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Abstract
Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels.
Recently, a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve pixel-level localization.
While existing FPM-based methods use cross-entropy to evaluate the foreground prediction map and to guide the learning
of the generator, this paper presents two astonishing experimental observations on the object localization learning process:
For a trained network, as the foreground mask expands, (1) the cross-entropy converges to zero when the foreground mask
covers only part of the object region. (2) The activation value continuously increases until the foreground mask expands to the
object boundary. Therefore, to achieve a more effective localization performance, we argue for the usage of activation value
to learn more object regions. In this paper, we propose a background activation suppression (BAS) method. Specifically, an
activation map constraint module is designed to facilitate the learning of generator by suppressing the background activation
value. Meanwhile, by using foreground region guidance and area constraint, BAS can learn the whole region of the object. In
the inference phase, we consider the prediction maps of different categories together to obtain the final localization results.
Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the
CUB-200-2011 and ILSVRC datasets. In addition, our method also achieves state-of-the-art weakly supervised semantic
segmentation performance on the PASCAL VOC 2012 and MS COCO 2014 datasets. Code and models are available at
https://github.com/wpy1999/BAS-Extension.
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1 Introduction

Weakly supervised object localization (WSOL) aims to
identify the object’s localization in a scene, where only
image-level labels instead of bounding box annotations are
available during training. Due to the reduction in the cost of
manual labeling, and the potential to use the vast weakly-
annotated images on many public datasets and the Web,
WSOL is gaining more and more attention in the research
community (Selvaraju et al., 2020; Zhai et al., 2022; Luo et
al., 2022; Zhang et al., 2021b).Moreover, it can serve various
downstream tasks, such as weakly supervised object detec-
tion (WSOD) (Song et al., 2021; Zhang et al., 2020b, 2019)
and weakly supervised semantic segmentation (WSSS) (Ru
et al., 2022a; Chan et al., 2021; Pan et al., 2022).

This paper aims to propose an effective approach for
WSOL and its downstream task WSSS, since WSOL and
WSSS tasks have similarities in that they both use image-
level labels as supervision and need to obtain a high-quality
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pixel-level localization map from the classification network.
Actually,WSSS task can be implemented by directly training
a fully supervised semantic segmentation with the localiza-
tion maps generated from WSOL as pseudo labels. Due to
these reasons, they face a similar challenge of establishing
supervision between image-level labels and pixel-level local-
ization maps in an effective way.

Previously, most WSOL and WSSS methods utilize class
activation map (CAM) (Zhou et al., 2016) to extract localiza-
tion map from classifier. While CAM can localize approx-
imate object regions, it always prefers to capture the most
discriminative regions rather than the overall area of the
object, resulting in limited localization performance. There-
fore, numerous CAM-based approaches have been proposed
to alleviate this problem.Adversarial erasingmethods (Singh
& Lee, 2017; Zhang et al., 2018a; Choe & Shim, 2019; Mai
et al., 2020; Yun et al., 2019) erase the most discrimina-
tive regions during the training, forcing the network to learn
more object features that facilitate complete localization.
Some methods (Zhang et al., 2020d; Pan et al., 2021; Lee
et al., 2022a) improve the localization performance of CAM
by establishing pixel-level spatial and semantic correlation.
Additionally, some other methods (Zhang et al., 2018b; Wei
et al., 2021; Kolesnikov & Lampert, 2016) suggest using the
thought of region growing to spread confidence regions and
mine relevant features.

Although CAM-based method can conveniently extract
the localization map from the classifier, this approach will
lead to limitations and conflicts in optimization since the clas-
sifier needs to implement both localization and classification
tasks. Very recently, a CAM-independent paradigm (Meng
et al., 2021; Xie et al., 2021) is devised for WSOL to
achieve localizationwith a foreground predictionmap (FPM)
obtained directly through a generator, which allows the two
tasks to be accomplished separately in a unified model. Typ-
ically, ORNet (Xie et al., 2021) is a two-stage approach,
which first trains a classification network as an evaluator,
and then utilizes CE loss to guide the learning of generator
by masking the original image with a foreground predic-
tion map. Orthogonally, the foreground prediction map in
the FAM (Meng et al., 2021) is split into several parts and
separately masks high-level feature maps to achieve learn-
ing of different regions through CE loss. Despite FPM-based
methods achieving promising performance, they still suffer
from incomplete object localization.

To better understand FPM-based methods, we focus on
exploring the entropy value of CE loss (entropy) with respect
to (w.r .t) foreground mask. As shown in Fig. 1A, by chang-
ing the area of the foreground mask and masking the feature
map, the relationship between the entropy and foreground
mask area is plotted in Fig. 1B. An important phenomenon
can be observed that there is a “mismatch” between entropy
and ground-truth mask, i.e., entropy is already close to zero

Fig. 1 AExperimental procedure and related definitions.BThe entropy
value of CE loss w.r .t foreground mask and foreground activation
valuew.r .t foregroundmask.CThe results with statistical significance.
Implementation details of the experiment and further results are avail-
able in Sect. 3.5

when foreground mask retains only part of the object region,
which indicates that entropy cannot force the foreground
map to learn the complete object area. The reason is that
the exponential form of softmax amplifies the discrepancy
in activation values and drives premature convergence of
entropy. To find a better factor to facilitate localization learn-
ing, we further explore the activation value (before softmax
calculation) w.r .t foreground mask. As shown in Fig. 1B,
there is a higher “correlation” between activation value and
foregroundmask, i.e., activation value tends to saturate when
the mask expands to the object boundary. This suggests that
better localization ability can be learned by optimizing acti-
vation value. Figure1C also confirms the generality of these
phenomena in a statistical sense.

Based on the inspiration of the above exploratory analysis,
a straightforward manner to obtain a complete foreground
prediction map is to maximize the activation value. How-
ever, considering that theminimization optimization problem
is more conducive to the stability of training and loss con-
vergence than the maximization optimization problem, this
paper proposes a novel way to learn a background predic-
tion map by minimizing background activation value, and
further obtain the accurate foreground prediction map by
inversion. Actually, the statistics on background activation
values in Fig. 1C show “symmetry” with the statistics on
activation values, both converging at the ground-truth mask
area, which further supports the feasibility of background
activation value suppression.

In this paper,wepropose a simple but effectiveBackground
Activation Suppression (BAS) method. As shown in Fig. 2,
our method includes three modules: an extractor, a genera-
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Fig. 2 The architecture of the proposed background activation sup-
pression (BAS) in the training phase. The class-specific foreground
prediction map M f and the coupled background prediction map Mb

are obtained by the generator according to the ground-truth (GT) class,
and then fed into the Activation Map Constraint module together with
the feature maps F

tor, and anActivationMapConstraint (AMC) module. First,
an extractor is used to extract the image features for sub-
sequent localization and classification. The generator aims
to generate a class-specific foreground prediction map for
localization. Then the coupled background prediction map
is obtained by inverting the foreground prediction map and
fed into AMC together for localization training. The AMC
is supervised by four kinds of losses, which are background
activation suppression loss, area constraint loss, foreground
region guidance loss, and classification loss. Themost impor-
tant one is background activation suppression loss, which is
devised to promote the learning of generator by minimizing
the ratio of background activation value andoverall activation
value (the activation value generated by the entire image). In
the inference phase, the Top-k prediction maps are selected
based on the predicted category probabilities and their aver-
age prediction map is adopted as the final localization result.
The main contributions of this paper can be summarized as
follows:

(1) This paper identifies that the essential reason why min-
imizingCE loss facilitates the generation of foreground
map is that it indirectly increases the foreground acti-
vation value, and accordingly proposes to promote the
generation of foreground prediction map by suppress-
ing background activation value.

(2) This paper proposes a simple but effective Background
Activation Suppression (BAS) approach to facilitate
the generation of foreground map by an Activation
MapConstraint (AMC) in aweakly supervisedmanner,
which is composed of four losses including background
activation suppression loss and together contribute to

the generation of the foreground prediction map for
localization.

(3) Extensive experiments onbothCUB-200-2011 (Wah
et al., 2011) and ILSVRC (Russakovsky et al., 2015)
benchmarks demonstrate that our method achieves
consistent and significant improvement in terms of
GT-known/Top-1/Top-5 Loc. In addition, the proposed
BAS approach can be extended to Weakly Super-
vised Semantic Segmentation (WSSS) task, which
also achieves new state-of-the-art results on PASCAL
VOC 2012 (Everingham et al., 2010) and MS COCO
2014 (Lin et al., 2014) datasets.

This paper builds upon our conference version (Wu et al.,
2021), which has been extended in four distinct aspects. (1)
We explain the advantages of Background Activation Sup-
pression and its generalizability (on more complex datasets)
in more detail and comprehensively (in a statistical sense),
see Fig. 6 and Sect. 3.5. (2) To alleviate the problem of inad-
equate convergence of BAS loss (Fig. 12), we focus on the
location of the ReLU function, which is closely related to the
activation value, and further improve the previous BAS after
exploration, see Fig. 4 and Sect. 3.2. (3) To verify the extensi-
bility of the BAS approach, we develop aWeakly Supervised
Semantic Segmentation (WSSS) framework with proposed
BAS in Sect. 5. The framework aims to enhance the quality of
the seed generation process in the popular WSSS framework
through BAS, resulting in better performance onWSSS task,
as shown in Tables 9, 11 and 12. (4) To exploit the advantages
of BAS on WSSS in obtaining localization maps through a
generator, we propose to produce a class-agnostic foreground
map using BAS and further combine it with the class-specific
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maps to improve the quality of the initial seed, see Fig. 20 and
Table 13. (5) To further improve the segmentation quality, we
propose to apply the losses of BAS as evaluation scores in the
inference phase to assess each threshold and find the image-
specific threshold on WSSS, see Fig. 22 and Table 15. (6)
We have made a lot of efforts to improve the presentations
(e.g., motivation, related illustrative diagrams, formulation,
experimental analysis, key results), and organizations of our
paper. Besides, several sections have been refined to improve
the readability and provide more detailed explanations about
themotivation, quantitative/qualitative comparisons, and dis-
cussions.

