
International Journal of Computer Vision (2024) 132:1463–1483
https://doi.org/10.1007/s11263-023-01933-4

FastTrack: A Highly Efficient and Generic GPU-Based Multi-object
Tracking Method with Parallel Kalman Filter

Chongwei Liu1 · Haojie Li2 · Zhihui Wang1

Received: 27 July 2022 / Accepted: 17 October 2023 / Published online: 21 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The Kalman Filter based on uniform assumption has been a crucial motion estimation module in trackers. However, it
has limitations in non-uniform motion modeling and computational efficiency when applied to large-scale object tracking
scenarios. To address these issues, we propose a novel Parallel Kalman Filter (PKF), which simplifies conventional state
variables to reduces computational load and enable effective non-uniform modeling. Within PKF, we propose a non-uniform
formulation which models non-uniform motion as uniform motion by transforming the time interval �t from a constant into
a variable related to displacement, and incorporate a deceleration strategy into the control-input model of the formulation
to tackle the escape problem in Multi-Object Tracking (MOT); an innovative parallel computation method is also proposed,
which transposes the computation graph of PKF from thematrix to the quadratic form, significantly reducing the computational
load and facilitating parallel computation between distinct tracklets via CUDA, thus making the time consumption of PKF
independent of the input tracklet scale, i.e., O(1). Based on PKF, we introduce Fast, the first fully GPU-based tracker
paradigm, which significantly enhances tracking efficiency in large-scale object tracking scenarios; and FastTrack, the MOT
system composed of Fast and a general detector, offering high efficiency and generality. Within FastTrack, Fast only requires
bounding boxes with scores and class ids for a single association during one iteration, and introduces innovative GPU-based
tracking modules, such as an efficient GPU 2D-array data structure for tracklet management, a novel cost matrix implemented
in CUDA for automatic association priority determination, a new association metric called HIoU, and the first implementation
of the Auction Algorithm in CUDA for the asymmetric assignment problem. Experiments show that the average time per
iteration of PKF on a GTX 1080Ti is only 0.2 ms; Fast can achieve a real-time efficiency of 250FPS on a GTX 1080Ti and
42FPS even on a Jetson AGXXavier, outperforming conventional CPU-based trackers. Concurrently, FastTrack demonstrates
state-of-the-art performance on four public benchmarks, specifically MOT17, MOT20, KITTI, and DanceTrack, and attains
the highest speed in large-scale tracking scenarios of MOT20.

Keywords Multi-object tracking · GPU-based tracker · Parallel Kalman filter · Real-time efficiency

Communicated by Svetlana Lazebnik.

B Haojie Li
hjli@sdust.edu.cn

Chongwei Liu
lcwdllg@mail.dlut.edu.cn

Zhihui Wang
zhwang@dlut.edu.cn

1 DUT-RU International School of Information Science and
Engineering, Dalian University of Technology, Dalian,
Liaoning, China

2 College of Computer Science and Engineering, Shandong
University of Science and Technology, Qingdao, Shandong,
China

1 Introduction

Multi-Object Tracking (MOT) predominantly follows the
tracking-by-detection paradigm. An MOT system typically
comprises a general detector (Ren et al., 2015;Ge et al., 2021)
and a generic1 motion-based tracker (Zhang et al., 2022; Cao
et al., 2022; Bewley et al., 2016).

Although the Kalman Filter (KF) is a crucial motion esti-
mation module for many state-of-the-art trackers (Wang et
al., 2020; Zhou et al., 2020; Zhang et al., 2021, 2022), it has

1 The term “generic” implies that a tracker can easily be combined with
any general object detector for object tracking.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-023-01933-4&domain=pdf

1464 International Journal of Computer Vision (2024) 132:1463–1483

limitations in motion modeling and computational efficiency
when applied to MOT.

Concerning motion modeling, the KF assumes uniform
object motion, which is unsuitable for various motion pat-
terns in general tracking scenes2 as shown in Fig. 1. Although
Extended KF (Smith et al., 1962) and Unscented KF (Julier
& Uhlmann, 1997) were introduced to handle non-uniform
motions of Taylor approximations, they are computationally
complex and cannot estimate arbitrary non-uniform motion,
such as the highly randommotions of dancers in stage scenes.
Additionally, the KF is sensitive to noise, leading to the
escape problem (Cao et al., 2022). When an object is lost, its
bounding box, continuously predicted by KF without obser-
vation information supervision, rapidly escapes along the
current velocity direction, making it difficult to retrace. For
example, in Fig. 1, when an object is lost at a certain circu-
lar point, the box predicted by KF rapidly escapes along the
velocity direction.

Concerning computational efficiency, each tracklet is rep-
resented using a distinct KF, and all KFs are updated in a
sequential manner. This process leads to a linear rise in time
consumption of all KFs proportional to the count of input
tracklets. This computational expense corresponds to a time
complexity of O(n), where n denotes the total number of
tracklets. Such substantial resource allocationweakens track-
ing efficiency, especially in scenarios of large-scale object
tracking. For example, the CPU-based tracking algorithm
OCSORT (Cao et al., 2022), despite improving the KF to
attain state-of-the-art performance, falls short in terms of
computational efficiency. As a result, OCSORT experiences
nearly a 30× increase in time consumption when the number
of input tracklets increases from 6 (as in KITTI) to 139 (as
in MOT20), as illustrated in Fig. 2. Thus, an optimal tracker
must strike a balance between tracking precision and com-
putational efficiency.

To address these issues, we introduce a novel Paral-
lel Kalman Filter (PKF) that models non-uniform motion
while achieving a time complexity of O(1). In modeling,
the importance of a suitable set of state variables for the
KF cannot be understated. Therefore, we revise the conven-
tional eight-tuple state variables and replace themwith amore
simplified four-tuple state variable set, which focuses specif-
ically on the 2D coordinates of the object center along with
their corresponding velocities. This simplification reduces
computational load and aligns more appropriately with the
assumption of adjacent frame approximation of objects, thus
enabling effective modeling of non-uniform motion. Tak-

2 The term “general tracking scene” refers to one of the most common
cases of MOT, i.e., scenes containing people or vehicles captured by
handheld or fixed cameras. For this study’s convenience, it is equivalent
to the set of MOT17 (Milan et al., 2016), MOT20 (Dendorfer et al.,
2020), KITTI (Geiger et al., 2013), and DanceTrack (Sun et al., 2021)
in this paper.

Fig. 1 Illustration of object trajectories in typical tracking scenarios.
Four prevalent motion patterns are displayed: Low-speed, High-speed,
Static, andNon-linear. The bold colored lines represent the central coor-
dinate trajectories of the objects, while the black arrow lines indicate
the direction of the object’s velocity at specific circular points

Fig. 2 Efficiency and HOTA comparisons between our method and
other CPU&motion-based trackers across various benchmarks. The
number in parentheses represents the average number of tracklets per
frame for the respective test set. In the case of KITTI, the two scores
correspond to HOTA for Car and Pedestrian categories, respectively

ing cues from the fundamental motion equation V = S/T ,
we propose a unique state transfer formulation, called the
non-uniform formulation, based on the simplified state vari-
ables. It models non-uniform motion as uniform motion by
transforming the time interval �t from a constant into a
variable related to displacement. Moreover, to address the
escape problem, we incorporate a deceleration strategy into
the control-inputmodel of our proposed formulation. In com-
putation, reducing the computational load and increasing
parallel computation are the twomain approaches to improv-
ing computational efficiency. By simplifying state variables
and adhering to the strict matrix representation of our non-
uniform formulation, we introduce an innovative parallel
computation method. This method transposes the compu-

123

International Journal of Computer Vision (2024) 132:1463–1483 1465

tation graph of PKF from the matrix to the quadratic form,
significantly reducing the computational load and facilitating
parallel computation between distinct tracklets via CUDA.
Consequently, the time consumption of the PKF becomes
independent of the input tracklet scale, i.e., O(1). Over-
all, within the scope of PKF, the simplified state variables
serve as the cornerstone for both modeling and computation.
The design of the non-uniform formulation facilitates paral-
lel computing, and the practical implementation of parallel
computing significantly accelerates the non-uniform formu-
lation across diverse tracklets.

Although PKF can achieve high tracking efficiency
through CUDA acceleration, the other conventional modules
of the tracker remain CPU-based, leading to a bottleneck in
large-scale object tracking. To further improve tracking effi-
ciency in large-scale object tracking scenarios, we introduce
Fast, the first fully GPU-based tracker paradigm, based on
PKF; and FastTrack, the MOT system composed of Fast and
a general detector, offering high efficiency and generality.
Within FastTrack, Fast only requires bounding boxes with
scores and class ids to perform a single association during
one iteration, allowing for enhanced efficiency and general-
ity.

Within Fast, we propose corresponding GPU-based mod-
ules to replace the conventional CPU-based modules. We
innovatively introduce a highly efficient GPU 2D-array data
structure to manage tracklets instead of instances like most
previous works (Zhang et al., 2022; Cao et al., 2022; Bewley
et al., 2016), enabling efficient parallel access. Furthermore,
we propose a novel costmatrix implemented in CUDA, capa-
ble of automatically determining association priorities based
on scores within a single association. This novel cost matrix
also facilitates multi-object and multi-class tracking by sim-
ply shifting all boxes along the x-axis by the distance of
class id times the input image width before calculating the
Intersection over Union (IoU). Additionally, we propose a
new association metric, HIoU, to replace IoU when track-
ing pedestrian or traffic scenes. Lastly, we implement the
Auction Algorithm (Bertsekas, 1992a) for the asymmetric
assignment problem using CUDA for the first time, replac-
ing conventional CPU-based linear assignment algorithms
such as the Hungarian Algorithm (Kuhn, 1955) or LAPJV
(Jonker and Volgenant, 1987).

The conducted experiments demonstrate that the average
time per iteration of PKF on GTX 1080Ti is only 0.2 ms
and is independent of the input scale. Based on PKF and
other proposed modules, Fast can achieve a real-time effi-
ciency of 250FPS on GTX 1080Ti and 42FPS even on the
embedded CUDA device Jetson AGXXavier. The efficiency
is unaffected by the number of tracklets even on theMOT20
dataset with 139 objects per frame on average, which has
never been achieved in conventional CPU-based trackers.
As shown in Fig. 2, Fast is 7× faster than the state-of-the-art

CPU&motion-based trackerOCSORT in large-scale tracking
scenes of MOT20 and obtains the state-of-the-art perfor-
mance on four benchmarks, i.e., MOT17 (Milan et al., 2016),
MOT20 (Dendorfer et al., 2020), KITTI (Geiger et al., 2013),
and DanceTrack (Sun et al., 2021).

In summary, our work presents three significant contribu-
tions:

• We propose a novel Parallel Kalman Filter (PKF) that
models non-uniform motion and achieves a time com-
plexity of O(1). PKF modifies the conventional state
variables, proposes a non-uniform formulation, incorpo-
rates a deceleration strategy to tackle the escape problem,
and leverages a parallel computation method to reduce
computational load.

• We introduce the first fully GPU-based tracker paradigm
called Fast, which greatly improves tracking efficiency in
large-scale object tracking scenarios; and FastTrack, the
MOT system consisting of Fast and a general detector,
allowing for high efficiency and generality. Within Fast-
Track, Fast only requires bounding boxes with scores and
class ids to perform a single association during one iter-
ation.

