and hugging+ help semantic preservation within limited bit
lengths. Model 2∗ demonstrates significantly better perfor-
mance across most metrics compared to Models 1 and 5.
The superior performance is attributed to the longer global
hash code used by Model 2∗, enabling enhanced semantic
information storage. AlthoughModel 5 benefits from rerank-
ing, it only optimizes the top portion of a sorted list, not the
entire list, limiting its performance improvement. The com-
parison is illustrative, considering the inherent differences.
Interestingly, Model 2∗’s dominance diminishes when hash
code lengths of Models 1 and 5 are increased to 2048 bits
on the MSRVTT dataset, indicating diminishing returns in
bit length extension and the necessity for more intelligent
learning objectives. (viii) Introducing an optimized rotation
matrix can improve fine-grained quantization. In contrast to
5, Model 9 without Pn in each local quantization module
shows slight but observable performance decays, indicating
that optimizing subspace partition for learnable quantization
can lead to better quantization codes.
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Fig. 10 Average MAP@All of text-to-image and image-to-text
retrieval w.r.t. various bit-lengths and fusion strategies. Si j denotes the
global similarity and sni j denotes the nth local similarity. Under each
bit-length, the result of the best fusion strategy except (I) and (II) is
highlighted in a red box. Model 10 in table 5 adopts (IV) by default

Fig. 11 Dynamics of the performance on the test set and global hash
alignment loss on the train set. The recall on MSRVTT is computed
by geometric mean of R@{1,5,10}. We compare two strategies with
HuggingHash

4.3.2 Understanding the Effectiveness of Fine-grained
Alignment

Until now, we have learned that hugging can effectively
enhance global hash code learning and boost retrieval perfor-
mance, but how fine-grained alignment helps to learn better
global representation still remains unclear. In this section,
we delve into this phenomenon and aim to understand the
underlying mechanism more comprehensively.

Without loss of generality, we take HuggingHash as the
analysis object in this section. First, we investigate the train-
ing dynamics to acquire the differences between hugging and
handshaking during training. Then, from the macro view, we
visualize fine-grained latent space to show what each cluster
looks like. Finally, from the micro view, we analyze visual
attention maps to facilitate an intuitive understanding of how
local clusters contribute to global hash learning.
Analysis of training dynamics We study the dynamics of
training loss and testing performance of HuggingHash and
a handshaking baseline without fine-grained alignment. The
results on MSCOCO andMSRVTT are illustrated in Fig. 11.
On MSCOCO, we can observe that fine-grained alignment
helps to reduce the modality gap of global representation.
Hence hugging reaches a better optimum than handshaking.
Although both hugging and handshaking tend to overfit and
degrade after reaching the optimum, hugging can still retain
better performance than handshaking. OnMSRVTT, the pre-

Fig. 12 Visualization of fine-grained latent space and fine-grained
cross-modal correspondence in hugging

trained CLIP provides an easy start for aligning the texts and
videos. Thus, we can see hugging and handshaking have sim-
ilar training loss dynamics. Nevertheless, handshaking still
underperforms hugging on the test set, which suggests the
significance of fine-grained alignment to model generaliz-
ability.

Basically, our intuition is that global alignment provides
direct guidance to the cross-modal correspondence, while
fine-grained alignment constructs a structural space with
(latent) concept-level correspondence to regularize cross-
modal learning. The synergy of global and fine-grained turns
out to reach a better optimum.
Analysis of fine-grained latent space As a case study, we
pick up some text-image pairs associatedwith 3 single labels:
cat, dog and truck, from the MSCOCO dataset. Each text
or image is represented by multiple content tokens in the
fine-grained latent space. Figure12a visualizes the token dis-
tribution by different labels and modalities, where the black
stars mark the centroids of clusters. For quantitative analysis,
we compute the class-specific and modality-specific aver-
age assignment scores w.r.t. all clusters and present them in
Fig. 12b. The general consistency between the text and the
image assignments w.r.t. each class implies the effectiveness
of cross-modal fine-grained alignment. Besides, we observe
that the assignment pattern can vary among different labels.
While truck exhibits a uniform pattern, cat and dog concen-
trate on clusters 1, 5 and 7. In particular, we hypothesize a
connection between the cluster 7 and the concept of animals.
Analysis of visual attention Apart from Fig. 12, which pro-
vides a macro view of the cross-modal alignment in the
fine-grained latent space, here we present a more intuitive
visualization of the text-visual semantic correspondence and
how it contributes to the global representations.

