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Abstract
Benefiting from large-scale pretrained vision language models (VLMs), the performance of visual question answering (VQA)
has approached human oracles. However, finetuning such models on limited data often suffers from overfitting and poor gen-
eralization issues, leading to a lack of model robustness. In this paper, we aim to improve input robustness from an information
bottleneck perspective when adapting pretrained VLMs to the downstream VQA task. Input robustness refers to the ability of
models to defend against visual and linguistic input variations, as well as shortcut learning involved in inputs. Generally, the
representations obtained by pretrained VLMs inevitably contain irrelevant and redundant information for a specific down-
stream task, resulting in statistically spurious correlations and insensitivity to input variations. To encourage representations
to converge to a minimal sufficient statistic in multimodal learning, we propose Correlation Information Bottleneck (CIB),
which seeks a tradeoff between compression and redundancy in representations by minimizing the mutual information (MI)
between inputs and representations while maximizing the MI between outputs and representations. Moreover, we derive a
tight theoretical upper bound for the mutual information between multimodal inputs and representations, incorporating differ-
ent internal correlations that guide models to learn more robust representations and facilitate modality alignment. Extensive
experiments consistently demonstrate the effectiveness and superiority of the proposed CIB in terms of input robustness and
accuracy.

Keywords Information bottleneck · Robustness · Visual question answering · Vision-language model

1 Introduction

Visual Question Answering (VQA) is a typical multimodal
task that answers a given question based on image under-
standing (Antol et al., 2015). Recently, large-scale pretrained
Vision-Language Models (VLMs) (Wang et al., 2023; Zeng
et al., 2022; Wang et al., 2022; Yu et al., 2022; Wang et al.,
2022; Li et al., 2022; Yuan et al., 2021; Wang et al., 2021)
have advanced VQA performance to the level of human ora-
cle. However, finetuning such pretrained VLMs on limited
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data for the downstream VQA task often leads to overfit-
ting and poor generalization, limiting the improvement in
robustness that pretrained VLMs can offer compared to the
improvement in accuracy.

In this paper, we investigate how to effectively improve
input robustness when adapting pretrained VLMs to a down-
stream VQA task. Input robustness in VQA refers to the
ability of models to defend against visual variations (such
as question-related object removal in images (Agarwal et
al., 2020)), linguistic variations (such as word substitution
and sentence rephrasing in questions (Shah et al., 2019)),
and multimodal shortcut learning involved in input images
and questions (Dancette et al., 2021). Practically, during the
finetuning process, VQA is usually formulated as a multi-
answer classification problem or a text generation problem,
where pretrained multimodal transformers act as representa-
tion extractors with rich knowledge and are utilized to extract
vision-language representations for answer prediction. As
such, improving the input robustness of models essentially
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means obtaining more compact and task-related representa-
tions.

To this end, we propose to improve input robustness from
an information-theoretical perspective. The representations
yielded by pretrained VLMs inevitably contain irrelevant
and redundant information for the specific downstream
task, which is one possible reason for poor robustness.
This is because irrelevant information encourages models to
learn statistically spurious correlations between representa-
tions and labels, while task-agnostic redundant information
reduces the sensitivity of models to input variations. There-
fore, the two factors will compromise the input robustness of
the model. To obtain more robust and compact representa-
tions,we thus anticipate thatwhen adapting pretrainedVLMs
to VQA, these pretrained VLMs can discard irrelevant and
redundant information in representations while preserving
task-relevant information. The information bottleneck prin-
ciple (Tishby et al., 2000) is adept at seeking a tradeoff
between representation compression and redundancy. Moti-
vated by this insight, we explore how to elegantly generalize
the information bottleneck to find the minimal sufficient
statistic for the learned representations, thereby improving
the input robustness of VQA models.

We propose Correlation Information Bottleneck (CIB) to
enhance input robustness when adapting pretrained VLMs to
the downstream VQA task. Overall, by minimizing mutual
information (MI) between representations and inputs while
maximizing MI between representations and outputs, CIB
seeks an optimal tradeoff between compression and redun-
dancy in the representations learned by pretrained VLMs,
enabling representations to converge to a minimal sufficient
statistic. In detail, to accurately estimate the MI between
multimodal inputs and representations, we derive a tight
upper bound for the symmetrized joint MI, which measures
different internal correlations rather than the overall depen-
dency between different modalities. More specifically, the
upper bound incorporates correlations between single-modal
input and representation, as well as the correlation between
visual and linguistic representations, guiding VQA models
to learn more robust representations and better capture actual
relationships. In particular, the multimodal representation
correlation can facilitate modality alignment. Moreover, to
ensure applicability to different transformer architectures,
i.e., single-streamencoder, two-streamencoder, and encoder-
decoder, we unify the internal representations of different
pretrained VLMs using the representations after visual and
linguistic embedding layers for CIB estimation.

To demonstrate the proposed CIB, we first provide rig-
orous theoretical proofs. Subsequently, using CIB as the
training objective, we finetune pretrained VLMs including
VisualBERT(Li et al., 2019),ViLBERT(Luet al., 2019),VL-
BERTB (Su et al., 2020), VL-T5 (Cho et al., 2021), LXMERT
(Tan&Bansal, 2019),UNITERB (Chen et al., 2020),ALBEF

(Li et al., 2021), mPLUGB (Li et al., 2022), and BEiT-3B
(Wang et al., 2023) under a standard and clean data setting,
and evaluate input robustness on five robustness benchmark
datasets: VQA-Rephrasings (Shah et al., 2019), VQA P2
(Whitehead et al., 2020), IV-VQA (Agarwal et al., 2020),
CV-VQA (Agarwal et al., 2020), and VQA-CE (Dancette et
al., 2021). Extensive experiments and analyses consistently
demonstrate that CIB significantly improves input robustness
and exhibits advantages over existing methods when adapt-
ing pretrained VLMs to the downstream VQA task.

In summary, our main contributions are as follows: (i) We
propose Correlation Information Bottleneck (CIB), a generic
objective that can encourage representations to converge to
a minimal sufficient statistic and enhance input robustness
when adapting pretrained VLMs to VQA. (ii) We derive a
tight upper bound for the MI between multimodal inputs and
representations, incorporating different internal correlations
that can guide models to learn more robust representations
and facilitatemodality alignment. (iii) Theoretical proofs and
extensive experiments evaluate the robustness, superiority,
and generalizability of our CIB.

