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Abstract
Domain shift widely exists in the visual world, while modern deep neural networks commonly suffer from severe performance
degradation under domain shift due to poor generalization ability, which limits real-world applications. The domain shift
mainly lies in the limited source environmental variations and the large distribution gap between source and unseen target
data. To this end, we propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle
such domain shift in various visual tasks. Specifically, SHADE is constructed based on two consistency constraints, Style
Consistency (SC) and Retrospection Consistency (RC). SC enriches the source situations and encourages the model to learn
consistent representation across style-diversified samples. RC leverages general visual knowledge to prevent the model from
overfitting to source data and thus largely keeps the representation consistent between the source and general visual models.
Furthermore, we present a novel style hallucination module (SHM) to generate style-diversified samples that are essential
to consistency learning. SHM selects basis styles from the source distribution, enabling the model to dynamically generate
diverse and realistic samples during training. Extensive experiments demonstrate that our versatile SHADE can significantly
enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation, and
object detection, with different models, i.e., ConvNets and Transformer.
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1 Introduction

With the development of deep neural networks and the
introduction of abundant annotated data, fully-supervised
methods have achieved remarkable success in various visual
recognition tasks, including but not limited to image clas-
sification (He et al., 2016; Dosovitskiy et al., 2021; Liu et
al., 2021), object detection (Ren et al., 2015; He et al., 2017;
Carion et al., 2020) and semantic segmentation (Hoffman
et al., 2016; Chen et al., 2018; Xie et al., 2021). These
visual recognition tasks are the fundamental and crucial
components of the computer vision world. However, such
significant achievements heavily rely on the availability of
large-scale annotated data, which are expensive and time-
consuming to collect, especially for semantic segmentation
and object detection. For example, it takes more than 1.5h
to annotate the semantic labels of a 1024×2048 driving
scene (Cordts et al., 2016), and the time is even doubled
for scenes under adverse weather (Sakaridis et al., 2021)
and poor lighting conditions (Sakaridis et al., 2019). In addi-
tion, even though given abundant labeled training data, the
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Fig. 1 Illustration of the proposed dual consistency constraints for three
visual tasks. We generate hallucinated samples (brown circle) from the
style hallucination module and then utilize the paired samples and gen-

eral visual (retrospective) knowledge to learn style consistency (blue
dash line) and retrospection consistency (gray dash line) (Color figure
online)

significant performance of the deep learning model is lim-
ited to independent and identically distributed (i.i.d) datasets.
Nevertheless, out-of-distribution (OOD) data that are totally
unseen during training are inevitably in real-world appli-
cations, e.g., weather change, and the models commonly
suffer from catastrophic performance degradation when fac-
ing unseen situations.

To alleviate the heavy annotation cost and distribution
shift, domain generalization (DG) (Zhou et al., 2021a; Wu
& Deng, 2022; Zhong et al., 2022) is introduced in the com-
munity. DG only leverages annotated source data to train a
robust model that can cope with different unseen conditions.
The source domain can be the annotated real-world data but
can also be the synthetic data from pre-designed engine (Ros
et al., 2016; Richter et al., 2016), where the latter can greatly
reduce the annotation cost. In view of the practicality of DG,
previous works have been independently investigating it in
image classification (Zhou et al., 2021a), semantic segmenta-
tion (Zhong et al., 2022), and object detection (Wu & Deng,
2022). In this paper, we aim to propose a unified and ver-
satile framework that is applicable to the above three visual
recognition tasks.

The main challenge for DG is to cope with the signifi-
cant domain shift between source and unseen target domains,
which can be roughly divided into two aspects. First, the envi-
ronmental variations and diversity in source data are very
limited compared to those of unseen target data. Second,
there exists a large distribution gap between the source and
target data, e.g., image styles and characteristics of objects.
To learn the domain-invariant model that can address the
domain shift, previous works mainly focus on three aspects:
(1) designing tailor-made modules (Choi et al., 2021; Pan
et al., 2018; Wu & Deng, 2022) to remove domain-specific
information; (2) leveraging extra data to transfer source

data (Huang et al., 2021; Yue et al., 2019) to possible tar-
get styles for narrowing the distribution gap; (3) diversifying
source data within the domain via style augmentation (Zhou
et al., 2021a; Wang et al., 2021c) or adversarial perturba-
tion (Zhong et al., 2022; Shankar et al., 2018). However, the
removal of domain-specific information is not complete and
explicit due to the lack of target information; the extra style
transfer heavily relies on extra data, which are not always
available in practice, and ignores the invariant representation
within the source domain. Taking the above into account, in
this paper, we follow the third paradigm to diversify samples
in the source domain. In addition, we explicitly introduce
two constraints to help the model effectively learn domain-
invariant representation and narrow the domain gap.

To this end, we introduce a novel dual consistency learn-
ing framework that can jointly address the above two types of
domain shift. As shown in Fig. 1, we introduce two consis-
tency constraints, style consistency (SC) and retrospection
consistency (RC). SC encourages the model to learn style
invariant representation by forcing the consistency between
the samples before and after style variation. RC aims at lead-
ing the model less overfitting to the source data with the
help of general visual knowledge. Specifically, we leverage
the ImageNet (Deng et al., 2009) pre-trained model which is
available acquiescently in all DG models. The features from
the pre-trained model can reflect the representation in the
context of the general visual world and thus can serve as the
guidance for the ongoing model to retrospect what the visual
world looks like and to lead the model less overfitting to the
source data.

Style diversifying is crucial for the success of dual con-
sistency learning, and we adopt the style features, i.e.,
channel-wise mean and standard deviation, to generate new
data. Compared with directly transferring the whole image
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(e.g., CycleGAN (Zhu et al., 2017)), changing style features
can maintain the pixel alignment to the utmost extent, which
is better for pixel-level tasks like semantic segmentation. Pre-
viousworks (Tang et al., 2021; Zhou et al., 2021a) commonly
mix or swap styles within the source domain, which will gen-
erate more samples of the dominant styles (e.g., daytime in
GTAV (Richter et al., 2016)). Nevertheless, it is not the best
way since the target styles may be quite different from the
dominant styles. To fully take advantage of all the source
styles, we propose style hallucination module (SHM), which
leverages C basis styles to represent the style space of C
dimension and thus generate new styles. Ideally, the basis
styles should be linearly independent so the linear combi-
nation of basis styles can represent all the source styles.
However, many unrealistic styles that impair themodel train-
ing are generated when we directly take C orthogonal unit
vectors as the basis. To reconcile diversity and realism, we
use farthest point sampling (FPS) (Qi et al., 2017) to select
C styles from all the source styles as basis styles. Such basis
styles contain many rare styles since rare styles are com-
monly far away from the dominant ones. With these basis
styles that represent the style space in a better way, we uti-
lize linear combination to generate new styles. To summarize,
we propose the Style-HAllucinated Dual consistEncy learn-
ing (SHADE) framework for domain generalization in visual
recognition tasks, and our contributions are as follows:

– We propose the dual consistency constraints for visual
domain generalization, which can learn the style invari-
ant representation among diversified styles and narrow
the domain gap between source and target domains by
retrospecting the general knowledge of the visual world.

