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Abstract
Recent years have witnessed great progress in creating vivid audio-driven portraits from monocular videos. However, how
to seamlessly adapt the created video avatars to other scenarios with different backgrounds and lighting conditions remains
unsolved. On the other hand, existing relighting studies mostly rely on dynamically lighted or multi-view data, which are
too expensive for creating video portraits. To bridge this gap, we propose ReliTalk, a novel framework for relightable
audio-driven talking portrait generation from monocular videos. Our key insight is to decompose the portrait’s reflectance
from implicitly learned audio-driven facial normals and images. Specifically, we involve 3D facial priors derived from audio
features to predict delicate normal maps through implicit functions. These initially predicted normals then take a crucial part in
reflectance decomposition by dynamically estimating the lighting condition of the given video.Moreover, the stereoscopic face
representation is refinedusing the identity-consistent loss under simulatedmultiple lighting conditions, addressing the ill-posed
problem caused by limited views available from a single monocular video. Extensive experiments validate the superiority of
our proposed framework on both real and synthetic datasets. Our code is released in (https://github.com/arthur-qiu/ReliTalk).

Keywords Relighting · Talking face · Portrait Generation · Relightable Portrait

Communicated by Gang Hua.

B Ziwei Liu
ziwei.liu@ntu.edu.sg

Haonan Qiu
HAONAN002@e.ntu.edu.sg

Zhaoxi Chen
ZHAOXI001@e.ntu.edu.sg

Yuming Jiang
YUMING002@e.ntu.edu.sg

Hang Zhou
zhouhang@link.cuhk.edu.hk

Xiangyu Fan
fanxy1993@gmail.com

Lei Yang
yanglei@sensetime.com

Wayne Wu
wuwenyan0503@gmail.com

1 S-Lab, Nanyang Technological University, Singapore,
Singapore

2 The Chinese University of Hong Kong, Shatin, Hong Kong

3 SenseTime Research, Shenzhen, China

1 Introduction

Creating personalized audio-driven talking portraits has
many applications in teleconferencing, video production,
VR/AR games, and themovie industry. Given its great poten-
tial, research on talking face generation (Taylor et al., 2017;
Thies et al., 2020; Zhou et al., 2019b, 2021; Zhang et al.,
2021c; Ji et al., 2021) has enjoyed massive popularity in
recent years, with emphasis on creating lip-synced (Prajwal
et al., 2020; Thies et al., 2020) portraits with diverse head
motions, talking styles, and emotions (Yi et al., 2020; Wu et
al., 2021). However, the ability to change the lighting condi-
tions of audio-driven portraits is still under-explored, which
is critical to real-world applications as we expect the portrait
in the foreground to be seamlessly harmonized with back-
grounds under different illuminations.

To generate a relightable talking portrait from a single
video, we argue that the underlying model should be capa-
ble of (1) estimating fine-grained 3D head geometry from
monocular videos, (2) reflectance decomposition without
any extra annotations, and (3) generalizing to driven audios.
However, most learning-based methods either operate only
on the 2D plane (Zhou et al., 2019b, 2021; Prajwal et al.,
2020), or leverage structural intermediate representations
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Fig. 1 Relighting Talking Portrait with Assigned Background. (Left)
Our method takes a monocular video as input and estimates the cor-
responding normal and albedo which can be driven by audio. (Right)
Talking portrait renderings with different illuminations, where lighting

and shading are placed at the bottom. The rightmost three are relighted
by HDR background images. Only a single video is required as the
training data, without any extra annotations

(Chen et al., 2019; Cudeiro et al., 2019a; Ji et al., 2021;
Thies et al., 2020; Wu et al., 2021; Zhou et al., 2020), and
neural radiance fields (Guo et al., 2021; Yao et al., 2022;
Shen et al., 2022). No fine-grained 3D geometry can be
acquired for reflectance decomposition in these studies. On
the other hand, adapting existing relighting techniques (Sun
et al., 2019; Wang et al., 2020; Pandey et al., 2021; Zhang et
al., 2021a) is too expensive for audio-driven video portraits
given their dependence onmulti-view or dynamically lighted
data.

To bridge this gap, we propose ReliTalk, a novel frame-
work for relightable audio-driven talking portrait generation
that only requires a singlemonocular video as input, as shown
in Fig. 1. Our key insight is the self-supervised implicit
decomposition of geometry and reflectance, both of which
can be further driven by input audios. In specific, the pro-
posed approach first extracts expression- and pose-related
representations based on 3D facial priors (Li et al., 2017),
and refines them into delicate normal maps through implicit
functions. The initial normals then take a critical role in
reflectance decomposition, which disentangles the human
head as a set of intrinsic normal, albedo, diffuse and specular
maps, by dynamically estimating the lighting condition of the
given video. To get rid of leveraging knowledge from expen-
sive capturing data (i.e. Light Stage (Debevec et al., 2000)),
we carefully design several learning objectives to decompose
the human portrait into corresponding maps frommonocular
videos, which will be introduced in the following sections.