The remainder of the paper is organized as follows: Sect. 2
introduces related literature on robustness in VQA, infor-
mation bottleneck, and vision-language models. Section3
elaborates on CIB, the application of CIB in adapting pre-
trained VLMs to VQA, and the theoretical analysis of input
robustness for CIB. In Sect. 4, we conduct comprehensive
experiments and discussions to demonstrate the effectiveness
and superiority of CIB in terms of robustness and accuracy.
In Appendix A, we provide a theoretical derivation for CIB
and proofs for some proposed theorems.

2 RelatedWork

2.1 Robustness in VQA

Recently, in order to promote practical applications, numer-
ous studies have been proposed to investigate various aspects
of VQA robustness, such as input robustness (Shah et al.,
2019; Whitehead et al., 2020; Agarwal et al., 2020; Kant
et al., 2021), human-adversarial robustness (Li et al., 2021;
Sheng et al., 2021), and robustness against answer distribu-
tion shift (Agrawal et al., 2022; Pan et al., 2022; Kervadec
et al., 2021; Jiang et al., 2021; Teney et al., 2020; Clark
et al., 2019; Goyal et al., 2017). In this paper, we explore
input robustness, which refers to the capability of VQAmod-
els to defend against visual and linguistic variations, such
as rephrasing questions (Shah et al., 2019; Whitehead et
al., 2020), manipulating images (Agarwal et al., 2020), and
shortcut learning involved in multimodal inputs (Dancette et
al., 2021). The prevailing method to improve input robust-
ness is data augmentation, i.e., generating additional data to
train more robust VQA models. While data augmentation is
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a feasible and effective solution, the quality of the gener-
ated data is uncontrollable (e.g., limited expressiveness and
excessive verbosity), and the human-generated process is
time-consuming. Moreover, cycle-consistency between the
original question and its rephrasings (Shah et al., 2019), con-
trastive learning (Kant et al., 2021), and adversarial training
(Li et al., 2020) have also been introduced to improve input
robustness. These recent studies demonstrate that state-of-
the-art VQA models remain vulnerable to input variation
attacks. Therefore, in this paper, we focus on further improv-
ing the input robustness of existing VQA models.

2.2 Information Bottleneck

The Information Bottleneck (IB) principle was originally
proposed by Tishby et al. (2000) for information compres-
sion, and was later applied to analyze deep learning model
architectures (Tishby & Zaslavsky, 2015; Shwartz-Ziv &
Tishby, 2017). Essentially, the IB objective is to seek a
tradeoff between maximizing predictive accuracy and min-
imizing representation complexity. Some recent research
targets exploiting the IB principle to improve model robust-
ness and generalization, especially in domain generalization
(Du et al., 2020; Li et al., 2022), out-of-distribution gen-
eralization (Ahuja et al., 2021), multiview representation
learning (Federici et al., 2020; Bao, 2021), and finetuning of
pretrained language models (Mahabadi et al., 2021; Wang et
al., 2021; Dong et al., 2021). In addition, some works (Wang
et al., 2022; Zhou et al., 2022; Pan et al., 2021; Jeon et al.,
2021; Dubois et al., 2020) aim to learn disentangled opti-
mal representations from an IB perspective. Since IB can
facilitate compact and meaningful representation learning,
we extend it to multimodal learning and apply IB to obtain
robust VQA models.

2.3 Vision-LanguageModels

Vision-Language pretraining aims to learn task-agnostic visi-
olinguistic representations for improving the performance
of downstream tasks in a finetuning fashion (Huang et al.,
2020; Zhou et al., 2020; Shi et al., 2020; Li et al., 2021; Kim
et al., 2021; Sun et al., 2021; Huang et al., 2021; Dou et
al., 2022; Zhong et al., 2022; Alayrac et al., 2022; Xu et al.,
2023). From the perspective ofmodel architecture, prevailing
pretrained vision-language models (VLMs) can be roughly
grouped into three types: single-stream encoder (Su et al.,
2020; Chen et al., 2020; Gan et al., 2020; Li et al., 2020;
Zhang et al., 2021; Kim et al., 2021), two-stream encoder
(Lu et al., 2019; Tan & Bansal, 2019; Lu et al., 2020; Yu
et al., 2021; Li et al., 2021), and encoder-decoder (Cho et
al., 2021; Li et al., 2021; Zeng et al., 2022; Li et al., 2022;
Wang et al., 2022; Li et al., 2022). Specifically, single-stream
models first align image regions and text tokens and then

apply a uniform transformer (Vaswani et al., 2017) to learn
the contextualized representations. Two-stream models first
utilize two separate transformers to learn high-level repre-
sentations for images and texts, and then integrate the two
modalities with a cross-modal transformer. Encoder-decoder
models respectively utilize encoders and decoders to learn
multimodal representations and to generate related texts for
specific downstream tasks. In this paper, we unify the three
typical types of VLMs and propose CIB to improve input
robustness when adapting these pretrained VLMs for the
downstream VQA task.

3 Methodology

In this section, we first present the preliminaries of the prob-
lem setting and the general IB principle. Then, we elaborate
on the proposed CIB in Sect. 3.2 and explain how to apply
CIB to improve input robustness when adapting pretrained
VLMs to VQA in Sect. 3.3.

3.1 Preliminary

Problem Setting. In the finetuning process, single-stream
and two-stream VLMs usually formulate the VQA task as
a multi-answer classification problem Chen et al. (2020),
Tan and Bansal (2019), while encoder-decoder VLMs often
regard VQA as text generation (Cho et al., 2021; Wang
et al., 2022), i.e., generating free-form textual answers for
a given question instead of selecting a specific one from
the predefined set of answers. Given a VQA dataset D =
{(I , Q, y) ∈ I × Q × Y}, where I is an image, Q is a
question, and y is an answer, VLMs take image-question
pairs as input, where the image is further represented as a
set of image regions or patches {v1, . . . , vK } (K is the num-
ber of regions or patches in one image) and the question is
tokenized as a token sequence {w1, . . . , wL} (L is the num-
ber of word tokens in a question). For single-stream and
two-stream VLMs, they output the answer probability dis-
tribution Y using an additional VQA Head module, which
is implemented by two fully-connected layers sandwiched
with GeLU activation and Layer Normalization operation.
Meanwhile, encoder-decoder VLMs directly generate tex-
tual answers without any additional module.
IBViewofRepresentationLearning.Froman information-
theoretic perspective, seeking a robust representation T in
representation learning is equivalent to preserving infor-
mation about the output Y while removing irrelevant and
redundant information from the input X . This is because for a
given task, irrelevant and redundant informationmay encour-
age models to learn superfluous correlations between answer
labels and inputs. Formally, the IB principle (Tishby et al.,
2000; Tishby & Zaslavsky, 2015) formulates representation
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learning as an information tradeoff and finds an optimal rep-
resentation by maximizing the Lagrangian

LIB:=I (Y ; T ) − β I (X; T ), (1)

where β ≥ 0 controls the tradeoff between compression and
prediction, and I (·; ·) denotes mutual information (MI).