– We propose the style hallucination module to generate
new and diverse styles with representative basis styles,
effectively facilitating dual consistency learning.

– The proposed SHADE is generic and can be applied
to various domain generalized visual recognition tasks,
including image classification, semantic segmentation,
and object detection. In addition, SHADE can be applied
to both ConvNets and Transformer to improve general-
ization ability.

An earlier and preliminary study of SHADE was pub-
lished in ECCV 2022 (Zhao et al., 2022c). In comparison,
this paper further introduces the following significant contri-
butions. Specifically,

(1) we investigate the generalization ability of Transformer-
based semantic segmentationmodel and demonstrate that
many state-of-the-art DG methods cannot work well on
this model but SHADE can still achieve significant per-
formance;

(2) we propose the general formulation of dual consistency
learning, which enables us to apply it to different visual
tasks with a light modification;

(3) we demonstrate that SHADE is complementary to differ-
ent state-of-the-art DG methods in image classification,
leading to further improvement;

(4) wedemonstrate that SHADE is applicable to domain gen-
eralized object detection to improve the robustness under
the environmental change in the urban scenes;

(5) more ablation experiments are provided to further verify
the effectiveness of each component of our method;

(6) visualizations of the three visual tasks are provided to
better understand the effect of our SHM.

2 RelatedWork

Domain Generalization To tackle the performance degrada-
tion in the out-of-distribution conditions, domain generaliza-
tion (DG) (Huang et al., 2021; Yue et al., 2019; Choi et al.,
2021; Zhou et al., 2021a; Zhao et al., 2021; Gong et al., 2021;
Yuan et al., 2022; Du et al., 2022) is introduced to learn a
robust model with one or multiple source domains, aiming to
performwell on unseen domains. The domain generalization
methods can be divided into two parts based on the number
of source domains, i.e., single-source DG and multi-source
DG. In general, domain generalized model requires to learn
the domain-invariant representation by smooth representa-
tion function with controlled complexity (Shui et al., 2022b).
Thus, multi-source DG can explicitly learn the domain-
invariant representations frommultiple source domains (Li et
al., 2018a, b; Zhao et al., 2021; Shui et al., 2021) or generating
samples across source domains (Zhou et al., 2021a; Nuriel
et al., 2021). Single-source DG is more complex, which can
only investigate the robust representation from one source
domain. The mainstream of single-source DG is to diversify
the source sample with additional styles (Wang et al., 2021c;
Tang et al., 2021) or perturbation (Qiao et al., 2020; Zhao et
al., 2020).

In semantic segmentation, considering the expensive
annotation cost, synthetic data are commonly adopted as the
source domain in recent domain generalized semantic seg-
mentation (DG-Seg) works. To address the domain shift, one
mainstream of previous works (Huang et al., 2021; Yue et
al., 2019) focuses on diversifying training data with real-
world templates and learning the invariant representation
from all the domains. Another mainstream aims at directly
learning the explicit domain-invariant features within the
source domain (Choi et al., 2021; Pan et al., 2018; Peng
et al., 2022). IBN-Net (Pan et al., 2018) and ISW (Choi
et al., 2021) leverage tailor-made instance normalization
block and whitening transformation to reduce the impact of
domain-specific information. More recently, style augmen-
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tation based methods (Zhong et al., 2022; Lee et al., 2022)
attract more attention in DG-Seg.

Domain generalized object detection (DG-Det) is a rel-
atively new setting. The mainstream of DG-Det is disen-
tangling domain-invariant features from the domain-specific
features. Lin et al. (2021) leverage feature disentangle and
representation reconstruction from two source domains to
learn the generalizable detectionmodel.Wu andDeng (2022)
focus on the single-sourceDG-Det in the urban scenes,where
they disentangle the domain-invariant and domain-specific
information via cyclic operation and use self-distillation to
improve the generalization ability.

In this paper, we focus on the visual domain generalization
in image classification, semantic segmentation and object
detection. We mainly focus on the single-source setting but
also demonstrate the effectiveness of our method under the
multi-source situations.
Consistency learning (CL) CL is adopted by many computer
vision tasks and settings. One main stream is leveraging
CL to exploit the unlabeled samples in semi-supervised
learning (French et al., 2020; Tarvainen & Valpola, 2017),
unsupervised domain adaptation (Zhou et al., 2022, 2021b;
Chen et al., 2021b; Zheng & Yang, 2021, 2020, 2022; Chen
et al., 2022) and novel class discovery (Zhao et al., 2022b;
Fini et al., 2021; Roy et al., 2022; Zhong et al., 2021).
CL is also applied to address the corruptions and pertur-
bations (Hendrycks et al., 2020; Wang et al., 2021a) by
maximizing the similarity between different augmentations.
In addition, CL is also used in self-supervised learning (Chen
et al., 2020; He et al., 2020) as the contrastive loss to utilize
totally unlabeled data. We introduce CL into domain gen-
eralization, leading the model robust to various styles. We
also leverage consistency with general visual knowledge to
prevent the model from overfitting to the source data.
Style Variation Style features are widely explored in style
transfer (Dumoulin et al., 2017; Huang & Belongie, 2017),
which aims at changing the image style but maintaining the
content. Inspired by this, recent domain generalization meth-
ods leverage the style features to generate diverse data of
different styles to improve the generalization ability. Swap-
ping (Tang et al., 2021; Zhao et al., 2022a) and mixing (Zhou
et al., 2021a) existing styles within the source domains is
an effective way and generating new styles (Wang et al.,
2021c) by specially designed modules can also make sense.
More recently, AdvStyle (Zhong et al., 2022) applies adver-
sarial learning to the style features to generate diverse and
hard samples. We also only leverage the styles within the
source domain but take the relatively rare styles in the source
domain into account, thus generating more diverse samples
to improve generalization ability.

3 Methodology

Preliminary In domain generalization, one or multiple
labeled source domains S = {xiS, yiS}NS

i=i , where NS is the
number of source domains, are used to train a recogni-
tion model, which is deployed to unseen target domains T
directly. In general, the source and target domains share the
same label space YS,YT ∈ (1, NC ) but belong to different
distributions. The goal of this task is to improve the gener-
alization ability of model in unseen domains using only the
source data.
Overview To solve the above challenging problem, we
propose the Style-HAllucinated Dual consistEncy learn-
ing (SHADE) framework, which is quipped with dual
consistency constraints and a Style Hallucination Module
(SHM). The dual consistency constraints effectively learn
the domain-invariant representation and ameliorate the over-
fitting issue via general visual knowledge. SHM enriches the
training samples by dynamically generating diverse styles,
which catalyzes the advantage of dual consistency learning.
The overall framework is shown in Fig. 2 and SHM is illus-
trated in Fig. 3.

