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Abstract
Robust monocular depth estimation (MDE) aims at learning a unified model that works across diverse real-world scenes,
which is an important and active topic in computer vision. In this paper, we present Megatron_RVC, our winning solution
for the monocular depth challenge in the Robust Vision Challenge (RVC) 2022, where we tackle the challenging problem
from three perspectives: network architecture, training strategy and dataset. In particular, wemade three contributions towards
robust MDE: (1) we built a neural network with high capacity to enable flexible and accurate monocular depth predictions,
which contains dedicated components to provide content-aware embeddings and to improve the richness of the details; (2)
we proposed a novel mixing training strategy to handle real-world images with different aspect ratios, resolutions and apply
tailored loss functions based on the properties of their depth maps; (3) to train a unified network model that covers diverse
real-world scenes, we used over 1 million images from different datasets. As of 3rd October 2022, our unified model ranked
consistently first across three benchmarks (KITTI, MPI Sintel, and VIPER) among all participants.

Keywords Monocular depth estimation · Robust · Unified network · Multi-dataset training

1 Introduction

Given a single input RGB image, monocular depth estima-
tion (MDE) (Zhao et al., 2020;Ming et al., 2021;Masoumian
et al., 2022) aims at estimating the corresponding depth
map. As a fundamental yet challenging task in computer
vision, MDE has various downstream applications such as
autonomous driving (Geiger et al., 2013; Cordts et al., 2016),
visual odometry (Zhan et al., 2018), special effects (Luo et
al., 2020), and 3D reconstructions (Kopf et al., 2021; Xu
et al., 2023; Yin et al., 2023); application scenarios span
from indoor (Ji et al., 2021; Li et al., 2021; Wu et al., 2022)
to outdoor (Vyas et al., 2022). Recently, the task has been
greatly advanced thanks to the development of deep neural
network architectures, evolving from the convolutional neu-
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ral networks (Alhashim &Wonka, 2018; Lee et al., 2019) to
the vision transformer (Ranftl et al., 2021; Yuan et al., 2022).

However, the success of current deep learning-basedMDE
methods is generally limited to a single dataset due to the sig-
nificant domain shifts across different datasets. For example,
theKITTI dataset (Geiger et al., 2013) and theVIPERdataset
(Richter et al., 2017) concentrate on real-world urban driv-
ing scenarios while the Sintel dataset (Butler et al., 2012)
contains synthetic movies. Therefore, some methods that are
state-of-the-art (SOTA) on one dataset often cannot achieve
comparable performance on another dataset without substan-
tial adaptation. In practice, the deep MDE network models
can overfit in scene contents, focal length, image sizes or
depth sources (Facil et al., 2019).

Towards real-world applications across diverse scenes, a
robust MDE model should generalize well across different
scenarios without adaptation. Thus, we need to pushmethods
to be robust and perform well across different datasets with
fixed model parameters and hyperparameters. A unified net-
work to solve more real-world monocular depth estimation
problems is of high practical value and is in urgent need.

Recently, robust MDE has gained a lot of attention. The
ability of a robust MDEmodel makes it applicable in diverse
situations, which provides out-of-the-box MDE capability
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Fig. 1 Performance comparison between our method and SOTA meth-
ods on three datasets in terms of the SILog metric. Our method
“Megatron_RVC” consistently outperforms all the competing methods
and wins the challenge

for the community. These methods mainly seek solution in
vision backbones (Ranftl et al., 2021) or diverse data collec-
tions, whether from large-scale web stereo data (Xian et al.,
2018; Wang et al., 2019), human annotations (Chen et al.,
2016) or Structure-from-Motion reconstructions (Li et al.,
2018, 2019).

To foster the development of vision systems that are robust
and consequently perform well on a variety of datasets with
different characteristics, the Robust Vision Challenge (RVC)
has been established (Fig. 1). The performance is measured
across a number of challenging benchmarks with different
characteristics, e.g., indoors versus outdoors, real versus syn-
thetic, sunnyversus badweather, anddifferent sensors (http://
www.robustvision.net).

A robust monocular depth estimation model can not only
be applicable to diverse real-world applications, achieving
stronger transfer abilitywhenbe adapted to a specificdomain,
but also empower various downstream depth-related tasks
(Xu et al., 2023; Yin et al., 2023; Zhan et al., 2018; Luo
et al., 2020; Wang et al., 2020). However, practices towards
training a robust MDE model have not been fully explored,
which are mainly due to the difficulties in designing unified
network architecture and effective training strategies. Fur-
thermore, given massive amount of available open-sourced
datasets, how to better explore their potentials is a problem
that deserves in-depth studies.

In this paper, we rethink the essential ingredients towards
a robust deep learning system and propose to tackle the task
of robust and unified MDE from three perspectives: net-
work architecture, training strategy and dataset. We name
our method Megatron_RVC, anMDEmodel that performs
constantly well on different benchmarks and is applicable in
daily life. We explain the above three perspectives in details.

First, we exploit current SOTA vision backbones and
present a unified network architecture, which not only is of
high capacity, but also consists of components tailored for
robust applications. We adopt a VQVAE module to provide

content-aware embeddings. Furthermore, a convex upsam-
pling module is utilized to improve the richness of the depth
prediction details.

Second, we propose a novel multi-dataset mix training
strategy called “Random Iterator Selection”, which supports
the native resolution and tailored loss functions for each of
the datasets used. This strategy can avoid data bias among
multiple datasets and is of high efficiency, especially when
training in parallel with multiple GPUs.