• We propose innovative GPU-based modules within Fast
to replace conventional CPU-based modules, such as a
highly efficient GPU 2D-array data structure for manag-
ing tracklets, a novel cost matrix implemented in CUDA
for automatic association priority determination, a novel
association metric HIoU, and the first implementation
of the Auction Algorithm via CUDA for the asym-
metric assignment problem. These GPU-based modules
contribute to the real-time efficiency and generality of
FastTrack in large-scale object tracking scenarios.

2 RelatedWorks

2.1 Tracking-by-Detection

Tracking-by-detection has become the dominant paradigm
in the MOT task. This paradigm divides an MOT system
into two separate parts, i.e., the detector and the tracker. In
the basic case, the detector provides the tracker with detec-
tion results (bounding boxeswith confidence scores and class
ids) for each video frame, and the tracker uses motion esti-
mation to achieve tracking. In recent years, with the rapid
development of object detection, more general object detec-
tors (Redmon and Farhadi, 2018; Bochkovskiy et al., 2020)
have achieved both high recall and high precision. Conse-
quently, numerous tracking methods (Lu et al., 2020; Peng
et al., 2020; Zhou et al., 2020; Wu et al., 2021; Zhang et al.,
2022) have started utilizing powerful detectors (e.g., Reti-
naNet (Lin et al., 2017), CenterNet (Zhou et al., 2019), or

123

1466 International Journal of Computer Vision (2024) 132:1463–1483

YOLOX (Ge et al., 2021) to obtain superior tracking perfor-
mance. It has become a trend to combine high-performance
detectors with concise and generic motion-based trackers
intoMOT systems. For instance, SORT (Bewley et al., 2016)
first employed Faster R-CNN (Ren et al., 2015) as its detector
and the Kalman Filter (Kalman, 1960) as its motion estima-
tion module, achieving state-of-the-art performance in 2016
with a simple and efficient tracker. Building on SORT, Byte-
Track (Zhang et al., 2022) achieved state-of-the-art results in
MOT17 andMOT20 by using the advanced detectorYOLOX
(Ge et al., 2021). Before ByteTrack (Zhang et al., 2022),
many methods employing RetinaNet or CenterNet opted to
directly filter low score boxes (scores below 0.5) to eliminate
most False Positive (FP) boxes and guarantee tracking per-
formance due to the low precision of detectors at the time.
However, the high recall and precision of YOLOX ensure
that even low score boxes are likely to be True Positive (TP)
boxes. Therefore, ByteTrack achieves state-of-the-art perfor-
mancewhile ensuring simplicity and efficiencyby employing
YOLOX and cascade association based on score. In our
approach, Fast, we take it a step further by exploiting the
score, i.e., by fusing tracklet and detection scores into the
cost matrix to automatically prioritize matches within a sin-
gle association.

In addition, the tracker is essentially a computationally
intensive task, but current trackers are primarily CPU-based
and implemented with object-oriented programming. GPUs
have not been well-explored for tracker implementation
due to the programming gap between GPU and CPU. In
this paper, we propose the first fully GPU-based tracker
paradigm, which significantly improves tracking efficiency
in large-scale object tracking scenarios.

2.2 Kalman Filter

IntroductionTheKalman Filter (Bishop et al., 2001) is a clas-
sical motion estimation algorithm consisting of two phases:
prediction and update. In the prediction phase, the KF uses
the previous state to estimate the current state. The update
phase incorporates observations of the current state to pro-
vide a more accurate state estimate.

At each iteration, two variables are maintained for each
tracked object: the state estimate x and its posterior estimated
error covariance matrix P. The prediction phase of the KF
is characterized by the state-transition model F, the control-
input model B with the control vector u, and the covariance
of the process noiseQ. The update phase is described by the
observation model H and the covariance of the observation
noise R.

At each time step t , the KF first predicts the state estimate
xt |t−1 and its covariance matrix Pt |t−1 using the following

equations:

xt |t−1 = Ftxt−1 + Btut , (1a)

Pt |t−1 = FtPt−1F�
t + Qt , (1b)

where Eq. 1a models the object motion with a state transfer
formulation.

The KF then updates the state estimate and covariance
matrix based on the observation zt to obtain more accurate
estimates (xt and Pt) using the following equations:

St = HtPt |t−1H�
t + Rt , (2a)

Kt = Pt |t−1H�
t S

−1
t , (2b)

xt = xt |t−1 + Kt (zt − Htxt |t−1), (2c)

Pt = Pt |t−1 − KtStK�
t , (2d)

where the Kalman gain is denoted by matrix K, and the
system uncertainty is represented by matrix S, which is the
projected P in the measurement space. Additionally, Eq. 2d
can also be expressed as:

Pt = (I − KtHt)Pt |t−1, (3)

where the identity matrix is denoted by I. The corresponding
proof can be found on the following website.3

The uniform motion assumption of the KF is restrictive,
leading to the development of the ExtendedKF (EKF) (Smith
et al., 1962) and Unscented KF (UKF) (Julier & Uhlmann,
1997) to handle non-uniformmotion through first- and third-
order Taylor approximations. However, these methods still
rely on the Gaussian approximation under the KF assump-
tion and cannot accurately estimate arbitrary non-uniform
motions, such as the highly random motion of dancers. Par-
ticle filters (Gustafsson et al., 2002) address non-uniform
motions through sampling-based a posteriori estimation, but
at the cost of exponential computational complexity.
Application In the context of the MOT task, SORT (Bewley
et al., 2016) initially applies the KF to model objects with
uniformmotion, assuming that the inter-frame displacements
of each object are approximately equal. DeepSORT (Wojke
et al., 2017) builds on SORT by improving the representation
of x. Subsequently, most of the related works (Wang et al.,
2020; Zhou et al., 2020; Zhang et al., 2021, 2022) directly
employ the same KF used in DeepSORT as their motion
estimation module.

In DeepSORT, the KF’s state estimate x is an eight-tuple,
x = [u, v, γ, h, u̇, v̇, γ̇ , ḣ]�, where (u, v) represents the 2D
coordinates of the object center, γ is the box aspect ratio, and

3 robotics.stackexchange.com/questions/15393/the-final-step-in-
kalman-filter-to-correct-update-the-covariance-matrix.

123

International Journal of Computer Vision (2024) 132:1463–1483 1467

Fig. 3 IoU statistics on general tracking scenes. The top plot displays the videos from the train sets of MOT17, MOT20, and KITTI; the bottom
plot exhibits the videos from the train set and the validation set of DanceTrack

Fig. 4 Height and width ratio statistics on general tracking scenes. The title of each plot indicates the dataset and category

123

1468 International Journal of Computer Vision (2024) 132:1463–1483

h is the box height. The remaining four variables with dots
indicate the corresponding velocities.

DeepSORT and SORT assume uniform motion for all
tracked objects. Consequently, B and u are discarded in
Eq. 1a, and the state-transition model F becomes:

Ft =
[
I4×4 �tI4×4

04×4 I4×4

]
, (4)

where the time difference�t between two steps is consistent
(1 by default) throughout the iterations. The process noiseQ
and the observation noise R are defined as follows:

Qt =diag(φh2,φh2,10−4,φh2,ψh2,ψh2,10−10,ψh2), (5a)

Rt =diag(φh2, φh2, 10−2, φh2), (5b)

where φ andψ represent the position weight and the velocity
weight, respectively. The observation model H is given by:

Ht = [
I4×4 04×4

]
. (6)

Limitations Nevertheless, there are several issues with the
aforementioned KF application.

First, the variables γ and h should not be incorporated
into the state estimate x. Due to the assumption that dis-
placements of objects in adjacent frames are similar, γ and h
should remain constant between adjacent frames and should
not exhibit uniform motion. To adhere to this assumption, γ
and h need to be excluded from the state estimation.

Second, thematrixF canonly predict objects based onuni-
form motion, which is unsuitable for most motion patterns,
particularly for non-linear objects with significant impact,
such as dancers in DanceTrack.

Third, KF is sensitive to noise and thus susceptible to the
escape problem when the tracked object is lost. Initially, KF
operates as a predict-update loop, where the update phase
is employed to supervise the predicted state estimate to cor-
rect noise. When the tracked object is lost, KF only executes
the prediction phase, leading to continuous amplification of
noise (visualized by the rapid escape of the predicted box)
and making it challenging to retrace. Recently, OCSORT
(Cao et al., 2022) introduced the Observation-centric Online
Smoothing strategy tomitigate noise accumulation inKF due
to a lack of observations when a lost object is retraced. How-
ever, this strategy does not enhance the probability of objects
being retraced and is not GPU-friendly.

Fourth, KF is computationally demanding, with a time
complexity of O(n), which implies that its efficiency drasti-
cally declines as the number of tracked objects increases.

In this paper, we present the Parallel Kalman Filter to
address these limitations.

Table 1 Basic information about four benchmarks

Dataset MOT17 MOT20 DanceTrack KITTI

Videos 14 8 100 50

Splits 7/7 4/4 40/20/40 21/29

Avg. len. (s) 35.4 66.8 52.9 38.2

Total len. (s) 463 535 5292 1910

FPS 30 25 20 10

Total images 11,235 13,410 105,855 19,103

MOT17, MOT20, and KITTI divide their videos into train/test sets,
while DanceTrack separates them into train/validation/test sets. The
ground truth for all test sets is not provided

2.3 Association

Association is also a core aspect of the MOT task, which
primarily involves calculating a cost matrix between track-
lets and detections, and then matching them based on the
cost matrix. Among all the cues, position information is the
most generic. In contrast to appearance or feature infor-
mation, it can be directly obtained from a general object
detector without the need for additional feature extraction
networks or modifications to the original detection network.
As a result, numerousmethods (Bewley et al., 2016;Wojke et
al., 2017; Zhang et al., 2022) utilize IoU to compute the cost
matrix. Following the cost matrix calculation, tracklets and
detections are matched using an assignment strategy. This
can be achieved through classical linear assignment problem
solutions such as the Hungarian Algorithm (Kuhn, 1955) or
LAPJV (Jonker and Volgenant, 1987). For instance, SORT
employs the Hungarian Algorithm for single association;
DeepSORT (Wojke et al., 2017) uses the Hungarian Algo-
rithm for cascade association; ByteTrack utilizes LAPJV for
cascade association.However, both theHungarianAlgorithm
and LAPJV are CPU-based implementations. To implement
a fully GPU-based tracker, we introduce another classical
solution to the linear assignment problem called the Auction
Algorithm (Bertsekas, 1992a), which can be implemented
on a GPU. In this paper, we successfully leverage CUDA to
implement the Auction Algorithm and utilize it as the assign-
ment strategy for our tracker paradigm.

3 Numerical Statistics

To address the modeling issues of KF, we conduct statisti-
cal analyses of general tracking scenarios to elucidate the
characteristics of object motion and summarize priors.