The rest of this paper is organized as follows. Sec-
tion2 describes existing works related to WSOL and WSSS.
The detailed method is described in Sect. 3. Sections4 and
5 present the experimental results of WSOL and WSSS,
respectively. Limitation and future work are discussed in
Sect. 6. Finally, we conclude our work in Sect. 7.

2 RelatedWork

2.1 Weakly Supervised Object Localization

Weakly supervised object localization (WSOL) is a chal-
lenging task that requires localizing objects using only
image-level labels. To obtain localization results from the
classification network, CAM (Zhou et al., 2016) proposes to
replace top layerswith a global average pooling, andmultiply
the fully connectedweights on depth featuremaps to generate
class activation map (CAM) as the localization map. Unfor-
tunately, CAM usually focuses on the most discriminative
regions. To alleviate this problem, a series of methods pro-
pose to use erasing strategies. HaS (Singh&Lee, 2017) splits
the original image into different patches and randomlymasks
part of them, forcing the classification network to learn more
features of objects. ACoL (Zhang et al., 2018a) and EIL (Mai
et al., 2020) erase areas with high response in the feature
map and use two parallel branches for adversarial erasing.
Differently, ADL (Choe & Shim, 2019) erases the most sig-
nificant regions of each layer during forward propagation,
to achieve a balance between classification and localization.
CutMix (Yun et al., 2019) adopts a data enhancement strat-
egy that mixes two different images to force network to learn
relevant regions of different objects.

In addition, another class of approaches adopt the thought
of spreading confidence regions to mine relevant features.
SPG (Zhang et al., 2018b) uses thresholds to filter fore-
ground and background regions with high confidence from
CAMtoguide shallownetwork learning. Further, SPOL (Wei
et al., 2021) generates more reliable confidence regions by
multiplicative feature fusion strategy and trains a full seg-
mentation network with confidence regions as pseudo labels.

I2C (Zhang et al., 2020d) proposes to increase the robustness
and reliability of localization by considering the correlation
of different pictures from the same class. Besides, SPA (Pan
et al., 2021) uses a post-processing approach to extract fea-
ture maps with structure-preserving. SLT (Guo et al., 2021)
considers several similar classes as one class when generat-
ing classification loss and localizationmaps, which alleviates
the problem of focusing on the most discriminative regions
by strengthening learning tolerance. DA-WSOL (Zhu et al.,
2022) aligns the feature distributions between the image and
pixel domains with the thought of domain adaptation.

Most recently, two Foreground-Prediction-Map-based
works (Xie et al., 2021; Meng et al., 2021), both achieve the
localization task by generating a foreground prediction map.
ORNet (Xie et al., 2021) uses a two-stage approach, where
an encode-decode layer is inserted in the shallow layer of
the network as a generator and trained by the classification
task in the first stage. In the second stage, the parameters of
the classification network are fixed as an evaluator, and the
foreground prediction map output by the generator is used
to mask the image. Then the masked image is fed into the
evaluator for classification training, so that the foreground
prediction map can learn the object region. FAM (Meng et
al., 2021) utilizes a Foreground Memory Mechanism struc-
ture to store different foreground classifiers and generate a
class-agnostic foreground prediction map. The foreground
prediction map is split into several specific parts which
are used to mask the feature map to obtain different part-
aware feature maps. After classification training with the
corresponding foreground classifiers, the class-agnostic fore-
ground map is forced to learn different object regions. It can
be noticed that bothORNet (Xie et al., 2021) andFAM(Meng
et al., 2021) only consider foreground regions and use cross-
entropy to facilitate the learning of generator. Different from
these methods, this paper proposes a background activation
suppression strategy to learn foreground prediction maps
through a simple but effective approach.

2.2 Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation (WSSS) purposes
to alleviate the reliance on pixel-level ground-truth labels
by using weak labels instead. Existing WSSS methods usu-
ally include the following three stages: (1) Obtaining a
high-quality initial seed. (2) Seed refinement and generating
pseudo labels. (3) Training a full segmentation network with
pseudo labels. It can be seen that generating a high-quality
pixel-level localization map is also crucial forWSSS, similar
to WSOL.

Seed Generation. Extraction of CAM is arguably the most
common and convenient approach to generate the initial seed,
despite the problem that only the discriminative regions can
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be highlighted. To alleviate this issue, somemethods propose
to improve the quality of CAM by iterative manipulation.
AE-PSL (Wei et al., 2017) performs iterative training steps
to mine more object-related regions with adversarial erasure.
RIB (Lee et al., 2021a) applies a post-processing method
to fine-tune the classification model and obtain CAMs by
iteration. AdvCAM (Lee et al., 2022a) proposes an anti-
adversarial approach to continuously identify more object
areas. Besides, a category of methods try to improve the clas-
sification learning process. CONTA (Zhang et al., 2020c)
aims to avoid contextual confusion by proposing a struc-
tural causal model to analyze the causalities among images,
contexts, and class labels. SEAM (Wang et al., 2020b)
applies consistency regularization on CAMs through var-
ious sized images to mitigate the supervision gap issue.
ReCAM (Chen et al., 2022b) proposes to use softmax cross-
entropy loss to suppress the response of different categories
to the same receptive field. CLIMS (Xie et al., 2022a) utilizes
the CLIP (Radford et al., 2021) model to assist the net-
work in activating more complete object regions. GAIN (Li
et al., 2018) uses Grad-CAM to obtain localization maps
and improve them by exploiting the prediction scores of
the network as supervision. In contrast, BAS is based on
the FPM-based paradigm and proposes a more essential and
effective background activation suppression loss compared
to the cross-entropy used in the FPM-based methods from
the experimental observations.

Mask Generation. The initial seed is usually coarse and
needs to be refined. Some researchers adopt the thought of
region growing to spread the initial seed. SEC (Kolesnikov&
Lampert, 2016) proposes three principles: seed, expand and
constrain. The initial seed is expanded during the training
of segmentation and constrained to the object boundaries.
PSA (Ahn & Kwak, 2018) trains a deep network to predict
semantic affinity between a pair of adjacent image coordi-
nates and propagate the semantics by random walk (Lovász,
1993). IRN (Ahn et al., 2019) predicts a transition probabil-
ity matrix from the boundary activation map and generates
pseudo masks in a similar way to PSA.

3 Methodology

In this section, we first introduce the main architecture of the
network and the definition of the symbols in Sect. 3.1. Then
we describe the structure of the AMC module, including the
form of the four loss functions, and the improvement of BAS
compared to the previous conference version in Sect. 3.2.
The total loss functions for WSOL and WSSS are listed in
Sects. 3.3 and 3.4, respectively. Finally, we provide specific
details of the exploratory experiments and statistical results
on three different datasets in Sect. 3.5.

3.1 Overview

Based on the experimental observation, we enhance the com-
pleteness of the localization map for WSOL by proposing
a background activation suppression (BAS) approach. As
shown in Fig. 2, BAS consists of three modules: an extrac-
tor, a generator, and an activation map constraint (AMC)
module. The extractor is used to extract features related to
classification and localization. The generator is to produce
the foreground prediction maps. The AMCmodule is to pro-
mote the learning of extractor and generator through four
kinds of losses.

Specifically, we divide the original backbone network into
two sub-networks F1 and F2 according to the location of
the generator, and denote the network parameter by �. The
sub-network F1 before the generator is used as a feature
extractor. Given an image I, the feature maps F ∈ R

H×W×N

are generated by extractor F1(I,�1) in the forward propa-
gation, where H , W , and N denote the height, width, and
number of channels of the feature maps, respectively. After-
ward, the feature maps F are fed into the generator, which
consists of a 3×3 convolution layer and a Sigmoid activa-
tion function for generating a set of foreground prediction
maps M ∈ R

H×W×C with 0–1 distribution, where C is
the number of categories. We choose the class-specific fore-
ground predictionmapM f ∈ R

H×W×1 corresponding to the
ground-truth class and invert it to obtain the coupled back-
ground predictionmapMb ∈ R

H×W×1, whereMb = 1−M f .
Finally, M f , Mb, and F are fed together into AMC module
for predictionmap learning.Wewill detail describe theAMC
structure and loss functions in Sect. 3.2.

In the inference phase, as illustrated in Fig. 3, the feature
maps F obtained by the extractor are input into the genera-
tor and sub-network F2(F,�2) to generate the foreground
prediction maps setM and the classification prediction logits
ỹ, respectively. We select the prediction maps corresponding
to the Top-k predicted categories including the ground-truth
class, and take their average values as the final localization
result. Notably, the Top-k strategy is only used inWSOL and
not in WSSS.

3.2 ActivationMap Constraint

The proposed AMC module utilizes foreground map, back-
ground map, and feature maps as input to jointly promote
the learning of extractor and generator, which is consisted of
four different kinds of losses, includingLbas ,Lac,L f rg , and
Lcls .