To learn the audio-to-face mapping that better general-
izes to unseen audio, we introduce mesh-aware guidance to
assist the lip-syncing especially when the training video is
too short to cover enough audio variance. Specifically, we
use a model pre-trained on the VOCA dataset (Cudeiro et al.,
2019b) to obtain lip-related meshes as the additional guid-

ance. Phoneme-related features and lip-related meshes are
separately encoded and then concatenated to achieve more
accurate audio-driven animations. Phoneme-related features
enable the network to learn richer mouth shapes and mesh-
aware features provide coarse information on the opening
and closing of lips, even if the input audio is far away from
the audio used in training.

Natural talking portrait videos usually provide a limited
perspective of the target persons when they face the camera
without turning around. Plus, the lack of multi-view infor-
mation inherently negatively impacts an accurate estimation
of 3D geometry. To address the ill-posed inverse problem of
geometry and reflectance decomposition caused by single-
view, limited motion variance, and unknown illuminations,
we design identity-consistent supervision (ICS) with sim-
ulated multiple lighting conditions to refine normal maps.
The key insight is that we relight the human portrait on-the-
fly during the training stage, by sampling different lights and
using identity-consistent loss to update normal maps.

We evaluate our approach on both real and synthetic
datasets. Overall, ReliTalk drives and relights dynamic
humanportraits in highfidelity, outperforming othermethods
on both perceptual quality and reconstruction correctness.
Our contributions are summarized as follows:

• We propose a novel framework ReliTalk that learns
relightable audio-driven talking portrait generation and
only requires a single monocular portrait video.

• We propose the additional audio-to-mesh guidance to
improve themapping accuracy especiallywhen the single
training video only has a limited audio variance.

• Wedesign identity-consistent supervisionwith simulated
multiple lighting conditions, addressing the ill-pose prob-
lem caused by limited views available from the single
video.
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2 RelatedWork

Inverse Rendering Recovering and disentangling the appear-
ance of observed images into geometry and reflectance is a
long-standing problem in the field of computer vision and
graphics. Prior works (Barron & Malik, 2014; Liu et al.,
2019) address this challenge by physical-based priors on syn-
thetic image data. However, they fail to extract the underlying
3D representation. Later approaches (Chan et al., 2022;Or-El
et al., 2022;Xu et al., 2022; Sun et al., 2022; Zhao et al., 2022;
Pan et al., 2020; Chan et al., 2021) successfully extract the
3D representations by the 3D generator and refine the output
using image-based CNN networks. Recently, methods based
on implicit representation (Zhang et al., 2021b; Srinivasan et
al., 2021) propose learning 3D reflectance andgeometry from
multi-view images. In this work, we aim to tackle a harder
problem, i.e., inverse rendering from a monocular video of
a talking human face. Note that, limited-view information
can be accessed as the person is always oriented toward the
front.
Portrait Relighting One-Light-at-A-Time (OLAT) capturing
system allows for obtaining detailed portrait geometry and
reflectance.Manymethods based on it have achieved impres-
sive success (Sun et al., 2019; Wang et al., 2020; Pandey et
al., 2021; Zhang et al., 2021a). However, it is only appli-
cable in a constrained environment due to its complexity
and expense. Other methods (Zhou et al., 2019a; Hou et
al., 2021, 2022; Caselles et al., 2023) simulate some multi-
lighting data and train the network to predict relighted results.
Due to their limited simulation methods, the final results are
far away from OLAT-based methods. Yeh et al. (2022) syn-
thesizes a high-quality multi-lighting dataset but it is still
not available to the public. Another simplified strategy that
requires the user to capture a selfie video or a sequence of
images to gain multi-view information is proposed (Nest-
meyer et al., 2020; Wang et al., 2022). And Relighting4D
(Chen & Liu, 2022) can even relight dynamic humans with
free viewpoints only from videos. However, their rendering
quality is totally tied to the accuracy of geometry, requir-
ing enough viewpoints from videos. Our method is able
to relight portraits with finer details from the monocular
portrait video even without much multi-view information
available.
Audio-driven Talking Face Face animation has wild appli-
cations, drawing great research interest in computer vision
and graphics. Recent methods for audio-driven animation
(Cudeiro et al., 2019a; Fan et al., 2022; Karras et al., 2017;
Richard et al., 2021; Suwajanakorn et al., 2017; Kim et
al., 2018) are usually data-driven and can be divided into
two categories. One is generalized animation (Cudeiro et
al., 2019a; Fan et al., 2022; Richard et al., 2021), which
utilizes some large datasets which contain the pair data of
audio/speech to lip/face. Wave2Lip (Prajwal et al., 2020)

trains a mapping from audio to lips on LRS2 (Chung et al.,
2017). Instead of learning a highly heterogeneous and non-
linear mapping from audio to video directly, Everybody’s
Talkin (Song et al., 2022) additionally involves the statistical
linear 3D face model and builds an easier map from audio to
parameters of 3DMM (Blanz & Vetter, 1999). Our proposed
method takes a similar strategy that drives the whole por-
trait through controlling the parameters of FLAME model
(Li et al., 2017). The other one is personalized animation
(Suwajanakorn et al., 2017; Karras et al., 2017; Tang et
al., 2022), which usually does not rely on a large dataset
for training and only builds one model for each person.
Recently, with the emergence of Neural Radiance Fields
(NeRF) (Mildenhall et al., 2020; Barron et al., 2021b, a),
many NeRF-based audio-driven methods are proposed (Guo
et al., 2021; Liu et al., 2022; Yao et al., 2022). However,
those methods can not drive the portraits well when meeting
novel audio. DFRF (Shen et al., 2022) improves this issue
with a pre-trained base model but the final results are still not
satisfactory.