For the sake of convenience, four benchmarks are selected
for our study, namely, MOT17 (Milan et al., 2016), MOT20
(Dendorfer et al., 2020), KITTI (Geiger et al., 2013), and
DanceTrack (Sun et al., 2021), with the corresponding infor-

123

International Journal of Computer Vision (2024) 132:1463–1483 1469

mation presented in Table 1. MOT17 and MOT20 comprise
pedestrian scenes.MOT17contains a relatively small number
of videos and scenes compared to the other datasets, while
MOT20 increases the density of pedestrians and empha-
sizes occlusions between them. The pedestrian movements
in MOT17 and MOT20 are quite regular (low-speed and
nearly uniform), and they maintain distinguishable appear-
ances. DanceTrack includes a large number of stage scenes.
The similar-looking dancers in these stages move chaoti-
cally, and their movements differ significantly from frame
to frame, posing considerable challenges for modeling non-
uniform motion. KITTI is among the first large-scale MOT
datasets for traffic scenes, focusing on tracking high-speed
cars and pedestrians. In this section, we perform statistical
analyses on the ground truths of the above four benchmark
datasets, including the train sets of MOT17, MOT20, KITTI,
and DanceTrack, as well as the validation set of DanceTrack.

3.1 Trajectory Overlap

As illustrated in Fig. 3, we count the IoU of the same trajec-
tory in adjacent frames. We find that for low-speed objects
(mostly in MOT17/20 and DanceTrack), the majority of IoU
distributions lie between 0.7 and 1, indicating that low-speed
objects can be easily associated between frames even with-
out estimation. For high-speed objects (cars or pedestrians
in KITTI), the uniform motion modeling of KF is crucial for
their tracking because they predominantly exhibit near-linear
motion, as demonstrated by the upper right car in Fig. 1.

Modeling non-uniformmotionwhilemaintaining the sim-
plicity of KF’s state transfer formulation is challenging
because we cannot predict the object’s motion pattern in
advance or express the object’s motion pattern in a mathe-
matical formulation. However, based on the aforementioned
IoU statistics, we can suppress KF’s predicted displacement
by determining whether the object is moving at low speed,
thereby achieving non-uniform motion modeling.

Hence, the prior derived from TrajectoryOverlap is that,
compared to high-speed objects, low-speed objects exhibit
denser IoU distributions with high scores in adjacent frames.
This demonstrates that when tracking low-speed objects, KF
does not need to perform aggressive state estimation because
the probability of high overlap between the current state and
the observed state is high. Conversely, KF needs to perform
aggressive state estimation to increase the overlap probability
with the observation for tracking high-speed objects.

3.2 Height andWidth Ratio

As depicted in Fig. 4, we count the ratio of height and width
of the same trajectory in adjacent frames. The calculation

Fig. 5 Illustration of the concept of adaptive �t . The relative stability
of the velocity V is achieved by combining �t with the displacement
S, i.e., T = S/V

formula is as follows:

R = min(xcur , xnext)

max(xcur , xnext)
, (7)

where R denotes the height/width ratio and xcur /xnext rep-
resent the height/width of the same trajectory in the current
and next frames. It is evident that, compared to dancers in
DanceTrack, pedestrians and cars in MOT17/20 and KITTI
exhibit stronger height invariance (ratio distribution between
0.7 and 1) than width invariance (ratio distribution between
1 and 0.4). This implies that we can enhance the accuracy
of the tracker by introducing a height invariance prior in the
tracker design.

Therefore, the prior from Height & Width Ratio is that
pedestrians and cars between adjacent frames exhibit strong
height invariance, demonstrating that when the height ratio
of two cars or pedestrians is small (e.g., less than 0.7), there
is a high probability that these two objects do not belong to
the same trajectory.

4 ProposedMethods

4.1 Parallel Kalman Filter

Modeling As discussed in Sect. 2.2 Limitations, we remove
the variables γ and h thus the PKF defines the state x as
a four-tuple, i.e., x = [u, v, u̇, v̇]�, where (u, v) is the 2D
coordinates of the object center and the other two variables u̇
and v̇ are the corresponding velocities. Therefore, the process
noiseQ, the observation noise R, and the observation model
H are reformed as

Qt = diag(φh2, φh2, ψh2, ψh2), (8a)

Rt = diag(φh2, φh2), (8b)

Ht = [
I2×2 02×2

]
, (8c)

whereweightsφ andψ are (1
20)

2 and (1
80)

2, respectively. The
simplified state variables allow for more effective modeling

123

1470 International Journal of Computer Vision (2024) 132:1463–1483

Fig. 6 Illustration of the escape problem. a, b Display the predicted
trajectories of the same bounding box by KF and PKF, respectively,
after the tracked person gets lost. The red dashed box represents the
box at the beginning of the lost trajectory; the red solid box represents
the box after 15 consecutive prediction phases of KF or PKF. The box
predicted by the KF escapes in the direction of the velocity with noise,
while the PKF suppresses the noise and keeps the box around the dashed
box so that the person can be retraced (Color figure online)

of non-uniformmotion and reduces computational complex-
ity.

As discussed in Sect. 3.1, to model non-uniform motion,
as shown in Fig. 5, we start from the basic motion equation
V = S/T andmodel non-uniformmotion as uniformmotion
by transforming �t in Eq. 1a from a constant to an adaptive
variable related to the displacement s as Eq. 9 shows. Based
on the prior of Trajectory Overlap, we introduce the �t
threshold factor ξ into �t to distinguish high-speed objects
from low-speed objects, with the aim of suppressing the esti-
mated displacement of low-speed objects only. The variable
�t for u̇ and v̇ is defined as

{
�tu̇t−1 = min(ξ, 1

|u̇t−1|)sut−1,

�tv̇t−1 = min(ξ, 1
|v̇t−1|)svt−1,

(9)

where the object is considered to be moving at a low speed
when the absolute value of the velocity is less than 1

ξ
and the

displacement s is expressed as follows:

{
sut−1 = |ut−1− ut−2|,
svt−1 = |vt−1 − vt−2|. (10)

In practice, s is usually set to smooth to reduce noise through
a linear smooth weight ω:

{
sut−1 = ω|ut−1− ut−2| + (1 − ω)sut−2 ,

svt−1 = ω|vt−1 − vt−2| + (1 − ω)sut−2 .
(11)

To solve the escape problem,we recover the controlmodel
inEq. 1a to implement the deceleration strategy.As discussed
in Sect. 2.2, when the tracked object is lost, KF only performs
the prediction phase, resulting in the noise being continu-
ously amplified as shown in Fig. 6. Therefore we gradually
reduce the current velocity by the degree of loss to suppress

the accumulated noise. The deceleration ratio r is defined as

r = fid − fend − 1

τ
, (12)

where fid is the current frame number and fend is an attribute
of the tracklet called EndFrame (see Sect. 4.2 Storage); τ is
the max lost threshold for removing tracklets with too much
lost time and is set to 30 by default. r is 0 when the tracklet is
tracked and decelerates the velocity once the tracklet is lost.
When an object is lost (i.e., fid − fend − 1 > 0 in Eq. 12),
the deceleration strategy can stop the object at an early stage
of loss to increase the probability of retraced. Therefore, the
four variables in the non-uniform formulation (Eq. 1a) is
expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut |t−1 = ut−1 + u̇t−1�tu̇t−1(1 − r

2
),

vt |t−1 = vt−1 + v̇t−1�tv̇t−1(1 − r

2
),

u̇t |t−1 = u̇t−1(1 − r),

v̇t |t−1 = v̇t−1(1 − r).

(13)

Algorithm 1 Pseudo-code of PKF Prediction.
Input: state vector x̂; covariance vector p; property vector o; max lost

threshold τ ; �t threshold factor ξ ; frame id fid .
/* x = Fx + Bu */

1: r = (fid − fend − 1)/τ ;
2: su = ω|u−u′|+(1 − ω)s′

u; sv = ω|v−v′|+(1 − ω)s′
v ;

3: �tu̇ = min(ξ, 1
|u̇|)su; �tv̇ = min(ξ, 1

|v̇|)sv ;
4: u += u̇�tu̇(1 − r

2); v += v̇�tv̇ (1 − r
2);

5: u̇ ×= 1 − r; v̇ ×= 1 − r;
6: u′ = u; v′ = v;
7: s′

u = su; s′
v = sv;

/* P = FPF� + Q */
8: p1 += p5�tu̇; p2 += p6�tv̇;
9: p7 += p3�tu̇; p8 += p4�tv̇;
10: p1 += p7�tu̇; p2 += p8�tv̇;
11: p5 += p3�tu̇; p6 += p4�tv̇;
12: p1 += φh2; p2 += φh2;
13: p3 += ψh2; p4 += ψh2;
Output: x̂; p; o.

Under the matrix representation, F and Bu can be repre-
sented as

Ft =
⎡
⎣I2×2

[
�tu̇t−1 0

0 �tv̇t−1

]

02×2 I2×2

⎤
⎦ , (14)

Btut =

⎡
⎢⎢⎣

−u̇t−1�tu̇t−1
r
2−v̇t−1�tv̇t−1
r
2−u̇t−1r

−v̇t−1r

⎤
⎥⎥⎦ . (15)

123

International Journal of Computer Vision (2024) 132:1463–1483 1471

Algorithm 2 Pseudo-code of PKF Update.
Input: state vector x̂; covariance vector p; observation vector ẑ; prop-

erty vector o; max lost threshold τ ; �t threshold factor ξ ; frame id
fid .
/*S = HPH� + R*/

1: s1 = p1; s2 = p2;
2: s1 += φh2; s2 += φh2;

/*K = PH�S−1*/
3: k1 = p1/s1; k2 = p2/s2;
4: k3 = p5/s1; k4 = p6/s2;

/*x = x + K(z − Hx)*/
5: ru = ū − u; rv = v̄ − v;
6: rw = w̄ − w; rh = h̄ − h;
7: u += k1ru; v += k2rv;
8: w += k1rw; h += k2rh;
9: u̇ += k3ru; v̇ += k4rv;

/*P = P − KSK�*/
10: p1 −= k1k1s1; p2 −= k2k2s2;
11: p3 −= k3k3s1; p4 −= k4k4s2;
12: p5 −= k1k3s1; p6 −= k2k4s2;
13: p7 −= k1k3s1; p8 −= k2k4s2;
Output: x̂; p; o.

Computation To attain an O(1) time complexity, we exploit
our simplified state variables and the strict matrix represen-
tation of our non-uniform formulation. In this context, we
introduce an innovative parallel computation method. This
method transposes the computation graph of the PKF from
a matrix to a quadratic form, capitalizing on the attributes
of sparse matrices within the PKF. Consequently, we facil-
itate parallel computation across distinct objects employing
CUDA.