3.1 Dual Consistency Constraints

In SHADE, we introduce two consistency learning con-
straints: (1) Style Consistency (SC) that aims at learning
the consistent predictions across stylized samples. (2) Ret-
rospection Consistency (RC) that focuses on narrowing the
distribution shift between source data and general visual
knowledge in the feature-level, which can alleviate themodel
overfitting to the source data.
Style Consistency (SC) Cross entropy constraint is one of
the most important criterion for recognition tasks, focus-
ing on the high-level semantic information for each class.
Instead of the global representation for each class, logit pair-
ing highlights the most invariant information across paired
samples, which has demonstrated its effectiveness in learn-
ing adversarial samples (Hendrycks et al., 2020; Kannan et
al., 2018). Inspired by this, we propose SC to ameliorate the
style shift with logit pairing. To fulfill this, SC requires the
style-diversified samples x̃S which share the same semantic
content with the source samples xS but of different styles.
To generate stylized samples online and maintain the pixel-
level semantic information, non-geometry style variation,
e.g., MixStyle (Zhou et al., 2021a), CrossNorm (Tang et
al., 2021) and the proposed style hallucination in Sect. 3.3,
is used to obtain the style-diversified samples x̃S . Note that
we focus on three visual recognition tasks, including image
classification, semantic segmentation and object detection.
As shown in Fig. 2, the implementation of style consistency
depends on the task. In general, we minimize the Jensen-
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Fig. 2 Overview of the proposed style-hallucinated dual consistency
learning (SHADE) framework. Training images are fed into the train-
ing model (ongoing knowledge) and the ImageNet pre-trained model
(retrospective knowledge). The style hallucination module is inserted

into a certain layer of the training model to generate stylized samples.
Finally, themodel is optimized by the dual consistency losses: style con-
sistencyLSC and retrospection consistencyLRC. Note that the standard
task loss is also used and we omit it here for brevity

ShannonDivergence (JSD) between the posterior probability
of the semantically aligned x̃S and xS :

LSC(xS, x̃S) = J SD
(
P; P̃

)

= 1

2

(
DKL[P||Q] + DKL[P̃||Q]

)
, (1)

where Q = (P + P̃)/2 is the average information of the
original and style-diversified samples. DKL denotes the KL
Divergence between the posterior probability {P, P̃} and Q.
JSD is a valid statistical metric, which can be applied to any
two arbitrary distributions, even with the different distribu-
tion support (Shui et al., 2022a). Thus, we can estimate and
minimize the JSD for P and P̃ to learn the invariant semantic
information across two styles.
Retrospection Consistency (RC) Backbones of generalizable
models commonly start from ImageNet (Deng et al., 2009)
pre-trained weights since the pre-trained backbones have
learned general representation of the visual world. However,
the model learns more task-specific information and fit to the
source data after training, which limiting the performance on
the unseen scenarios. Since ImageNet pre-trainedweights are
available to every generalizable model as the initialization,
we propose RC to leverage such knowledge to lead themodel
less overfitting to the source data and to retrospect the knowl-
edge of the visual world lying in initialization. Specifically,
RC is implemented as the feature-level distance minimiza-
tion between the training model θS and pre-trained model
θI N . In addition, the style-diversified samples x̃S in style
consistency is also used in RC, which can lead the generated
samples close to the real-world style. Similar to style consis-
tency, the backbone feature used for RC depends on the task.
We define RC as:

Fig. 3 Illustration of the style hallucination module

LRC(xS, x̃S) = ( fRC(xS, x̃S; θS) − fRC(xS; θI N ))2 , (2)

where fRC(xS, x̃S; θS) denotes the bottleneck feature of orig-
inal sample xS and style-diversified sample x̃S , which are
obtained from the ongoing model θS . f (xS; θI N ) denotes the
bottleneck feature of original sample xS in the retrospective
ImageNet pre-trained model θI N .
Discussion Our retrospection consistency is inspired by the
Feature Distance (FD) in DAFormer (Hoyer et al., 2022)
but with different motivation and implementation. First,
DAFormer focuses on unsupervised domain adaptation in
semantic segmentation with unlabeled real-world data avail-
able, so it only focuses on fitting to the specific target domain
(CityScapes (Cordts et al., 2016)) rather than addressing
unseen domain shift. Second, FD in DAFormer is used to
better classify those similar classes (e.g., bus and train) with
the classification knowledge from ImageNet. In this paper,
we focus on the domain generalization in visual recognition
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tasks. Since we have no idea about the target distribution,
RC in our framework serves as an important guidance for the
general visual knowledge, leading the model less overfitting
to the source data. In addition, apart from semantic segmen-
tation, RC can be applied to image classification and object
detection.

3.2 Applications of Dual Consistency Learning

The recognition objective is different for each task: image
classification leverages the global information to classify the
whole image; semantic segmentation is required to classify
each pixel to the pre-defined categories; object detection aims
to detect the object and recognize the class. Consequently,
the implementation of dual consistency constraints is based
on the task requirements.
Image Classification The input image x first forwards
through the backbone θ and the global average pooling layer
to obtain the backbone feature f (x; θ), which is used for
retrospective consistency. Then a linear classifier is used to
predict the image class for backbone features of both the
original and stylized samples. The prediction after softmax
is the posterior probability P and P̃ .
Semantic Segmentation Since the pixel-level prediction
is required for semantic segmentation, the consistency is
applied to each pixel instead of the whole image. In addi-
tion, semantic segmentation in the urban scene contains both
foreground (e.g., car and person) and background (e.g., road
and wall) classes, while the ImageNet pre-trained model
only focuses on the foreground categories. Thus, only the
foreground backbone features are used for retrospective con-
sistency. Here we define the mask of foreground pixels as
M fg and the retrospective features fRC(x; θ) is M · f (x; θ).
Nevertheless, since the style variation is applied to both fore-
ground and background pixels, so the style consistency is
applied to the posterior probabilities of all the pixels, which
are the predicted value after classifier and softmax.
Object Detection Object detection requires to classify the
object category within the bounding box instead of the whole
image or each pixel. Thus, the consistency should be applied
only to the box features. Specifically, we use the ground truth
box to obtain the RoI (Region of Interest) features from the
backbone features via RoI align (He et al., 2017), and the RoI
features fRoI(x) serve as the retrospective features fRC(x; θ).
After that, the RoI features are fed into the classifier to obtain
the posterior probability P and P̃ for each object, which are
used in the style consistency.

3.3 Style Hallucination

Background Style transfer (Chen et al., 2021a; Huang &
Belongie, 2017) and domain generalization (Tang et al.,
2021;Zhou et al., 2021a)methods show that the channel-wise

mean and standard deviation can represent the non-content
style of the image, which plays an important role in the
domain shift. The style features can be readily used by
AdaIN (Huang & Belongie, 2017) which can transfer the
image to an arbitrary style while remaining the content:

AdaIN(x, y) = σ(y)

(
x − μ(x)

σ (x)

)
+ μ(y), (3)

where x and y denotes the featuremaps providing the content
and style respectively. μ(∗) and σ(∗) denotes the channel-
wise mean and standard deviation. In domain generalization,
as only one or multiple source domains are accessible, pre-
vious works modify AdaIN by replacing style features with
other source styles. Those styles can be directly obtained
from other samples (Tang et al., 2021) or can be generated
bymixing other styleswith its own styles (Zhou et al., 2021a).
Style Hallucination Module (SHM) The ways of previous
methods (Tang et al., 2021; Zhou et al., 2021a) in generating
extra styles are sub-optimal, since they just randomly swap
or mix source styles without considering the frequency and
diversity of the source styles. As a result, more samples of
the dominant style (e.g., daytime) will be generated, yet the
generated distribution may be quite different from the target
one. Sincewe have no idea about the distribution of target set,
it is better to diversify the source samples asmuch as possible.
We next introduce the StyleHallucinationModule (SHM) for
generating diverse source samples. The illustration of SHM
is shown in Fig. 3.