Background Activation Suppression (Lbas). For the input
background prediction map Mb, we multiply it by the fea-
ture maps F to obtain the background feature maps (F ·Mb),
denoted as Fb ∈ R

H×W×N . Subsequently, the feature
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Fig. 3 The architecture of the proposed BAS in inference phase. We
utilize Top-k to generate final localization map

maps F and Fb are fed to two sub-networks F2(F,�2)

and F2(Fb,�2) with shared weights, respectively. For the
sub-network with Fb as input, the goal is to generate the
background activation value by the same function, and the
parameters of this sub-network are frozen in the back propa-
gation. Following the sub-networkF2(F,�2) and the global
average pooling (GAP) (Zhou et al., 2016), F and Fb pro-
duce the prediction logits ỹ ∈ R

C and ỹb ∈ R
C , respectively,

which can be expressed as follows:

ỹ = GAP (F2 (F,�2)) , (1)

ỹb = GAP
(
F2

(
Fb,�2

))
. (2)

We select the values in the ỹ and ỹb according to the ground-
truth class. After applying a ReLU activation function, these
values are represented as the activation value S ∈ R

1 and
the background activation value Sb ∈ R

1, respectively. S
represents the activation value generated by the unmasked
feature map, containing both foreground and background
information, and Sb is the activation value generated by
the background feature map, retaining only the background
information. Here, we measure the difference between back-
ground activation value and activation value in a ratio form
as a way to achieve background activation value suppression,
and Lbas is defined as follows:

Lbas = Sb

S + ε
, (3)

where ε is a very small value (e−8), to ensure that the equation
is meaningful. This ratio form not only avoids the addition
of more hyperparameters, but also acts as a normalization,
so that the range of loss value is maintained under an order
of magnitude.

Generating a non-negative S and Sb is necessary for
Lbas . In the previous conference version, we use a ReLU
as the activation function at the end of the network to ensure
the non-negativity of the outputs, as shown in Fig. 4. This
approach causes pixels with negative values are marked as 0

Fig. 4 The improvement of BAS. Partial structure of a the previous
conference version and b this work. The green pixels in the localization
map indicate positive values and the purple ones indicate negative values
(Color figure online)

after ReLU and their gradients will not take part in the back
propagation. While pixels with negative values are usually
associated with background areas, which are also important
for the learning of classification and prediction maps. As
shown in Fig. 12, the neglect of negative activation values
in the classification loss indirectly causes the BAS loss to
become inadequate (the loss value becomes larger instead)
later in the training process. To solve this problem,we remove
this ReLU layer to make negative pixels also participate in
the gradient back propagation. To ensure the non-negativity
of S and Sb, we use the ReLU activation function separately
before generating them.

Area Constraint (Lac). The background prediction map can
be guided by Lbas in a suppressed way, and a smaller Lbas

means that the region covered by the background prediction
map is less discriminative. When the background prediction
map can cover the background region well, the Lbas it pro-
duced has to beminimal while the background area should be
as large as possible, accordingly, the foreground area should
be as small as possible. So we use the foreground prediction
map area as constraints:

Lac = 1

H × W

H∑
h=1

W∑
w=1

M f (h, w) . (4)

Foreground Region Guidance (L f rg). Meanwhile, we main-
tain the FPM’s approach of employing the classification
task to drive the learning of foreground prediction maps,
which uses high-level semantic information to guide the fore-
ground prediction map to the approximate correct region
of the object. Consequently, a foreground region guidance
loss based on cross-entropy is utilized. After F is fed into
F2(F,�2), it is dotted withM f to produce L f rg:

ỹ f = GAP
(
M f · F2 (F,�2)

)
, (5)

L f rg = −
C∑
i=1

yi log
eỹ

f
i

∑C
j e

ỹ f
j

, (6)
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where y denotes the image-level one-hot encoding label.

Classification (Lcls). Besides, we obtain the classification
loss Lcls by applying cross-entropy to ỹ, which is used for
classification learning of the entire image:

Lcls = −
C∑
i=1

yi log
eỹi∑C
j e

ỹ j
. (7)

3.3 Weakly Supervised Object Localization

By jointly optimizing background activation suppression
loss, area constraint loss, foreground region guidance loss,
and classification loss in the AMC module, the foreground
predictionmap can be guided to the overall area of the object.
The total loss of the BAS training process is defined in the
following form:

L = Lcls + αL f rg + βLac + λLbas, (8)

where α, β, and λ are hyperparameters, Lcls and L f rg are
both cross-entropy losses. For all backbones and datasets, we
set λ = 1. The ablation experiments of the hyperparameters
α, β, and λ on WSOL are described in Sect. 4.3.

3.4 Weakly Supervised Semantic Segmentation

BAS can also be applied to weakly supervised semantic seg-
mentation to verify the generality of our method. Different
from weakly supervised object localization, weakly super-
vised semantic segmentation no longer assumes that there
is only one ground-truth class in an image, which is more
challenging. In addition, it is more direct to reflect the seg-
mentation quality of the prediction map by comparing with
the weakly supervised semantic segmentation SOTA meth-
ods.

Based on the network structure in Fig. 2, we apply BAS
to weakly supervised semantic segmentation with minor
changes.As shown inFig. 5,wemaintain the learning process
for a single prediction map in the AMCmodule by randomly
selecting a foreground category in the image and denoting its
correspondingpredictionmapasM f . In addition, tomake the
network achieve multi-label classification, we adopt softmax
cross-entropy loss and simply modify the form of it instead
of using Sigmoid-based loss (binary cross-entropy loss).
It mainly due to the activation value Sb obtained from the
background localization map has to be less than 0 to ensure
that the probability generated by 1/(1 + e−Sb ) is close to 0,
which conflicts with the non-negativity of Sb.

Multi-Label-Classification (Lmcls). For weakly supervised
semantic segmentation task, we adopt the multi-label classi-
fication lossLmcls instead ofLcls to deal with the multi-label

Fig. 5 ApplyingBAS toweakly supervised semantic segmentation task

case. To avoid the problems of class imbalance and train-
ing instability when there are multi-label in the softmax
formulation, we only consider the differentiation between
foreground and background classes and ignore the interrela-
tionship among foreground categories. It can be expressed as
follows:

Lmcls = −
L∑

i=1

yi log

(
eỹi∑K

j eỹ j + eỹi

)
, (9)

where L is the set of ground-truth classes in the image, and
the remaining set of categories is denoted as K . The total
loss function in weakly supervised semantic segmentation is
of the following form:

L = Lmcls + αL f rg + βLac + λLbas . (10)

The λ is set to 1 for all datasets. For PASCAL VOC 2012,
we set α = 0.2 and β = 1.2. For MS COCO 2014, we
adopt α = 0.5 and β = 1.5. The ablation experiments of
the hyperparameters α, β, and λ onWSSS, and the results of
different combinations of hyperparameters on five datasets
are presented in Sect. 5.2.

3.5 Empirical Justification

In this part, we empirically justify the advantage of introduc-
ing background activation suppression and its generalizabil-
ity.

The purpose of the exploratory experiment is to investi-
gate the relationship between activation value (Activation),
cross-entropy (Entropy) and background activation value
(Background Activation) with the mask area. Specifi-
cally, we first train a VGG16 classification network on
CUB-200-2011 using Lcls (Eq. 7) as supervision. Then,
for a given pixel-level mask, the activation and entropy cor-
responding to this mask are generated bymasking the feature
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Fig. 6 Motivation. Statistical analysis about exploratory experiments
on different datasets

map. We erode and dilate the ground-truth mask with a con-
volution of kernel size 5n × 5n, obtain masks with different
areas by changing the value of n, and plot the activation ver-
sus entropy with the mask area as the horizontal axis. As
shown in Fig. 1A, we display the curve for a single image
through the above process.

Due to each image having a different activation value
distribution and a different ground-truth mask area, we nor-
malize the activation curve for each image by dividing the
activation value generated by the entire image to obtain a
more statistically significant result, the same as in Eq.3. In
addition, the area representing the horizontal axis is also
normalized based on the ground-truth mask area, which is
marked by a red line. As shown in Fig. 6, we present the
curves of foreground activation value, cross-entropy, and
background activation value with respect to the mask area,
which are counted on the CUB-200-2011 test set. It can
be noted that the samples on the whole present the following
phenomena: When the mask expands near the ground-truth
mask, the activation value starts to saturate and the cor-
responding background activation value tends to converge,
while cross-entropy converges to zero early or even diverges
with the expansion of the mask. This suggests that the object
region learned by activation values is larger and closer to
the real object region than that learned by cross-entropy. We
further explore why the cross-entropy occasionally diverges
and visualize some results as shown in Fig. 7. It can be noted
that when the network classifies objects incorrectly, such
as identifying cows as horses, the calculated cross-entropy
maintains a high value as the mask area increases. In this
case, adopting cross-entropy values to supervise the localiza-
tionmap is less feasible and appropriate than using activation
values which are not influenced by other categories. Besides,
to verify the generality of this observation, we perform the
same experiments on the more complex OpenImages and
PASCAL VOC 2012 datasets. For PASCAL VOC 2012,
we select one ground-truth category and its corresponding
mask at a time, convert the multi-label into single-label, and
then plot the curve in the same way. As shown in Fig. 6, the

Fig. 7 Cross-entropy presents a divergence trend as the area of the
mask increases when the model classifies the object incorrectly. The
dashed line represents the position of ground-truth mask. Entropy:
cross-entropy. GT: Ground-Truth

statistical analysis demonstrates similar phenomena, there-
fore, we believe it is general that better localization ability
can be learned through activation values compared to cross-
entropy.