Specifically, the conventional KF uses matrices to rep-
resent the variables (e.g., F, P, and H), and calculations
are achieved by matrix multiplication. However, all the
matrices involved in KF are sparse matrices with fixed posi-
tions, which means that a large amount of computation
in matrix multiplication is used to compute meaningless
zeros. Therefore, reducing the computation by separating
out these 0-related computations is particularly critical to
improve the efficiency. Meanwhile, the separated computa-
tion is equivalent to finite quadratic operations, which can
be easily implemented in parallel between different tracklets
via CUDA. For example, the covariance matrix P of PKF is
represented as follows

P =

⎡
⎢⎢⎣
p1 p7

p2 p8
p5 p3

p6 p4

⎤
⎥⎥⎦ , (16)

where the positions without variables has a value of 0 at any
time step, thus we can reduce the computation load by elim-
inating these 0-value positions and associated computations
both in storage and computation. Therefore, in storage, we
can define the covariance vector p to equivalently represent

Fig. 7 Illustration of different storage structures for trackers. a 2D-
array. b List with instances. The illustration shows only a portion of the
components (e.g., Box or Score) of tracklets

matrix P, i.e., p = [p1, p2, p3, p4, p5, p6, p7, p8]. We also
define the other vectors that need to be involved in the PKF
calculation, and they are the state vector x̂ = [u, v, u̇, v̇],
the observation vector ẑ = [ū, v̄, w̄, h̄], and the property
vector o = [w, h, fend , s′

u, s
′
v, u

′, v′] where fend is the
attribute of the tracklet called EndFrame; s′

u, s
′
v, u

′, and v′
are the previous displacements and coordinates, respectively.
Algorithms1 and2 indicate the calculation process of the pre-
diction phase and the the update phase of PKF, respectively.
In Algorithm 2, s1 and s2 denote the elements on the main
diagonal of the matrix S, i.e., S = diag(s1, s2). k1, k2, k3,
and k4 denote the valuable numbers in kalman gain, i.e.,

K =

⎡
⎢⎢⎣
k1

k2
k3

k4

⎤
⎥⎥⎦ . (17)

ru , rv , rw, rh are the residual of u, v, w, h between obser-
vation and estimation. For initialization, u, v in x̂ and w, h
in o are set to the corresponding values in the input detec-
tion result; u̇, v̇ in x̂ and s′

u , s
′
v in o are set to 0; u′, v′ in

o are set to the values of u and v, respectively; fend is set
to the current frame id fid . The vector p is initialized to
[4φh2, 4φh2, 100ψh2, 100ψh2, 0, 0, 0, 0] following Deep-
SORT.

In the CUDA implementation, we employ two threads for
u- and v-related computations, respectively. One block owns
32 threads and the number of blocks is set to � n

16� where n
is the number of tracked objects.

123

1472 International Journal of Computer Vision (2024) 132:1463–1483

4.2 Fast

Storage In previous works (Lu et al., 2020; Peng et al., 2020;
Zhou et al., 2020; Wu et al., 2021; Zhang et al., 2022),
tracklets are usually represented as instances and stored
through a list, as shown in Fig. 7b. Since the program does
not support parallel accession to these instances, the updat-
ing or accession operation to each tracklet is executed under
the time complexity O(n). As shown in Fig. 7a, guided by
Occam’s Razor, we abandon the instance and creatively pro-
pose a GPU 2D-array to storage tracklets. In functionality,
the two storages can perform exactly the same functions such
as modifying certain information or adding/removing cer-
tain tracklets; in efficiency, due to the CUDA acceleration,
efficient parallel updating or accession operation can be per-
formed on all tracklets with a time complexity of O(1). In
Fast, each tracklet has the attributes Box (u, v, w, h), Score,
ClassID, TrackID, State (one of Track, Lost , or New), End-
Frame, and the PKF-related variables (x̂,p, and o).

Algorithm 3 Pseudo-code of Fast.
Input: A video V; a detector Det(·); max lost threshold τ ; tracking

score threshold ε.
1: T ⇐ ∅; fid ⇐ 1;
2: for ft in V do

/* generate detections */
3: Dt ⇐ Det(ft);

/* motion estimation */
4: T ⇐ Predict(T);

/* associate */
5: Dm ⇐ matched detections fromDt ;
6: Tm ⇐ matched tracklets fromT ;
7: Du ⇐ unmatched detections fromDt ;
8: Tu ⇐ unmatched tracklets fromT ;

/* update tracklets */
9: for t̃, d̃ in Tm , Dm do
10: t̃ ⇐ Update(t̃, d̃);
11: end for

/* remove tracklets */
12: for t̃ in Tu do
13: if fid - t̃ .EndFrame ≥ τ or

t̃ .State == New then
14: Tu ⇐ Tu\ { t̃ };
15: else
16: t̃ .State ⇐ Lost ;
17: end if
18: end for
19: T ⇐ Tm ∪ Tu ;

/* initialize new tracklets */
20: for d̃ in Du do
21: if d̃.Score ≥ ε then
22: T ⇐ T ∪ {I ni t(d̃)};
23: end if
24: end for
25: fid ⇐ fid + 1;
26: end for
Output: T .

Cost Matrix Since Fast maintains the cleanest processing
flow and only performs the association operation once dur-
ing one iteration, the quality of the cost matrix has a crucial
impact on the tracking results. We take into account the qual-
ity (score) of boxes into the cost matrix to determine the
priority of association automatically. Specifically, for a list
of tracklets with N elements and a list of detections with M
elements where each element owns a box B with the corre-
sponding score S, the N × M cost matrix C is calculated as
follows:

Ci j = I oU (Bi , Bj) × Si × S j , (18)

where i / j denotes the i-th/ j-th element in the input track-
lets/detections. Through this calculation, tracklets and detec-
tions with high scores will be assigned first; with low scores
will be assigned last; the remaining tracklets and detections
are ofmediumpriority. From another perspective, we achieve
the effect of the cascade association by score (like BYTE
(Zhang et al., 2022) does) within one association. In addition,
the novel cost matrix can also achieve multi-object&class
tracking by simply shifting all boxes along the x-axis by the
distance of class id times input image width before calculat-
ing the IoU. In implementation, we assign each element of
the cost matrix to a CUDA kernel to improve computational
efficiency. Besides, under the prior obtained in the Height
& Width Ratio, we propose the HIoU metric to replace the
original IoU in our cost matrix, which is calculated as fol-
lows:

H IoU (BT , BD) =
⎧⎨
⎩ 0,

min(hT , hD)

max(hT , hD)
< λ,

I oU (BT , BD), else.
(19)

HIoU receives a detection box BD and a tracklet box BT
and calculates IoU between them if the ratio of their heights
(hD&hT) is greater than or equal to the height ratio thresh-
old λ. Otherwise, the result of HIoU is 0. HIoU can be used
in pedestrian or traffic scenes to further improve the perfor-
mance.
Assignment In order for the tracker to be fully accelerated by
GPU, we first implement the Auction Algorithm (Bertsekas,
1992b) for the asymmetric assignment problem. The naive
Auction Algorithm models the auction to solve the classical
symmetric assignment problem where there are n persons
and n objects that we have to match on a one-to-one basis.
There is a benefit ai j (belonging to a n × n cost matrix)
for matching person i with object j and we want to assign
persons to objects so as to maximize the total benefit. The
“Appendix A” describes in detail about the calculation and
implementation of the naive Auction Algorithm. While the
shape of the cost matrix is an arbitrary (n ×m) at most time,
theReverseAuctionAlgorithm is required andwe implement

123

International Journal of Computer Vision (2024) 132:1463–1483 1473

it via CUDA successfully. Specifically, when n is less than or
equal to m, we apply the naive Auction Algorithm to match
the tracklets and detections; when n is greater thanm, we first
transpose the cost matrix (from n × m to m × n) and then
apply the naive Auction Algorithm, while the results need to
be mapped back to the original cost matrix.
Architecture Along the concise and generic tracker design
concept, Fast only requires boxes with scores and class ids to
do only one association during one iteration, thus allowing
for high generality and efficiency. The input of Fast is a video
sequence V and a detector Det(·). The max lost threshold τ

and tracking score threshold ε (0.7 by default) are also set.
The output of Fast is the tracklets T of the video and each
tracklet has attributes such as Box, Score, ClassID, TrackID,
State (one of Track, Lost , or New), and EndFrame. As the
pseudo-code of Fast shown in Algorithm 3, for each frame ft
in the video V , Fast first obtains the detections Dt including
Box, Score, and ClassID via the detector Det(·). Then the
motion estimation (the prediction phase of PKF) of tracklets
T will be calculated (line 4). After associating the detec-
tions Dt and tracklets T via the cost matrix generated by
them, Fast obtains four groups: the matched detections Dm ,
the matched tracklets Tm , the unmatched detections Du , and
the unmatched tracklets Tu (line 5 to 8). The detections in
Dm will be updated into the corresponding tracklets in Tm
(line 9 to 10) where the update phase of PKF will be per-
formed, the State of tracklets will be set to Track, and the
EndFrame will be set to the current frame id fid . Then the
tracklet in Tu will be removed if the difference between its
EndFrame and fid is greater than or equal to the τ or its State
is New following BYTE. Otherwise, it will be remained and
its State will be set to Lost (line 12 to 18). Next, the detec-
tions inDu will be added into the T after initialization when
its score is greater than or equal to the ε (line 20 to 24). I ni t(·)
includes initializing the State to New, the EndFrame to fid ,
and the initialization of PKF. The output of each frame is the
new tracklets T , where the tracklets with Lost state are not
allowed to be output.

5 Experiment

5.1 Settings

Datasets We evaluate Fast on the aforementioned MOT
benchmarks, which include general tracking scenes such as
MOT17 (Milan et al., 2016),MOT20 (Dendorfer et al., 2020),
KITTI (Geiger et al., 2013), and DanceTrack (Sun et al.,
2021). MOT17 (Milan et al., 2016) and MOT20 (Dendor-
fer et al., 2020) focus on pedestrian tracking, with mostly
low-speed movements. However, MOT20 scenes are more
crowded than those in MOT17 (139 vs. 33 on average per
frame). KITTI (Geiger et al., 2013) targets traffic track-

ing with high-speed cars and pedestrians. DanceTrack (Sun
et al., 2021) is a recently proposed benchmark for track-
ing dancers in stage scenes. In DanceTrack, dancers exhibit
highly non-linear movements and share similar appearances,
while severe occlusions and frequent crossovers occur. For
ablation datasets, we follow previousworks (Cao et al., 2022;
Zhang et al., 2022) and use MOT17-val (see “Appendix B”
for details) and DanceTrack validation set (DanceTrack-val)
to verify the effectiveness of our proposed modules, such as
the non-uniform formulation or the cost matrix.
Metrics We employ HOTA (Luiten et al., 2021), IDF1, and
MOTA (Milan et al., 2016) as the main metrics to evaluate
various aspects of tracking performance. HOTA is a recently
proposed metric that explicitly balances the effects of accu-
rate detection, association, and localization. IDF1 evaluates
identity preservation ability and focuses more on associa-
tion performance. MOTA is computed based on FP, FN, and
IDs. Given that the number of FP and FN is larger than IDs,
MOTA focuses more on detection performance. Addition-
ally, we report other metrics, such as DetA or AssA, and raw
statistics like ID switch (IDs) or Fragments (Frag).
Implementations All experiments are conducted on a PC
equippedwith a GTX 1080Ti GPU and an i5-9500 CPU. Fast
is implemented using CuPy (Okuta et al., 2017) in Python.
CuPy is a powerful CUDA-based library for fast matrix oper-
ations on NVIDIA GPUs, offering nearly identical APIs to
NumPy and supporting the loading of raw CUDA kernel
functions written in C/C++. Our storage method uses the
2D array provided by CuPy; cost matrix, PKF, and Auc-
tion Algorithm are implemented in CUDAC/C++ and called
via CuPy. Following previous works (Zhang et al., 2022;
Cao et al., 2022) for a fair comparison, we directly employ
the same detector in FastTrack. For MOT17, MOT20, and
DanceTrack, we use the publicly available YOLOX (Ge et
al., 2021) detector weights from ByteTrack (Zhang et al.,
2022); for KITTI (Geiger et al., 2013), we use the detections
from PermaTrack (Tokmakov et al., 2021) publicly available
in the official release following OCSORT (Cao et al., 2022).
Methods using the same detector are placed at the bottom of
each benchmark table, and linear interpolation (Zhang et al.,
2022) is also employed in the benchmark comparisons.