Third, we collect millions of publicly available sam-
ples from multiple sources to provide supervision for our
model, where the depth maps are either from depth sensors,
stereo matching, multi-view reconstructions, synthetically
rendered, or distilled from state-of-the-art MDE methods.

With such a large amount of data coupled with our mix
training strategy, our unified network architecture with a
large capacity of parameters can achieve robust performance
across diverse scenarios. Our unified model ranked consis-
tently first across three benchmarks (KITTI, MPI Sintel, and
VIPER) among all participants and won the MDE track at
the RVC challenge 2022.

Our main contributions are summarized as:

(1) We presented a network architecture that contains com-
ponents tailored for robust MDE. We adopt a VQVAE
module to provide content-aware embeddings, and a con-
vexupsamplingmodule to improve the richness of details
of the depth prediction.

(2) We proposed a multi-dataset mix training strategy called
“Random Iterator Selection”, which supports the native
resolution and tailored loss function for each dataset.

(3) We collectedmillions of publicly available samples from
multiple sources to provide supervision for our model.

(4) Our method outperforms competing SOTA ones across
different datasets and wins the monocular depth estima-
tion track at the RVC challenge 2022.

2 RelatedWork

In this section, we briefly review related work in monocu-
lar depth estimation, large scale depth datasets and domain
adaptation for robust MDE.

2.1 Monocular Depth Estimation

The task ofMonocular Depth Estimation (MDE) (Zhao et al.,
2020; Ming et al., 2021; Masoumian et al., 2022; Vyas et al.,
2022) aims to predict the metric depth or relative distance
given an input image. According to the source of super-
vision, monocular depth estimation can be roughly divided
into three categories: supervised, self-supervised, andweakly
supervised. The supervised MDE (Fu et al., 2018; Bhat et
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al., 2021; Yuan et al., 2022; Abdulwahab et al., 2022) meth-
ods directly learn the image-to-depth mapping from ground
truth depth maps. Without needing ground truth depth, the
self-supervised MDE methods (Masoumian et al., 2023; He
et al., 2022; Zhou &Dong, 2022; Zhao et al., 2022a, b) learn
to predict depth from left-right consistency (Godard et al.,
2017) in stereo images or monocular video sequences (Zhou
et al., 2017; Godard et al., 2019), where the supervision
is achieved through view synthesis. The weakly-supervised
MDE methods (Chen et al., 2016; Ren et al., 2020) learn the
relative distance relationships from human annotations. In
this paper, we confine our discussions to supervised MDE
methods while the principle could be extended to other set-
tings.

The supervised MDE methods generally outweigh the
self-supervised and weakly-supervised methods due to the
following aspects: (1) empirically, the supervised methods
usually outperform the unsupervised and weakly-supervised
ones in accuracy (Zhao et al., 2020); (2) theoretically, the
supervised methods can make the model more robust in
terms of achieving metric depth estimation and dealing with
dynamic objects (Ming et al., 2021); (3) practically, the
supervised methods are more parameter-effective and can
incorporate training data from more diverse sources.

Recent years have witnessed tremendous progress in
MDE,where various kinds of deepneural networks havebeen
proposed. After Eigen et al.’s (2014) seminal work in utiliz-
ing the deep neural network for MDE, the ever-improving
backbone networks have nourished many MDE models. For
example, ResNet (He et al., 2016) has been exploited in
(Laina et al., 2016) by Laina et al. (2017) while DenseNet
has been exploited by DenseDepth (Alhashim & Wonka,
2018) and BTS (Lee et al., 2019). Recently, the network
architecture EfficientNet (Tan et al., 2019) has been utilized
by AdaBins (Bhat et al., 2021) to achieve accurate depth
estimation. Very recently, with the development of vision
transformers, the accuracy ofMDEmethods has been further
improved and remarkable performance has been achieved.
The Vision Transformer backbone ViT (Dosovitskiy et al.,
2021) has been extended toMDEbyDPT (Ranftl et al., 2021)
while the Swin transformer (Liu et al., 2021) backbone has
been utilized in NeWCRFs (Yuan et al., 2022). The back-
bone network plays a significant role in the ever-increasing
performance of state-of-the-art MDE methods. It is worth
noting that most of the above success is limited to a single
dataset, i.e., different network models should be trained for
each dataset separately.

Robust MDEs are usually achieved from the aspect of
data. MiDaS (Ranftl et al., 2020) utilizes nearly 2 million
samples to train an MDE model that can produce scale-
invariant inverse depth predictions. Such ability is further
improved in Ranftl et al. (2021) by switching to using
vision transformer (Dosovitskiy et al., 2021) as the backbone

network. The Mannequin Challenge (Li et al., 2019) and
MegaDepth (Li et al., 2018) are large-scale depth datasets
reconstructed from internet videos and image collections
using the Structure-from-Motion technique, which mainly
focus on the depth of human and buildings. The Red-
Web (Xian et al., 2018) and WSVD (Wang et al., 2019)
are two large-scale datasets consisting of stereo images
and videos, where ordinal relationships can be extracted.
Some methods utilize large-scale internet photo and video
collections, obtain the depth information through Structure-
from-Motion (Li et al., 2019, 2018) or stereo-matching (Xian
et al., 2018; Wang et al., 2019), and train an MDE model
towards diverse scenes. The pre-trained models of these
methods provide the out-of-the-box capability of estimating
depth from a single image, which greatly facilitate the pros-
perity of the 3D vision field. However, among these works,
the strategies of efficiently mixing multiple datasets are not
fully explored, especially when facing datasets with charac-
teristics that vary greatly.