4 Experiments onWeakly Supervised Object
Localization

4.1 Experimental Setup

Datasets. We evaluate the proposed method on the popular
benchmarks including CUB-200-2011 (Wah et al., 2011),
ILSVRC (Russakovsky et al., 2015), and OpenImages
(Choe et al., 2020b). CUB-200-2011 contains 200 fine-
grain classes of birds with 5994 training images and 5794
testing images. ILSVRC contains about 1.2 million training
images and 50,000 validation images, which are divided into
1000 categories.OpenImages consists of 29,819, 2500 and
5000 samples from 100 classes for training, validation and
test, respectively. Except for class labels, CUB-200-2011
andOpenImages alsoprovidepixel-levelmask annotations
for the evaluation of the prediction mask.

Metrics. Following DA-WSOL (Zhu et al., 2022), we apply
both bounding box and mask metrics to evaluate the perfor-
mance of our BAS. For bounding box, following Xu et al.
(2022); Zhu et al. (2022); Lee et al. (2022a), four metrics are
used for evaluation, including GT-known localization accu-
racy (GT-known Loc), Top-1 localization accuracy (Top-1
Loc), Top-5 localization accuracy (Top-5Loc), andmaximal
box accuracy (MaxBoxAccV2). Specifically,GT-knownLoc
is correct when the intersection over union (IoU) between the
ground-truth bounding box and the predicted bounding box is
greater than a fixed IoU threshold (δ = 0.5). Top-1/Top-5 Loc
is correct when the Top-1/Top-5 predicted categories con-
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Table 1 Comparison with state-of-the-art methods

Methods Venue Backbone CUB-200-2011 Loc Acc. ILSVRC Loc Acc.

Top-1 Loc Top-5 Loc GT-k. Top-1 Loc Top-5 Loc GT-k.

CAM (Zhou et al., 2016) CVPR16 VGG16 41.06 50.66 55.10 42.80 54.86 59.00

ACoL (Zhang et al., 2018a) CVPR18 VGG16 45.92 56.51 62.96 45.83 59.43 62.96

ADL (Choe et al., 2020a) TPAMI20 VGG16 52.36 − 75.41 44.92 − −
I2C (Zhang et al., 2020d) ECCV20 VGG16 55.99 68.34 − 47.41 58.51 63.90

MEIL (Mai et al., 2020) CVPR20 VGG16 57.46 − 73.84 46.81 − −
PSOL (Zhang et al., 2020a) ♦ CVPR20 VGG16 ×2 66.30 84.05 89.11 50.89 60.90 64.03

SPA (Pan et al., 2021) CVPR21 VGG16 60.27 72.50 77.29 49.56 61.32 65.05

SLT (Guo et al., 2021) ♦ CVPR21 VGG16 ×3 67.80 − 87.60 51.20 62.40 67.20

FAM (Meng et al., 2021) ICCV21 VGG16 69.26 − 89.26 51.96 − 71.73

ORNet (Xie et al., 2021) ♦ ICCV21 VGG16 ×2 67.73 80.77 86.20 52.05 63.94 68.27

Kim et al. (Kim et al., 2022) CVPR22 VGG16 70.83 88.07 93.17 49.94 63.25 68.92

CREAM (Xu et al., 2022) ♦ CVPR22 VGG16 ×2 70.44 85.67 90.98 52.37 64.20 68.32

BAS (ours) This Work VGG16 70.90 85.36 91.04 52.94 65.38 69.66

CAM (Zhou et al., 2016) CVPR16 MobileNetV1 48.07 59.20 63.30 43.35 54.44 58.97

HaS (Singh & Lee, 2017) ICCV17 MobileNetV1 46.70 − 67.31 42.73 − 60.12

ADL (Choe et al., 2020a) TPAMI20 MobileNetV1 47.74 − − 43.01 − −
RCAM (Bae et al., 2020) ECCV20 MobileNetV1 59.41 − 78.60 44.78 − 61.69

FAM (Meng et al., 2021) ICCV21 MobileNetV1 65.67 − 85.71 46.24 − 62.05

BAS (ours) This Work MobileNetV1 70.54 86.71 93.04 53.05 66.68 72.03

CAM (Zhou et al., 2016) CVPR16 ResNet50 46.71 54.44 57.35 48.69 58.00 60.58

ADL (Choe et al., 2020a) TPAMI20 ResNet50 62.29 − − 48.53 − −
PSOL (Zhang et al., 2020a) ♦ CVPR20 ResNet50 ×2 70.68 86.64 90.00 53.98 63.08 65.44

FAM (Meng et al., 2021) ICCV21 ResNet50 73.74 − 85.73 54.46 − 64.56

DA-WSOL (Zhu et al., 2022) CVPR22 ResNet50 ×2 66.65 − 81.83 55.84 − 70.27

Kim et al. (Kim et al., 2022) CVPR22 ResNet50 73.16 86.68 91.60 53.76 65.75 69.89

CREAM (Xu et al., 2022) ♦ CVPR22 ResNet50 ×2 76.03 − 89.88 55.66 − 69.31

BAS (ours) This Work ResNet50 76.75 90.04 95.41 57.46 68.57 72.00

CAM (Zhou et al., 2016) CVPR16 InceptionV3 41.06 50.66 55.10 46.29 58.19 62.68

DANet (Xue et al., 2019) ICCV19 InceptionV3 49.45 60.46 67.03 47.53 58.28 −
I2C (Zhang et al., 2020d) ECCV20 InceptionV3 55.99 68.34 72.60 53.11 64.13 68.50

GCNet (Lu et al., 2020) ECCV20 InceptionV3 58.58 71.00 75.30 49.06 58.09 −
PSOL (Zhang et al., 2020a) ♦ CVPR20 InceptionV3 ×2 65.51 83.44 − 54.82 63.25 65.21

SPA (Pan et al., 2021) CVPR21 InceptionV3 53.59 66.50 72.14 52.73 64.27 68.33

SLT (Guo et al., 2021) ♦ CVPR21 InceptionV3 ×3 66.10 − 86.50 55.70 65.40 67.60

FAM (Meng et al., 2021) ICCV21 InceptionV3 70.67 − 87.25 55.24 − 68.62

CREAM (Xu et al., 2022) ♦ CVPR22 InceptionV3 ×2 71.76 86.37 90.43 56.07 66.19 69.03

BAS (ours) This Work InceptionV3 72.09 88.11 94.63 58.50 69.03 72.07

Best results are highlighted in bold, second are underlined. ♦ means multi-stage model. ×n means that there are n different networks used

tain the ground-truth class and the GT-known Loc is correct.
MaxBoxAccV2 compared to GT-known (δ = 0.5) considers
multiple IoU thresholds (δ ∈ {0.3, 0.5, 0.7}) and takes the
average localization performance as the result. For mask, we
adopt both the peak intersection over union (PIoU) (Zhang
et al., 2020a) and the pixel average precision (PxAP) (Choe

et al., 2020b) as metrics when the pixel-level ground-truth
label is available.

ImplementationDetails.Weevaluate the proposedmethodon
the most popular backbones, including VGG16 (Simonyan
& Zisserman, 2014), InceptionV3 (Szegedy et al., 2016),
ResNet50 (He et al., 2016), and MobileNetV1 (Howard et
al., 2017). All networks are fine-tuned on the pre-trained
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Fig. 8 Visualization comparison with the baseline CAM (Zhou et al., 2016) method on CUB-200-2011 (Wah et al., 2011) and ILSVRC (Rus-
sakovsky et al., 2015). The ground-truth bounding boxes are in Red, and the predictions are in Green (Color figure online)

weights of ILSVRC (Russakovsky et al., 2015). We train
120 epochs on the CUB-200-2011 (Wah et al., 2011) and
9 epochs on ILSVRC (Russakovsky et al., 2015). In the train-
ing phase, the input images are resized to 256×256 and then
randomly cropped to 224×224. When Lbas is larger than 1,
we mark it as 1, to ensure the stability of the initial training.
In the inference phase, we use ten crop augmentation to get
the final classification results following the settings in Pan et
al. (2021), Guo et al. (2021), Zhang et al. (2018b). For local-
ization, we replace the random crop with the center crop, as
in previous works (Wei et al., 2021; Zhang et al., 2020a; Yun
et al., 2019; Choe & Shim, 2019).

4.2 Comparison with State-of-the-Arts

We compare the proposed BASwith state-of-the-art methods
on CUB-200-2011 (Wah et al., 2011) and ILSVRC (Rus-
sakovsky et al., 2015) datasets. As shown in Table 1,
BAS achieves stable and excellent performance on vari-
ous backbones. On CUB-200-2011 (Wah et al., 2011),
BAS surpasses all existing methods by a large margin in
terms of GT-known/Top-1/Top-5 Loc when the backbones
are MobileNetV1, ResNet50 and InceptionV3. Compared

with the current Foreground-Prediction-Map-based method
FAM (Meng et al., 2021), BAS achieves 1.78%, 7.33%,
9.68% and 7.38% improvement on VGG16, MobileNetV1,
ResNet50 and InceptionV3 in terms of GT-known Loc,
respectively. On ResNet50, BAS achieves 95.41% GT-
known Loc, which is a significant increase of 3.81%
compared to the best performing counterpart Kim et al. (Kim
et al., 2022). In addition, our method improves 5.53% and
4.20% GT-known Loc compared to the latest multi-stage
model CREAM (Xu et al., 2022) on ResNet50 and Incep-
tionV3, respectively.