5.2 Ablation Study

All the ablation studies are conducted on MOT17-val and
DanceTrack-val, with four metrics being used to evaluate
the performance: HOTA (H↑), MOTA (M↑), IDF1 (I↑), and
IDs (I↓).

5.2.1 Association

Cost Matrix Table 2 shows the experimental results of com-
paring different cost matrix strategy in Fast. “Baseline”

123

1474 International Journal of Computer Vision (2024) 132:1463–1483

Table 4 Ablation study on the accuracy of different assignment algorithms

Assignment MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
LAPJV (Jonker and Volgenant, 1987) 72.392 82.206 85.257 116 55.521 90.173 55.484 1932

Auction (Bertsekas, 1992a) 72.338 82.197 85.193 115 55.671 90.130 55.745 1934

Table 2 Ablation study on our proposed cost matrix

Strategy MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
Baseline 71.3 81.8 83.1 131 54.5 90.1 55.4 2002

IoU 70.6 80.8 81.6 197 50.5 87.2 49.7 3287

IoUD 71.6 82.1 83.7 133 52.4 89.6 52.8 2383

IoUDT 71.8 82.2 84.5 124 55.7 90.1 55.7 1934

“Baseline” means the cascade strategy used in BYTE. D and T in the
footnote indicate the corresponding scores of detections or tracklets
multiplied into IoU
Bold indicates the best performance at a given metric

Table 3 Ablation study on HIoUDT with different height ratio thresh-
old λ on MOT17-val and DanceTrack-val

HIoUDT MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
0 71.8 82.2 84.5 124 55.7 90.1 55.7 1934

0.2 71.8 82.2 84.5 124 55.7 90.1 55.7 1946

0.4 71.8 82.2 84.5 124 55.7 90.1 55.7 1950

0.6 72.2 82.2 85.0 120 55.2 90.1 55.0 2006

0.8 72.3 82.2 85.2 115 51.8 89.4 48.3 3182

Bold indicates the best performance at a given metric

indicates the results of employing the original BYTE’s cas-
cade association based on score into Fast. The effects of IoU,
IoUD, and IoUDT are incremental over the six metrics of the
two datasets. Compared to “Baseline”, IoUDT outperforms
in all metrics with the concise assignment strategy.
HIoU As discussed in Sect. 3.2, compared with the pedes-
trians in MOT17, the dancers in DanceTrack have a greater
range of motion and thus do not have the height invariance
prior. The experimental results of HIoUDT with different
height ratio threshold λ in Table 3 reflect this as well. HIoU
with 0.8 threshold in MOT17-val can increase the HOTA
and IDF1 because it excludes potential error assignment;
DanceTrack-val does not meet the prior thus the application
of HIoU leads to a drop in all metrics. In later ablation stud-
ies, HIoUDT with 0.8 threshold is employed in MOT17-val;
IoUDT is employed in DanceTrack-val.

Table 5 Ablation study on different states of KF

State MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
uvγ h 71.0 81.6 83.4 142 48.8 88.1 53.3 2003

uv 71.8 82.1 84.0 126 54.2 89.8 53.9 1978

The motion estimation module used in Fast is the original KF with
different states. uvγ h means the original eight-tuple state; uv means
our proposed four-tuple state
Bold indicates the best performance at a given metric

Assignment Table 4 presents the accuracy of the Auction and
LAPJV4 algorithms. The metric values for both algorithms
are nearly identical, with the Auction algorithm slightly out-
performing LAPJV by 0.15% and 0.26% for the HOTA and
IDF1 metrics on the DanceTrack-val dataset, respectively.
In conclusion, the accuracies of the two algorithms in the
context of MOT can be considered equal. Therefore, it is
functionally feasible for the Auction algorithm to replace
the conventional CPU-based linear assignment algorithm
LAPJV in Fast.

5.2.2 Parallel Kalman Filter

State Estimate Table 5 shows the experimental results of dif-
ferent states of KF. Here we employ the original KF with
different states as the motion estimation module of our Fast.
It can be found that Fast has better performance on all metrics
when γ and h are removed, which is also consistent with the
previous analysis in Sect. 2.2, i.e., uniform modeling of vari-
ables γ and h is unreasonable and they should be removed
from the state estimate of KF.
�t Threshold Factor ξ . The hyperparameter ξ is used to
distinguish low-speed objects from high-speed objects, and
as shown in Table 6, Fast with the best ξ performs better in
HOTAand IDF1 in both datasets compared to the “Baseline”.
Due to the diversity of image resolutions, object sizes and
frame rates for different types of scenes, the value of ξ needs

4 LAPJV has replaced the Hungarian Algorithm as the default assign-
ment strategy in all current trackers. This is because scikit-learn
(Pedregosa et al., 2011), the only library that supported the Hungar-
ian Algorithm, has deprecated it. Now, all trackers perform assignment
using LAPJV, which is implemented in the third-party library lap
(https://github.com/gatagat/lap) or scipy (Virtanen et al., 2020).

123

https://github.com/gatagat/lap

International Journal of Computer Vision (2024) 132:1463–1483 1475

Table 6 Ablation study on �t threshold factor ξ

ξ MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
Baseline 72.1 82.2 84.6 140 55.1 90.1 54.6 1983

0.01 70.8 81.2 82.9 406 53.0 90.1 52.7 2007

0.03 71.8 82.0 84.3 132 53.6 90.1 53.7 1964

0.05 72.3 82.2 85.2 115 54.7 90.1 54.3 1968

0.07 72.3 82.2 85.1 122 55.7 90.1 55.7 1934

0.09 72.3 82.3 85.1 119 55.6 90.1 55.5 1945

“Baseline” means �t is the constant value 1 following DeepSORT. In
MOT17-val, the linear smooth weight ω is 0.85; in DanceTrack-val, the
smooth weight is 0.7
Bold indicates the best performance at a given metric

Table 7 Ablation study on linear smooth weight ω

ω MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
Baseline 72.2 82.1 85.0 125 54.7 90.1 54.8 1975

0.85 72.3 82.2 85.2 115 55.5 90.1 55.5 1971

0.70 72.2 82.2 84.9 122 55.7 90.1 55.7 1934

0.55 72.1 82.1 84.9 123 54.9 90.1 55.0 1967

“Baseline” means ω = 1, i.e., the smooth strategy is not leveraged. In
MOT17-val, ξ is 0.05; in DanceTrack-val, ξ is 0.07
Bold indicates the best performance at a given metric

to be set specifically, and as can be seen from the experiments
in Table 6, the value of ξ takes a range roughly between 0.05
and 0.09. Empirically, we suggest that the default value of ξ

is 0.05, which can be appropriately increased to 0.07 or 0.08
for better tracking results when the overall motion of objects
in the tracking scene is faster or the frame rate is lower.
Linear Smooth Weight ω The introduction of an appropriate
smoothing hyperparameter is crucial to reduce noise gener-
ated in the object motion, thus in Table 7, Fast with the bestω
performs better in the HOTA and IDF1 in both datasets com-
pared to the “Baseline”. Since the noise differs in different
types of scenes, the value of ω also needs to be set specif-
ically, and as can be seen from the experiments in Table 7,
the value of ω takes a range roughly between 0.85 and 0.70.
Empirically, we suggest that the default value of ω is 0.85,
which can be appropriately reduced to 0.70 when the overall
motion of objects in the tracking scene (such as stage scenes)
is highly non-linear to obtain better tracking results.
Deceleration StrategyTable 8 shows the experimental results
of our deceleration strategy. For MOT17-val, there is lit-
tle improvement compared with the “Baseline” in the four
metrics due to the small sample size and the fact that the
occlusion problem in it is not severe. For DanceTrack-val,
the sufficient data sample combinedwith the severe occlusion
problem makes our strategy improve another 1% on HOTA

Table 8 Ablation study on the deceleration strategy

Strategy MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
Baseline 72.2 82.2 85.1 121 54.9 90.1 54.5 1948

Stop 71.8 82.0 84.3 159 55.1 90.1 54.9 1971

Decelerate 72.3 82.2 85.2 115 55.7 90.1 55.7 1934

“Baseline” means leveraging the original strategy of KF, i.e., canceling
the deceleration strategy; “Stop” means stopping the box immediately
once the tracklet is lost; “Decelerate” means employing our proposed
deceleration strategy. In MOT17-val, ξ is 0.05 and ω is 0.85; in
DanceTrack-val, ξ is 0.07 and ω is 0.7
Bold indicates the best performance at a given metric

Fig. 8 Computional efficiency comparison between different modules
and the corresponding baselines. The x-axis indicates the number of
tracklets processed simultaneously; the y-axis indicates the average
consumption time (in ms)

and IDF1 compared with the “Baseline”. Besides, stopping
the lost object immediately does not have a significant advan-
tage over “Baseline” in both datasets.

5.2.3 Comparison with Other Trackers

Table 9 presents the experimental results of different motion-
based trackers. Fast outperforms the second-best tracker by
1–2% in HOTA, MOTA, and IDF1 metrics on both datasets.
Thanks to PKF’s ability to model non-uniform motion, Fast
achieves a 3.4% higher HOTA score and a 3.8% higher
IDF1 score in the DanceTrack-val dataset compared to the
second-ranked OCSORT, while maintaining a nearly identi-
cal number of ID switches.

5.2.4 Module Efficiency

As illustrated in Fig. 8, we compare the time consumption of
our proposed modules with their corresponding CPU base-

123

1476 International Journal of Computer Vision (2024) 132:1463–1483

Table 9 Comparison with other
state-of-the-art motion-based
trackers

Tracker MOT17-val DanceTrack-val

H↑ M↑ I↑ I ↓ H↑ M↑ I↑ I ↓
SORT (Bewley et al., 2016) 70.0 80.2 81.4 186 49.7 86.3 48.8 2180

BYTE (Zhang et al., 2022) 71.3 81.8 83.4 133 47.1 88.3 51.9 1936

OCSORT (Cao et al., 2022) 70.3 79.2 82.2 112 52.3 87.3 51.9 1926

Ours 72.3 82.2 85.2 115 55.7 90.1 55.7 1934

The detectors (YOLOX) for each tracker are all the same in both two datasets
Bold indicates the best performance at a given metric

lines. To investigate the maximum computational efficiency
of each module, we define the extreme case by setting the
tracklet count at 1000.5 Conversely, we denote the typical
case by setting the tracklet count at 200,6 serving as a repre-
sentative of computational efficiency in realistic large-scale
object tracking situations.
Storage As depicted in Fig. 8a, we compare the computa-
tional efficiency of our GPU 2D-array storage method to
the baseline, which uses a list with instances. The aver-
age time consumption refers to the time taken to change
the attribute State of all n tracklets from Lost to Track.
Our method and the baseline method exhibit time com-
plexities of O(1) and O(n), respectively. Under the typical
case, our method performs 3.6× faster, while under the
extreme case, it performs 14× faster than the baseline
method.
Cost Matrix Figure8b compares the computational effi-
ciency of our proposed cost matrix method (which includes
HIoU) to the baseline (cython_box7). The average time con-
sumption denotes the time required to create an n × n
cost matrix. Our method has a time complexity of O(1),
whereas the baseline method has a time complexity of
O(n2). Our method outperforms the baseline by a factor
of 6.2× in the typical case and by 51× in the extreme
case.
Assignment Figure8c showcases the computational effi-
ciency of our implemented Auction Algorithm, contrasted
with the baseline (LAPJV). The average time consumption
is the time needed to solve an n × n random matrix with all
values between 0 and 1. The theoretical time complexity of

5 Due to the number 1000 is a typical upper limit of the number of
objects detected by the detector in a single image (Chen et al., 2019),
we choose it to align the upper limits of the tracker and the detector.
6 Considering the MOT20 test set, averaging 139 objects per frame
with a peak of 300 objects in a single frame, owns the densest large-
scale object tracking scenarios in reality, we pragmatically consider 200
objects as a representative case, striking a balance between the average
and peak object count.
7 A CPU-based cost matrix calculation method (https://github.com/
samson-wang/cython_bbox) used in BYTE.