2.2 Large Scale Depth Datasets

A robust MDE model is expected to provide consistently
good predictions under different scenarios, thus a dataset that
contains diverse scenes is helpful for building MDE mod-
els with high generalization ability. Most models trained on
specific datasets are difficult to generalize to unconstrained
scenarios due to the strong data bias (Torralba&Efros, 2011).
Commonly used datasets target a single scenario or topic. For
example, the NYU dataset (Silberman et al., 2012) includes
1,449 indoor scenes, where the ground truth depth maps are
captured by the Kinect sensor. The KITTI dataset (Geiger
et al., 2013) concentrates on the urban autonomous driving
scenarios, which mainly contains road scenes captured by
cameras and a Lidar sensor mounted on the car. Similarly,
Cityscapes (Cordts et al., 2016) consists of street scenes, and
the depth information comes from stereo cameras. Make3D
(Saxena et al., 2008) mainly consists of outdoor scenes of
university campuses andDIODE (Vasiljevic et al., 2019) con-
sists of more indoor and outdoor data, using Lidar to obtain
dense depth maps.

Large-scale datasets containing more diverse scenarios
obtain data from the Internet. Chen et al. (2016) presented
the Depth in the Wild (DIW) dataset consisting of 495k web
images annotated with relative depth pairs. Megadepth (Li
et al., 2018) consists of 129K outdoor images collected from
the Internet, where the depth maps are reconstructed using
SfM (Schonberger & Frahm, 2016) techniques and are up-
to-scale. ReDWeb (Xian et al., 2018), Holopix50k (Hua et
al., 2020) and HRWSI (Xian et al., 2020) are stereo datasets
containing more diverse daily scenes. Because these datasets
cannot provide the ground truth depth captured by the sen-
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sors, they usually need pre- and post-processing steps to
obtain reliable depth.

Restricted by imaging conditions, sensor application
scopes and limited filming scenarios, real-world captured
data could have its limitations. Therefore, some datasets
(Hurl et al., 2019; Richter et al., 2017; Gaidon et al., 2016)
contain synthetically rendered data from games and virtual
engines are proposed. These datasets ease the problem of
collecting data, but may suffer from the Synthetic to real gap
(Zhao et al., 2019) when generalizing to real-world data.

2.3 Domain Adaptation

Due to the difference in probability distribution between
training data and testing data, the performance of the
model is often deteriorated due to domain distribution gaps
(Quinonero-Candela et al., 2008). Therefore, it is important
to improve the model’s generalization ability.

Domain adaptation is to maximize the performance of the
model in a known target domain by using the existing source
domain. For domain adaptationmethods forMDE, (Atapour-
Abarghouei &Breckon, 2018) proposed a two-stagemethod,
the first stage uses synthetic data to train an MDE model,
and the second stage trains the model to transfer the style
of synthetic data to real-world data. A twin pipeline training
framework named T2Net is proposed in Zheng et al. (2018),
where a synthetic-to-realistic translation network and a task
network forMDE learn jointly. Zhao et al. (2019) trained two
symmetric style translation networks and twoMDEnetworks
in an end-to-end framework, learning from the ground truth
labels in the synthetic domain and epipolar geometry in the
synthetic domain.

Furthermore, by broadening the scope of the training
data to include more scenarios, it is possible to increase the
model’s generalization ability, such as training on large-scale
and diverse datasets. Existingwork (Yin et al., 2021;Xu et al.,
2022; Yin et al., 2021) train MDE by mixing high, medium
and low quality data in the same proportion in each batch.
DeMoN (Ummenhofer et al., 2017), CAM-Convs (Facil et
al., 2019), MiDaS (Ranftl et al., 2020) utilized training data
from multiple datasets to train an MDE network, where the
mixing training strategy is essential toward an unbiasedMDE
model.

3 Overview

In this section, we present our solution “Megatron_RVC” for
unified and robust MDE. We tackle the challenge from three
perspectives, namely network architecture, training strategy
and dataset, which are widely recognized as the essential
ingredients towards a practical deep learning system.

First, in Sect. 4,we exploit current SOTAvisionbackbones
and present a unified network architecture, which consists
of components tailored for robust applications. We adopt a
VQVAE module to provide content-aware embeddings and
a convex upsampling module to improve the richness of the
depth prediction.

Second, we present our novel multi-dataset mix train-
ing strategy “Random Iterator Selection” in Sect. 5, which
enables us to train a robust single model with different
datasets. To resolve the issue of forgetting in iteratively train-
ing multiple datasets, we propose to use the mix training
strategy that supports various resolutions, assigns the proper
loss function to use, and can reduce the dataset bias (Torralba
& Efros, 2011).

Third, we discuss our diverse dataset that covers as rich
contents as possible to provide a wider range of knowledge
in Sect. 6. We have collected over 1 million samples from
multiple datasets to guarantee a training dataset with high
diversity.

4 Network Architecture

To achieve robust MDE, the design of the network archi-
tecture deserves extra consideration. Modern backbone net-
works could benefit downstream tasks to a large extent, and
the entire network needs a large number of parameters to
produce accurate depth prediction when applied to different
scenarios.