We use GradCAM (Selvaraju et al., 2017) to visualize
the attention map w.r.t. the [CLS] token, and the attention
maps w.r.t. different clusters in hugging. For cluster-level
attention, we aggregate the attention maps of the associ-
ated content tokens weighted by their assignment scores. The
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Fig. 13 Attention map
visualization on MSCOCO.
Left: attention maps
w.r.t. [CLS] in handshaking
and hugging. Hugging helps to
focus on more comprehensive
semantic regions. Right:
attention maps w.r.t. different
clusters. We can see the
text-visual semantic
correspondence

Raw Image

(a)[CLS] Attention Map (b) Attention Map of VLAD Clusters

c5 c7

Handshaking Hugging

Query: A black cat and  
a brown dog sited on a courch.

0.606 0.449assignment score

Fig. 14 Attention map
visualization on MSRVTT. Left:
attention maps on different
frames w.r.t. the temporal
[CLS] token in handshaking
and hugging. Hugging helps to
focus on more precise semantic
regions (e.g. the people) in
frame#1 and more
comprehensive semantic regions
in frame#2 (e.g. the dog). Right:
attention maps w.r.t. different
VLAD clusters. We can see
some correspondence between
text and visual semantics

Fr
am

e#
1

Fr
am

e#
2

Query: two girls are outside  
with their black dog.

c1 c6

(b) Attention Map of VLAD Clusters (Frame#2)(a) [CLS] Attention Map
Handshaking Hugging

0.323 0.456assignment score

Fig. 15 Hyper-parameter Sensitivities on MSCOCO dataset. Without
loss of generality, the results in (a)–(f) are obtained with a 64-bit Hug-
gingHash. Thequantization- and reranking-related results in (g)–(i) are

obtained with a 64-bit HuggingHash+. Default settings are marked in
bold. The dotted lines mark the MAP results under default settings
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results onMSCOCO andMSRVTT datasets are illustrated in
Figs. 13 and 14, respectively. We can see fine-grained align-
ment improves global hash representations in two regards.
(i) Fine-grained alignment is conceptual-aware and helps to
capture more complete cues. As shown in Fig. 13b, clusters
c5 and c7 are relevant to cat and dog respectively, and their
attentionmaps also present a concentration on corresponding
areas in the image. Therefore, in Fig. 13a, the [CLS] atten-
tion map of hugging demonstrates a comprehensive grasp
of the images. Whereas the [CLS] attention map of hand-
shaking seems to miss the attention to the dog, leading to
inferior hash codes. A similar phenomenon can be learned
from Fig. 14, where handshaking fails to focus on the dog
in frame#2. (ii) Fine-grained alignment regularizes global
learning and helps to focus on details more precisely. As
shown in Fig. 14a, while handshaking spreads the attention
to larger and vaguer areas, hugging attends to the people in
frame#1 more accurately so that we can see the outlines. As
a result, hugging helps to produce more discriminative hash
codes.

4.3.3 Hyper-Parameter Analysis

In this section, we analyze how hyper-parameters influence
HuggingHash and HuggingHash+. We conduct detailed
experiments on MSCOCO since it is a standard benchmark
dataset for vision-language tasks. Without loss of generality,
we analyze most hyper-parameters with HuggingHash and
analyze the quantization-related and reranking-relatedhyper-
parameters with HuggingHash+. Results are illustrated in
Fig. 15.
Effects of loss terms λ is theweight ofLFA (i.e., fine-grained
alignment loss) that essentially controls its task gradient con-
tribution to the learning process. Adjusting λ from 0 to 0.2
can boost the performance, verifying that LFA is beneficial.
However, we can see the gain drops as λ increases beyond
0.2. This is because the auxiliary task of fine-grained align-
ment dominates the learning and even adversely constricts
the main task of aligning hash codes. γ controls the strength
of regularization Rquant and a proper range is [0.5, 1].
Effects of τ The temperature factor, τ controls the penalty
intensity of contrastive learning, which is sensitive. Fig-
ure15c illustrates its effect.We can learn that a suitable range
for τ is [0.2, 0.25].
Effects of cluster number Figure15d shows the effect of
active cluster (i.e., latent concept) number Nc inGhostVLAD.
While 15 and 7 are reasonable choices for Nc, we set Nc = 7
by default to pursue a higher training efficiency.
Effects of used transformersWeequipHuggingHashwith
different transformers (Sanh et al., 2019; Liu et al., 2019c;
Yang et al., 2019; Touvron et al., 2021; Liu et al., 2021b; Bao
et al., 2022). Figure15e and f show that largeBERT (Devlin et
al., 2019) and RoBERTa (Liu et al., 2019c) variants are good