3 Our Approach

Given amonocular video of a talking portrait, our framework
can re-render the human portrait with novel illuminations
driven by the input audio. Denote the input video with
unknown illuminations as V = {I1, I2, ..., It } with audio
sequence a = {a1, a2, ..., at }, where t is the number of
frames. The key aim of our framework is to extract the
geometry and reflectance information from video V in
an unsupervised manner, and the geometry deformation
is driven by the audio accordingly. Specifically, we neu-
rally model the expression- and pose-related geometry of
human heads based on the FLAME model (Li et al., 2017).
Then, an audio-to-geometry mapping is learned to drive the
portrait and also provide a good initial normal estimation
(Sect. 3.1). Meanwhile, the reflectance components, i.e., nor-
mal N , albedo A, shading Sshad , and specular Sspec maps, are
decomposed via carefully designed priors (Sect. 3.2). During
training, the lighting condition L of the given video is esti-
mated on-the-fly, and the training objective is reconstructing
the whole video. In addition, multiple lighting conditions
are randomly simulated for identity-consistent supervision
which further refines geometry estimation. With the well-
disentangled geometry and reflectance, we use audio from
the user to drive the portrait by controlling expression and
pose coefficients, then render it with any desired illumina-
tions, which seamlessly harmonizes with the background.
The whole pipeline is shown in Fig. 2.

In this paper, I , N , A ∈ R
3×H×W , Sshad , Sspec ∈

R
1×H×W where H and W are height and width respectively.
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Fig. 2 Overview of Our Proposed Framework. Denote the input video
with unknown illuminations asV = {I1, I2, ..., It }with audio sequence
a = {a1, a2, ..., at }, where t is the number of frames. Generally, our aim

is to extract the geometry and reflectance information from video V in
an unsupervisedmanner then drive the geometry deformation according
to the audio

3.1 Audio-Driven Synthesis

Expression- and Pose-related Geometry Estimating the sur-
face normal of talking portraits from monocular videos is
a non-trivial task, given the ill-posed nature of single-view
reconstruction. To address this issue, we leverage a paramet-
ric model, FLAME (Li et al., 2017), as the human head prior
to modeling the expression- and pose-related human portrait:

FLAME(β, θ, ψ) : R|β|×|θ |×|ψ | → R
n×3, (1)

which takes coefficients of shape β ∈ R
|β|, pose θ ∈ R

|θ |,
and expression ψ ∈ R

|ψ | as input. We use the off-the-shelf
tool (Feng et al., 2021) to estimate those parameters. Intu-
itively, this parametric human portrait model offers a good
initialization of the 3D geometry, which facilitates further
refinement.

However, this initial parametric portrait model is not well-
aligned with the details of the given human portrait. To refine
the initial model, we use nearest surface intersection search
(Zheng et al., 2022) to optimize the initial mesh and calculate
the normal N as the normalized gradient on the surface. This
normal N will be further optimized during the reflectance
decomposition process (Sect. 3.2).
Mesh-Aware Audio-to-Expression Translation From the per-
spective of the mapping function, learning a direct mapping
from audio to talking video is hard due to its high-
dimensional property. In contrast, mapping audio signals
to expressions and poses of the head is much easier. To
enable robust talking portrait generation,we leverage amesh-
aware audio-to-expression translation strategy. Benefiting
from FLAME (Li et al., 2017) based design, our extracted
head geometry is expression- and pose-related. We first
use DeepSpeech (Amodei et al., 2016) to extract phoneme-
related audio features fpho ∈ R

16×29:

fpho = DeepSpeech(a). (2)

Then extracted audio features fpho are fed to a model pre-
trainedon theVOCAdataset (Cudeiro et al., 2019b) to predict
lip-related mesh vertices Vlip ∈ R

NV ×3 (NV is the selected
vertex number) as the additional guidance:

Vlip = Fmesh(Vtemplate, fpho), (3)

where Vtemplate is the zero-pose template for audio features.
Lip-related vertices and phoneme-related features are sep-

arately encoded and concatenated to predict expressions and
poses of the FLAME model by a learnable network:

ψ̂, θ̂ = Fexp(Elip(Vlip), Epho( fpho)), (4)

where Elip and Epho are two feature encoders and Fexp is a
network that concatenates two kinds of features and predicts
expressions and poses. Meanwhile, to address the unsta-
ble prediction caused by a single audio frame, we input
neighboring frames and use attention layers in Fexp to inte-
grate multi-frame audio information. This learning process
is supervised by Lexp = ‖ψ̂ − ψ‖22 + ‖θ̂ − θ‖22.
Neural Video Rendering Network Gaining the new driven
coefficients ψ , θ , we can send them to Eq. 1 and recalculate
the geometry to get a new normal N̂ that fits input audio.
Here we find that it is non-trivial to faithfully relate the audio
signals and all face deformations (e.glet@tokeneonedothead
movement). The translation network Fexp will perform
poorly if required to fit all poses. Therefore, we only pre-
dict lip-related poses and directly use the sequence of
lip-unrelated poses from existing videos. In this way, we
only need to regenerate lip-related areas (including cheek and
chin) and blend lip-unrelated areas from the existing videos.