We adopt the architecture ofNeWCRFs (Yuan et al., 2022)
as our baseline: Swin transformer V1 (Liu et al., 2021) is
adopted as the backbone, a pyramid pooling module (Zhao
et al., 2017) processes features from the bottleneck layer,
and the NeWCRFs decoder predicts the depth map.We add a
VQVAEmodule (VanDen&Vinyals, 2017) at the bottleneck
of the network to provide content-aware embeddings. Fur-
thermore, a convex upsampling module like (Teed & Deng,
2020) is used to upsample the final depth map to match the
size of the input images. The convex upsampling module is
adopted to replace the 4× bilinear sampling, which produces
depth predictions with richer details. The network architec-
ture is illustrated in Fig. 2. Below, we introduce each module
in detail.

4.1 Encoder Network

We adopt the Swin transformer V1 as our encoder net-
work. As shown in Fig. 2b, the encoder consists of four
stages. At the beginning of each stage, the feature map is
gradually downsampled through a linear embedding layer,
followed by several Swin transformer blocks. Each trans-
former block contains two consecutive modules, called
the Window-based Self-Attention and the Shifted Window
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Fig. 2 The network architecture of our method. a overview of our network model; b the encoder architecture; c the attention module in Swin
blocks; d the attention module in NeWCRFs blocks; e the architecture of the depth head. Figures are adapted from Liu et al. (2021, 2022) and Yuan
et al. (2022)

Fig. 3 The structure of the window-based self-attention and the shifted
one

based Self-Attention, as shown in Fig. 3. The architecture of
the self-attention module is illustrated in Fig. 2c.

We chose the Swin-L as our backbone network, which is
initialized using the the parameters pre-trained on ImageNet
22K (Deng et al., 2009) with the resolution of 224×224.

4.2 Decoder Network

The structure of the decoder network highly resembles that of
the encoder network. The basic mechanism of the attention
operation is shown in Fig. 2, where the feature from the last
decoder layer takes the place of value, while query and key
are processed from the feature from the encoder layer.

4.3 TheVQVAEModule

To provide content-aware embeddings without explicitly
training the network to identify images from different
domains, we adopt the VQVAE (Van Den & Vinyals, 2017)
module at the bottleneck of the network, which is followed
by a PPM head (Zhao et al., 2017) in Yuan et al. (2022).

The features ci in the codebooks are initialized randomly.
For each of the feature vector z′i in the encoded feature map,
the closest feature c′

i is selected to replace it, and we train our
network to narrow down the distance between z′i and c′

i , and
we also encourage diversity among features in the codebook
ci . Details can be found in Sect. 5.6.

4.4 Depth Prediction Head

We use SoftPlus as the final activation function to produce
positive values representing metric depth estimations. The
advantages of adopting SoftPlus as the activation function
over using Sigmoid is that the network can produce positive
predictions without upper bounds. This is beneficial under
the multi-dataset setting, since their depth can have different
maximum values.
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5 Training Strategy

Most MDE methods focus on achieving accurate depth pre-
dictions on a single dataset, where images and depth maps
are usually captured with a single set of devices, and the
scenes are with similar contents. However, when training
with data from multiple datasets, the situations are quite
different. Given data from multiple domains, images could
differ in aspect ratios, imaging styles, contents and themes
while depth maps could also differ in sparsity and scales. In
this section, we provide our training strategy towards robust
MDE.

5.1 The Training Cycle

During our early experiments, we found that training a net-
work with each dataset one after another will lead to the
forgetting issue (Zhang et al., 2020). A network can achieve
the best accuracy on a certain dataset after training with it,
but after switching to training on another one that contains
less similar scenes to the former one, the performance of vali-
dation on the first dataset will decrease dramatically. In other
words, the model cannot achieve consistently good perfor-
mance on all datasets.

To resolve this problem, an intuitive solution is to switch
more frequently between datasets, and an ideal situation is
that we can randomly sample images from different datasets
in every single batch. However, by doing so, a prerequisite
is that images should have the same sizes, thus they can be
formed into a batch. This is feasible if we resize and crop
the image and depth map into patches with the same size,
and then randomly mix multiple datasets. However, the ill-
posedness of the MDE task poses higher requirements on
the resolution of images, i.e., it may bring ambiguities and
hinder the training process.

To conduct analysis, we train our network on two datasets,
KITTI and NYU. After training on a dataset for one epoch,
we switch to training on the other one. Evaluations on both
datasets are done periodically tomonitor the training process.
The absolute relative error on the testing dataset is reported
in Fig. 4. Our network fits on the two datasets at different
time steps, and after starting the training process on another
dataset, the performance drops dramatically. This indicates
that the network can forget the learned dataset-specific
knowledgevery soon, especially for a heavily data-dependent
task like MDE.

In order to prevent the network from forgetting too fast,
we increase the switching frequency, and show the evalua-
tion results on the KITTI dataset in Fig. 5. As the switching
frequency increases, we observe that the upper bound of the
evaluation error decreases as the training process goes on,
which indicates that the network forgets less when being
reminded more often.