choices for the text transformer. Swin Transformer (Liu et
al., 2021b) is a good choice for image encoder.
Effects of optimized quantization Note that the quantiza-
tion codes are taken to rerank top-10% hash-ranked items
by default, but we report the MAP metric w.r.t. the whole
database. Hence, considering that the influence of different
settings in the quantization is smoothed, we focus more on
the trends rather than their magnitudes. Nh denotes the num-
ber of Householder matrices in Eq. (27) set to approximate
the optimal rotation matrix. The effect of Nh is shown in
Fig. 15g, where Nh = 0 means not enabling rotation matrix
such that Eq. (25) is simplified to Eq. (20). We can see that
Nh ≥ 16 yields converged results. We take Nh = 16 by
default to slightly reduce computation while maintaining
satisfactory performance. The quantization sub-codebook
number in each local head,M , controls the distortion and also
the bit-length of quantization codes. Figure15h illustrates
the sensitivity of M . The retrieval performance continues to
improve as it increases until 8. We set M = 4 by default for
efficiency concerns.
Effects of reranking range As illustrated in Fig. 5, we
narrow the reranking range to top-ND′ items by the hash-
based ranking.We investigate the effect of rerank proportion,
ND′/ND in Fig. 15i, where “0” indicates only global hash-
based ranking and “1” means (re)ranking with fine-grained
quantization codes on the whole database. We set reranking
top-10%of items by default. The performance keeps improv-
ing as we increase ND′/ND from 0% ∼ 75% and the trend
is prone to converge after ND′/ND > 75%.

4.3.4 Retrieval Visualization Analysis

We visualize the top-10 retrieval results on two datasets:
Flickr25K for image-text retrieval and MSRVTT for video-
text retrieval. We compare three different methods: Hand-
shaking, Hugging+ w/o Reranking, and Hugging+ w/
Reranking, as illustrated in Figs. 16 and 17.

In Fig. 16, we observe that Hugging+ yields a more
accurate result set compared toHandshaking. Furthermore,
with the use of fine-grained reranking, the images most rel-
evant to the query, specifically those involving landscapes,
are ranked higher. At the same time, a museum image that
initially appeared at Rank 3, which was deemed a negative
sample because it failed to match the label despite containing
a ‘lamb’, was demoted, thereby improving AP@103.

3 The definition of Average Precision (AP) in information retrieval:

AP@K = 1

|Rel(K )|
K∑

k=1

P(k) · r(k), (45)

where K is the number of items considered for evaluation. |Rel(K )| is
the total amount of relevant items. P(k) denotes the precision at the kth
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Query #4572: water, light, architecture, reflection, travel, building, house, china, asia, lamp, canal 

Handshaking 
AP@10: 75.12

Hugging+

w/o Reranking 
AP@10: 83.89

Hugging+

w/ Reranking 
AP@10: 95.26

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Reranking Range: Top 10

Fig. 16 Top-10 ranked images using different strategies on the
Flickr25K dataset. For Hugging+ w/ Reranking, we further rerank
the top 10 ranked images. The ground-truth labels of query #4572 are

‘sky’, ‘structure’, and ‘water’. The green and red bounding boxes for
images mark positive and negative images, respectively. The evaluation
metric is the average precision at 10, i.e., AP@10 (Color figure online)

In Fig. 17, two cases are presented. For query #9340,
the Hugging+ model successfully highlights the "trying to
comfort" detail within the query by training fine-grained
alignment. This pushes the videos with matching scenarios
to the forefront. Reranking further exploits this fine-grained
information, effectively improving the rank of videos closely
aligned with the query. For query #8914, although not exem-
plary in terms of evaluation metrics, it serves to demonstrate
the generalizability ofHugging+ andfine-grained reranking.
Despite the absence of ground-truth videos at higher ranks,
the reranked list still features videos somewhat relevant to
the query text. Specifically, reranking elevates videos fea-
turing ‘models’ and ‘runways’, which might be considered
false negatives due to limited annotations in the evaluation
dataset.