We first use a ResNet based local network Flocal to trans-
late the newly generate normal to lip-related areas. Using
eroded lip-unrelated areas from existing videos as back-
ground and the output of the first network, another blending
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network Fblend is used to output the blended image Î :

Î = Fblend(Flocal(N̂ ) � M, I � (1 − Md)), (5)

where M is the lip-related area and Md is the dilated area for
the network Fblend to inpaint. This process is learned by:

Llocal
rgb = ‖Flocal(N̂ ) � M − I � M‖22, (6)

Lblend
rgb = ‖ Î − I‖22, (7)

Lblend
per = ‖VGG( Î ) − VGG(I )‖22, (8)

where Lblend
per is the perceptual loss and VGG represents a

pretrained faceVGGnetwork (Parkhi et al., 2015) and returns
extracted embedding features. It is only added to the blending
network to generate vivid results while the local network is
only supposed to generate the rough lip area.

3.2 Reflectance Decomposition

To enable rendering the talking portrait under novel illumi-
nations, the reflectance and environmental lighting should be
appropriately disentangled and estimated.
Lighting Following previous work (Ramamoorthi & Han-
rahan, 2001; Barron & Malik, 2014; Basri & Jacobs, 2003;
Wang et al., 2008; Shu et al., 2017; Zhou et al., 2019a; Hou et
al., 2021), the environmental lighting L ∈ R

9 is represented
as a 9-dimensional spherical harmonics coefficient vector.
However, the lighting conditions of online talking videos are
unknown,whichmakes it hard for inverse rendering. Inspired
by Relighting4D (Chen & Liu, 2022), we first initialize the
lighting L from the front of the human face and then treat it
as a trainable parameter to optimize. During the inference,
given HDR lighting will be converted to a 9-dimensional
spherical harmonics coefficient vector.
Normal Map Although N̂ provides a rough estimation of
portrait geometry, its deviation from the real geometry will
be amplified in the relighting. To further refine the geome-
try while still keeping the structure of N̂ , we use a network
Fnormal to predict normal residual:

δN = Fnormal( Î , N̂ ). (9)

We add an L1 regularization on δN , i.e.,LδN = ‖δN‖1. The
final predicted normal N is N = N̂ + δN .
Shading Map Given the normal N and lighting L , we can
calculate the shading map Sshad using a network Fshad con-
ditioned on the normal and lighting:

Sshad = Fshad(N , L), (10)

Albedo Map To represent the illumination-invariant base
color of the human face, we use a network Falbedo to pre-

dict the albedo map A from the appearance:

A = Falbedo( Î ). (11)

Although there is no ground truth for albedo in our setting,
it is supposed to have two physical priors: smoothness and
parsimony (Barron&Malik, 2014). Smoothness requires that
variation in the albedo map tends to be small and sparse. To
achieve that, we use total variation regularization on the skin
area:

Lsmooth(A) =
H∑

h=1

W∑

w=1

∥∥βh+1,w − βh,w

∥∥2
2

+
H∑

h=1

W∑

w=1

∥∥βh,w+1 − βh,w

∥∥2
2 ,

(12)

where β∗ are the values of albedo A within the skin area.
In addition to piece-wise smoothness, the second property

we expect from albedo map is parsimony, which means that
the palettewithwhich an albedo imagewas painted should be
small. This property holds only when it is a soft constraint to
make the palette sparse enough. As for the parsimony prior,
we penalize the network by minimizing the entropy of the
albedo map (Chen & Liu, 2022):

Lparsimony = E[− log(p(A))], (13)

where p(·) is the probability density function (PDF). To
address the difficulty of estimating the PDF of the contin-
uous variable albedo map A during training, we use Monte
Carlo sampling to obtain a soft approximation of a Gaussian
histogram at predefined bins for estimating the PDF of A.
Specular Map Prior works (He et al., 2016; Shu et al., 2017)
for portrait relighting, especially which require no One-
Light-at-A-Time (OLAT) data, only employ simple diffuse
lighting to model the human face. However, given the fact
that specular phenomenons widely appear on human faces,
it is key to the photorealistic rendering to model the specular
effects. Therefore, we leverage Blinn–Phong model (1977)
to incorporate specular component as:

Rspec (N , ωi , ωo) = s + 2

2π
(h (ωi , ωo) · N )s , (14)

where h(ωi , ωo) = normalize(ωi + ωo), and s is the Phong
exponent that controls the apparent smoothness of the sur-
face. Then the specular map Sspec can be calculated by the
accumulation of Rspec (N , ωi , ωo) under illumination from
different directions:

Sspec = Fspec(N , L) =
∑

ωi

(L(ωi ) � Rspec (N , ωi , ωo)),

(15)
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in which ωo is always towards the front in this paper. In
experiments, we also find that the specular produced by
Blinn-Phong model can never perfectly align with the real
face in the video. Inspired by SunStage (Wang et al., 2022),
we use another network Fcspec to predict a coefficient map
Cspec ∈ R

1×H×W for flexibly adjusting the final specular:

Cspec = Fcspec( Î , N ). (16)

For the coefficient map, we apply a TV loss mentioned in
Eq.12 to avoid checkerboard artifacts. Finally, we synthesize
the video frame Ĩ via image-based rendering:

Frender : Ĩ = A � (Sshad + Cspec � Sspec), (17)

where � denotes the element-wise product. And the training
objective is the reconstruction loss against input frames:

Lrender
rgb = ‖ Ĩ − I‖22. (18)

Identity-Consistent Supervision with Relighting Coarse ren-
derer Fcoarse synthesizes RGB pixel values according to the
normal N . Without multi-view supervision, the face area
in highlights will be regarded as raised part even if it is
smooth originally, leading to artifacts during the relighting.
To address this issue, we propose identity-consistent super-
vision with simulated multiple lighting conditions, which
is performed on-the-fly during training. We assume that a
well-trained face recognition network can extract similar
embedding when the lighting condition varies. Therefore,
after the decomposition is nearly converged, we randomly
sample a new lighting condition and reinforce the identity
consistency between the two rendered images with different
lighting conditions:

Lconsistent = ‖Eid(I relight) − Eid(I )‖22, (19)

where I relight is the rendering under the randomly sampled
lighting, and Eid is the embedding extracted by a pre-trained
face recognition network (Schroff et al., 2015).

3.3 Optimization and Inference

During the training phase, training the entire framework
directlymay cause the networks to learn the locally optimized
results of each decomposedmap, as there are no ground truths
available for each component of reflectance decomposition.
Therefore, we first train networks for audio-driven synthesis
to learn a rough expression- and pose-related geometry.

Yet, there is no off-the-shelf ground truth for normal
map N to supervise geometry refinement. To address it, a
coarse renderer Fcoarse is used to predict the RGB result Î
conditioning on normal N , which is supervised by image

reconstruction loss. This self-supervised learning process
encourages the normal map to obtain more details of sur-
face shape,without requiring extra annotations.After a rough
normal map N is gained, it is combined with an RGB por-
trait image as inputs of reflectance decomposition for further
optimization and also stabilize the decomposition.

The overall loss is:

L = λlocalrgb Llocal
rgb + λblendrgb Lblend

rgb + λblendper Lblend
per

+ λrenderrgb Lrender
rgb + λδNLδN + λconsistentLconsistent

+ λexpLexp + λparsimonyLparsimony + λtotalsmoothLtotal
smooth,

(20)

where λ’s are the weights and are set to 1, 1, 100, 1, 1, 3, 1,
0.001, and 1 respectively. Here Ltotal

smooth is similar to Eq. 12
but is added to all decomposed maps:

Ltotal
smooth = Lsmooth(A) + Lsmooth(N )

+ Lsmooth(Rspec) + Lsmooth(Cspec).
(21)

In the inference phase, new audio will drive the portrait
by controlling expression and pose coefficients. Meanwhile,
desired illuminations will replace the learned light L of the
original video to relight the whole video, thus seamlessly
harmonizing with the background.

4 Experiments

4.1 Implementation Details

Network Architecture In audio-driven synthesis, lip-related
feature encoder Eexp and phoneme-related feature encoder
Epho both use 1D convolutional neural networks. Decoder
Fexp is also a 1D convolutional neural network but with the
self-attention mechanism (Zhang et al., 2019) to predict pose
and expression coefficients through 8 adjacent frames. For
Local network Flocal, we use the ResNet (He et al., 2016)
with 6 residual blocks. While for blending network Fblend,
we use U-Net of depth 5 with dilated convolutions (Thies et
al., 2020). To gain coherent results, we adjust the mask size
to leave some missing area between the generated lip area
and the given background area, which will be inpainted by
Fblend. As shown in Fig. 3, we choose the area with 80 × 80
resolution around the mouth as the Driven Area and remove
the area with 120 × 120 resolution around the mouth as the
Existing Area. Here we also add the lip area generated by
Wave2Lip (Prajwal et al., 2020) as the additional input of
Fblend to increase the performance when the input audio is
far away from the audio used in training (i.e. audio from a
new person).

For reflectance decomposition, we choose U-Net (Isola et
al., 2017) of depth 8 as the architecture of specular weight
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Fig. 3 Details of Our Proposed Framework. Our framework decom-
poses the video I into a set of normal N , albedo A, shading Sshad, and
specular Sspec maps. Specifically,we neurallymodel the expression- and
pose-related geometry of human heads based on the FLAMEmodel (Li
et al., 2017). Then, the reflectance components are decomposed viamul-

tiple carefully designed priors (Sect. 3.2). With the well-disentangled
geometry and reflectance, we use audio from the user to drive the human
portrait by controlling expression and pose coefficients, then render it
with any desired illuminations, which seamlessly harmonizes with the
background

predicter Fcspec. But to gain smoother albedo maps and nor-
mal residuals, we choose ResNet (He et al., 2016) with 6
residual blocks as the architecture of albedo predictor Falbedo

and normal residual predictor Fnormal.
Running Time We conduct our experiments on a single GPU
of NVIDIA V100. Each person will take around 1 day for
training and the inference time is around 0.6 s per frame.