Fig. 4 Evaluation error on KITTI and NYU when training iteratively
between two datasets, the switching frequency is every 1 epoch

Fig. 5 Evaluation error of KITTI when training iteratively between two
datasets with different switching frequencies, e.g., every 1/8 epoch

5.2 Resolution Overfitting

As discussed in Miangoleh et al. (2021), the MDE net-
works are sensitive to changes in the resolution of input
images. The diversity of image resolution inmultiple datasets
also requires training in the native size, e.g., the images in
the KITTI dataset (Geiger et al., 2013) are almost 3 times
wide as images from the NYU dataset (Silberman et al.,
2012).

In Fig. 6, we demonstrate several toy examples to illus-
trate the effect brought by resizing and cropping. We train
the network with different (a) cropping and (b) resiz-
ing configurations on KITTI, and show the evaluation
results periodically. Figure6a shows that training with the
native resolution will lead to the highest accuracy under
certain time steps, but samples after random croppings
without changing the aspect ratios of image contents can
make the model eventually converge to similar degrees
of accuracy. In Fig. 6b, we can observe that resizing the
image to lower resolutions can harm the model accuracy
severely.

We can draw a conclusion that for the most of the effi-
ciency and accuracy, it is best to train MDE models with
images of native sizes.
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Fig. 6 Absolute relative error evaluated on KITTI periodically when
training with different cropping and resizing configurations

5.3 Random Iterator Selection

Discussions in Sect. 5.1 reveal that to train an MDE network
on a mixed dataset, the ideal solution is to equally have
images from each dataset in one batch. Section5.2 reveals
that it is better to train on a dataset with the native resolution
and aspect ratio, however, this puts us in a dilemma where
images with different resolutions cannot form a batch.

Switching between datasets more frequently is an alterna-
tive, and the extreme condition is to randomly choose another
dataset at every step.When training with multiple GPUs, this
randomness can be further extended to each process, which
can be an approximation to having samples with different
sizes in one batch.

Since we train our model with multiple GPUs in paral-
lel, each GPU receives a batch of data of the same size, but
samples in different batches do not necessarily need to be
of the same size. Thus for each GPU process, we randomly
choose a batch of images from a dataset. For the most of the
efficiency, we assign different batch sizes, e.g., if the images
are small, we increase the batch size as long as they fit into
the memory.

We name our method as Random Iterator Selection. In
practice, we randomly select data iterators per GPU process
when training using the Data Distributed Parallel model on
multiple GPUs. Using this technique, each GPU is randomly
assigned a batch of images with the same size from a dataset

independently, and multiple GPUs can have different data
allocations, which is equivalent to having inputs from ran-
domly chosen datasets, with different sizes considering all
batches when accumulating gradients.

The above pipeline also allows us to effectively choose the
appropriate loss function to apply, which we will introduce
in Sect. 5.4. We store these iterators as values in a dictio-
nary, and their names are the keys. We randomly sample one
key-value pair for each step, so that we can identify them
using the keys and fetch data from the iterator. Since each
GPU receives samples from one dataset, the attributes of
their depth maps are identical, then each process only needs
to choose one loss function and apply it to all samples in one
GPU batch.

Since we do not want datasets with huge capacities to
dominate the training process, we manually reduce the prob-
ability that a large dataset can be selected, shown as Sub in
Table 1. The intention of our multi-resolution mixing strat-
egy resembles that of the multi-scale sampler in Mehta and
Rastegari (2021), but we provide a simpler implementation,
which supports sample rate adjustments and dedicated loss
function allocation.

5.4 Multi-Loss Function Training

Existing MDE datasets provide depth supervision in differ-
ent forms (cf. Table 1), thus we have to assign different loss
functions for different datasets based on the property of their
depthmaps. For datasetswith absolute scale (denoted asMet-
ric in Table 1), we use the SILog loss LLog as in Yuan et al.
(2022),

LLog =
√
√
√
√ 1

K

∑

i

�d2i − λ

K 2

(

∑

i

�di

)2

. (1)

For depth prediction {d̂i }K and ground truth depth {d∗
i }K ,

where K is the total number of pixels in an image, �di =
log d̂i − log di is the per-pixel log difference, and λ = 0.85
makes the SILog loss not absolutely scale invariant. For
datasets with affine ambiguity (denoted as Affine), we use
affine invariant loss LAffine as in Ranftl et al. (2021),

LAffine = 1

K

∑

i

ρi

∣
∣
∣d̂∗

i − d∗
i

∣
∣
∣ , (2)

where

d∗
i = di − median({di })

1/K | ∑i (di − median({di })| , (3)

is the normalized ground truth depth, so as for depth predic-
tion d̂∗

i , and ρi makes the loss function ignores the top 20%
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Table 1 Datasets used for network training, which cover both indoor and outdoor scenes

Dataset Length Image contents Depth source Depth accuracy Subsample rate Loss function

MegaDepth (Li et al. 2018) 129K Outdoor Multi-View Up-to-scale 1/10 Affine

NYU (Silberman et al. 2012) 50K Indoor Kinect Metric 1/10 Metric

KITTI (Geiger et al. 2013) 43K Outdoor Lidar Metric Metric

DIODE (Vasiljevic et al. 2019) 25K In/Outdoor Lidar Metric 1/10 Metric

HRWSI (Xian et al. 2020) 20K In/Outdoor Stereo Affine Affine

Cityscapes (Cordts et al. 2016) 20K Outdoor Stereo Metric 1/10 Metric

ReDWeb (Xian et al. 2018) 3.6K In/Outdoor Stereo Affine Affine

DIML (Kim et al. 2016) 3.1K In/Outdoor Kinect+Stereo Metric Metric

PreSIL (Hurl et al. 2019) 45K Synthetic Synthetic Metric Metric

VKITTI (Cabon et al. 2020) 21K Synthetic Synthetic Metric 1/5 Metric

EDEN (Le et al. 2021) 13K Synthetic Synthetic Metric 1/10 Metric

Sintel (Butler et al. 2012) 2.9K Synthetic Synthetic Metric Metric

GTAV (https://github.com/gta5-
vision/GTA5-depth-estimation)