LAPJV is O(n3), while our method’s complexity is O(n)

with a low slope. Architectural differences between CPUs
and GPUs mean that initiating kernel functions on GPUs
require additional time. This extra time cost overshadows the
computational advantage of our GPUmethod when the num-
ber of tracklets is less than 300. However, as the data scale
increases, the parallel computing capabilities of theGPU ren-
der this time cost increasingly insignificant. Therefore, our
GPU method’s processing speed surpasses that of the CPU
methodwhen the number of tracklets exceeds 300. Under the
typical case, our method is nearly identical to the baseline,
but it is 4× faster in the extreme case.
Kalman Filter Figure8d compares the computational effi-
ciency of our PKF with the baseline KF. The average time
consumption is the time taken to complete a predict-update
loop for all n tracklets. The time complexities of our method
and the baseline method are O(1) and O(n), respectively.
Under the typical case, our method is 60× faster than the
baseline, and under the extreme case, it is 306× faster.
Furthermore, our PKF can process 10 million objects simul-
taneously with an average time of 0.2 ms per iteration when
fully utilizing the GTX 1080Ti 12G video memory, whereas
the original KF takes about 600s per iteration to process the
same number of objects.
Discussion From the aforementioned analyses, it becomes
clear that the time consumption of each crucial module,
particularly the Kalman Filter, in conventional CPU-based
trackers escalates with increasing input scale. This escalation
negatively impacts the computational efficiency of large-
scale object tracking and the stability of the MOT system,
inducing processing speed to fluctuate with the input scale.
In contrast, our proposed modules successfully disentangle
the computational efficiency from the input scale. This sepa-
ration leads to a novel GPU-based tracker paradigm that can
efficiently manage large-scale object tracking while main-
taining the stability of the MOT system.

5.3 Benchmark Results

We report Fast’s performance on the four benchmarks sepa-
rately, and the visualized results of Fast on each benchmark
are shown in Fig. 9.

123

https://github.com/samson-wang/cython_bbox
https://github.com/samson-wang/cython_bbox

International Journal of Computer Vision (2024) 132:1463–1483 1477

Fig. 9 Visualizations of Fast’s tracking results on each benchmark. Boxes of the same color represent the same object (Color figure online)

5.3.1 DanceTrack

We report the DanceTrack test set results in Table 10 to
evaluate Fast’s performance under challenging non-uniform
motion. The setting of the hyperparameters during testing is
the same as in DanceTrack-val, i.e., ξ is 0.07 and ω is 0.7
and HIoU is not employed in the cost matrix. Our proposed
non-uniform formulation and deceleration strategy success-
fully model the diverse non-uniform motions of the dancers
in the stage scenes, and thus Fast achieves a new state-of-
the-art on HOTA, MOTA, and IDF1. With the same detector
(YOLOX), Fast is 1.7% higher than OCSORT and 10.1%
higher than BYTE on HOTA.

5.3.2 KITTI

Table 11 shows the results of the comparison on the KITTI
test set. Compared to the pedestrian scene in MOT17-val,
the traffic scene in KITTI tracks both cars and pedestrians
at high-speed linear motion from the perspective of trackers
due to the low frame rate (10 vs. 30). Therefore we set ξ

appropriately higher at 0.08 to handle the high-speed motion
and ω still follows the default setting of 0.85, and HIoU

is employed where λ is set to 0.5 from the statistical prior
in Fig. 4 KITTI Train Car. Following OCSORT, we utilize
the detection results of PermaTr (Tokmakov et al., 2021) for
tracking both cars and pedestrians. Notably, Fast can track
both pedestrians and cars at the same time by our proposed
cost matrix. Fast surpasses PermaTr and OCSORT on HOTA
and MOTA of both Car and Pedestrian and improves the
pedestrian tracking performance (HOTA) to a new state-of-
the-art level, i.e., 55.10%.

5.3.3 MOT Challenge

We report in Tables 12 and 13 the performance of Fast
on MOT17 and MOT20 test sets using the same detector
YOLOX as well as ByteTrack and OCSORT. Following the
MOT17-val, ξ is 0.05 by default andω is 0.85 in bothMOT17
andMOT20. HIoU is employed on bothMOT17 andMOT20
and λ is set to 0.8. Although receiving the same detection
results, OCSORT discards the low-scoring detection results
first before starting tracking following SORT, while Fast
utilizes the score prior to automatically determine associ-
ation priorities in our proposed cost matrix, which allows
Fast to track more objects with low scores and thus achieves

123

1478 International Journal of Computer Vision (2024) 132:1463–1483

Table 10 Comparison in
DanceTrack test set

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑
CenterTrack (Zhou et al., 2020) 41.8 78.1 22.6 86.8 35.7

FairMOT (Zhang et al., 2021) 39.7 66.7 23.8 82.2 40.8

QDTrack (Pang et al., 2021) 45.7 72.1 29.2 83.0 44.8

TransTrk (Sun et al., 2020) 45.5 75.9 27.5 88.4 45.2

TraDes (Wu et al., 2021) 43.3 74.5 25.4 86.2 41.2

MOTR (Zeng et al., 2021) 48.4 71.8 32.7 79.2 46.1

SORT (Bewley et al., 2016) 47.9 72.0 31.2 91.8 50.8

DeepSORT (Wojke et al., 2017) 45.6 71.0 29.7 87.8 47.9

ByteTrack (Zhang et al., 2022) 47.3 71.6 31.4 89.5 52.5

OCSORT (Cao et al., 2022) 55.7 81.7 38.3 92.0 54.6

FastTrack (ours) 57.4 81.1 40.7 92.8 58.2

Methods in the bottom block use the same detector
Bold indicates the best performance at a given metric

Table 11 Comparison in KITTI test set

Tracker Car Pedestrian

HOTA↑ MOTA↑ AssA↑ IDs↓ Frag↓ HOTA↑ MOTA↑ AssA↑ IDs↓ Frag↓
IMMDP Xiang et al. (2015) 68.66 82.75 69.76 211 201 – – – – –

AB3D Weng et al. (2020) 69.99 83.61 69.33 113 206 37.81 38.13 44.33 181 879

SMAT Gonzalez et al. (2020) 71.88 83.64 72.13 198 294 – – – – –

TrackMPNN Rangesh et al.(2021) 72.30 87.33 70.63 481 237 39.40 52.10 35.45 626 669

MPNTrack Brasó & Leal-Taixé (2020) – – – – – 45.26 46.23 47.28 397 1,078

CenterTrack Zhou et al. (2020) 73.02 88.83 71.20 254 227 40.35 53.84 36.93 425 618

QD-3DT Hu et al. (2022) 72.77 85.94 72.19 206 525 41.08 51.77 38.82 717 1,194

QDTrack Pang et al. (2021) 68.45 84.93 65.49 313 567 41.12 55.55 38.10 487 951

LGM Wang et al. (2021a) 73.14 87.60 72.31 448 164 – – – – –

Eager Kim et al. (2021) 74.39 87.82 74.16 239 390 39.38 49.82 38.72 496 1,410

TuSimple Choi. (2015) 71.55 86.31 71.11 292 220 45.88 57.61 47.62 246 651

PermaTr Tokmakov et al. (2021) 78.03 91.33 78.41 258 250 48.63 65.98 45.61 403 646

OCSORT Cao et al. (2022) 76.54 90.28 76.39 250 280 54.69 65.14 59.08 204 609

FastTrack (Ours) 78.78 92.06 80.66 264 104 55.10 67.92 57.88 305 487

Methods in the bottom block use the same detector
Bold indicates the best performance at a given metric

higher MOTA than OCSORT by 2.5% and 1.8% on MOT17
andMOT20, respectively. Meanwhile, Fast also achieves the
the highest HOTA and IDF1 on MOT17 under the same
detector (YOLOX) and competitive HOTA on MOT20. It is
important to note that on MOT20, Fast gains significant effi-
ciency improvements with its revolutionary GPU paradigm
as shown in Fig. 2, i.e., 7× faster than OCSORT.

5.3.4 Efficiency

Figure 2 illustrates the average processing time of different
motion-based trackers on the four benchmarks. The compar-
ison is conducted on a single PC equipped with an NVIDIA
GTX 1080Ti and Intel Core i5-9500. The average number

of objects per frame processed by the trackers on the four
test sets are 6 (KITTI), 8 (DanceTrack), 33 (MOT17), and
139 (MOT20), respectively. As discussed in Sect. 5.2.4, the
computational efficiency of our new paradigm, Fast, is inde-
pendent of the input scale, with an average time consumption
of 4 ms across all four benchmarks.

When the input scale is small (e.g., 6 on KITTI), the extra
startup time of kernel functions offsets the computational
advantageofFast, resulting inFast consumingmore time than
other CPU-based trackers (4 ms vs. 1 ms). As the input scale
increases, the time consumption of the CPU-based trackers
rapidly rises,while Fast’s time consumption remains constant
at 4 ms. For instance, on MOT20, Fast stays at 4 ms per
frame, while OCSORT and BYTE take 30 ms and 20 ms,

123

International Journal of Computer Vision (2024) 132:1463–1483 1479

Table 12 Comparison under the “private detector” protocol in MOT17 test set

Tracker HOTA↑ MOTA↑ IDF1↑ FP (104)↓ FN (104)↓ IDs↓ Frag↓ AssA↑ AssR↑
FairMOT (Zhang et al., 2021) 59.3 73.7 72.3 2.75 11.7 3303 8073 58.0 63.6

TransCt (Xu et al., 2021) 54.5 73.2 62.2 2.31 12.4 4614 9519 49.7 54.2

TransTrk (Sun et al., 2020) 54.1 75.2 63.5 5.02 8.64 3603 4872 47.9 57.1

Semi-TCL (Li et al., 2021) 59.8 73.3 73.2 2.29 12.5 2790 8010 59.4 64.7

CSTrack (Zhou et al., 2020) 59.3 74.9 72.6 2.38 11.4 3567 7668 57.9 63.2

GRTU (Wang et al., 2021b) 62.0 74.9 75.0 3.20 10.8 1812 1824 62.1 65.8

QDTrack (Pang et al., 2021) 53.9 68.7 66.3 2.66 14.66 3378 8091 52.7 57.2

MAA (Stadler and Beyerer, 2022) 62.0 79.4 75.9 3.73 7.77 1452 2202 60.2 67.3

MOTR (Zeng et al., 2021) 57.2 71.9 68.4 2.11 13.6 2115 3897 55.8 59.2

ReMOT (Yang et al., 2021) 59.7 77.0 72.0 3.32 9.36 2853 5304 57.1 61.7

PermaTr (Tokmakov et al., 2021) 55.5 73.8 68.9 2.90 11.5 3699 6132 53.1 59.8

TransMOT (Chu et al., 2021) 61.7 76.7 75.1 3.62 9.32 2346 7719 59.9 66.5

ByteTrack (Zhang et al., 2022) 63.1 80.3 77.3 2.55 8.37 2196 2277 62.0 68.2

OCSORT (Cao et al., 2022) 63.2 78.0 77.5 1.51 10.8 1950 2040 63.2 67.5

FastTrack (ours) 63.4 80.5 77.6 2.47 8.36 2013 2337 62.3 67.8

Methods in the bottom block use the same detector
Bold indicates the best performance at a given metric