Definition 1 A basis B of a vector space V over a field F is
a linearly independent subset of V that spans V . When the
field is the reals R, the resulting basis vectors are n-tuples of
reals that span n-dimensional Euclidean space Rn (Halmos,
1987).

According to Definition 1, style space can be viewed as a
subspace of C-dimensional vector space, and thus all possi-
ble styles can be represented by the basis vectors. However,
if we directly take C linearly independent vectors as the
basis, e.g., orthogonal unit vectors, many unrealistic styles
are generated since the realistic styles are only in a small
subspace, and such generated styles can impair the model
training. To reconcile the diversity and realism, we use far-
thest point sampling (FPS) (Qi et al., 2017) to select C styles
from all the source styles as basis styles. FPS is widely used
for point cloud downsampling, which can iteratively choose
C points from all the points, such that the chosen points
are the most distant points with respect to the remaining
points. Despite not strictly linearly independent, basis styles
obtained by FPS can represent the style space to the utmost
extent, and also contain many rare styles since rare styles
are commonly far away from dominant ones. In addition, we
recalculate the dynamic basis styles every k epochs instead
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Fig. 4 Visualization of distributions of different domains. a Comparison of two kinds of basis styles; b generated style with Kmeans basis style; c
generated style with FPS basis style (Zoom in for details)

of fixing them, as the style space is changing along with
the model training. To generate new styles, we sample the
combination weight W = [w1, · · · , wC ] from Dirichlet dis-
tribution B([α1, · · · , αC ])with the concentration parameters
[α1, · · · , αC ] all set to 1/C . The basis styles are then linearly
combined by W :

μHS = W · μbase, σHS = W · σbase, (4)

where μbase ∈ R
C×C and σbase ∈ R

C×C are the C basis
styles. With the generated styles, style hallucinated samples
x̃S can be obtained by:

x̃S = σHS

(
xS − μ(xS)

σ (xS)

)
+ μHS . (5)

Discussion We take the semantic segmentation benchmark
as an example to verify the FPS basis style selection. In
Fig. 4,GTAV (Richter et al., 2016) is the source domainwhile
CityScapes (Cordts et al., 2016), BDD100K (Yu et al., 2020)
and Mapillary (Neuhold et al., 2017) are the target domains.
Selecting representative basis styles is crucial for SHM. FPS
is adopted in our method as it can cover the rare styles to
the utmost extent. Another way is taking the Kmeans (Mac-
Queen, 1967) clustering centers as the basis. As shown in
Fig. 4a, FPS samples (black cross) spread out more than
Kmeans centers (teal triangle), and can cover almost all pos-
sible source styles (lightskyblue point).When using the basis
styles for style generation, styles obtained fromKmeans cen-
ters (Fig. 4b) are still within the source distribution and even
ignore some possible rare styles. In contrast, FPS basis styles
can generate more diverse styles (Fig. 4c), and even generate
some styles close to the real-world ones (yellow, pink and
orange point). Table 8 further demonstrates the effectiveness
of FPS basis styles and shows that the Kmeans basis styles

are even worse than directly swapping and mixing source
styles.

3.4 Training Objective

The overall training objective is the combination of the task
loss and the proposed two consistency constraints:

L = Ltask(xS, yS) + λSCLSC(xS, x̃S)

+λRCLRC(xS, x̃S), (6)

where λSC and λRC are the weights for style consistency
and retrospection consistency, respectively. The task loss is
the cross entropy loss for image classification and semantic
segmentation, and is theRPN loss togetherwith cross entropy
loss for object detection.

4 Experiments

In this section, we conduct experiments on image clas-
sification, semantic segmentation and object detection to
demonstrate the superiority of SHADE. We first compare
our method with state-of-the-art methods in the three visual
tasks. Then, we provide ablation studies on image classifica-
tion and semantic segmentation to verify the effectiveness of
each proposed component. Finally, we analyze and evaluate
SHADE on semantic segmentation and provide the visual-
ization results.

4.1 Semantic Segmentation

4.1.1 Experimental Setup

Datasets Two synthetic datasets (GTAV (Richter et al., 2016)
and SYNTHIA (Ros et al., 2016)) and three real-world
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datasets (CityScapes (Cordts et al., 2016), BDD100K (Yu
et al., 2020) and Mapillary (Neuhold et al., 2017)) are used
in this paper. GTAV (Richter et al., 2016) contains 24,966
images with the size of 1914×1052, splitting into 12,403
training, 6382 validation, and 6181 testing images. SYN-
THIA (Ros et al., 2016) contains 9400 images of 960×720,
where 6,580 images are used for training and 2820 images
for validation. CityScapes (Cordts et al., 2016) contains 2975
training images and 500 validation images of 2048×1024.
BDD100K (Yu et al., 2020) and Mapillary (Neuhold et al.,
2017) contain 7000 and 18,000 images for training, and 1000
and 2000 images for validation, respectively.
Implementation Details We use both ConvNets and Trans-
former backbone to conduct experiments. For the ConvNets
models, we use DeepLabV3+ (Chen et al., 2018) as the seg-
mentationmodel and equip itwith twobackbones:ResNet-50
and ResNet-101 (He et al., 2016). The SHM is inserted after
thefirstConv-BN-ReLU layer (layer0).We re-select the basis
styles with the interval k = 3.We set λSC = 10 and λRC = 1.
Models are optimized by the SGD optimizer with the learn-
ing rate 0.01, momentum 0.9 and weight decay 5×10−4. The
polynomial decay (Liu et al., 2015) with the power of 0.9 is
used as the learning rate scheduler. All models are trained
with the batch size of 8 for 40K iterations. During training,
four widely used data augmentation techniques are adopted,
including color jittering, Gaussian blur, random flipping, and
random cropping of 768×768. For the Transformer mod-
els, we use SegFormer (Xie et al., 2021) with MiT-B5 (Xie
et al., 2021) as the segmentation model. SHM is inserted
after the first block and the basis styles are re-selected every
4k iterations. We set λSC = 10 and λRC = 0.005. Fol-
lowing Hoyer et al. (2022), models are optimized by the
AdamW (Loshchilov & Hutter, 2019) optimizer with the
learning rate 6×10−5 for encoder and 6×10−4 for decoder,
and weight decay 0.01. Linear learning rate warmup by 1.5k
iterations is first adopted, and then the learning rate linearly
decays. All models are trained with the batch size of 2 for
40K iterations.
Protocols In this section, we focus on three protocols. (1)
Synthetic-to-real single-source DG takes the GTAV as the
source domain and evaluates the model on the three real-
world target domains. To conduct a fair comparison with
Choi et al. (2021) and Huang et al. (2021), we train the
model with GTAV training data (12,403 images) when using
ResNet-50 backbone (same with Choi et al. (2021)), and
with the whole GTAV datasets (24,966 images) when using
ResNet-101 backbone (same with Huang et al. (2021)) and
MiT-B5 backbone. (2) Synthetic-to-real multi-source DG
takes the GTAV and SYNTHIA as the source domains and
evaluate on the three real-world target domains. We follow
Choi et al. (2021) to train the model with the training set of
GTAV (12,403 images) and SYNTHIA (6580 images) using
ResNet-50 backbone. (3) Real-to-others single-source DG is

also investigated in this paper. Following Choi et al. (2021),
we train the model with the training set of CityScapes and
evaluate it on the other four synthetic and real-world datasets.
Evaluation MetricWe use the 19 shared semantic categories
for training and evaluation. The mean intersection-over-
union (mIoU) of the 19 categories on the target datasets is
adopted as the evaluation metric.