0.8K Synthetic Synthetic Metric Metric

ImageNet (Deng et al. 2009) 1.3M In/Outdoor DPT (Ranftl et
al. 2021)

Inverse-depth
prediction

1/20 Inverse-Affine

MegaDepth (Li et al. 2018) 129K Outdoor DPT (Ranftl et
al. 2021)

Inverse-depth
prediction

1/10 Inverse-Affine

VIPER (Richter et al. 2017) 13K Synthetic DPT (Ranftl et
al. 2021)

Inverse-depth
prediction

Inverse-Affine

items. For inverse-depth predictions {pi }K from DPT (Ran-
ftl et al., 2021) (denoted as Inv-affine), we convert our depth
into inverse-depth ( p̂i = 1/d̂i ), and LInvAffine,

LInvAffine = 1

K

∑

i

∣
∣ p̂∗

i − p∗
i

∣
∣ , (4)

where the difference between the two normalized inverse-
depth maps are measured.

5.5 Training Steps

We use 6 RTX 3090 GPUs to train our model in parallel, and
the entire training process requires approximately 600 GPU
hours.

We first verify the effectiveness of the network architec-
ture by training and evaluating on the KITTI (Geiger et al.,
2013) Eigen split (Eigen et al., 2014). During this period,
we follow the settings of Yuan et al. (2022) and train the
network for 50 epochs, the model with the best SILog is
kept for the next step. This process takes around 100 GPU
hours.

Then, we implement a large-scale pretraining, where
images are randomly cropped into smaller and fixed sizes.
We use all datasets in Table 1 except KITTI, and load the
parameters from the last step. The performance is tracked
by evaluating on the KITTI Eigen split periodically. The
model that achieves the best SILog metric on KITTI is kept

for the next step, and this process takes around 500 GPU
hours.

Finally, we finetune ourmodel usingKITTI, Sintel (Butler
et al., 2012) and PreSIL (Hurl et al., 2019), each with their
own sizes and aspect ratios. Empirically, we first split the
Sintel dataset into training and testing parts. Themix-training
process only uses the training set, and the performance on
the testing set is monitored periodically. We notice that the
evaluation performance no longer decreases after around10K
steps, so we assume that the network fits on all three datasets
well. Finally, we use all available samples in the datasets and
manually stop training at 10K steps. This process takes less
than 20 GPU hours.

5.6 Loss Functions

Apart from the loss terms measured between the predicted
and the ground truth depth, we need another two losses
to train the VQVAE module. LSim encourages similarities
between the encoded features z and the features c in the code-
book, andLDis encourages dissimilarities among features in
the codebook:

LSim =
∑

i

‖zi − ci‖,

LDis =
∑

i, j

exp
(−‖ci − c j‖

)

.
(5)
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Fig. 7 Overview of the datasets used for training our unified network model. The area of each block corresponds to the equivalent capacity after
selection probability reducing introduced in Sect. 5.3 in log-scale

Table 2 Performance
comparison between our
solution and competing methods
across different metrics

KITTI Sintel Final Sintel Clean VIPER

Method SIlog iRMS SIlog iRMS SIlog iRMS SIlog iRMS

Megatron 10.58 11.57 0.312 0.269 0.222 0.280 0.64 42.22

MixBins 10.98 11.77 0.338 0.272 0.333 0.269 0.89 82.71

MonoViT 14.13 14.85 0.384 0.276 0.410 0.281 1.24 162.9

BIGPRE 13.11 26.39 0.436 0.317 0.453 0.315 1.41 187.42

BTSREF 14.67 16.84 0.503 0.322 0.550 0.337 1.44 201.36

packnSFMHR 15.80 17.96 0.795 0.389 0.765 0.386 1.46 201.94

Best performance in bold

Our final loss for each sample is reached as

L = (LLog or LAffine or LInvAffine)

+ ω1LSim + ω2LDis,
(6)

where ω1 = 0.5 and ω2 = 0.2. We use LLog or LAffine or
LInvAffine) based on the characteristics of each dataset.

6 Dataset

The task of MDE is heavily data-dependent, to train a uni-
fied networkmodel that works well across diverse real-world
scenes, we use over 1 million images from different datasets.
We use publicly available datasets (Fig. 7) to train our net-
work, whose details are reported in Table 1.
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Fig. 8 Visual comparisons between methods of participants. Figures
are taken from official benchmark of Sintel-depth