On ILSVRC (Russakovsky et al., 2015), BAS overall
exceeds all baseline methods in terms of GT-known/Top-
1/Top-5 Loc on all backbones. When MobileNetV1 is used
as the backbone, our BAS achieves 72.03% GT-known Loc,
surpassing FAM (Meng et al., 2021) by a large margin with
a 9.98% improvement. Moreover, InceptionV3-BAS and
ResNet50-BAS obtain 72.07% and 72.00%GT-known Loc,
respectively, establishing a novel state-of-the-art. It shows
thatBASperformswell on bothfine-grained dataset and large
universal dataset. Furthermore, we visualize the localization
maps of the proposed BAS and CAM (Zhou et al., 2016)
on CUB-200-2011 and ILSVRC in Fig. 8. Compared to
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Table 2 Ablation study (a) (b) (c)

Baseline � � �

Image (a) (b) (c)

Lbas � �
Top-k �
Top-1 Loc 57.89 74.15 76.75

Top-5 Loc 67.48 86.88 90.04

GT-known 71.14 92.15 95.41

Bold values indicate the best results among all methods
(a) the baseline method. (b) add Lbas to the baseline. (c) synthesize the prediction maps with Top-k strategy

Fig. 9 Hyperparameters. a α for foreground region guidance loss L f rg . b β for area constraint loss Lac. c λ for background activation suppression
loss Lbas

CAM, BAS can robustly cover the entire area of the object
even in noisy environments and is sharper and more compact
at the edges of the object.

4.3 Ablation Study

In this section, we perform a series of ablation experiments
using ResNet50 (Simonyan & Zisserman, 2014) as the back-
bone. Above all, we conduct ablation experiments on various
components of BAS on CUB-200-2011 (Wah et al., 2011).
We take Lcls , L f rg and Lac together as the baseline method
for the Foreground-Prediction-Map-based architecture. As
shown in Table 2, the addition of Lbas to the baseline
can enable the localization map to cover the object region
more completely, thus significantly increasing the localiza-
tion accuracy, with 21.01% and 16.26% improvement in
terms of GT-known Loc and Top-1 Loc, respectively. More-
over, using Top-k strategy to integrate the final localization
result, though making the localization result not as sharp
as before, it can further improve the GT-known Loc (from

92.15% to 95.41%) by alleviating the problem of the clas-
sification network focusing on the distinguish parts.

Hyperparameter α, β, and λ in total loss There are three
hyperparameters in Eq.8. Their effectiveness and sensi-
tivity analyses for localization quality are performed on
CUB-200-2011 and ILSVRC in Fig. 9. The α denotes
the factor of L f rg , and it can be noticed from Fig. 9a that
the presence of foreground region guidance loss (α ≥ 0.2)
can significantly improve the localization accuracy by ensur-
ing stable learning of foreground activation maps on both
datasets. Theβ reflects the degree of constraint between fore-
ground area and background suppression. When β is small,
more areas in the foreground activation map are activated,
while when β is too large, it will suppress the learning of the
activation map. As shown in Fig. 9b, our method performs
stably with high accuracy when β varies from 1.2 to 1.7 on
CUB-200-2011 and from 1.6 to 2.4 on ILSVRC. The λ

denotes the factor of Lbas . A larger λ indicates that more
regions in the prediction map are activated by background
activation suppression. As shown in Fig. 9c, the localization
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Fig. 10 GT-known Loc (%) w.r.t k. Evaluation results of combining
the Top-k prediction maps when the backbone is VGG16 and ResNet50
respectively

accuracy continues to grow on CUB-200-2011 when λ

increases from 0.3 to 0.6 and remains stable from 0.6 to 1.3
with less than 1%change inGT-knownLoc,which shows that
the proposed BAS approach can significantly improve the
localization accuracy. In summary, although we have three
hyperparameters in the loss function, it is easy to choose
suitable values for the hyperparameters α, β, and λ. In addi-
tion, we also provide the results of different combinations
of hyperparameters on CUB-200-2011 and ILSVRC in
Sect. 5.2.

Hyperparameter k in Top-k strategy. We evaluate the effect
of the hyperparameter k in our BAS. As shown in Fig. 10, the
accuracyofGT-knownLoc is improvedonCUB-200-2011
when k > 1, comparing k = 1. For VGG16 and ResNet50,
the highest localization accuracy is achieved at k of 80 and
200, respectively. It suggests that the Top-k strategy can be
used to obtain more complete localization results and fur-
ther improve the localization performance by integrating the
localizationmaps of similar categories on CUB-200-2011.
In contrast, for both VGG16 and ResNet50, the best local-
ization results are obtained for k = 1 on ILSVRC dataset,
which shows a high variability of classes and few localization
features of similarity between categories on ILSVRC.

Generator after different layers. We report the results of
inserting the generator after different layers of ResNet50. As
shown in Table 3 (left table), quantitative experiment indi-
cates that inserting the generator after layer 3 achieves the

Fig. 11 Comparison of background prediction maps learned from a
original image or b feature maps

best results and is significantly better than other positions.
The prediction maps learned from different layers are visu-
alized in Table 3 (right figure). When the generator learns
localization information from shallow feature maps (layer 1
and layer 2), the prediction map performs better at the edges
of objects, but it is insufficient to resist background distrac-
tions and has poor semantic learning ability. In addition, the
generator learns localization information from the high-level
feature (layer 4) resulting in imprecise localization due to the
limitation of resolution.

Original image vs feature maps. We fix the generator after
layer 3 and conduct experiments on the masking position
(original image vs feature maps) of the background predic-
tion map. As illustrated in Fig. 11, it can be noted that the
masking featuremaps approach achieves higher accuracy and
better coverage of the localization results on the object, while
the results generated by the approach of masking the original
image focus more on the edge or texture of the object and
have less ability to locate smooth regions. It may be because
the learning process in shallow layers usually focuses on
common basic features (e.g., edges, textures) and ignores
high-level semantic features (Table 4).

Comparison with previous conference version. We compare
the improvement over the conference version in both quanti-
tative and qualitative aspects. Benefiting from the adjustment
to the position of theReLU activation function,BAScan learn
the feature map more adequately and efficiently. As shown

Table 3 Localization accuracy
and visualization results about
inserting the generator after
different layers on ResNet50

Top-1 Loc Top-5 Loc GT-known

Layer 1 42.47 49.65 52.87

Image layer 1 layer 2 layer 3 layer 4

Layer 2 69.24 81.24 86.16

Layer 3 76.75 90.04 95.41

Layer 4 71.63 84.81 90.94

Bold values indicate the best results among all methods
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Table 4 Evaluation results in terms of MaxBoxAccV2 on the CUB-200-2011 and ILSVRC datasets using various backbones

Methods Venue CUB-200-2011 (MaxBoxAccV2) ILSVRC (MaxBoxAccV2)

VGG Inception ResNet Mean VGG Inception ResNet Mean

CAM (Zhou et al., 2016) CVPR16 63.7 56.7 63.0 61.1 60.0 63.4 63.7 62.4

HaS (Singh & Lee, 2017) ICCV17 63.7 53.4 64.7 60.6 60.6 63.7 63.4 62.6

ACoL (Zhang et al., 2018a) CVPR18 57.4 56.2 66.5 60.0 57.4 63.7 62.3 61.1

SPG (Zhang et al., 2018b) ECCV18 56.3 55.9 60.4 57.5 59.9 63.3 63.3 62.2

CutMix (Yun et al., 2019) ICCV19 62.3 57.5 62.8 60.8 59.4 63.9 63.3 62.2

ADL (Choe et al., 2020a) TPAMI20 66.3 58.8 58.3 61.1 59.8 61.4 63.7 61.7

IVR (Kim et al., 2021) ICCV21 65.2 60.8 66.9 64.3 61.5 65.5 65.6 64.2

DA-WSOL (Zhu et al., 2022) CVPR22 – 68.0 69.9 – – 64.8 68.2 –

CREAM (Xu et al., 2022) CVPR22 71.5 64.2 73.5 69.7 66.2 68.9 67.4 67.5

Kim et al. (Kim et al., 2022) CVPR22 80.1 – 75.9 – 66.6 – 68.7 –

C2AM (Xie et al., 2022b) CVPR22 81.4 82.4 83.8 82.5 66.3 65.8 66.8 66.3

BAS (ours) This Work 83.5 82.7 89.4 85.2 68.2 68.9 68.8 68.6

Bold values indicate the best results among all methods

Fig. 12 Experimental comparison between the previous conference
version and this work. a The Lbas training loss curves. b Visualiza-
tion of the localization results

in Fig. 12a, we display the curve of Lbas (Eq. 3) training loss
with the training iterations for both previous conference ver-
sion and this work. It can be observed that the loss curve (this
work) converges to a lower point and shows a more stable
convergence trend, while the loss curve in the previous con-
ference version even presents an increasing trend during the
iterations. It indicates that the ReLU in the last layer (Fig. 4)
makes the classification network learn the background region
insufficiently, hence resulting in the inadequate convergence
of BAS loss. Figure 12b illustrates some localization maps
to support this analysis. Compared with the previous confer-
ence version, BAS (this work) demonstrates more robustness
in the learning of the background region and consequently
improves the localization accuracy in Table 5. We achieve an
average of 0.83% and 0.11% GT-known Loc gains on the
four backbone networks on CUB-200-2011 and ILSVRC,
respectively, without additional parameters and computa-
tions.