4.2 Dataset

Real Video Data AD-NeRF (Guo et al., 2021) and HDTF
(Zhang et al., 2021c) collect several high-resolution talking
videos in different scenes to better evaluate the generation
performance. Following this practice, we choose celebrity
videos whose protagonists are news anchors, entrepreneurs,
or presidents from YouTube as our real video set. We col-
lect 8 public videos with an average length of 3 min from 7
identities. We split each video with around 80% frames for
training and 20% frames for evaluation. These videos are all
available online and we will provide corresponding source
links for reproduction purposes.
Synthetic Video Data Talking videos with ground-truth illu-
minations are not available from online collections. To
evaluate our relighting algorithm quantitatively, we synthe-
size some talking videos with the same motion sequence
but different lighting conditions within the modern graphic
pipeline, as shown in Fig. 4. Specifically, we render 6

sequences (2 min, 25 fps), for each person in 10 differ-
ent lighting conditions with Cycles renderer (Hess, 2013)
in Blender (Community, 2018), a photorealistic ray-tracing
renderer. All mesh models, textures, and displacement maps
are released by FaceScape (Yang et al., 2020; Zhu et al.,
2021). We combine displacement maps and textures in a
physically-based skin material featuring sub-surface scat-
tering (Christensen, 2015) for photo-realistic rendering. We
drive our head models with expression coefficients and head
rotation angles estimated from our own recorded talking
videos.

4.3 EvaluationMetrics

For evaluation metrics, we report peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), and perceptual simi-
larity (LPIPS) (Zhang et al., 2018) to measure the quality of
generation results. For datasets, we collect 8 talking portrait
videos from YouTube with an average length of around 3
min as our real video set (most are used in AD-NeRF (Guo
et al., 2021) or HDTF (Zhang et al., 2021c)) and additionally
render synthetic videos of 6 persons with an average length
of around 2 min for quantitative comparison. More details
are introduced in our supplementary materials. To measure
audio-driven accuracy, we further use SyncNet (confidence)
(Chung&Zisserman, 2017) tomeasure the audio-driven syn-
chronization.
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Fig. 4 Visualization of Synthetic Data. We render 6 sequences (2 min,
25 fps), for each person in 10 different lighting conditions with Cycles
renderer (Hess, 2013) in Blender (Community, 2018)

Fig. 5 Qualitative Comparison of Real VideoDriving. Ourmethod suc-
cessfully drives the motion of lips. Compared to AD-IMAvatar (Zheng
et al., 2022),AD-NeRF (Guo et al., 2021), andDFRF (Shen et al., 2022),
our generated lip motion are closer to the ground truth (zoom in for a
better view)

4.4 Qualitative Comparison

Currently, there is no unified framework for relightable
audio-driven talking portrait generation. Therefore, we first
compare our method with audio animation methods and
relighting methods separately, then trivially combine two

existing frameworks as the baseline of relightable audio-
driven talking portrait generation.
Comparison on Audio-Driven Talk In this work, we focus
on personalized animation, which only uses one video for
training. We choose two representative personalized audio
animation methods, AD-NeRF (Guo et al., 2021), and DFRF
(Shen et al., 2022). We also modify the FLAME-based
method IMAvatar (Zheng et al., 2022) to gain a simple audio-
driven version, AD-IMAvatar as an additional baseline. In
Fig. 5, AD-IMAvatar only generates coarse talking portraits
with blurry teeth areas. And AD-NeRF is prone to generate
artifacts at the junction of the neck and head. Compared to
the results of AD-NeRF and DFRF, the motion of our gener-
ated lips is closer to the ground truth. Notably, our framework
succeeds to generate clear teeth areas.
Comparison on Relighting In this paper, we compare our
relighting performance with five advanced methods. DPR
(Zhou et al., 2019a), SMFR (Hou et al., 2021) and GCFR
(Hou et al., 2022) are trained on publicly available data and
release their models. Since nearly none of One-Light-at-A-
Time (OLAT) based methods release their code or models.
We requested the authors to inference their models on our
provided inputs (SIPR-W(Wang et al., 2020) andTR (Pandey
et al., 2021)), and take results for comparisons (Fig. 6).

As presented in Fig. 7, although both DPR and SMFR
are able to reflect given lighting conditions on generated
images when a sample directional light is given, their gener-
ated portraits lack the special texture of a real human face.
This is mainly because they do not account for model spec-
ular, which is a significant and noticeable feature of the
human face. Meanwhile, the recent method GCFR is easy
to produce unnatural shadows. In contrast, ReliTalk renders
realistic human portraits with reserved facial details.

Additionally, when complex lighting optimized from
HDR images is used (as shown in Fig. 6), DPR and SMFR
tend to produce unsatisfactory results, many of which are not
relevant to the given lighting conditions. And SMFR even
fails to reconstruct some faces. SIPR-W will generate some
relighted results whose color is similar to the background
but can not reflect the varied lighting on the face. Although
TR succeeds to generate some vivid relighted results, it loses
some facial details and also mildly hurt the original iden-
tity. However, our framework performs well on both types of
lighting and successfully renders the specular texture of the
human face. This enables our generated avatar to blend in
seamlessly with various backgrounds, as long as HDR data
of the background is available, by matching the shading and
lighting of the avatar to that of the background.