According to themanner how the depthmaps are captured,
existing monocular depth datasets can be roughly classified
into the following categories: (1) Captured using active depth
sensors: NYU (Silberman et al., 2012), KITTI (Geiger et al.,
2013), DIODE (Vasiljevic et al., 2019), DIML (Kim et al.,
2016); (2) Computed by stereo matching: HRWSI (Xian et
al., 2020), Cityscapes (Cordts et al., 2016), ReDWeb (Xian
et al., 2018), DIML (Kim et al., 2016); (3) Computed by
structure-from-motion:MegaDepth (Li et al., 2018); (4) Syn-
thetically rendered PreSIL (Hurl et al., 2019), GTA (https://
github.com/gta5-vision/GTA5-depth-estimation), VKITTI
(Cabon et al., 2020), Eden (Le et al., 2021), Sintel (Butler et
al., 2012) and (5) Predicted by using state-of-the-art monoc-
ular depth estimation methods DPT (Ranftl et al., 2021) on
ImageNet 1K (Deng et al., 2009), MegaDepth (Li et al.,
2018), VIPER (Richter et al., 2017). These datasets cover
urban autonomous driving scenarios (Geiger et al., 2013;

Cabon et al., 2020; Cordts et al., 2016; Hurl et al., 2019;
Richter et al., 2017) (https://github.com/gta5-vision/GTA5-
depth-estimation), indoor daily life (Silberman et al., 2012;
Vasiljevic et al., 2019; Kim et al., 2016) and synthetic con-
tents (Hurl et al., 2019; Cabon et al., 2020; Le et al., 2021;
Butler et al., 2012) (https://github.com/gta5-vision/GTA5-
depth-estimation).

Our dataset collections contain images with different res-
olutions, aspect ratios and field-of-views. Images in the
PreSIL dataset (Hurl et al., 2019) have resolutions up to
1080× 1920, NYU (Silberman et al., 2012) contains images
of smaller sizes at 480×640. Images in KITTI (Geiger
et al., 2013)/VKITTI (Cabon et al., 2020) are extremely
wide, with 3.45:1 aspect ratios, while ImageNet has images
vertically shot. Datasets whose depth maps are actively cap-
tured usually contain samples with fixed focal length as the
same devices are used. The datasets whose depth maps are
from stereo matching, multi-view reconstructions or from
state-of-the-arts generally contain images with various field-
of-views.

Based on the characteristics of each dataset, appropriate
loss functions should be used by considering the properties
of each dataset. We show the corresponding loss functions
in Table 1, where each loss function has been introduced in
Sect. 5.4.

7 Experimental Results

7.1 The RVC Leaderboard

The Robust Vision Challenge held at ECCV 2022 requires
competitors to use a single model and achieve good perfor-
mance on multiple benchmarks. For MDE, the benchmarks
include KITTI (Geiger et al., 2013), Sintel (Butler et al.,
2012) and VIPER (Richter et al., 2017).

As of 3rd, October 2022, our model ranked first on all the
three benchmarks. Detailed metrics are reported in Table 2,
depth predictions on the Sintel dataset are visualized in Fig. 8.

7.2 Wider Applications

Trained on diverse data shown in Fig. 7, our model learns
to predict accurate depth map given diverse scenes (shown
in Fig. 9). Our model not only achieves top metrics in the
benchmark, but also can be applied well in daily life sce-
narios. We show model inference results on unseen diverse
scenes from the DIW (Chen et al., 2016) dataset in Fig. 10
to demonstrate the strong generalization ability of our robust
MDE model.
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Fig. 9 Model predictions on datasets used for training

8 Ablations and Discussions

In this section, we conduct a series of ablation studies to
analyze the contribution of each module of our unified net-
work architecture. Furthermore,we report the inference time.
We conclude this section with discussions on limitations and
failure cases.

8.1 Backbone Networks

We conducted ablation studies on the KITTI dataset by
switching to using other backbone networks, including
Vision GNN (Han et al., 2022), ConvNext (Liu et al., 2022)
and CSwin (Dong et al., 2022), the best performance of them
is reported in Table 3.

We find that modern backbones with large-scale parame-
ters achieve similar performance, but the Swin transformer
stands out, considering that it can bring out themost accuracy
in KITTI.

8.2 TheVQVAEModule

As introduced in Sect. 4.3, we added a VQVAEmodule at the
bottleneck layer of the network. We hope that such a mod-
ule can provide content-related embeddings, which serves
as a data-specific guidance but without explicitly identifying
images from different domains.

We conduct an experiment where we adopt the same set-
tings in Fig. 5, but we build two models with and without the
VQVAE module. We show in Fig. 11 that after adding the
VQVAE module, the network achieves better performance
when not training on the corresponding dataset. This indi-
cates that the VQVAE module can provide embeddings that
are helpful for robust MDE.

Table 4 shows the effectiveness of the VQVAE module
when themodel is trained with fully-mixed NYU andKITTI.
The model with the VQVAE module can achieve better per-
formance simultaneously on two datasets than the model
without.

8.3 Depth Regression

Table 5 demonstrates the effectiveness of the convex upsam-
pling module and the activation function. A visual compari-
son of convex upsampling and bilinear upsampling is shown
in Fig. 12. The convex upsampling module helps the network
produce depth estimationswith sharper boundaries, while the
softplus activation function helps further improve the accu-
racy,while providingmore flexibility in terms ofmetric depth
range.