Table 5 Improvement in GT-known Loc compared to the previous con-
ference version

Backbone CUB-200-2011 ILSVRC

VGG16 91.04 (−0.03) 69.66 (+0.02)

MobileNetV1 93.04 (+0.69) 72.03 (+0.03)

ResNet50 95.41 (+0.28) 72.00 (+0.23)

InceptionV3 94.63 (+2.39) 72.07 (+0.14)

Mean 93.53 (+0.83) 71.44 (+0.11)

Bold values indicate the best results among all methods

Fig. 13 Statistical analysis of correct bounding boxes, based on
ResNet50 (CAM (Zhou et al., 2016), ADL (Choe et al., 2020a), and
DA-WSOL (Zhu et al., 2022))

4.4 Performance Analysis

In this section, we evaluate and analyze in detail the local-
ization quality and segmentation quality of BAS.

Localization Quality. Tabel 4 shows the MaxBoxAccv2
scores compared with other methods on CUB-200-2011
(Wah et al., 2011) and ILSVRC (Russakovsky et al., 2015).
Quantitative experiments indicate that our method achieves
the best results for different backbone networks and datasets
under the MaxBoxAccv2 criterion, which proves the high
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Fig. 14 Visualization of the initial seed generated by CAM and the proposed BAS on the PASCAL VOC 2012 dataset

Fig. 15 Segmentation Quality. IoU-Threshold curves for differ-
ent baseline methods and evaluation results of PIoU, PxAP on
CUB-200-2011 (Wah et al., 2011) and OpenImages (Choe et

al., 2020b) datasets, based on ResNet50 (CAM (Zhou et al., 2016),
ADL (Choe et al., 2020a), and DA-WSOL (Zhu et al., 2022))

quality of the bounding box generated by BAS and veri-
fies the effectiveness and generalizability of the proposed
method. In particular, on CUB-200-2011, we exceed the
previous best methods by 2.1% and 5.6% when the back-
bone networks are VGG16 and ResNet50, respectively.
Besides, in Fig. 13, we demonstrate the statistical analysis
of IoU based on ResNet50, which plots the IoU distribution
curves between the bounding boxes and the ground-truth
boxes when localized correctly, following DANet (Xue et
al., 2019). On CUB-200-2011, we achieve 78.7% IoU
median, exceeding the latest state-of-the-art method DA-
WSOL (Zhu et al., 2022) by 12.6%, and correspondingly

by 3.0% on ILSVRC. From the median IoU and the IoU dis-
tribution, it can be seen that the proposed BAS significantly
improves the localization quality on both CUB-200-2011
and ILSVRC datasets (Fig. 14).

Segmentation Quality. We compare the localization map
with the ground-truth mask label using two metrics, PIoU
and PxAP, following DA-WSOL (Zhu et al., 2022). As
shown in Fig. 15 (left table), we evaluate the performance
of the proposed BAS with CAM (Zhou et al., 2016),
ADL (Choe et al., 2020a) and DA-WSOL (Zhu et al., 2022)
on ResNet50. Compared to DA-WSOL, BAS achieves sig-
nificant and consistent improvement, with a 15.06% increase
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Fig. 16 Examples of semantic segmentation results on PASCAL VOC 2012 for IRN and BAS (with IRN)

in PIoU and 15.24% in PxAP on CUB-200-2011. The pro-
posed method also surpasses all methods on OpenImages,
although OpenImages is a more challenging dataset due to
a large number of small objects and complex backgrounds.
In addition, we present the IoU-Threshold curves in the right
graph of Fig. 15, which represent the IoU values at varying
thresholds within the range of [0, 255]. As observed from the
IoU-Threshold curves on both datasets, our method demon-
strates a lower sensitivity to the thresholds and achieves better
results at arbitrary threshold compared to other methods,
which indicates that the localization map produced by BAS
has fewer low confidence regions and is closer to the ground-
truth object region.

5 Experiments onWeakly Supervised
Semantic Segmentation

5.1 Experimental Setup

Datasets and Evaluation Metric. To evaluate the perfor-
mance of BAS on weakly supervised semantic segmenta-
tion task, we conduct experiments on the commonly used
PASCAL VOC 2012 (Everingham et al., 2010) and MS
COCO 2014 (Lin et al., 2014) datasets. PASCAL VOC
2012 contains 21 categories (including one background
class). It has 1464, 1449, and 1456 samples in training, val,
and test sets, respectively. Following the common exper-
imental protocol (Chen et al., 2014), the training set is
augmented with 10,582 weakly annotated images provided

123



International Journal of Computer Vision (2024) 132:750–775 765

Fig. 17 Visualization of the initial seed generated by CAM and the proposed BAS on the MC COCO 2012 dataset

by SBD dataset (Hariharan et al., 2011). MS COCO 2014
dataset has 81 semantic classes (including one background
class). Following Lee et al. (2022a), Jiang et al. (2022),
images without the target categories are moved off the
dataset, remaining 82,081 training images and 40,137 val-
idation images. We use the mean Intersection-over-Union
(mIoU) as the evaluation metric for all experiments (Figs.
16, 17).

ImplementationDetails.For seed generation, the input image
is resized to 512×512, then augmented by horizontal flipping
and random cropping to 448×448. We train the network
for 10 epochs. Batch size is set to 16 and 64 on PASCAL
VOC 2012 and MS COCO 2014 respectively. To optimize
the network, SGD optimizer is adopted with momentum
mechanism and the momentum coefficient is set to 0.9. The
initial learning rate is set as 0.005 and decayed following
the poly policy lrinit = lrinit(1 − i tr/max_i tr)ρ with ρ =
0.9. Following Lee et al. (2022a), Xie et al. (2022a), we use
ResNet50 as the backbone network to generate the initial
seed for both PASCAL VOC 2012 and MS COCO 2014
datasets.

Seed Refinement and Segmentation. For seed refinement,
to make a fair comparison, we follow Lee et al. (2022a),
Lee et al. (2021a), Chen et al. (2022b) using IRN (Ahn et
al., 2019) to improve the quality of the initial seed. After

Table 6 Ablation study for the components of BAS on PASCAL VOC
2012 and MS COCO 2014

Baseline Lbas PASCAL COCO

� 50.1 32.5

� � 57.7 36.9

Bold values indicate the best results among all methods

generating pseudo masks, we select DeepLabV2 (Chen et
al., 2017) with ResNet-101 (He et al., 2016) as the seg-
mentation network, following Xie et al. (2022a), Jo and Yu
(2021). We adopt the default setting to train DeepLabV2 as
in Lee et al. (2022a) with weights pretrained on MS COCO
2014.

5.2 Ablation Study

In this section, we perform a series of ablation experiments
with ResNet50 as the backbone on PASCAL VOC 2012
and MS COCO 2014. We first execute an ablation study
regarding the loss composition of theBAS, and as in Sect. 4.3,
we take Lcls , L f rg , and Lac together as the baseline for
the Foreground-Prediction-Map-based architecture. It can be
seen from Table 6 that the addition of Lbas can significantly
improve the segmentation quality of baseline with 7.6% and
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Fig. 18 Hyperparameters. a α for foreground region guidance loss
L f rg . b β for area constraint loss Lac. c λ for background activation
suppression loss Lbas

4.4% mIoU gains on PASCAL VOC 2012 and MS COCO
2014, respectively, which verifies the effectiveness of the
proposed Lbas in capturing object regions relevant to classi-
fication.

Hyperparameter α,β,and λ in total loss. Figure 18 illustrates
the sensitivity of the segmentation quality to the hyperpa-
rameters α, β, λ on PASCAL VOC 2012 and MS COCO
2014. Among them, α is the coefficient of L f rg and a small
α can enable L f rg to work well. As shown in Fig. 18a,
the mIoU result is significantly improved on PASCAL VOC
2012 when the α is greater than 0.1 and varies very little
in the interval 0.15 to 0.5 with less than 0.3% mIoU change.
Lac aims to constrain the foreground area to avoid unlimited
expansion of the foreground area. Therefore, if the coeffi-
cient β of Lac is too small, it will lead to too many regions
to be activated hence drastically reducing the segmentation
performance as shown in Fig. 18b. The purpose of Lbas is
to allow the localization map to learn regions contributing
to the classification in a background activation suppression
manner. As shown in Fig. 18c, the mIoU result remains sta-
ble on both datasets when the factor λ of Lbas is in the range
of 0.8 to 1.2.