3.2 Correlation Information Bottleneck

In vision-language representation learning, given twomodal-
ity inputs Xv and Xl , VLMs learn the corresponding visual
and linguistic representations T v and T l of some intermedi-
ate transformer layers while simultaneously maximizing the
MI between the obtained representations and a given label
Y to guarantee representations contain sufficient informa-
tion for predicting Y . To extend the general IB principle
to the multimodal setting, we first consider the inputs and
internal representations as a whole, i.e., X = [Xv, Xl ] and
T = [T v, T l ], respectively, and then derive a differentiable
estimation for IB by expanding the MI terms in Eq. (1).

Specifically, we first focus on I (Y ; T ), which can be
rewritten using the conditional probability definition:

I (Y ; T ) =
∫

p(y, t) log
p(y|t)
p(y)

dydt . (2)

Since the conditional probability p(y|t) is intractable, we
instead estimate I (Y ; T ) with the BA (Barber & Agakov,
2003) lower bound:

I (Y ; T ) ≥
∫

p(y, t) log q(y|t)dydt −
∫

p(y) log p(y)dy,

(3)

where q(y|t) is an accessible auxiliary distribution for
p(y|t) and − ∫

p(y) log p(y)dy = H(Y ) is the entropy
of labels, which is independent of the optimization proce-
dure in finetuning. Ignoring H(Y ), the remaining term of
the lower bound in Eq. (3) is equal to −H(Y |T ), meaning
that maximizing the lower bound of I (Y ; T ) is equivalent to
minimizing the cross-entropy loss of a specific task. In other
words, when using IB as the training objective, maximizing
I (Y ; T ) can be equivalent tominimizing theVQA lossLvqa.

Next, we consider the mutual information between the
input sources and their corresponding representations, that
is, the term I (X; T ) in Eq. (1). To accurately estimate
I (X; T ), instead of directly measuring the overall depen-
dency between X and T (i.e., regarding Xv and Xl as a whole
one X , and regarding T v and T l as a whole one T ), we con-
sider expanding I (X; T ) to I (Xv, Xl; T v, T l), and attempt
to derive a tight upper bound for it. Since I (Xv, Xl; T v, T l)

incorporates different internal correlations, such as the cor-
relation between visual input Xv and representation T v , the

correlation between linguistic input Xl and representation
T l , and the correlation between visual and linguistic repre-
sentations (T v and T l ). These correlationsmay guidemodels
to learn more compact visual and linguistic representations
and facilitatemodality alignment between visual and linguis-
tic representations. Therefore, we propose to maximize the
Correlation Information Bottleneck (CIB) formula:

LCIB:=I (Y ; T ) − β I (Xv, Xl; T v, T l), (4)

where I (Xv, Xl; T v, T l) is a symmetrized variant of joint
mutual information (Bennasar et al., 2015) that considers
the internal correlations between X = [Xv, Xl ] and T =
[T v, T l ]. To efficiently estimate I (Xv, Xl; T v, T l), we first
further expand it conditioned on the properties of mutual
information and the data processing inequality in represen-
tation learning (Federici et al., 2020). The derivation can be
formally stated by Theorem 1 (cf. Sect. 1 for proof):

Theorem 1 (Upper Bound of I (Xv, Xl; T v, T l)) Given two
groups of random variables X = [Xv, Xl ] and T =
[T v, T l ], the MI I (Xv, Xl; T v, T l) can be upper-bounded
with

I (X; T ) = I (Xv, Xl; T v, T l),

≤ I (Xv; T v) + I (Xl; T l)−I (T v; T l) + Dskl, (5)

where Dskl denotes the symmetric Kullback–Leibler (KL)
divergence that can be calculated by averaging the diver-
gences KL(p(tv|xv)||p(t l |xl)) and KL(p(t l |xl)||p(tv|xv)).

After approximating the MI I (Xv, Xl; T v, T l), the lower
bound of LCIB can be stated as the following Theorem 2.

Theorem 2 (Lower Bound of CIB) Given random variable
X = [Xv, Xl ], two deterministic functions fθv and fθ l let
T v = fθv (Xv) and T l = fθ l (Xl). Correlation Information
Bottleneck (CIB) can then be bounded as

LCIB = I (Y ; T ) − β I (Xv, Xl; T v, T l),

≥ I (Y ; T )−β
[

I (Xv; T v)+ I (Xl; T l)−I (T v; T l)+Dskl

]
.

(6)

In summary, Theorem 2 suggests that in vision-language
representation learning, if I (Y ; T ) is considered a task-
related objective, I (Xv, Xl; T v, T l) can be viewed as a
regularizer used to constrain the compactness and redun-
dancy of the learned representations. Overall, CIB encour-
ages pretrained VLMs to learn more robust representations
by seeking an optimal tradeoff between redundancy and
compression in representations. Moreover, CIB facilitates
modality alignment and correlation by maximizing the MI
I (T v; T l) between visual and linguistic representations.
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Fig. 1 The information flow of three typical transformer architectures of VLMs

Fig. 2 Illustration of using CIB to adapt pretrained VLMs to down-
stream task. CIB seeks a minimal sufficient statistic by minimizing MI
between input and internal representation (↓) while maximizing MI
between output and representation (↑)