4.5 Quantitative Comparison

Evaluation on Audio-Driven Talk As shown in Table 1, we
compare our method with AD-IMAvatar, AD-NeRF, and

123



International Journal of Computer Vision (2024) 132:2713–2728 2721

Fig. 6 Qualitative Comparisons of Real Video Relighting.We compare
ourmethods against DPR (Zhou et al., 2019a), SMFR (Hou et al., 2021),
SIPR-W (Wang et al., 2020) and TR (Pandey et al., 2021). ReliTalk ren-

ders human portraits with high-fidelity even with the complex lighting
from HDR environment maps

Fig. 7 Qualitative ComparisonsUnder Directional Lights.We compare
our methods against three baseline methods DPR (Zhou et al., 2019a),
SMFR (Hou et al., 2021) and GCFR (Hou et al., 2022) for portrait
relighting under directional light

DFRF. Among those baselines, DFRF achieves comparable
performance in PSNR, SSIM, and LPIPS, while its confi-
dence in SyncNet is slightly lower than AD-NeRF. However,
our method significantly outperforms all baselines in terms
of all metrics.

Although our method uses some portrait area from exist-
ing frames, both AD-NeRF and DFRF use pose parameters
from the existing sequence. In this way, DFRF only gener-
ates the remaining face area with the neck and collar given.
Therefore for a fair comparison,we recalculate PSNR, SSIM,
and LPIP purely in the driven area (120 × 120 resolution).
As shown in the brackets of Table 1, our method still signif-
icantly outperforms all baselines in terms of all metrics.
Evaluation on Synthetic Relighting Dataset As shown in
Table 2, we achieve the highest PSNR and SSIM on the

synthetic dataset. And they are significantly higher than the
other two, which indicates our generated images is closer
to the ground truth. Meanwhile, the lowest LPIPS also illus-
trates that our results have the highest perceptual quality. It is
notable that SMFRalmost fails in our synthetic video dataset,
which is perhaps caused by the distribution gap between our
synthesized video data and real data. As a result, our ReliTalk
outperforms DPR and SMFR both qualitatively and quanti-
tatively.

According to the analysis of practicality, DPR and SMFR
need a pre-collect face image dataset to train the network.
At the inference stage, a new lighting or a new portrait that
is out of training distribution will significantly hurt the per-
formance. While our method may not be able to handle all
persons within a single model, it is still practical because the
training data, a short talking portrait video, is readily avail-
able and easy to obtain.

4.6 Ablation of Core Modules

Effects of Mesh-Aware Guidance Mesh-aware guidance is
used to assist lip-syncing. We use a model pre-trained (Cud-
eiro et al., 2019b) to gain lip-related meshes as additional
guidance. Phoneme-related features and lip-related meshes
are separately encoded and then concatenated to generate
pose and expression coefficients. As shown in Table 3, mesh-
aware guidance improves prediction accuracy significantly.
In addition, we find that the improvement is significant
(PSNR increases from29.5445 to 34.8186)when the training
video is too short to cover enough phonemes (2450 training
frames). The improvement is mild for the long video (6500
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Table 1 Quantitative results of audio-driven real videos

Methods PSNR ↑ SSIM ↑ LPIPS ↓ SyncNet ↑
AD-IMAvatar (Zheng et al., 2022) 25.0625 0.8885 0.0538 2.5428

AD-NeRF (Guo et al., 2021) 25.6916 (29.8458) 0.9219 (0.9750) 0.1165 (0.0594) 3.8616

DFRF (Shen et al., 2022) 33.2088 (33.9563) 0.9665(0.9834) 0.1178 (0.0616) 3.7190

Ours 37.6645 (37.9082) 0.9892 (0.9931) 0.0028 (0.0029) 5.5343

Ground Truth – 1.000 0.000 7.7218

Bold values indicate the best performance in the comparison
Our method significantly outperforms all baselines in terms of all metrics

Table 2 Quantitative results of synthetic video relighting

Methods PSNR ↑ SSIM ↑ LPIPS ↓
DPR (Zhou et al., 2019a) 18.1899 0.9093 0.0668

SMFR (Hou et al., 2021) 15.9565 0.8003 0.3358

Ours 22.8152 0.9435 0.0326

Bold values indicate the best performance in the comparison
Our method achieves the highest PSNR and SSIM on the synthetic
dataset

Table 3 Ablation results of Mesh-Aware Guidance

Methods PSNR ↑ SSIM ↑
Audio Only 29.6147 0.9511

Mesh Only 33.8643 0.9790

Audio + Mesh (Ours) 34.1099 0.9802

Bold values indicate the best performance in the comparison
Our mesh-aware guidance improves prediction accuracy significantly

training frames). This implies that mesh-aware features offer
the network approximate information about the movements
of the lips, such as opening and closing, even when the input
audio is significantly different from the audio used during
training.
Effects of Identity-Consistent Supervision Identity-consistent
supervision with relighting is employed to lessen the influ-
ence of lacking multi-view information. We visualize the
effects in Fig. 8. Instead of a well-structured normal, the net-
workprefers to generate an irregular onewhose surface varies
with the change of color on the face because it is an easier
mapping for the coarse render. However, those irregular areas
will be very significant when a different lighting is given (left
of Fig. 8). After adding identity-consistent supervision, this
weird face is hard to be recognized as the same person, urging
the network to produce a well-structured normal which can
gain reasonable relighting results under lighting with vari-
ous directions (right of Fig. 8). To quantitatively evaluate the
improvements of identity-consistent supervision, we calcu-
late metrics in the image space of the normal map. Here we
propose PSNRgrad, which calculates the 2D gradient in the
image space, to jointlymeasure the normal quality. As shown

Fig. 8 Finer Normal under Identity-Consistent Supervision with
Relighting. Without ICS, the normal map estimation may contain
severe artifacts that cause unrealistic rendering given novel illumina-
tions (zoom in for clearer results)

Table 4 Ablation Results of Identity-Consistent Supervision.