Although three hyperparameters are included in the total
loss, in practice, we simply follow a principle of β = α + λ,
so thatLac is balanced with the lossesL f rg andLbas . Mean-
while, in finding the most suitable ratio between α and λ, for
simplicity, λ is fixed at 1 on both WSOL and WSSS. There-
fore, when α is determined, β and λ are also determined.
In Table 7, we provide the results of different combinations
of hyperparameters on five datasets. When the α changes
from 0.2 to 1.5, the effect on the results is limited with
less than 0.6% change. In fact, following the settings of
α = 0.5, β = 1.5, λ = 1.0 is feasible for all datasets, with
very little change compared to the results reported in the

Table 8 The mIoU results of inserting the generator after different
layers with ResNet50 backbone

Dataset Different layers

Layer 1 Layer 2 Layer 3 Layer 4

PASCAL VOC 2012 28.6 41.2 57.7 55.3

MS COCO 2014 17.2 25.3 36.9 34.8

Bold values indicate the best results among all methods

Table 9 Effects of applyingBAS on different baselinemethods, includ-
ing mIoU of the initial seed (Seed) and the pseudo ground-truth mask
(Mask) on the PASCAL VOC 2012 training set

Method Venue Seed Mask

IRN (Ahn et al., 2019) CVPR19 48.8 66.3

SC-CAM (Chang et al., 2020) CVPR20 50.9 63.4

SEAM (Wang et al., 2020b) CVPR20 55.4 63.6

CONTA (Zhang et al., 2020c) NeurIPS20 48.8 67.9

CDA (Su et al., 2021) ICCV21 50.8 67.7

CSE (Kweon et al., 2021) ICCV21 56.0 −
RIB (Lee et al., 2021a) NeurIPS21 56.5 68.6

ReCAM (Chen et al., 2022b) CVPR22 54.8 70.9

CLIMS (Xie et al., 2022a) CVPR22 56.6 70.5

AdvCAM (Lee et al., 2022a) TPAMI22 55.6 69.9

Ours This work 57.7 −
Ours + IRN This work 58.2 71.1

AdvCAM + CDA − 55.5 69.3

ReCAM + CDA − 54.5 70.5

Ours + CDA This work 58.8 71.0

CDA + AdvCAM − 55.5 69.3

ReCAM + AdvCAM − 56.6 70.9

Ours + AdvCAM This work 59.8 71.5

Bold values indicate the best results among all methods

paper. The above experiments illustrate that it is easy to find
a suitable set of hyperparameters on different datasets.

Generator after different layers. In Table 8, we report the
mIoU results of inserting the generator after different layers
of ResNet50. Since the generator contains only one convo-
lution layer, the semantic representation of the generated
localization map depends mainly on the reused backbone
part. Therefore, inserting the generator after layer 1 or layer
2 will result in insufficient semantic representation and poor
segmentation performance, as presented in Table 8. In addi-
tion, inserting the generator after 4 does not perform better
than layer 3, reducing 2.4% and 2.1% mIoU on PASCAL
VOC 2012 and MS COCO 2014, respectively. It is mainly
because the feature maps of layer 4 are usually coarser than
the feature maps of layer 3, hindering the acquisition of fine
segmentation results.
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5.3 Results on PASCAL VOC 2012Dataset

Quality of Initial Seed and Pseudo Labels. Table 9 compares
the quality of the initial seed and the pseudo ground-truth
masks on the PASCAL VOC 2012 training set. For the
initial seed, we achieve a mIoU of 57.7%, exceeding the
previous method by a large margin. Compared with the state-
of-the-artmethodCLIMS (Xie et al., 2022a),which uses both
ResNet50 and CLIP (Radford et al., 2021) networks in the
seed generation phase, while BAS uses only ResNet50 net-
work and achieves a gain of 1.1%. Further, after normalizing
the seeds generated by our method and by other methods
and adding them together, BAS can combine with various
baseline methods and significantly improve their segmenta-
tion quality by providing high quality foreground prediction
maps. As shown in Table 9, the proposed BAS improves the
IRN (Ahn et al., 2019) by 9.4%mIoU, which is a remarkable
boost. In addition, we achieve the best results with 59.8%
mIoU when applying BAS to AdvCAM (Lee et al., 2022a).
We also add the initial seeds of the different methods for a
fair comparison in Table 9. It is obvious that combining with
BAS brings more remarkable improvement than combining
with other methods. This is because BAS can produce high
and balanced responses on the object, which benefits other
methods significantly. We report the per-class mean IoU in
Table 10. Although our method achieves consistent improve-
ment on the above baseline methods, it does not perform
well in some categories. This is because the classification
network has difficulty distinguishing between objects and
class-related contexts, especially in some categories, e.g.,
boats andwater, TV and programs onTV,which in turn limits
the localization ability of BAS. Figure 14 shows the visual
comparison of the initial seed generated by BAS and IRN. It
can be clearly noticed that ourmethod has better performance
in capturing the whole object area with a high confidence
score. For the pseudo ground-truth mask, after refinement
by IRN (Ahn et al., 2019), we achieve 4.8%, 3.3%, and
1.6% gains when BAS is deployed on IRN, CDA, and Adv-
CAM, respectively, which illustrates the effectiveness of the

proposed method. BAS allows to obtain a better foreground-
background segmentation and thus provides a strong support
for the seed generation stage of the WSSS task.

Quality of Segmentation. To further validate the effective-
ness of our method, we employ the pseudo segmentation
labels to directly train a semantic segmentation network.
Table 11 presents the segmentation results of the proposed
BAS (with IRN) and other methods on the PASCAL VOC
2012 dataset. It is observed that our BAS exceeds previous
methods under the same level of supervision, with 69.6%
and 69.9% mIoU on the val and test sets. Compared to the
latest method ReCAM (Chen et al., 2022b), with the same
backbone network, we achieve a 1.1% mIoU improvement
on val set and 1.5% on test set. We also show some quali-
tative segmentation results in Fig. 16. Compared with IRN,
BAS demonstrates more robustness to various challenging
scenarios, such as various sized objects, complex environ-
ments, and multi-instance situations.

5.4 Results on MS COCO 2014Dataset

The accuracy of the proposed method and other state-of-
the-art approaches on the MS COCO 2014 validation set
is compared in Table 12. Our BAS based on IRN achieves
a mIoU value of 45.1%, exceeding all previous methods.
Compared to the previous best model AdvCAM (ResNet101
is adopted as the backbone network), we use a smaller
ResNet50 as the backbone, but achieve better results. In par-
ticular, we surpass our baseline method IRN (Ahn et al.,
2019) by 3.7% mIoU. Figure 17 demonstrates the visual
comparison of the initial seed obtained by CAM (Zhou et al.,
2016) and our method. Qualitative experiments show that
the proposed BAS can capture more object areas compared
to CAM, especially for large objects and multiple instances.
In addition, BAS can achieve balanced and comprehensive
responses on the target regions across various categories.
Figure 19 shows some examples of semantic segmentation
masks on MS COCO 2014 produced by IRN and by BAS
(with IRN). It is observed that our method employed on the

Table 7 Effect of different
combinations of
hyperparameters on WSOL and
WSSS with ResNet50 backbone

Hyperparameters GT-k. Loc PxAP mIoU

CUB-200 ILSVRC OpenImg PASCAL COCO

α=0.2, β=1.2, λ=1.0 95.29 71.75 66.67 57.73 36.79

α=0.5, β=1.5, λ=1.0 95.41 71.87 66.86 57.68 36.91

α=0.7, β=1.7, λ=1.0 95.35 71.94 66.74 57.55 36.84

α=1.0, β=2.0, λ=1.0 95.26 72.00 66.52 57.41 36.67

α=1.5, β=2.5, λ=1.0 95.08 71.89 66.39 57.16 36.43

Report 95.41 72.00 66.86 57.73 36.91

Bold values indicate the best results among all methods
Report: the result reported in the paper. OpenImg: OpenImages. GT-k. Loc: GT-known Loc
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Table 11 Performance
comparison of WSSS methods
in terms of mIoU (%) on the
PASCAL VOC 2012 val and
test sets

Method Venue Sup. Val Test

Full supervision

DeepLabV2 (Chen et al., 2017) TPAMI18 F 77.6 79.7

WideResNet38 (Wu et al., 2019) PR19 F 80.8 82.5

Image-level supervision + Saliency maps

OAA (Jiang et al., 2021) TPAMI21 I + S 66.1 67.2

AuxSegNet (Xu et al., 2021) ICCV21 I + S 69.0 68.6

AdvCAM (Lee et al., 2022a) TPAMI22 I + S 71.3 71.2

Image-level supervision only

IRN (Ahn et al., 2019) CVPR19 I 63.5 64.8

BES (Chen et al., 2020) ECCV20 I 65.7 66.6

CONTA (Zhang et al., 2020c) NeurIPS20 I 65.3 66.1

IAL (Wang et al., 2020a) IJCV20 I 62.0 62.4

ADL (Choe et al., 2020a) TPAMI20 I 53.7 54.7

LIID (Liu et al., 2020) TPAMI20 I 66.5 67.5

RIB (Lee et al., 2021a) NeurIPS21 I 68.3 68.6

CDA (Su et al., 2021) ICCV21 I 65.8 66.4

ECS (Sun et al., 2021) ICCV21 I 66.6 67.6

PMM (Li et al., 2021) ICCV21 I 68.5 69.0

CSE (Kweon et al., 2021) ICCV21 I 68.4 68.2

CPN (Zhang et al., 2021c) ICCV21 I 67.8 68.5

A2GNN (Zhang et al., 2021a) TPAMI21 I 66.8 67.4

AFA (Ru et al., 2022b) CVPR22 I 66.0 66.3

Du et al. (Du et al., 2022) CVPR22 I 67.7 67.4

ReCAM (Chen et al., 2022b) CVPR22 I 68.5 68.4

SIPE (Chen et al., 2022a) CVPR22 I 68.8 69.7

MCIS (Wang et al., 2022) TPAMI22 I 66.2 66.9

AdvCAM (Lee et al., 2022a) TPAMI22 I 68.1 68.0

Ours This Work I 69.6 69.9

Bold values indicate the best results among all methods
Sup.: supervision. F : full supervision. I: image-level supervision. S: saliency map supervision

Table 12 Evaluation results on
MS COCO 2014 validation set

Method Venue Bac. Sal. mIoU

IRN (Ahn et al., 2019) CVPR19 R101 41.4

IAL (Wang et al., 2020a) IJCV20 VGG16 27.7

ADL (Choe et al., 2020a) TPAMI20 VGG16 � 30.8

CONTA (Zhang et al., 2020c) NeurIPS20 R50 33.4

EPS (Lee et al., 2021b) ICCV21 WR38 � 35.7

CSE (Kweon et al., 2021) ICCV21 WR38 36.4

PMM (Li et al., 2021) ICCV21 WR38 36.7

RIB (Lee et al., 2021a) NeurIPS21 R101 43.8

ReCAM (Chen et al., 2022b) CVPR22 R50 44.1

L2G (Jiang et al., 2022) CVPR22 R101 � 44.2

AdvCAM (Lee et al., 2022a) TPAMI22 R101 44.4

Ours This Work R50 45.1

Bold values indicate the best results among all methods
Sal: Saliency. Bac: Backbone. WR38: WideResNet38. R50/101: ResNet50/101
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Fig. 19 Examples of semantic segmentation results on MS COCO 2014 for IRN and BAS (with IRN)

IRN can achieve more accurate segmentation and show a
better demarcation between different objects, because the
proposed BAS can provide a more complete and accurate
seed region compared to IRN.