3.3 Adapting PretrainedVLMs to VQAwith CIB

As illustrated in Fig. 1a, b, and c, there are three typical
transformer architectures for VLMs: single-stream encoder
(Li et al., 2019; Su et al., 2020; Chen et al., 2020), two-
stream encoder (Tan & Bansal, 2019; Lu et al., 2019), and
encoder-decoder (Cho et al., 2021; Li et al., 2021). When
finetuning pretrained VLMs with CIB, to unify the three
architectures into a single formulation, as shown in Fig. 2, we
utilize the region-level or patch-level visual features after the
visualEmbedding layer (i.e., fθv is the parametric embedding
layer) as the internal visual representation T v . Analogously,
the token-level linguistic features after the linguistic embed-
ding layer ( fθ l ) are considered as the internal linguistic
representation T l . All subsequent Transformer layers ( fθTran )
and the VQA Head module ( fθH) for the single-stream and
two-stream VLMs as well as the Decoder ( fθDec ) for the
encoder-decoder VLMs serve as the parametric approxima-
tor ( fθans ) to generate Y given T = [T v, T l ]. As summarized
in Algorithm 1, we first convert I (Y ; T ) to the cross-entropy
loss (Lvqa) for answer prediction in VQA and estimate the
remaining terms in Theorem 2. After obtaining LCIB, we
update all parameters by minimizing −LCIB. Next, we elab-
orate on the estimation of CIB terms.

3.3.1 Estimating CIB Terms

As stated in Theorem 2, in addition to the task-related
MI term I (Y ; T ), I (Xv, Xl; T v, T l) can be further decom-
posed into four computable MI terms. Firstly, we focus
on the MI between inputs and representations within a sin-

gle visual or linguistic modality. The inputs Xv and Xl

are intrinsically two sets of random variables, i.e., Xv =
[Xv

1 , ..., Xv
K ] and Xl = [Xl

1, ..., Xl
L ]. The functions fθv

and fθ l transform Xv and Xl into visual and linguistic rep-
resentations, respectively, such that T v = [T v

1 , ..., T v
K ] =

[ fθv (Xv
1), ..., fθv (Xv

K )] and T l = [T l
1 , ..., T l

L ] =
[ fθ l (Xl

1), ..., fθ l (Xl
L)].While for sample pairs {(Xv

i , T v
i )}K

i=1
and {(Xl

i , T l
i )}L

i=1, the conditional probability distributions
p(tv|xv) and p(t l |xl) are known during the finetuning pro-
cess. Consequently, we adopt a sample-based differentiable
MI estimator, CLUB (Cheng et al., 2020), to approximate the
upper bound of theMI between visual or linguistic inputs and
their corresponding representations, i.e.,

Î (Xv; T v) = 1

K 2

K∑
i=1

K∑
j=1

[
log p(tvi |xv

i ) − log p(tvj |xv
i )

]
,

(7)

Î (Xl; T l) = 1

L2

L∑
i=1

L∑
j=1

[
log p(t l

i |xl
i ) − log p(t l

j |xl
i )

]
. (8)

Algorithm1Finetuning pretrainedVLMswithCIB forVQA
Input: Visual (Image) sequence: Xv ; Hyperparameter: β;
Input: Linguistic (Question) sequence: Xl .
Output: Training loss: −LCIB.
1: Load pretrained weights for VLMs;
2: T v ← fθv (Xv), T l ← fθ l (Xl );
3: Y ← fθans ([T v, T l ]);
4: procedure Estimate LCIB
5: # estimate all terms in LCIB
6: Lvqa ← convert I (Y ; T ) to VQA loss;
7: Î (Xv; T v) ← estimate MI of Xv and T v with CLUB;
8: Î (Xl ; T l ) ← estimate MI of Xl and T l with CLUB;
9: Î (T̄ v; T̄ l ) ← estimate MI of T v and T l using NWJ with fθFC ;
10: D̂skl ← estimate symmetric KL between p(t l |xl ) and p(tv |xv);
11: # compute LCIB

12: LCIB=−Lvqa−β
[

Î (Xv; T v)+ Î (Xl ; T l ) − Î (T̄ v; T̄ l) + D̂skl

]
;

13: Update fθv , fθ l , fθans , fθFC by minimizing −LCIB.

For I (T v; T l), it is challenging to estimate directly due
to the different sequence lengths of T v ∈ R

K×d and T l ∈
R

L×d . Therefore, we transform the two sequence represen-
tations into the global visual and linguistic representations
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T̄ v ∈ R
d and T̄ l ∈ R

d , using a one-layer fully-connected
(FC) network. To guarantee that the inequality in Eq. (6)
holds, we should approximate the lower bound of I (T v; T l).
Therefore, we estimate I (T v; T l) with NWJ (Poole et al.,
2019), i.e.,

Î (T̄ v; T̄ l)

= Ep(t̄v,t̄ l )

[
log fθFC(t̄v, t̄ l)

]
− 1

e
Ep(t̄v)p(t̄ l )

[
fθFC(t̄v, t̄ l)

]
,

(9)

where fθFC denotes the discriminant function implemented
using a two-layer FC network.

Finally, for Dskl inLCIB, since p(t l |xl) and p(tv|xv) have
a known probability density, we can directly compute the two
KL divergences using internal visual and linguistic represen-
tations. That is, Dskl can be obtained by

D̂skl

= 1

2

[
KL

(
p(tv|xv)||p(t l |xl)

)
+ KL

(
p(t l |xl)||p(tv|xv)

)]
.

(10)

3.3.2 Theoretical Justification for Input Robustness

In the following section, we conduct a theoretical analysis
of input robustness for CIB. Formally, for a perturbation δ

added to visual and linguistic inputs, let X ′ = [Xv ′, Xl ′]
represent the perturbed inputs of standard inputs X =
[Xv, Xl ], i.e., X ′ = X + δ. Functions fθv and fθ l trans-
form X = [Xv, Xl ] and X ′ = [Xv ′, Xl ′] into T =
[T v, T l ] = [ fθv (Xv), fθ l (Xl)] and T ′ = [T v ′, T l ′] =
[ fθv (Xv ′), fθ l (Xl ′)], with T 	= T ′. The distributions of X
and X ′ are denoted by probabilities p(x) and q(x), where
q(x) approximates the distribution of p(x). δm is the maxi-
mum perturbation bound that does not alter the output label,
i.e., Y = fθans(T ) = fθans(T ′) when ||δ|| ≤ δm . According
to the definition of CIB, the performance gap between stan-
dard inputs and perturbed inputs is |I (T ; Y ) − I (T ′; Y )| =
|I (T v, T l; Y ) − I (T v ′, T l ′; Y )|. To provide theoretical jus-
tification for the performance gap, based on the work (Wang
et al., 2021), we derive the upper bound

|I (T ; Y ) − I (T ′; Y )|
= |I (T v, T l; Y ) − I (T v ′

, T l ′; Y )|,
≤ Bv

1

√
T v

(
I (Xv; T v)