Table 13 Comparison under the “private detector” protocol in MOT20 test set

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑
FairMOT (Zhang et al., 2021) 54.6 61.8 67.3 10.3 8.89 5243 7874 54.7 60.7

TransCt (Xu et al., 2021) 43.5 58.5 49.6 6.42 14.6 4695 9581 37.0 45.1

TransTrk (Sun et al., 2020) 48.5 65.0 59.4 2.72 15.0 3608 11,352 45.2 51.9

Semi-TCL (Li et al., 2021) 55.3 65.2 70.1 6.12 11.5 4139 8508 56.3 60.9

CSTrack (Zhou et al., 2020) 54.0 66.6 68.6 2.54 14.4 3196 7632 54.0 57.6

GSDT (Wang et al., 2021c) 53.6 67.1 67.5 3.19 13.5 3131 9875 52.7 58.5

RelationT (Yu et al., 2021) 56.5 67.2 70.5 6.11 10.5 4243 8236 55.8 66.1

MAA (Stadler and Beyerer, 2022) 57.3 73.9 71.2 2.49 10.9 1331 1450 55.1 61.1

ReMOT (Yang et al., 2021) 61.2 77.4 73.1 2.83 8.67 1789 2121 58.7 63.1

TransMOT (Chu et al., 2021) 61.9 77.5 75.2 3.42 8.08 1615 2421 60.1 66.3

ByteTrack (Zhang et al., 2022) 61.3 77.8 75.2 2.62 8.76 1223 1460 59.6 66.2

OCSORT (Cao et al., 2022) 62.1 75.5 75.9 1.80 10.8 913 1198 62.0 67.5

FastTrack (ours) 61.8 77.3 74.7 2.53 9.06 1434 1337 60.2 66.9

Methods in the bottom block use the same detector
Bold indicates the best performance at a given metric

respectively. Even on the embedded CUDA device Jetson
AGXXavier, Fast’s average time consumption on MOT20 is
only 24 ms, while OCSORT and BYTE take 231 ms and 67
ms, respectively.

To further showcase Fast’s efficiency in the extreme case,
we compare the time consumption of the four methods on
MOT20 at different scales, as demonstrated in Table 14. We
evaluate the trackers’ efficiency in large-scale object track-
ing scenarios by replicating each frame’s detection results
N times on the MOT20 test set. Specifically, we shift the
x-coordinate of the i th replicated result by i×W pixels to

the right (W being the frame width), while keeping the
y-coordinate unchanged, thereby increasing the number of
objects in each frame by N times. This simulation is reason-
able because, while a single video stream may not contain
1000 tracklets per frame, it is typical to merge and track mul-
tiple streams simultaneously in real-world scenarios.

Table 14 demonstrates that Fast holds a significant advan-
tage over other trackers in large-scale object tracking sce-
narios. For instance, when N equals 7, Fast processes 29
ms per frame with an average of 973 objects per frame,
whereas OCSORT and BYTE take 241 ms and 161 ms,

123

1480 International Journal of Computer Vision (2024) 132:1463–1483

Table 14 Average time consumption (ms) of different trackers on
MOT20 at different scales

MOT20 OCSORT BYTE SORT Fast (ours)

×3(417) 84 58 50 8

×5(695) 154 102 90 16

×7(973) 241 161 136 29

The term “×N(139·N)” signifies that each frame’s detection results on
the MOT20 dataset are replicated N times, leading to an average of
139·N tracklets per frame
Bold indicates the best performance at a given metric

respectively. Although the time consumption of each module
in Fast remains independent of the input scale, the creation
and destruction overhead of intermediate data variables (e.g.,
the cost matrix) in Fast increases as the input scale expands,
resulting in greater time consumption for large-scale input.
Additionally, the GTX 1080Ti also constrains Fast’s effi-
ciency on large-scale input. When using the RTX 4090, Fast
only requires 10ms to process 973 objects per frame, making
it 24× faster than OCSORT and 16× faster than BYTE.

The above comparison results highlight the remarkable
efficiency of our new GPU-based tracker paradigm.

6 Conclusion

In this paper, we propose Parallel Kalman Filter to model
non-uniform motion via the proposed non-uniform formula-
tion and achieve a time complexity of O(1) via the proposed
parallel computation method in large-scale object tracking
scenarios. Further, based on PKF, we propose Fast, the first
fully GPU-based tracker paradigm, to greatly improve track-
ing efficiency in large-scale object tracking; and FastTrack,
the MOT system consisting of Fast and a general detec-
tor, allowing for high efficiency and generality. Within Fast,
we introduce innovative GPU-based tracking modules, such
as an efficient GPU 2D-array data structure, a novel cost
matrix, a new association metric called HIoU, and the Auc-
tionAlgorithm. The conducted experiments demonstrate that
PKF owns the highly computational efficiency and is inde-
pendent of the input scale, while other modules in Fast are
also highly efficient compared to the CPU-based baselines.
FastTrack demonstrates state-of-the-art performance on four
public benchmarks, and attains the highest speed in large-
scale tracking scenarios of MOT20.

Acknowledgements We thank Yifu Zhang and Jinkun Cao for provid-
ing codes of ByteTrack and OCSORT. This work is supported in part by
theNational Natural Science Foundation of China (NSFC) underGrants
(No.61976038 and No.61932020), and the Taishan Scholar Program of
Shandong Province (tstp20221128).

Data Availability Statement The above four datasets supporting the
findings of this study are available in github.com/DanceTrack/DanceTrack

for DanceTrack, cvlibs.net/datasets/kitti/eval_tracking.php for KITTI,
motchallenge.net for MOT17 and MOT20.

Appendix A Naive Auction

Algorithm Algorithm 4 indicates the naive Auction Algo-
rithm. For a cost matrix C generated by n persons and m
items where m must be greater than or equal to n, we define
the following variables to execute the algorithm: a positive
scaler ε equal to 1

n ; a bids table b initialized to a 2D-array
with 0 values and shape (n+ 1,m) where b[n, :] denotes the
flag vector; a person2item mapping p2i initialized to a 1D-
array with -1 values and length n; an item2person mapping
i2p initialized to a 1D-array with -1 values and length m;
a price vector p initialized to a 1D-array with 0 values and
length m. The algorithm is based on a bidding-assignment
loop to solve the best match, and the loop terminates when
there is no value − 1 in p2i.

Algorithm 4 Pseudo-code of Naive Auction.
Input: A cost matrix C; the number of persons n; the number of items

m (m ≥ n).
1: positive scalar ε ⇐ 1

n ;
2: bids table b ⇐ [0] × (n + 1)m;
3: person2item mapping p2i ⇐ [−1] × n;
4: item2person mapping i2p ⇐ [−1] × m;
5: price vector p ⇐ [0] × m;
6: while (p2i includes any -1) do

/* bidding phase */
7: for i in range(n) do
8: if p2i[i] == −1 then
9: t ⇐ C[i, :] − p;
10: x1, x2, xidx ⇐ bid(t);
11: b[i, xidx] ⇐ x1 − x2 + ε;
12: b[n, xidx] ⇐ 1;
13: end if
14: end for

/* assignment phase */
15: for j in range(m) do
16: if b[n, j] == 1 then
17: x1, xidx ⇐assign(b[: n, j]);
18: p[j] += x1;
19: if i2p[j] > −1 then
20: p2i[i2p[j]] ⇐ −1;
21: end if
22: p2i[xidx] ⇐ j ;
23: i2p[j] ⇐ xidx ;
24: end if
25: end for

/* reset bids table */
26: b ⇐ [0] × (n + 1)m;
27: end while
Output: p2i; i2p.

In the bidding phase (line 7–14), a temporary vector twith
length m is first calculated via C[i, :] − p where p2i[i] ==
−1. For each t, bid(·) is employed to obtain the max value

123

International Journal of Computer Vision (2024) 132:1463–1483 1481

x1 with its index xidx and the second max value x2. Then
the biding increment is computed and set into b[i, xidx] (line
11); the flag in b[n, xidx] is set to 1 (line 12).

In the assignment phase (line 15–25), for each vector b[:
n, j] where b[n, j] == 1, assign(·) is employed to obtain
the max value x1 with its index xidx . Then x1 is added into
p[j] (line 18) and a new mapping is established between the
xidx person and the j item (line 19–23).

Next, all positions in b are reset to 0 values for the next
iteration (line 26).
Computation In the CUDA implementation, the bidding
phase and the assignment phase are established into two sep-
arate kernel functions.

In the bidding kernel function, the grid includes n blocks
to obtain the x1/2/idx of different rows in C simultaneously.
Each block contains �m

2 � threads and within each thread,
two different values are read from t and the CUDA built-in
function atomicMax() is employed to obtain the x1/2/idx .

In the assignment kernel function, the grid includes m
blocks to obtain the x1/idx of different columns in b simulta-
neously. Each block contains � n

2 � threads and within each
thread, two different values are read from b[: n, j] and
atomicMax() is also employed to obtain the x1/idx .

Appendix BMOT17-val

MOT17 (Milan et al., 2016) contains a train set with the
ground truth and a test set without the ground truth. For the
ablation study, we define the first half of each video in the
originalMOT17 train set as the train set of the ablation dataset
and the last half as the validation set of the ablation dataset
called MOT17-val following (Zhang et al., 2022; Zhou et
al., 2020). Table 15 shows the basic information about the
ablation dataset. There are seven videos with 5316 images
and the detector YOLOX performs both high recall and pre-
cision on the seven videos except MOT17-02. As illustrated
in Fig. 10, the validation video of MOT17-02 in MOT17-

Table 15 Basic information about the ablation dataset

Name Train Half Val Half Rcll.% Prcn.%

MOT17-02 301 299 64.2 86.0

MOT17-04 526 524 93.4 94.6

MOT17-05 419 418 81.7 95.0

MOT17-09 263 262 83.9 99.5

MOT17-10 328 326 75.6 93.7

MOT17-11 451 449 81.4 87.7

MOT17-13 376 374 80.3 97.3

Overall 2664 2652 83.1 93.0

Train Half and Val Half mean the number of images within each half
video. Rcll. and Prcn. are the recall and precision of the MOT17-val of
the ByteTrack

Fig. 10 Illustration of MOT17-02 in Val Half. FrameXXX denotes the
frame number in the video (start from 299 to 600). The solid boxes with
same color in different images represent the ground truth of the same
trajectory; the small pedestrians in the dashed boxes are also marked
as the ground truth even if they are completely invisible (Color figure
online)

val has a total of 300 images (numbered from Frame299 to
Frame469) and the pedestrians in the green dashed boxes
are obscured most of the time from Frame299 to Frame469
(a total of 170 frames) while they are stilled labeled as the
ground truth even if they are completely invisible. This is the
reason why the validation video ofMOT17-02 has the lowest
recall among all the seven videos. MOT17 has a tendency to
label pedestrians that are not visible at all as the ground truth.
This is reflected in all seven videos, with MOT17-02 being
the most severe, which explains why all recalls in Table 15
are lower than precisions, i.e., the detector cannot detect fully
obscured pedestrians who have all ready been labeled as the
ground truth. Fortunately, this situation is not serious in the
other six validation videos. For this reason, themetric number
obtained on video MOT17-02 in the ablation studies would
be considered lessmeaningful andwe only use the remaining
six videos as MOT17-val in our ablation studies.