Methods PSNR ↑ PSNRgrad ↑ SSIM ↑
w/o ICS 21.7141 21.9828 0.9060

w ICS 21.5835 23.5441 0.9203

Without identity-consistent supervision, the estimated normal map will
become noisy and contain more artifacts, indicated by a higher error in
the gradient map

in Table 4, although normal refined by ICS does not gain
a higher PSNR, its PSNRgrad is significantly higher, which
means that it owns a better shape surface. Higher SSIM also
proves the effectiveness of our method.

4.7 Ablation of Reflectance Decomposition

To get rid of leveraging knowledge from expensive capturing
data (i.e. Light Stage (Debevec et al., 2000)), we decompose
the human portrait into corresponding maps frommonocular
videos through some careful designs.
Initial Normal Different from previous audio-driven gen-
eration methods only generate the final portrait image, our
audio-to-geometry also provides a good initial normal esti-
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Fig. 9 Ablation of Reflectance Decomposition. (a) Without initial normal, (b) without normal residual, (c) without parsimony prior, (d) without
smoothness constraints, (e)without specular weight, (f)without specular map, (g) our final method. Our final method gains the most vivid relighting
results

mation. As shown in row (a) of Figs. 9, 10, 11, the reflectance
decomposition can not converge properly without initial nor-
mal estimation because of lacking the constraints for the
normal map.
Normal Residual Initial normal is not accurate because we
do not have either the ground truth of the normal map or
multi-view information of the portrait. Those irregular areas
will be very significant when new lighting is given (row (b)
of Fig. 9).
Parsimony Prior Parsimony means that the palette with
which an albedo image was painted should be small.Without
parsimony prior, albedo will contain more details while nor-
mal details are reduced, which is obviously reflected in the

shadingmapof row (c) (Fig. 9). Therefore, the final relighting
result is not such vivid.
Smoothness Constraints With smoothness constraints, some
decomposition maps may overfit training data. As shown in
row (d) of Fig. 9, the predicted specular weight is chaotic,
reducing the vividness of the relighting result.
Specular Weight We use a network Fcspec to predict a spec-
ular weight Cspec for flexibly adjusting the final specular. As
shown in row (e) of Fig. 9, the relighting result is blurred
without this design.
Specular Map Prior works (He et al., 2016; Shu et al., 2017)
for portrait relighting only employ simple diffuse lighting
to model the human face. However, ignoring specular phe-
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Fig. 10 Ablation of Reflectance Decomposition. a Without initial normal, b without normal residual, c without parsimony prior, d without
smoothness constraints, e without specular weight, f without specular map, g our final method. Our final method gains the most vivid relighting
results

nomenons that widely appear on human faces, the final
rendering result is less photo-realistic (row (f) of Fig. 9).

4.8 Ablation of Training Frames

We also conduct a convergence ablation based on the number
of training frames. As shown in Fig. 12, 750 training frames
(clip of 30 s) are enough for basic relighting performance.
But more training frames will bring better results. In this
example, the unnatural division between hair and forehead
gradually disappears when more training frames are used.

5 Conclusion

We propose ReliTalk a novel framework for relightable
audio-driven talking portrait generation which only requires
an easily accessible single monocular portrait video as
input, while previous light-stage-based methods are not pub-
licly available for data or code. Our method decomposes
the human portrait for the well-disentangled geometry and
reflectance, which is also expression- and pose-related. Dur-
ing the inference, we use audio from the user to drive the
human portrait by controlling expression and pose coeffi-
cients, then render it with any desired illuminations, seam-
lessly harmonizing with the background.
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Fig. 11 Ablation of Reflectance Decomposition. a Without initial normal, b without normal residual, c without parsimony prior, d without
smoothness constraints, e without specular weight, f without specular map, g our final method. Our final method gains the most vivid relighting
results

However, there are still some limitations of our designed
relighting model. (1) We only consider one-bounce direct
environment light, and thus our method cannot handle furry
appearances, such as beards and long hair. (2) Our method
assumes the appearance of human faces does not change
throughout the entire video. Therefore, actions like wearing
glasses or putting on hats may change the appearance would
cause inaccurate estimation of reflectance.

In the future, we want to design a more realistic physical
model that can take into account various complex lighting
conditions.

Societal Impacts Our code is released for better promotion.
Therefore, users only need to input a talking video of the
target person and then are able to freely generate a talk-
ing portrait with desired audio and background. Although
it increases the risk of forged videos, our approach also pro-
vides a new type of forged samples for researchers to improve
defense methods.
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Fig. 12 Ablation of Training Frames. a 750 training frames, b 1500
training frames, c 3000 training frames, d 6000 training frames. 750
training frames (clip of 30 s) are enough for basic relighting per-
formance. But more training frames will bring better results. In this
example, the unnatural division between hair and forehead gradually
disappears when more training frames are used

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-024-02007-
9.
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