)1/2 + Bv
2 |T v|3/4 (

I (Xv; T v)
)1/4

+ Bv
3

√|T v| (I (Xv ′; T v ′
)
)1/2 + Bv

4 |T v|3/4 (
I (Xv ′; T v ′

)
)1/4

+ Bl
1

√
T l

(
I (Xl ; T l)

)1/2 + Bl
2|T l |3/4

(
I (Xl ; T l)

)1/4

+ Bl
3

√
|T l |

(
I (Xl ′; T l ′)

)1/2 + Bl
4|T l |3/4

(
I (Xl ′; T l ′)

)1/4

+ Bv
0 + Bl

0, (11)

where T v is the finite support of T v and T v ′, and Bv
0 , Bv

1 ,
Bv
2 , Bv

3 , and Bv
4 are constants that depend on the sequence

length K , δ, and p(xv). T l is the finite support of T l and T l ′,
and Bl

0, Bl
1, Bl

2, Bl
3, and Bl

4 are constants that depend on the
sequence length L , δ, and p(xl) (cf. Sect. 1 for proof).

4 Experiment

In this section, we evaluate the input robustness of the
proposed CIB and carry out detailed ablation studies to
analyze the performance contribution of CIB components.
Meanwhile, we explore the effectiveness of CIB in some
other cases, such as standard VQA performance, adversarial
attacks, and other multimodal tasks beyond VQA.

4.1 Experimental Settings

4.1.1 Evaluation Datasets

Unless otherwise specified, we finetune pretrained VLMs
on the standard and clean VQA v2 training set (Goyal et
al., 2017) and evaluate input robustness on five robustness
benchmark datasets: VQA-Rephrasings (Shah et al., 2019),
VQA P2 (Whitehead et al., 2020), IV-VQA (Agarwal et
al., 2020), CV-VQA (Agarwal et al., 2020), and VQA-CE
(Dancette et al., 2021). VQA-Rephrasings andVQAP2 eval-
uate robustness against linguistic variations, while IV-VQA
and CV-VQA evaluate robustness against visual variations.
VQA-CE, on the other hand, assesses robustness against
shortcut learning involving inputs. As all these datasets are
built on the VQA v2 (Goyal et al., 2017) validation split, we
consequently train our models only on the VQA v2 training
set.

Table 1 summarizes dataset details, including the type
of perturbation, specific evaluation metrics for robustness,
question type (QType), shared dataset for finetuning, and the
test datasets statistics. These statistics encompass the total
number of image-question pairs (#IQ), perturbation samples
(#PER/CE), original samples (#ORI/Easy), and the aver-
age question length (len(Q)). Specifically,VQA-Rephrasings
averagely collects 3 rephrasings for each of the 40,504 ques-
tions sampled from the VQA v2 validation set, resulting in
approximately 162k image-question pairs. VQA P2 creates
three types of linguistic perturbations, i.e., sentence rephras-
ing (Par), and word substitution with synonyms (Syn) or
antonyms (Ant), for 25,814 sampled questions, ultimately
obtaining roughly about 52k image-question pairs. IV-VQA
employs a GAN-based resynthesis technique to remove
objects irrelevant to the given question from the image,
such that object removal does not affect the answer. Con-
versely, CV-VQA focuses on counting questions (Num) and
removes one relevant object, causing the predicted answer
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Table 1 Details on input robustness datasets

Datasets Perturbation Metric QType Finetuning Dataset Evaluation

len(Q) #IQ #PER/CE #ORI/Easy

VQA-Rephrasings (Shah et al., 2019) Rephrasing CS(m) All VQA v2 train 7.15 162k 121,516 40,504

VQA P2 (Whitehead et al., 2020) Par&Syn&Ant CS(m) All VQA v2 train 6.32 52k 26,512 25,814

IV-VQA (Agarwal et al., 2020) Invariant object #flips All VQA v2 train 5.85 120k 83,700 36,181

CV-VQA (Agarwal et al., 2020) Covariant object #flips Num VQA v2 train 5.83 4k 4,141 2,641

VQA-CE (Dancette et al., 2021) Counterexample – All VQA v2 train 6.19 214k 63,298 147,681

on the number of objects to be reduced by one. In total,
IV-VQA and CV-VQA contain approximately 120k and 4k
image-question pairs, respectively. VQA-CE is an evaluation
benchmark for multimodal shortcuts involved in images and
questions. It utilizes the detected shortcuts from the training
set to obtain 63,298 counterexamples, where all shortcuts
lead to incorrect answers, from the VQA v2 validation set.
Additionally, VQA-CE constructs 147,681 easy examples in
which at least one shortcut provides the correct answer.

Moreover, to analyze the effectiveness of CIB on stan-
dard VQA performance, we conduct experiments on VQA
v2 (Goyal et al., 2017). Specifically, we first utilize CIB as
the training objective to finetune pretrained VLMs on the
VQA v2 training and validation sets, and subsequently test
standard VQA performance on VQA v2 test-dev. To eval-
uate the generalizability of CIB to other multimodal tasks,
we perform experiments on RefCOCO+ (Yu et al., 2016)
in weakly-supervised setups. This dataset contains a total
of 141,564 expressions based on images from the COCO
training set. To assess the effectiveness of CIB in address-
ing human-adversarial attacks, we evaluate our method on
AdVQA (Sheng et al., 2021), a human-adversarial bench-
mark built upon VQA v2 images, featuring approximately
10k/36.8k image-question pairs for the validation/test split.