5.5 Analysis

In this section, we will explore how to fully leverage BAS,
especially focusing on its crucial background activation
suppression loss. Furthermore, we aim to enhance the seg-
mentation capability of BAS by integrating it with other
methods.

Class-agnostic foreground map. Different from the CAM-
based approaches to extract class activation maps from
the classifier, the proposed BAS obtains localization maps

through an extra generator. In addition to generating class-
specific localization maps, BAS can also produce a class-
agnostic foreground map by providing suitable objective
functions. To this end, we consider all the classes existing in
the image as a foreground class and sum the Lbas of existing
classes to supervise the foregroundmap. In this way, the fore-
ground map can be fully trained from the entire dataset. As
shown in Fig. 20, the class-agnostic foregroundmap localizes
objects more completely and robustly than the class-specific
localization map, and generates less noise. However, the
foreground map is unable to distinguish objects of differ-
ent categories and often identifies objects that are not in the
target classes as shown in Fig. 20e. To utilize the foreground
map to improve the performance of class-specific localiza-
tion maps, we follow an intuitive idea that the foreground
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Fig. 20 Class-agnostic foreground map vs class-specific localization
map in the following five aspects: a Completeness. b Connectivity. c
Less noise. d Identifying class-related background. e Class-aware

map usually covers all class-specific localization maps and
has higher segmentation quality. If the class-specific local-
ization map has a higher response in some regions than the
foreground map, it may be caused by noise or confusing
background, as shown in Fig. 20c, d. Therefore, we should
weaken the response in these regions by directly replacing
them with the response in the foreground map or averag-
ing the response of both maps. The experimental results in
Table 13 show that both strategies can improve the quality
of the initial seed and hence increase the accuracy of the
pseudo ground-truth mask. The best results are achieved by
the average approach which not only reduces the response of
the uncertain region but also combines the prediction prob-
abilities of both class-agnostic and class-specific maps. It
improves the initial seed and pseudo ground-truth mask by
0.6% and 0.5% mIoU results.

Improve the quality of BAS. As analyzed in Sect. 5.3, It can
be noted that BAS does not perform well in some categories,
which is usually due to the co-occurring context provid-
ing support to the classification discrimination, causing the
localization map to learn the context. To alleviate this prob-
lem, we apply the proposed BAS to the W-OoD (Lee et
al., 2022b) method, which uses additional out-of-distribution
data to address the spurious relevance of the background,
such as boat-water and aeroplane-sky/runway. As presented
in Table 14, benefiting from the strong discriminative abil-
ity of the classification network inW-OoDmethod, BAS can
achieve better performance, with a 1.8%mIoU improvement
on the initial seed, including 16.0% and 7.1%mIoUgains on
the boat and aeroplane categories, respectively. After apply-
ing IRN and DeepLabV2, BAS w/ W-OoD obtains 71.3%
and 71.1%mIoU on PASCAL VOC 2012 val and test sets.
In addition, we apply CLIMS (Xie et al., 2022a) to BAS

123



International Journal of Computer Vision (2024) 132:750–775 771

Table 13 Applying the class-agnostic foreground map to the class-
specific localization maps with different strategies on the PASCAL
VOC 2012

Method Strategy Seed Mask Val Test

Ours − 57.7 71.1 69.6 69.9

w/ Foreground Replace 57.9 71.4 69.9 70.0

w/ Foreground Average 58.3 71.6 70.3 70.1

Bold values indicate the best results among all methods

Table 14 Applying BAS to CLISM andW-OoD on the PASCAL VOC
2012

Method Seed Mask Val Test

Ours 57.7 71.1 69.6 69.9

w/ CLIMS (Xie et al., 2022a) 59.0 72.3 70.6 70.9

w/ W-OoD (Lee et al., 2022b) 59.5 72.7 71.3 71.1

Bold values indicate the best results among all methods

to suppress the co-occurring background by using natural
language supervision in CLIP (Radford et al., 2021), which
also significantly improves the quality of the initial seed and
brings a 8.9% boost in the boat category. Consequently, BAS
w/ CLIMS obtains 70.6% and 70.9% mIoU on the val set
and test set, substantially improving the segmentation ability
of BAS.

Finding image-specific threshold by BAS. Unlike CAM,
the proposed BAS designs a set of loss functions to eval-
uate the quality of the localization map and uses them
for training, similarly, they are also suitable for the test-
ing phase. As shown in Fig. 22a, it can be noted that
the unbalanced response of CAM causes the segmenta-
tion performance heavily dependent on the threshold, while
the optimal threshold value even varies significantly across
images. It is obviously not appropriate to use a global thresh-
old for the whole dataset. Therefore, we propose to find
the image-specific threshold by employing background acti-
vation suppression loss Lbas and area constraint loss Lac

as the evaluation of the threshold values. As illustrated in
Fig. 22b, we obtain a series of binary masks by changing
the threshold values and input them into the AMC module
to generate Lbas and Lac, the same process as in Fig. 2.
Then, we simply addLbas andLac together as the evaluation
score and select the binary mask with the smallest evalua-
tion score as the final result. Table 15 compares the effect of
this image-specific threshold post-processing with global
threshold on different methods on the PASCAL VOC 2012
training set. Experimental results show that the proposed
post-processing approach is helpful to improve the segmen-
tation quality by providing feedback on different thresholds
to select the best threshold value specific to the image, espe-
cially for CAM (Zhou et al., 2016) and CDA (Su et al., 2021),

Table 15 Effect of applying image-specific threshold ondifferentmeth-
ods compared to global threshold on the PASCAL VOC 2012 training
set

Threshold Method

CAM CDA ReCAM AdvCAM Ours

Global 48.8 50.8 54.8 55.5 57.7

Image-specific 49.5 51.3 55.0 55.7 57.8

Bold values indicate the best results among all methods

bringing 0.7% and 0.5% mIoU improvement, respectively.
However, the enhancement is limited when applying it to the
proposed BAS, mainly because BAS produces few uncer-
tainty regions and is not very sensitive to the threshold.

6 Discussion

Limitation. In this section, we discuss the localization ability
ofBAS for different size objects.Wefirst visualize the density
distribution of the IoU about BAS and CAM (Zhou et al.,
2016) in Fig. 21. It can be noted that BAS performs better on
medium and large objects, but not enough on small objects.
We believe the main reason is the following two aspects:
the localization of small objects is an inherent problem of
computer vision, on the other hand, the area constraint loss
penalizes different size objects unequally and will penalize
small objects less, which causes BAS cannot balance both
large and small objects with only a single hyperparameter to
adjust the area constraint loss (Fig. 22).

Future Works. In the future, there are two main aspects of
work, (1) improving theperformanceof the localization capa-
bility at different object sizes and (2) further extending the
application of BAS.

To solve the issue of inconsistent localization ability for
different size objects, we would like to explore the follow-
ing promising researches: (1) The area constraint loss can be
improved to allow different tolerance for objects of various
sizes. (2) Based on the fact thatWSOLworks better for local-
izing large objects, we can determine the approximate region
of the objects in the first stage, and then crop and resize the
corresponding region to convert the original small object into
a larger one, thereby performing localization in the second
stage.

Apart from the above possible improvements, BAS can
also be extended toweakly supervised instance segmentation
(WSIS), since obtaining a high-quality locality map is also
essential for WSIS.
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Fig. 21 Limitation. The density distribution map about IoU and object
size. For WSOL, the experiment is implemented on ILSVRC and
bounding boxes are used to measure IoU and object size. For WSSS,

experimental results are calculated by pixel-levelmasks on thePASCAL
VOC 2012 training set at the seed phase

Fig. 22 Finding image-specific threshold by BAS. a IoU-threshold
curve and Loss-threshold curve. Loss indicates the summation of Lbas
and Lac. b Process of finding the image-specific threshold by using
Lbas and Lac as evaluation

7 Conclusion

In this paper, we find previous FPM-based work using cross-
entropy to facilitate the learning of foreground prediction
maps, essentially by changing the activation value, and the
activation value shows a higher correlation with the fore-
ground mask. Thus, we propose a background activation
suppression (BAS) approach to promote the generation of
foreground maps by an activation map constraint (AMC)
module, which facilitates the learning of foreground predic-
tion maps mainly through the suppression of background
activation. Extensive experiments on CUB-200-2011 and
ILSVRC verify the effectiveness of the proposedBAS,which

surpasses previous methods by a large margin. In addition,
BAS can also be extended on WSSS to enhance the seed
quality of other methods by providing high quality fore-
ground maps, and achieves the state-of-the-art performance
on PASCAL VOC 2012 and MS COCO 2014.
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