4.1.2 Comparison with State-of-the-Art Methods

Synthetic-to-Real Single-Source DG In Table 1, we compare
SHADE with state-of-the-art methods under single-source
setting, including SW (Pan et al., 2019), IterNorm (Huang
et al., 2019), IBN-Net (Pan et al., 2018), ISW (Choi et al.,
2021), DRPC (Yue et al., 2019), FSDR (Huang et al., 2021),
GTR (Peng et al., 2021), SAN-SAW (Peng et al., 2022) and
AdvStyle (Zhong et al., 2022).First, we comparemodels that
are trained with GTAV training set, using ResNet-50 back-
bone. SHADE achieves an average mIoU of 42.42% on the
three real-world target datasets, yielding an improvement of
15.00% mIoU over the baseline and outperforming the pre-
vious best method (AdvStyle) by 2.39%. Second, we further
compare methods under the training protocol of DRPC (Yue
et al., 2019) and FSDR (Huang et al., 2021), using ResNet-
101 backbone and taking the whole set of GTAV (24,966
images) as the training data. Note that DRPC (Yue et al.,
2019) and FSDR (Huang et al., 2021) utilize extra real-world
data from ImageNet (Deng et al., 2009) or even driving
scenes. Moreover, they select the best checkpoint for each
target dataset, which is impractical in the real-world appli-
cations. Even so, we achieve the best results on all three
datasets, 46.66% on CityScapes, 43.66% on BDD100K, and
45.50% on Mapillary, outperforming FSDR (Huang et al.,
2021) and AdvStyle (Zhong et al., 2022) by by 2.14% and
2.85% in the average mIoU. Third, we further investigate
SHADE with the Transformer backbone. Since no previous
work leveraging the Transformer backbone, we reproduce
MixStyle (Zhou et al., 2021a), CrossNorm (Tang et al., 2021)
and AdvStyle (Zhong et al., 2022) based on the source code.
As shown in Table 1, the source onlymodel serves as a strong
baseline and these method can hardly improve the perfor-
mance. Instead, SHADE outperforms the baseline by 7.67%
on CityScapes, 3.33% on BDD100K, and 6.27% on Mapil-
lary, respectively. These results show that we produce new
state of the art in domain generalized semantic segmentation
with different segmentation models and backbones.
Synthetic-to-Real Multi-Source DG To further verify the
effectiveness of SHADE, we compare SHADE with IBN-
Net (Pan et al., 2018), ISW (Choi et al., 2021), PTM (Kim
et al., 2022) and AdvStyle (Zhong et al., 2022) under the
multi-source setting. We use ResNet-50 as the backbone and
take the training set of GTAV and SYNTHIA as the source
domains. As shown in Table 2, SHADE gains an improve-

123



International Journal of Computer Vision (2024) 132:837–853 845

Table 1 Comparison with state-of-the-art methods on single-source DG-Seg with ResNet-50, ResNet-101, and MiT-B5 backbones, respectively

Net Methods (GTAV) Venue Extra data CityScapes BDD100K Mapillary Avg.

ResNet-50 Baseline – × 28.95 25.14 28.18 27.42

IBN-Net (Pan et al., 2018) ECCV 18 × 33.85 32.30 37.75 34.63

IterNorm (Huang et al., 2019) CVPR 19 × 31.81 32.70 33.88 32.79

SW (Pan et al., 2019) ICCV 19 × 29.91 27.48 29.71 29.03

DRPC (Yue et al., 2019)§ ICCV 19 � 37.42 32.14 34.12 34.56

ISW (Choi et al., 2021) CVPR 21 × 36.58 35.20 40.33 37.37

GTR (Peng et al., 2021) TIP 21 × 37.53 33.75 34.52 35.27

SAN-SAW (Peng et al., 2022) CVPR 22 × 39.75 37.34 41.86 39.65

AdvStyle (Zhong et al., 2022) NeurIPS 22 × 39.60 38.59 41.89 40.03

Ours – × 44.65 39.28 43.34 42.42

ResNet-101 Baseline – × 32.97 30.77 30.68 31.47

IBN-Net (Pan et al., 2018) ECCV 18 × 37.37 34.21 36.81 36.13

DRPC (Yue et al., 2019)§ ICCV 19 � 42.53 38.72 38.05 39.77

ISW (Choi et al., 2021)† CVPR 21 × 37.20 33.36 35.57 35.38

FSDR (Huang et al., 2021)§ CVPR 21 � 44.80 41.20 43.40 43.13

GTR (Peng et al., 2021) TIP 21 × 43.70 39.60 39.10 40.80

SAN-SAW (Peng et al., 2022) CVPR 22 × 45.33 41.18 40.77 42.43

AdvStyle (Zhong et al., 2022) NeurIPS 22 × 44.51 39.27 43.48 42.42

Ours – × 46.66 43.66 45.50 45.27

MiT-B5 Baseline – × 45.60 44.86 48.72 46.39

MixStyle (Zhou et al., 2021a)† ICLR 21 × 43.29 44.23 46.51 44.68

CrossNorm (Tang et al., 2021)† ICCV 21 × 46.41 44.69 50.21 47.10

AdvStyle (Zhong et al., 2022)† NeurIPS 22 × 46.56 45.10 48.35 46.67

Ours – × 53.27 48.19 54.99 52.15

“Extra Data” denotes using extra real-world data during training. § denotes selecting best checkpoint for each target dataset, and † denotes
reproducing the results based on the source code
Bold values denote the best results

Table 2 Comparison with
state-of-the-art methods on
multi-source DG-Seg

Methods (G+S) Venue CityScapes BDD100K Mapillary Avg.