4.1.2 Evaluation Metrics

We follow previous work (Antol et al., 2015) to evaluate
the VQA performance of our methods with VQA-Score. In
addition, we evaluate robustness against linguistic variations
using Consensus Score (CS) (Shah et al., 2019), which is
the ratio of the number of subsets where all questions are
answered correctly to the total number of subsets of size m.
Specifically, for each question group Q containing one orig-
inal question and its n corresponding rephrasings, all subsets
of size m amount to nCm , CS can then be defined as

CS(m) =
∑

q∈Q′
,Q′⊂Q,|Q′ |=m

1Q′ (q)

nCm
, (12)

where 1 is an indicator function defined on Q
′
and 1Q′ (q)

means a set where the answer to question q is correct. Natu-

rally, the higher the averageCS at larger values ofm, themore
robust the model. To evaluate robustness against visual vari-
ations, we utilize #flips (Agarwal et al., 2020) as a robustness
evaluation metric. #flips represents the ratio of the number of
predictionmismatches before and after visual contentmanip-
ulation to the total number of all samples. In IV-VQA, if the
predicted answers for the original image and the correspond-
ing edited image differ, the prediction is deemed “flipped”. In
CV-VQA, an answer to a question based on an edited image
is considered to be “flipped” if it is not one less than the
prediction on the original image.

4.1.3 Baseline Pretrained VLMs

As summarized in Table 2, we utilize nine pretrained VLMs
with three typical transformer architectures as baselines to
evaluate the input robustness of our method. Specifically,
VisualBERT (Li et al., 2019), VL-BERTB (Su et al., 2020),
and UNITERB (Chen et al., 2020) employ single-stream
encoders. LXMERT (Tan & Bansal, 2019), ViLBERT (Lu
et al., 2019), and BEiT-3B (Wang et al., 2023) utilize two-
stream encoders. VL-T5 (Cho et al., 2021), ALBEF (Li et al.,
2021), and mPLUGB (Li et al., 2022) incorporate encoder-
decoder architectures.When applied to the downstreamVQA
task, mPLUGB, VL-T5, and ALBEF formulate VQA as a
text generation task (TG), while the remaining baselines for-
mulate VQA as a multi-answer classification problem (AC).
These baselines adopt two typical image tokens, namely, the
region feature extracted by a pretrained object detector and
the patch embedding obtained using a linear projection, and
are pretrained on large-scale image-text (IT) data to learn
task-agnostic versatile representations. The pretraining IT
datasets include MS COCO caption (COCO) (Chen et al.,
2015), Visual Genome (VG) (Krishna et al., 2017), VQA v2
(VQA) (Goyal et al., 2017), GQA balance version (GQA)
(Hudson & Manning, 2019), VG-QA (VGQA) (Zhu et al.,
2016), Conceptual Captions (CC) (Sharma et al., 2018), SBU
captions (SBU) (Ordonez et al., 2011), and Conceptual 12M
(CC12M) (Changpinyo et al., 2021). Since VQA v2 images
originate from the COCO dataset, we follow the work (Chen
et al., 2020) to categorize these pretrained VLMs into in-
domain (ID), in-domain and out-of-domain (ID+OOD), and
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Table 2 Summary of baseline pretrained VLMs (AC: Answer Classification, TG: Text Generation)

Domain Pretrained VLMs Architecture Pretraining IT Datasets Image Tokens VQA

ID VisualBERT (Li et al., 2019) Single-stream COCO Region feature AC

OOD ViLBERT (Lu et al., 2019) Two-stream CC Region feature AC

VL-BERTB (Su et al., 2020) Single-stream CC Region feature AC

ID+OOD VL-T5 (Cho et al., 2021) Encoder-decoder COCO,VG,GQA,VQA,VGQA Region feature TG

LXMERT (Tan & Bansal, 2019) Two-stream [c]COCO,VG,GQA,VQA,VGQA Region feature AC

UNITERB (Chen et al., 2020) Single-stream [c]COCO,VG,SUB,CC Region feature AC

ALBEF (Li et al., 2021) Encoder-decoder COCO,VG,SUB,CC Patch embedding TG

mPLUGB (Li et al., 2022) Encoder-decoder COCO,VG,SBU,CC,CC12M Patch embedding TG

BEiT-3B (Wang et al., 2023) Two-stream COCO,VG,SBU,CC,CC12M Patch embedding AC

Table 3 Configuration setups Methods β K L peak lr bs

VisualBERT + CIB 5 × 10−5 100 20 2 × 10−5 64

ViLBERT + CIB 1 × 10−4 10–100 20 4 × 10−5 64

VL-BERTB + CIB 1 × 10−4 10–100 20 4 × 10−5 64

VL-T5 + CIB 1 × 10−4 36 20 4 × 10−5 64

LXMERT + CIB 5 × 10−5 36 20 2 × 10−5 64

UNITERB + CIB 1 × 10−4 10–100 20 4 × 10−5 64

ALBEF + CIB 1 × 10−4 900 30 2 × 10−5 32

mPLUGB + CIB 1 × 10−4 900 80 2 × 10−5 16

BEiT-3B + CIB 1 × 10−4 900 64 2 × 10−5 16

out-of-domain (OOD) groups based on whether they utilize
the COCO dataset during the pretraining process.

4.1.4 Implementation Details

In the subsequent experiments,wemaintain the initial config-
urations of all pretrained VLMs. The region features (visual
inputs) of VisualBERT, VL-T5, LXMERT, UNITERB, ViL-
BERT, and VL-BERTB are extracted using BUA Faster
R-CNN (Anderson et al., 2018) pretrained on VG (Krishna
et al., 2017). The representation dimension d is set to 768.
The configurations of the number of word tokens L (i.e., the
maximum token length allowed for a question) and image
tokens K are detailed in Table 3. For the only crucial hyper-
parameter β in Eq. (6), it is set to 1 × 10−4 in all cases
except for finetuning VisualBERT and LXMERT, where β is
set to 5 × 10−5. All experiments, except those on ALBEF,
BEiT-3B, and mPLUGB implemented on one NVIDIAA100
40GB GPU, are conducted using PyTorch on one NVIDIA
GTX2080Ti 12GB GPU. We uniformly utilize an AdamW
optimizer with a linear warmup using linear decay and a
warmup step of 1000. The number of finetuning epochs is
10. The configurations of batch size and peak learning rate
for each pretrained VLM are shown Table 3. The best model
is selected based on theVQA-Score on themini-split ofVQA

v2 training set that excludes image-question pairs when eval-
uating input robustness.