References

Bertsekas,D.P. (1992a).Auction algorithms for networkflowproblems:
A tutorial introduction. Computational Optimization & Applica-
tions, 1(1), 7–66.

Bertsekas, D. P. (1992b). Auction algorithms for network flow prob-
lems: A tutorial introduction. Computational Optimization and
Applications, 1(1), 7–66.

Bewley, A., Ge, Z., & Ott, L., et al. (2016). Simple online and realtime
tracking. In: ICIP (pp. 3464–3468). IEEE.

Bishop, G.,Welch, G., et al. (2001). An introduction to the kalman filter.
Proc of SIGGRAPH, Course, 8(27599–23175), 41.

Bochkovskiy, A.,Wang, C.Y.,&Liao, H.Y.M. (2020)Yolov4:Optimal
speed and accuracy of object detection. arXiv:2004.10934.

123

http://arxiv.org/abs/2004.10934

1482 International Journal of Computer Vision (2024) 132:1463–1483

Brasó, G., & Leal-Taixé, L. (2020) Learning a neural solver for multiple
object tracking. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 6247–6257).

Cao, J., Weng, X., & Khirodkar, R., et al. (2022). Observation-centric
sort: Rethinking sort for robust multi-object tracking. https://doi.
org/10.48550/ARXIV.2203.14360.

Chen, K., Wang, J., & Pang, J., et al. (2019). MMDetection: Open
mmlab detection toolbox and benchmark. arXiv:1906.07155.

Choi, W. (2015). Near-online multi-target tracking with aggregated
local flow descriptor. In Proceedings of the IEEE international
conference on computer vision (pp. 3029–3037).

Chu, P., Wang, J., & You, Q., et al. (2021) Transmot: Spatial-temporal
graph transformer for multiple object tracking. arXiv:2104.00194.

Dendorfer, P., Rezatofighi, H., & Milan, A., et al. (2020). Mot20:
A benchmark for multi object tracking in crowded scenes.
arXiv:2003.09003.

Ge, Z., Liu, S., & Wang, F., et al. (2021). Yolox: Exceeding yolo series
in 2021. arXiv:2107.08430.

Geiger, A., Lenz, P., Stiller, C., et al. (2013). Vision meets robotics:
The kitti dataset. The International Journal of Robotics Research,
32(11), 1231–1237.

Gonzalez, N. F., Ospina, A., & Calvez, P. (2020). Smat: Smart multiple
affinity metrics for multiple object tracking. In International con-
ference on image analysis and recognition (pp. 48–62). Springer.

Gustafsson, F., Gunnarsson, F., Bergman, N., et al. (2002). Particle
filters for positioning, navigation, and tracking. IEEETransactions
on Signal Processing, 50(2), 425–437.

Hu, H. N., Yang, Y. H., Fischer, T., et al. (2022). Monocular quasi-
dense 3d object tracking. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(2), 1992–2008.

Jonker, R., & Volgenant, A. (1987). A shortest augmenting path
algorithm for dense and sparse linear assignment problems. Com-
puting, 38(4), 325–340.

Julier, S. J., & Uhlmann, J. K. (1997). New extension of the kalman
filter to nonlinear systems. In Signal processing, sensor fusion,
and target recognition VI (pp. 182–193). Spie.

Kalman, R. E. (1960). A new approach to linear filtering and prediction
problems. Journal of Fluids Engineering, 82(1), 35–45.

Kim, A., Ošep, A., & Leal-Taixé, L. (2021). Eagermot: 3d multi-object
tracking via sensor fusion. In 2021 IEEE international conference
on robotics and automation (ICRA) (pp. 11315–11321). IEEE.

Kuhn,H.W. (1955). TheHungarianmethod for the assignment problem.
Naval Research Logistics Quarterly, 2(1–2), 83–97.

Li, W., Xiong, Y., & Yang, S., et al. (2021). Semi-tcl: Semi-supervised
track contrastive representation learning. arXiv:2107.02396.

Lin, T. Y., Goyal, P., & Girshick, R., et al. (2017). Focal loss for dense
object detection. In ICCV (pp. 2980–2988).

Lu, Z., Rathod, V., & Votel, R., et al. (2020). Retinatrack: Online
single stage joint detection and tracking. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion (pp. 14668–14678).

Luiten, J., Osep, A., Dendorfer, P., et al. (2021). Hota: A higher order
metric for evaluating multi-object tracking. International Journal
of Computer Vision, 129(2), 548–578.

Milan, A., Leal-Taixé, L., &Reid, I., et al. (2016).Mot16: A benchmark
for multi-object tracking. arXiv:1603.00831.

Okuta, R., Unno, Y., & Nishino, D., et al. (2017). Cupy: A numpy-
compatible library for nvidia gpu calculations. In Proceedings of
workshop onmachine learning systems (LearningSys) in the thirty-
first annual conference on neural information processing systems
(NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf

Pang, J., Qiu, L., & Li, X., et al. (2021). Quasi-dense similarity learning
for multiple object tracking. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition (pp. 164–173).

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Peng, J., Wang, C., &Wan, F., et al. (2020). Chained-tracker: Chaining
paired attentive regression results for end-to-end joint multiple-
object detection and tracking. InEuropean conference on computer
vision (pp. 145–161). Springer.

Rangesh, A., Maheshwari, P., &Gebre,M., et al. (2021). Trackmpnn: A
message passing graph neural architecture for multi-object track-
ing. arXiv:2101.04206.

Redmon, J., & Farhadi, A. (2018) Yolov3: An incremental improve-
ment. arXiv:1804.02767.

Ren, S., He, K., Girshick, R., et al. (2015). Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in
Neural Information Processing Systems, 28, 91–99.

Smith, G. L., Schmidt, S. F., & McGee, L. A. (1962). Application of
statistical filter theory to the optimal estimation of position and
velocity on board a circumlunar vehicle. National Aeronautics and
Space Administration.

Stadler, D., &Beyerer, J. (2022).Modelling ambiguous assignments for
multi-person tracking in crowds. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision (pp. 133–
142).

Sun, P., Cao, J., & Jiang, Y., et al. (2020). Transtrack: Multiple object
tracking with transformer. arXiv:2012.15460.

Sun, P., Cao, J., & Jiang, Y., et al. (2021). Dancetrack: Multi-
object tracking in uniform appearance and diverse motion.
arXiv:2111.14690.

Tokmakov, P., Li, J., & Burgard, W., et al. (2021). Learning to track
with object permanence. arXiv:2103.14258.

Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy
1.0: Fundamental algorithms for scientific computing in python.
Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-
019-0686-2

Wang, G., Gu, R., & Liu, Z., et al. (2021a). Track without appearance:
Learn box and tracklet embedding with local and global motion
patterns for vehicle tracking. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 9876–9886).

Wang, S., Sheng, H., & Zhang, Y., et al. (2021b). A general recur-
rent tracking framework without real data. In Proceedings of
the IEEE/CVF international conference on computer vision (pp.
13219–13228).

Wang, Y., Kitani, K., & Weng, X. (2021c). Joint object detection and
multi-object tracking with graph neural networks. In 2021 IEEE
international conference on robotics and automation (ICRA) (pp.
13708–13715). IEEE.

Wang, Z., Zheng, L., & Liu, Y., et al. (2020). Towards real-time multi-
object tracking. In Computer vision–ECCV 2020: 16th European
conference, Glasgow, UK, August 23–28, 2020, proceedings, Part
XI 16 (pp. 107–122). Springer.

Weng, X., Wang, J., & Held, D., et al. (2020). 3d multi-object tracking:
A baseline and new evaluation metrics. In 2020 IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS) (pp.
10359–10366). IEEE.

Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime
tracking with a deep association metric. In 2017 IEEE interna-
tional conference on image processing (ICIP) (pp. 3645–3649).
IEEE.

Wu, J., Cao, J., & Song, L., et al. (2021). Track to detect and
segment: An online multi-object tracker. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion (pp. 12352–12361).

Xiang, Y., Alahi, A., & Savarese, S. (2015). Learning to track: Online
multi-object tracking by decision making. In ICCV (pp. 4705–
4713).

123

https://doi.org/10.48550/ARXIV.2203.14360
https://doi.org/10.48550/ARXIV.2203.14360
http://arxiv.org/abs/1906.07155
http://arxiv.org/abs/2104.00194
http://arxiv.org/abs/2003.09003
http://arxiv.org/abs/2107.08430
http://arxiv.org/abs/2107.02396
http://arxiv.org/abs/1603.00831
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://arxiv.org/abs/2101.04206
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2012.15460
http://arxiv.org/abs/2111.14690
http://arxiv.org/abs/2103.14258
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

International Journal of Computer Vision (2024) 132:1463–1483 1483

Xu, Y., Ban, Y., & Delorme, G., et al. (2021). Transcenter:
Transformers with dense queries for multiple-object tracking.
arXiv:2103.15145.

Yang, F., Chang, X., Sakti, S., et al. (2021). Remot: A model-agnostic
refinement for multiple object tracking. Image and Vision Com-
puting, 106(104), 091.

Yu, E., Li, Z., & Han, S., et al. (2021). Relationtrack: Relation-
aware multiple object tracking with decoupled representation.
arXiv:2105.04322.

Zeng, F.,Dong,B.,&Wang,T., et al. (2021).Motr: End-to-endmultiple-
object tracking with transformer. arXiv:2105.03247.

Zhang, Y., Sun, P., & Jiang, Y., et al. (2022). Bytetrack: Multi-object
tracking by associating every detection box. In ECCV 2022.

Zhang, Y., Wang, C., Wang, X., et al. (2021). Fairmot: On the fair-
ness of detection and re-identification in multiple object tracking.
International Journal of Computer Vision, 129(11), 3069–3087.

Zhou, X., Koltun, V., Krähenbühl, P. (2020). Tracking objects as points.
In ECCV (pp. 474–490). Springer.

Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points.
arXiv:1904.07850.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/2103.15145
http://arxiv.org/abs/2105.04322
http://arxiv.org/abs/2105.03247
http://arxiv.org/abs/1904.07850

	FastTrack: A Highly Efficient and Generic GPU-Based Multi-object Tracking Method with Parallel Kalman Filter
	Abstract
	1 Introduction
	2 Related Works
	2.1 Tracking-by-Detection
	2.2 Kalman Filter
	2.3 Association

	3 Numerical Statistics
	3.1 Trajectory Overlap
	3.2 Height and Width Ratio

	4 Proposed Methods
	4.1 Parallel Kalman Filter
	4.2 Fast

	5 Experiment
	5.1 Settings
	5.2 Ablation Study
	5.2.1 Association
	5.2.2 Parallel Kalman Filter
	5.2.3 Comparison with Other Trackers
	5.2.4 Module Efficiency

	5.3 Benchmark Results
	5.3.1 DanceTrack
	5.3.2 KITTI
	5.3.3 MOT Challenge
	5.3.4 Efficiency

	6 Conclusion
	Acknowledgements
	Appendix A Naive Auction
	Appendix B MOT17-val
	References