Baseline – 35.46 25.09 31.94 30.83

IBN-Net (Pan et al., 2018) ECCV 18 35.55 32.18 38.09 35.27

MLDG (Li et al., 2018a) AAAI 18 38.84 31.95 35.60 35.46

ISW (Choi et al., 2021) CVPR 21 37.69 34.09 38.49 36.76

PTM (Kim et al., 2022) CVPR 22 44.51 38.07 42.70 41.76

AdvStyle (Zhong et al., 2022) NeurIPS 22 39.29 39.26 41.14 39.90

Ours – 47.43 40.30 47.60 45.11

All models use ResNet-50 backbone and are trained with training sets of GTAV and SYNTHIA
Bold values denote the best results

ment of 14.28% in average mIoU over the baseline, and
outperforms PTM (Kim et al., 2022) and AdvStyle (Zhong et
al., 2022) by 3.35% and 5.21% respectively. The significant
improvement over previous works is mainly benefited from
the various samples. With richer source samples, our SHM
can generate more informative and diverse styles, which can
effectively facilitate the dual consistency learning.

Real-to-Others Single-Source DG In Table 3, we compare
SHADE with previous methods under the real-to-others DG
setting, where CityScapes (Cordts et al., 2016) is leveraged
as the source domain and the model is generalized to real
(BDD100K (Yu et al., 2020) and Mapillary (Neuhold et al.,
2017)) and synthetic (GTAV (Richter et al., 2016) and SYN-
THIA (Ros et al., 2016)) domains. As shown in Table 3,
SHADE consistently outperforms ISW (Choi et al., 2021)
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Table 3 Comparison with
state-of-the-art methods on
Real-to-Others DG-Seg

Methods GTAV SYNTHIA BDD100K Mapillary Avg.

Baseline 42.55 23.29 44.96 51.68 40.62

SW (Pan et al., 2019) 44.87 26.10 48.49 55.82 43.82

IterNorm (Huang et al., 2019) 45.73 25.98 49.23 56.26 44.30

IBN-Net (Pan et al., 2018) 45.06 26.14 48.56 57.04 44.20

ISW (Choi et al., 2021) 45.00 26.20 50.73 58.64 45.14

Ours 48.61 27.62 50.95 60.67 46.96

All models use ResNet-50 backbone and are trained with GTAV training set
Bold values denote the best results

Table 4 Comparison with state-of-the-art methods on PACS image
classification benchmark

Method Art Car Ske Pho Avg.

ERM 67.4 74.4 51.4 42.6 58.9

JiGen (Carlucci et al., 2019) 69.1 74.6 52.4 41.5 59.4

RSC (Huang et al., 2020) 68.8 74.5 53.6 41.9 59.7

L2D (Wang et al., 2021c) 74.3 77.5 54.4 45.9 63.0

ERM+SHADE 76.5 77.2 60.1 49.3 65.8

RSC+SHADE 75.4 74.8 55.8 49.8 64.0

L2D+SHADE 76.1 79.7 60.1 51.0 66.7

One domain (name in column) is used as the source (training) data and
the other domains are used as the target (testing) data
Bold values denote the best results

and IBN-Net (Pan et al., 2018) on both real and synthetic
datasets. These results further verify the versatility of our
method.

4.2 Image Classification

4.2.1 Experimental Setup

Datasets We conduct experiments on the PACS (Li et al.,
2017) benchmark. PACS (Li et al., 2017) contains four
domains (Artpaint, Cartoon, Sketch, and Photo), and each
domain contains 224 × 224 images belonging to seven cat-
egories. There are 9991 images in total.
Implementation Details Following Huang et al. (2020), we
use the ResNet18 (He et al., 2016) pretrained on Ima-
geNet (Deng et al., 2009) as the backbone. The SHM is
inserted after the first Conv-BN-ReLU layer and the basis
styles are selected every 3 epochs. The loss weight λSC and
λRC are set to 10 and 0.1, respectively. We train the model
by SGD optimizer. The learning rate is initially set to 0.004
and divided by 10 after 24 epochs. The model is trained for
30 epochs in total with a batch size of 128.
EvaluationMetricWeselect one of the four domains in PACS
as the source domain and the other domains as the target
domains. The mean accuracy of the 7 categories on the target
datasets is adopted as the evaluation metric.

4.2.2 Comparison with State-of-the-Art Methods

We compare SHADE with the baseline (ERM (Vapnik,
2013)) and three state-of-the-art DG methods, including
JiGen (Carlucci et al., 2019), RSC (Huang et al., 2020) and
L2D (Wang et al., 2021c). We reproduce JiGen (Carlucci et
al., 2019), RSC (Huang et al., 2020) and L2D (Wang et al.,
2021c) with their official source codes. All methods use the
same baseline (ERM (Vapnik, 2013)). To verify the effective-
ness of SHADE, we apply SHADE to ERM (Vapnik, 2013),
RSC (Huang et al., 2020) and L2D (Wang et al., 2021c). As
shown in Table 4, combining SHADE with ERM (Vapnik,
2013) can outperform state-of-the-art method (L2D (Wang
et al., 2021c)) on all four domains by 2.2%, 0.3%, 5.7%, and
3.4%, respectively. In addition, SHADE can yield improve-
ments on all the three models by 6.9% on ERM (Vapnik,
2013), 4.3% on RSC (Huang et al., 2020), and 3.7% on
L2D (Wang et al., 2021c) in the average accuracy. The above
results demonstrate SHADE is versatile and effective.

4.3 Object Detection

4.3.1 Experimental Setup

Datasets We use the urban-scene detection benchmark (Wu
& Deng, 2022) in this paper. The benchmark includes
five datasets of different weather conditions. Specifically,
daytime-sunny dataset contains 19,395 and 8313 images
from BDD100K (Yu et al., 2020) for training and testing,
respectively. The night-sunny dataset contains 26,158 images
from BDD100K. The dusk-rainy and night-rainy datasets
include 3501 and 2494 images rendered from BDD100K
by Wu et al. (2021). In addition, 3775 foggy images
from FoggyCityscapes (Sakaridis et al., 2018) and Adverse-
Weather (Hassaballah et al., 2020) form the daytime-foggy
dataset.
Implementation Details Following Wu and Deng (2022), we
use Faster R-CNN (Ren et al., 2015) with ResNet-101 (He
et al., 2016) backbone as the detector. The SHM is inserted
after the first Conv-BN-ReLU layer and the basis styles are
selected every epoch. The loss weight λSC and λRC are set to
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Table 5 Comparison with state-of-the-art methods on domain generalized object detection benchmark

Method Night Sunny Dusk Rainy Night Rainy Day Foggy Avg.

Baseline 33.5 26.6 14.5 31.9 26.6

SW (Pan et al., 2019) 33.4 26.3 13.7 30.8 26.1

IBN-Net (Pan et al., 2018) 32.1 26.1 14.3 29.6 25.5

IterNorm (Huang et al., 2019) 29.6 22.8 12.6 28.4 23.4

ISW (Choi et al., 2021) 33.2 25.9 14.1 31.8 26.3

Single-DGOD (Wu & Deng, 2022) 36.6 28.2 16.6 33.5 28.7

Ours 33.9 29.5 16.8 33.4 28.4

Bold values denote the best results

Table 6 Ablation studies of
each component on the
synthetic-to-real single source
DG benchmark

No SHM LSC LRC EMA CityScapes BDD100K Mapillary Avg.