8.4 Depth Scale Over-Fitting

We show in Fig. 5 the absolute relative error when trained
iteratively on two datasets, and the error shows extreme
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Fig. 10 Qualitative results on the DIW dataset, our unified MDE model owns excellent generalization ability
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Table 3 Performance
comparison of MDE models
adopting different backbone
networks

Encoder SILog Rel Log10 RMS δ1

SwinV1 224 (Liu et al. 2021) 7.0393 0.0518 0.0225 2.0626 0.9758

ViG-B 224 (Han et al. 2022) 9.2040 0.0643 0.0285 2.5990 0.9504

ConvNext (Liu et al. 2022) 7.2793 0.0550 0.0243 2.1898 0.9728

CSwin (Dong et al. 2022) 7.5797 0.0551 0.0240 2.2261 0.9706

Fig. 11 Evaluation error on the KITTI dataset with and without the
VQVAE module

Table 4 The effectiveness of the VQVAE module on the joint training
of KITTI and NYU

Dataset VQ Rel RMS Log10 δ1

NYU � 0.1017 0.3752 0.0434 0.9075

0.1053 0.3800 0.0442 0.9023

KITTI � 0.0538 2.1572 0.0235 0.9736

0.0554 2.1500 0.0246 0.9728

Best performance in bold

Table 5 The effectiveness of the depth regression module

Up Act Rel RMS Log10 δ1

Bil σ 0.0516 2.1071 0.0226 0.9750

Cvx σ 0.0515 2.0981 0.0224 0.9755

Cvx SP 0.0518 2.0626 0.0225 0.9758

Up and Act denote the upsampling method and activation function.
Bil and Cvx represent bilinear upsampling and convex upsampling,
respectively; σ and SP represents sigmoid and softplus, respectively
Best performance in bold

deviation on different training steps. Since this metric is
scale-sensitive, we report the SILog metric, which is scale-
invariant, in Fig. 13.

Compared with scale-sensitive errors, the scale invari-
ant error shows less severe deviations. This indicates that
predicting metric depth is harder than predicting the struc-
tural relationships, but the forgetting issue still exists, and
the scale-invariant metric gradually deteriorates when not
trained on the specific dataset.

Fig. 12 A visual comparison of upsampling methods

Fig. 13 The scale invariant error of KITTI with different iterating fre-
quency

8.5 Benefits for Zero-Shot MDEs

MiDaS (Ranftl et al., 2020) proposes to measure the error
after the per-image scale and shift alignment in the inverse-
depth space. Following this, we measure the performance of
ourmodel on TUMafter applying the optimal affine transfor-
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Table 6 Evaluation metrics on the TUM Dynamic Object subset

Method SILog Rel Log10 RMS δ1

NeWCRFs 34.3105 0.3056 0.1212 1.1989 0.5186

+data 19.4656 0.1498 0.0638 0.5958 0.7768

Ours 24.9534 0.1914 0.0805 0.8291 0.7303

+data 17.1665 0.1251 0.0542 0.5209 0.8480

All metrics are measured between predictions after the optimal affine
transformation, where parameters (shift and scale per image) are
obtained through least square fitting

Table 7 The inference speed of our method and DPT given inputs with
different sizes

Size 224×224 384×384 512×512 576×1024

Ours(ms) 46.67 47.43 47.93 49.60

DPT(ms) 35.56 37.82 42.70 57.57

mation in the depth space. Likely-wise, the two parameters
are obtained by least-square fitting.

We report the metrics of our model and NeWCRFs (Yuan
et al., 2022) on the Dynamic Objects subset of TUM in
Table 6.We also train both networks on the 3DObject Recon-
struction category of TUM for 3 epochs, for the domain
information of TUM, and report the evaluation results on
the Dynamic Objects category, in Table 6 (see +data rows).

The results in Table 6 indicate that our model owns excel-
lent generalization ability, which can save training time.
When the data from a target domain is available, higher per-
formance can be achieved.

8.6 Inference Speed

Our model contains 372M parameters, and we show in
Table 7 the inference speed on a single NVIDIA 3090 GPU
given input images with different sizes. The results are aver-
aged over 1000 runs. Our model can provide robust MDE

results with a reasonable speed, which further proves the
practicability of our method. Thanks to the windowed atten-
tion mechanism in both the encoder and decoder, our model
is with almost identical speed given inputs with different
resolutions, which can support faster inference with input of
larger sizes.

8.7 Limitation and Failure Cases

We show our failure cases in Fig. 14, where samples are
from the DIW (Chen et al., 2016) dataset. Our method
can fail to generate depth predictions under specific condi-
tions where images may contain too complex or too blurry
scenes. Our model can make common mistakes where it can
produce depth predictionswith counter-intuitive ordinal rela-
tionships.

As mentioned in Sect. 5.4, our model directly produces
depth estimations. This works fine for evaluation on bench-
marks, but may reduce the robustness when predicting depth
for far-awayobjects, since somedatasets cannot provide valid
supervision in the sky region, and they can vary on the max-
imum depth value.

9 Conclusion

In this paper, we proposed Megatron, our winning solution
to the monocular depth estimation track in the Robust Vision
Challenges 2022. We tackled the challenging task from three
different perspectives, namely,network architecture, training
strategy and dataset. Our network with tailored compo-
nents, trained using diverse dataset show strong performance
across all three benchmarks, and can produce plausibleMDE
predictions on various scenes. Our proposed mix training
strategy Random Iterator Selection supports various image
resolutions and tailored loss functions. Our solution towards
robust and unified MDE is not limited to the task of MDE,
but can also be transferred to other tasks.
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Fig. 14 Failure cases. Our method can be less robust when facing too complex structures, too blurry images, close-up photo shooting scenarios,
and may make counter-intuitive depth estimations which are indicated by arrows
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