4.3.5 Improving Existing Approaches with Hugging and
Hugging+

In Fig. 7, we have illustrated how transformers, hugging and
hugging+ help to improve the in-domain performance and
cross-domain generalizability, respectively. In this section,
we conduct more detailed experiments on both text-image
(i.e., MSCOCO) and text-video (i.e., MSRVTT) datasets to
investigate the compatibility and effectiveness of our pro-
posed designswith existingUCMHapproaches.We integrate
the transformers, hugging and hugging+, with each of the 5
state-of-the-art UCMH approaches, namely DJSRH, DSAH,
DGCPN, CIRH, and UCHSTM.

We report the results in Table 6, from which we see
consistent improvements in the three designs. To be spe-

position. r(k) is the relevance of the kth ranked item (0: irrelevant; 1:
relevant).

cific, on MSCOCO, when equipped with the same designs,
several existing approaches show competitive or even supe-
rior performance to HuggingHash (or HuggingHash+),
e.g. UCHSTM+ hugging+ vs.HuggingHash+. It is accept-
able because HuggingHash and HuggingHash+ are two
simple instantiation models. Using more delicate global
alignment mechanisms to improve the instantiation is rea-
sonable.

Quite differently, on MSRVTT, the baselines still fall
behind HuggingHash (or HuggingHash+) by consid-
erable gaps even with the same proposed designs. The
phenomenon is partially due to the unsatisfied basic assump-
tion, as we have discussed in Sect. 4.2.2. Despite the
performance gaps, we can learn that hugging and hugging+
significantly enhance retrieval results. By introducing fine-
grained alignment based on contrastive learning, hugging
brings large performance gains to the handshaking (i.e., only
using transformers)models, which confirms the positive syn-
ergy between global and fine-grained alignment in training.
Besides, hugging+ with reranking further improves the recall
beyond hugging, while the scale of the improvements varies
with different bit-lengths. Under shorter bit-length, e.g. 256
bits, the gain of reranking is relatively mild. The reason is
that global hash-based ranking misses many positive items
in the top-10% subset, and hence reranking is unable to
help. Under medium bit-length, e.g. 512 or 1024 bits, the
global hash-based ranking is capable of including more pos-
itive items in the top-10% subset but still insufficient to rank
them precisely. Fortunately, the fine-grained reranking com-
pensates for this shortcoming and we observe large relative
improvements of about 20% to 40%.Under longer bit-length,
e.g. 2048 bits, the gain begins to shrink because the hash-
based ranking has become more accurate.
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Query #8914: models are walking down a short runway

Handshaking 
R@1: 0 
R@5: 0 

R@10: 1

Hugging+

w/o Reranking 
R@1: 0 
R@5: 0 

R@10: 1

Hugging+

w/ Reranking 
R@1: 0 
R@5: 0 

R@10: 1

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Query #9340: one sad one trying to comfort

Handshaking 
R@1: 0 
R@5: 0 

R@10: 1

Hugging+

w/o Reranking 
R@1: 0 
R@5: 1 

R@10: 1

Hugging+

w/ Reranking 
R@1: 1 
R@5: 1 

R@10: 1

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Fig. 17 Top-10 ranked videos using different strategies on the
MSRVTT dataset. For Hugging+ w/ Reranking, we further rerank the
top 5 ranked videos. We show two search cases. The green bounding

box marks the ground-truth video w.r.t. the text query. The evaluation
metrics are the recalls at 1, 5, and 10, i.e., R@{1,5,10} (Color figure
online)

5 Conclusions

This paper studies thenewandpractical problemof transformer-
based unsupervised cross-modal hashing (UCMH). We pro-
pose a hugging framework that unifies multi-granularity
cross-modal alignment as solid self-supervision for hash
learning. Besides, we extend hugging to hugging+ that effec-
tively learns optimized quantized representations and aligns
fine-grained cross-modal correspondence simultaneously. It
retains the benefit of improving global hash codes and also

provides fine-grained quantization code as a gift. Rerank-
ing with fine-grained quantization codes effectively boosts
retrieval performance while enjoying high efficiency. We
build HuggingHash and HuggingHash+ to instantiate
hugging and hugging+, respectively, and show their advan-
tages on text-image and text-video retrieval. We conduct
extensive experiments to investigate the efficacy of different
components in our design. We also assemble the proposed
hugging and hugging+ to several state-of-the-art UCMH
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approaches, showing that our design is flexible and compati-
ble with UCMH when choosing transformers as backbones.
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