4.2 Input Robustness Evaluation

4.2.1 Robustness Against Linguistic Variations

To evaluate the effectiveness of CIB against linguistic vari-
ations, with CIB as the training objective, we finetune
pretrained VLMs on VQA v2 training split and report results
on VQA-Rephrasings and VQA P2. Tables 4 and 5 show the
comparisons with existing methods in terms of the VQA-
Score as well as the robustness metric of CS(m).
Result on VQA-Rephrasings We first compare the pro-
posed CIB with existing methods: CC (Shah et al., 2019),
ConClaT (Kant et al., 2021), and MANGO (Li et al., 2020).
Specifically, bothCCandConClaT augment training datasets
online by training a question generation model to generate
paraphrases of questions. To effectively leverage augmented
data and enhance model robustness to linguistic variations,
CC considers cycle consistency between the question and
its rephrasings, while ConClaT jointly optimizes contrastive
and cross-entropy losses. CC considers three baseline VQA
models, i.e., BUTD (Anderson et al., 2018), Pythia (Jiang
et al., 2018), and BAN (Kim et al., 2018). ConClaT uses
MMT (Kant et al., 2021), a modified version of UNITER, as
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Table 4 Results of robustness against linguistic variations (i.e., sentence rephrasing) on the VQA-Rephrasings dataset (Shah et al., 2019)

Methods VQA-Score Robustness metric
PER ORI CS(1) CS(2) CS(3) CS(4)

Data augmentation

BUTD (Anderson et al., 2018) 51.22 61.51 60.55 46.96 40.54 34.47

+ CC (Shah et al., 2019) 52.58 (+1.36) 62.44 (+0.93) 61.66 (+1.11) 50.79 (+3.83) 44.68 (+4.14) 42.55 (+8.08)

Pythia (Jiang et al., 2018) 54.20 64.08 63.43 52.03 45.94 39.49

+ CC (Shah et al., 2019) 55.65 (+1.45) 64.52 (+0.44) 64.36 (+0.93) 55.45 (+3.42) 50.92 (+4.98) 44.30 (+4.81)

BAN (Kim et al., 2018) 55.87 64.97 64.88 53.08 47.45 39.87

+ CC (Shah et al., 2019) 56.59 (+0.72) 65.87 (+0.90) 65.77 (+0.89) 56.94 (+3.86) 51.76 (+4.31) 48.18 (+8.31)

MMT (Kant et al., 2021) – – 67.58 60.04 55.53 52.36

ConClaT (Kant et al., 2021) – – 68.62 (+1.04) 61.42 (+1.38) 57.08 (+1.55) 53.99 (+1.63)

w/o Data Augmentation

UNITERB (Chen et al., 2020) – – 71.29 63.95 59.48 56.31

MANGOB (Li et al., 2020) – – 72.66 (+1.37) 66.03 (+2.08) 61.92 (+2.44) 58.95 (+2.64)

VILLAB (Gan et al., 2020) – – 72.18 65.28 60.99 57.93

MANGOVB (Li et al., 2020) – – 72.78 (+0.60) 65.97 (+0.69) 61.70 (+0.71) 58.59 (+0.66)

VisualBERT (Li et al., 2019)† 62.03 68.46 70.44 62.84 58.41 55.06

+ CIB 63.10 (+1.07) 69.78 (+1.32) 71.85 (+1.41) 64.16 (+1.32) 59.54 (+1.13) 56.31 (+1.25)

ViLBERT (Lu et al., 2019)† 59.16 67.65 68.00 59.65 54.68 51.22

+ CIB 62.28 (+3.12) 69.15 (+1.50) 71.05 (+3.05) 63.54 (+3.89) 59.04 (+4.36) 55.89 (+4.67)

VL-BERTB (Su et al., 2020)† 59.89 67.14 67.95 60.11 55.34 52.99

+ CIB 60.86 (+0.97) 68.74 (+1.60) 70.52 (+2.57) 63.46 (+3.35) 58.75 (+3.41) 53.89 (+0.90)

VL-T5 (Cho et al., 2021)† 65.64 – 71.78 65.35 62.68 61.00

+ CIB 66.93 (+1.29) – 73.65 (+1.87) 67.48 (+2.13) 64.48 (+1.80) 62.53 (+1.53)

LXMERT (Tan & Bansal, 2019)† 70.41 – 79.73 72.93 68.49 65.21

+ CIB 72.62 (+2.21) – 82.01 (+2.28) 75.46 (+2.53) 71.05 (+2.56) 67.71 (+2.50)

UNITERB (Chen et al., 2020)† 62.68 70.05 71.45 63.72 59.01 55.66

+ CIB 64.45 (+1.77) 70.91 (+0.86) 73.18 (+1.73) 66.21 (+2.49) 61.88 (+2.87) 58.75 (+3.09)

ALBEF (Li et al., 2021)† 65.66 71.13 70.89 65.52 61.74 60.14

+ CIB 68.00 (+2.34) 72.43 (+1.30) 73.71 (+2.82) 67.50 (+1.98) 63.60 (+1.86) 61.72 (+1.58)

mPLUGB (Li et al., 2022)† 65.94 71.62 71.01 67.38 62.26 60.46

+ CIB 69.02 (+3.08) 72.86 (+1.24) 73.55 (+2.54) 70.53 (+3.15) 64.73 (+2.47) 62.95 (+2.49)

BEiT-3B (Wang et al., 2023)† 67.36 73.19 75.96 69.73 65.81 62.93

+ CIB 70.01 (+2.65) 75.06 (+1.87) 78.89 (+2.93) 73.01 (+3.28) 68.99 (+3.18) 65.92 (+2.99)

The † indicates our reimplementation of baseline, i.e., finetuning pretrained VLMs with only the task-related loss. The best performances are
highlighted in bold

its baseline. MANGO employs UNITER (Chen et al., 2020)
and VILLA (Gan et al., 2020) as baseline models and adopts
adversarial training to enhance model robustness. As shown
in Table 4,1 the results on nine pretrained VLMs consistently
show that compared to baselines (i.e., finetuning pretrained
VLMswith only the task-related loss for answer prediction†),
using CIB as the training objective for VQAmodels can sig-
nificantly improve their robustness to linguistic variations.
This finding suggests that it is feasible to encourage models

1 VL-T5 and LXMERT utilize some examples from the VQA v2 val-
idation set in the pretraining VQA task, resulting in an unreliable
VQA-Score for ORI, thus we do not report the ORI performance.