1 × × × × 28.95 25.14 28.18 27.42

2 � × × × 38.68 32.40 35.96 35.68

3 � � × × 42.66 35.92 40.42 39.67

4 � × � × 41.43 37.65 41.77 40.29

5 � � × � 42.38 38.04 42.34 40.92

6 � � � × 44.65 39.28 43.34 42.42

Allmodels use ResNet-50 backbone and are trainedwithGTAV training set. SHM: style hallucinationmodule;
EMA: using exponential moving average model instead of ImageNet pre-trained model
Bold values denote the best results

10 and 0.1, respectively. SGD optimizer is used to train the
model with learning rate 0.004, momentum 0.9 and weight
decay 5×10−4. The model is trained for 10 epochs in total
with a batch size of 2.
Evaluation Metric The daytime-sunny dataset is used as
the source training data, while the night-sunny, dusk-rainy,
night-rainy and daytime-foggy datasets are used for the tar-
get testing data. We use the 7 shared categories for training
and evaluation and the mean average precision (mAP) with
a threshold of 0.5 is adopted as the evaluation metric.

4.3.2 Comparison with State-of-the-art Methods

We compare SHADE with the baseline model, SW (Pan et
al., 2019), IBN-Net (Pan et al., 2018), IterNorm (Huang et
al., 2019), ISW (Choi et al., 2021) and Single-DGOD (Wu
& Deng, 2022) in Table 5. The results are borrowed from
Wu and Deng (2022). As shown in Table 5, SHADE outper-
forms the baselinemodel on all the target datasets by 0.4%on
night-sunny, 2.9% on dusk-rainy, 2.3% on night-rainy, and
1.5% on daytime-foggy. Furthermore, SHADE achieves the
state-of-the-art performance on dusk-rainy and night-rainy
datasets. These results demonstrate that SHADE is appli-
cable to improving the generalization ability for the object
detection model.

Table 7 Ablation studies of each component on the PACS benchmark

No SHM LSC LRC Art Car Ske Pho Avg.

1 × × × 67.4 74.4 51.4 42.6 58.9

2 � × × 69.9 73.9 51.1 43.4 59.6

3 � � × 72.8 74.8 60.0 49.1 64.2

4 � × � 69.6 75.8 54.3 43.5 60.8

5 � � � 76.5 77.2 60.1 49.3 65.8

ERM baseline with ResNet-18 backbone is used. SHM: style halluci-
nation module
Bold values denote the best results

4.4 Ablation Studies

To investigate the effectiveness of each component in
SHADE, we conduct ablation studies in Tables 6 and 7
on semantic segmentation and image classification, respec-
tively.
Effectiveness of Style Hallucination Module (SHM) SHM is
the basis of SHADE. When using SHM only, we directly
apply cross entropy loss on the style hallucinated samples.
As shown in the second row of Table 6, our SHM can largely
improves the model performance even without using the
proposed dual consistency learning. This demonstrates the
importance of training the model with diverse samples and
the effectiveness of our SHM.
Effectiveness of Style Consistency (SC) SC is the consistency
constraint that leads the model to learn style invariant repre-
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Table 8 Comparison of
different style variation methods

Methods (GTAV) CityScapes BDD100K Mapillary Avg.

Baseline 28.95 25.14 28.18 27.42

Random Style 37.99 37.63 38.06 37.89

MixStyle (Zhou et al., 2021a) 43.14 37.94 42.22 41.10

CrossNorm (Tang et al., 2021) 43.13 37.20 41.83 40.72

Kmeans Basis 40.50 37.62 39.46 39.19

Ours 44.65 39.28 43.34 42.42

All models use ResNet-50 backbone and are trained with GTAV training set
Bold values denote the best results

Fig. 5 Parameter analysis. “C-Base”, “B-Base” and “M-Base” denote the performance of baseline model on CityScapes, BDD100K andMapillary,
respectively

sentation. In Table 6, compared with only applying SHM, SC
yields an improvement of 3.99% in average mIoU, demon-
strating the superiority of the proposed logit pairing over
cross entropy loss in learning style invariant model.
Effectiveness of Retrospection Consistency (RC) First, RC
serves as an important guidance to ameliorate the overfit-
ting problem by general visual knowledge. Applying RC
on top of SHM can yield an improvement of 4.61%, while
removing RC will degrade the performance of SHADE by
2.75% in mIoU. Second, we conduct experiments to ver-
ify that the effectiveness of RC lies in the general visual
knowledge instead of feature-level distance minimization of
the paired samples. As directly minimizing the feature-level
absolute distance of paired samples will lead to sub-optimal
results (lead all the features close to zero), we replace the
ImageNet pre-trained model in RC by exponential moving
average (EMA)model. Comparing the fifth row and the sixth
row in Table 6, EMA model only gains 1.25% improvement
while RC improves the SC model by 2.75%. The results ver-
ify the significance of the retrospective knowledge in RC.
Ablation Studies on Image Classification We further con-
duct ablation studies on the PACS benchmark to verify the
effectiveness of each component in SHADE. Different phe-
nomena from the segmentation benchmark are observed.
First, adopting SHM can only slightly improve the model
performance since the styles of a single classification dataset
are limited. Second, the performance yields a significant

improvement of 4.6% in average accuracywhen style consis-
tency is applied. Third, leveraging retrospective consistency
can gain an improvement of 1.2% and applying it on top of
the style consistency can further improve the performance by
1.6% in average accuracy.

4.5 Further Evaluation

In this section, we compare different style variation meth-
ods under the proposed dual consistency constraints and
analyze two important hyper-parameter, i.e., the location of
SHM and the basis style selection interval, in our framework.
Experiments in this section are based on the synthetic-to-real
single-source DG in semantic segmentation. ResNet-50 (He
et al., 2016) is leveraged as the backbone.
Comparison of different style variation methods We com-
pare SHMwith random style, MixStyle (Zhou et al., 2021a),
CrossNorm (Tang et al., 2021) and style hallucination with
Kmeans basis in Table 8. Random style utilizes the sam-
pled styles from the standard normal distribution to form
new samples. MixStyle (Zhou et al., 2021a) generates new
styles by mixing the original style with the randomly shuf-
fled style within a mini-batch, and CrossNorm (Tang et al.,
2021) swaps the original style with another style within the
shuffled mini-batch. SHM and Kmeans basis both use the
linear combination of basis style to generate new styles,
but the basis styles of SHM are selected by FPS (Qi et al.,
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Table 9 Analysis of loss form of style consistency

Methods (GTAV) CityScapes BDD100K Mapillary Avg.

SHADE w.o. SC 41.43 37.65 41.77 40.29

SHADE-MMD 42.51 37.33 42.30 40.71

SHADE-WD 43.25 37.71 41.87 40.94

SHADE 44.65 39.28 43.34 42.42

Bold values denote the best results

Table 10 Analysis of loss form of retrospection consistency

Methods (GTAV) CityScapes BDD100K Mapillary Avg.

SHADE w.o. RC 42.66 35.92 40.42 39.67

SHADE-L1 43.39 37.98 43.16 41.51

SHADE 44.65 39.28 43.34 42.42

Bold values denote the best results

2017) while those of Kmeans basis are obtained by Kmeans
clustering centers (MacQueen, 1967). We can make four
observations from Table 8. First, we cannot make full use of
dual consistency to achieve significant performance with the
unrealistic random styles since standard normal distribution
cannot represent the source nor the target domains. Second,
despite the use of realistic source styles, random utilization
of MixStyle and CrossNorm leads to the generation of more
samples from the dominant styles that may be different from
the target styles. When using MixStyle and CrossNorm, the
model achieves an average mIoU of 41.10% and 40.72%,
respectively. Third, as shown in Fig. 4b, Kmeans basis suf-
fers from the similar but more severe dominant style issue
in style generation. As a result, rare styles are almost dis-
carded and thus the model achieves poorer performance than
the above two. Fourth, SHM selects basis styles via FPS, and
thus the selection can cover the source distribution to a large
extent, especially those rare styles. With such basis styles,
SHM generates styles from all the source distributions, and
some generated styles are even close to the target domains
(Fig. 4c). Consequently, combining SHM with dual consis-
tency learning, SHADEcan reap the benefit of the source data
and outperform other methods on all three target datasets.
Location of SHMWe investigate the impact of inserting SHM
in different locations in Fig. 5a. “L0” denotes inserting SHM
after the first Conv-BN-ReLU layer (layer0) and “L1” to
“L3” denote inserting SHM after the corresponding (1–3)
ResNet layer. As shown in Fig. 5a, “L0” achieves the best
result while the performance of “L1” and “L2” drops a little.
However, the model suffers from drastic performance degra-
dationwhen inserting SHMafter layer3, and the performance
is even worse than the baseline. The reasons are two-fold.
First, the channel-wise mean and standard deviation repre-
sent more style information in the shallow layers of deep
neural networks while they contain more semantic informa-

tion in deep layers (Huang & Belongie, 2017; Dumoulin et
al., 2017). Second, the residual connections in ResNet will
lead the ResNet activations of deep layers to have large peaks
and small entropy, which makes the style features biased to
a few dominant patterns instead of the global style (Wang et
al., 2021b). The bias problem might be formulated and then
alleviated by a bilevel objective (Shui et al., 2022c), which
deserves further investigation. Based on the above observa-
tions, we insert SHM after the shallow layer of the backbone,
i.e., layer0 of the ResNet (He et al., 2016) and block1 ofMiT-
B5 (Xie et al., 2021).
Basis Style Selection Interval The distribution of source
styles is varied along with the model training. To better rep-
resent the style space, we re-select the basis styles with the
interval of k epochs. The abscissa of Fig. 5b denotes the selec-
tion interval k and “inf” denotes only selecting the basis style
once in the beginning of training. As shown in Fig. 5b, the
model achieves consistent and good performance with fre-
quent re-selection (k <= 3) while the performance degrades
with the increase of selection interval, and the average mIoU
is lower than 41%when only selecting once. Taking both the
performance and computational cost into consideration, we
set k = 3 in DG-Seg with ResNet backbone. Note that the
batch size and training data are different across the models
and tasks, and thus we follow the frequent re-selection obser-
vation to set the frequency ofDG-SegwithMiT-B5 backbone
and DG-Det to 4k iterations and 1 epoch, respectively.
Analysis of Loss Form of Style Consistency Jensen-Shannon
Divergence (JSD) is leveraged in our framework to align
the distributions of the original image and stylized image,
which can help to learn the invariant semantic information
across styles. In addition to JSD, Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2012) andWasserstein Distance
(WD) (Arjovsky et al., 2017) are also widely adopted tomea-
sure distributions. Therefore, we compare JSD with them in
Table 9.First, compared with themodel without style consis-
tency, all three loss forms improve the generalization ability
to unseen domains, further verifying the effectiveness of
our framework. Second, JSD achieves the best performance
among the three loss forms, demonstrating that JSD is better
at aligning the style distributions in urban scenes.
Analysis of Loss Form of Retrospection Consistency Retro-
spection consistency aims to acquire general visual knowl-
edge from the pre-trained model and to prevent the model
from overfitting to the source data. In this paper, we lever-
age MSE loss to calculate the loss. As shown in Table 10,
MSE loss achieves better performance than L1 loss in all
three datasets. Moreover, both losses outperform the model
without retrospection consistency by a large margin, demon-
strating the superiority of our framework.

123



850 International Journal of Computer Vision (2024) 132:837–853

Fig. 6 Visualization of style-diversified samples

Fig. 7 Qualitative comparison of segmentation results

4.6 Visualization

Style Visualization To better understand our SHM, we visu-
alize the style-diversified samples with an auto-encoder. We
take the fixed pre-trained blocks before SHM as the encoder,
and add an additional decoder. The decoder is trained by L1
loss with the source data. After training, we use SHM to
generate multiple styles and replace the style of the original
sample. Then we use decoder to generate the visualization
results. Examples of the three tasks are shown in Fig. 6. SHM
replaces the original style features with the combination of

basis styles to obtain new samples of different styles, e.g.,
weather change and time change.
Qualitative results To demonstrate the effectiveness of
SHADE, we compare the qualitative results of semantic
segmentation and object detection. We compare the segmen-
tation results among baseline, IBN-Net (Pan et al., 2018),
ISW (Choi et al., 2021) and SHADE on CityScapes (Cordts
et al., 2016), BDD100K (Yu et al., 2020) and Mapil-
lary (Neuhold et al., 2017) in Fig. 7. We obtain two obser-
vations from Fig. 7. First, SHADE consistently outperforms
other methods under different target conditions (e.g., sunny,
cloudy and overcast). Second, SHADE can well deal with
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Fig. 8 Qualitative comparison of detection results

both background classes (e.g., road) and foreground classes
(e.g., bus and bicycle). In addition, we compare SHADE
with the baseline model on object detection benchmark in
Fig. 8 and SHADE consistently outperforms the baseline
under different environmental conditions. The above obser-
vations demonstrate that SHADE is robust to style variation
and has strong ability in addressing unseen images.

5 Conclusion

In this paper, we present a novel framework (SHADE) for
visual domain generalization. To address the distribution
shift between the source and unseen target domains, SHADE
leverages two consistency constraints to learn the domain-
invariant representation by seeking consistent representation
across styles and the guidance of retrospective knowledge. In
addition, the style hallucination module (SHM) is equipped
into our framework, which can effectively catalyze the dual
consistency learning by generating diverse and realistic
source samples. The proposed SHADE is effective and ver-
satile, which can be applied to image classification, semantic
segmentation and object detection tasks with both ConvNets
and Transformer backbone, and can achieve state-of-the-art
performance on different benchmarks and under different
settings.
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http://synthia-dataset.net/ CityScapes (Cordts et al., 2016): https://
www.cityscapes-dataset.com/ BDD100K (Yu et al., 2020): https://

bdd-data.berkeley.edu/ Mapillary (Neuhold et al., 2017): https://www.
mapillary.com/dataset/vistasPACS (Li et al., 2017): https://domaingene
ralization.github.io/\#data Urban-scene Detection (Wu &Deng, 2022):
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CodeAvailability Thecode is available at https://github.com/HeliosZha
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