to learn more compact and robust representations from an
information-theoretic perspective. In comparison with state-
of-the-art methods, adapting LXMERT with CIB achieves
the best performance across all metrics. This performance
advantage can be attributed to the fact that LXMERT con-
siders the VQA training objective during pretraining, which
reduces the gap between upstream and downstream objec-
tives. In addition, we observe that the data augmentation
basedmethod (CC) yields greater improvements in themetric
of CS(4). However, without data augmentation, the average
improvement of our method is more substantial.
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Table 5 Results of robustness
against linguistic variations
(i.e., sentence rephrasing, and
word substitution with
synonyms and antonyms) on the
VQA P2 dataset (Whitehead et
al., 2020)

Methods PER CS(2)

Data Augmentation

StackNMN (Hu et al., 2018) 63.30 66.20

+ Q3R (Whitehead et al., 2020) 66.90 (+3.30) 72.20 (+6.00)

HybridNet (Whitehead et al., 2020) 63.30 66.60

+ Q3R (Whitehead et al., 2020) 67.00 (+4.00) 72.50 (+5.90)

XNM (Shi et al., 2019) 64.70 68.80

+ Q3R (Whitehead et al., 2020) 68.10 (+3.40) 74.40 (+5.60)

w/o Data Augmentation

VisualBERT (Li et al., 2019)† 68.23 72.34

+ CIB 69.92 (+1.69) 73.83 (+1.49)

ViLBERT (Lu et al., 2019)† 67.18 71.39

+ CIB 69.92 (+2.74) 73.98 (+2.59)

VL-BERTB (Su et al., 2020)† 68.36 72.52

+ CIB 69.82 (+1.46) 73.88 (+1.36)

VL-T5 (Cho et al., 2021)† 71.63 77.34

+ CIB 73.47 (+1.84) 78.99 (+1.65)

LXMERT (Tan & Bansal, 2019)† 77.30 82.96

+ CIB 78.93 (+1.63) 85.07 (+2.11)

UNITERB (Chen et al., 2020)† 70.36 74.36

+ CIB 71.30 (+0.94) 75.91 (+1.55)

ALBEF (Li et al., 2021)† 71.36 76.00

+ CIB 72.84 (+1.48) 77.46 (+1.46)

mPLUGB (Li et al., 2022)† 71.95 76.75

+ CIB 73.11 (+1.16) 78.09 (+1.34)

BEiT-3B (Wang et al., 2023)† 73.65 78.56

+ CIB 75.22 (+1.57) 81.28 (+2.72)

The † indicates our reimplementation of baseline, i.e., finetuning pretrained VLMs with only the task-related
loss. The best performances are highlighted in bold

Result on VQA P2 We next compare our method with the
existing method Q3R (Whitehead et al., 2020) on VQA P2.
Q3R augments training data by creating linguistic varia-
tions such as synonymous, paraphrastic, and antonymous
of input questions, and regularizes the visual reasoning
process between the question and its generated questions.
Q3R utilizes three baseline models: StackNMN (Hu et al.,
2018), HybridNet (Whitehead et al., 2020), and XNM (Shi
et al., 2019). The results in Table 5 indicate that finetun-
ing pretrained VLMs with the proposed CIB can markedly
improve their robustness against question variations on
VQA P2. Moreover, finetuning LXMERT with CIB also
achieves the best performance on VQA P2. In addition, the
data augmentation-based method (Q3R) continues to exhibit
superiority in improving the input robustness of baseline
VQA models.

4.2.2 Robustness Against Visual Variations

We evaluate the robustness of our method against visual
variations on IV-VQA and CV-VQA. Table 6 shows the com-
parisons with existing methods in the metrics of VQA-Score
and #flips. CL (a simple CNN+LSTM model) (Lu et al.,
2015), SNMN (an attention-based method) (Hu et al., 2018),
and SAAA (a compositional model) (Kazemi & Elqursh,
2017) are benchmarked by Agarwal et al. (2020). MANGO
exploits adversarial training to improve the robustness of
pretrained VLMs (UNITER (Chen et al., 2020) and VILLA
(Gan et al., 2020)) against visual variations. The results in
Table 6 show that significant improvements are achieved
across all metrics and baselines on both IV-VQA and CV-
VQA, suggesting the effectiveness of CIB in improving
robustness against visual variations. Moreover, we observe
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Table 7 Results of robustness
against multimodal shortcut
learning on the VQA-CE dataset
(Dancette et al., 2021)

Methods VQA-Score

CE Easy

Shortcuts (Dancette et al., 2021) 0.00 61.13

SAN (Yang et al., 2016) 26.64 68.45

BLOCK (Ben-Younes et al., 2019) 32.91 77.65

VilBERT (Lu et al., 2019) 39.24 80.50

BUTD (Anderson et al., 2018) 33.91 76.69

+ RUBi (Cadene et al., 2019) 32.25 (−1.66) 75.03 (−1.66)

+ LMH + RMFE (Gat et al., 2020) 33.14 (−0.77) 73.32 (−3.37)

+ ESR (Shrestha et al., 2020) 33.26 (−0.65) 76.18 (−0.51)

+ LMH (Clark et al., 2019) 34.26 (+0.35) 73.12 (−3.57)

+ LfF (Nam et al., 2020) 34.27 (+0.36) 76.60 (−0.09)

+ LMH + CSS (Chen et al., 2020) 34.36 (+0.45) 62.08 (−14.61)

+ RandImg (Teney et al., 2020) 34.41 (+0.50) 76.21 (−0.48)

ViLBERT (Lu et al., 2019)† 38.91 80.96

+ CIB 41.24 (+2.33) 82.96 (+2.00)

VL-BERTB (Su et al., 2020)† 36.56 80.66

+ CIB 38.24 (+1.68) 82.00 (+1.34)

VisualBERT (Li et al., 2019)† 38.75 79.42

+ CIB 40.86 (+2.11) 81.25 (+1.83)

VL-T5 (Cho et al., 2021)† 45.41 86.05

+ CIB 47.60 (+2.19) 88.00 (+1.95)

LXMERT (Tan & Bansal, 2019)† 53.61 87.63

+ CIB 57.14 (+3.53) 89.21 (+1.68)

UNITERB (Chen et al., 2020)† 40.64 81.75

+ CIB 42.03 (+1.39) 82.48 (+0.73)

ALBEF (Li et al., 2021)† 45.39 83.88

+ CIB 47.87 (+2.48) 86.00 (+2.12)

mPLUGB (Li et al., 2022)† 45.74 84.07

+ CIB 47.73 (+1.99) 85.25 (+1.18)

BEiT-3B (Wang et al., 2023)† 47.15 84.44

+ CIB 50.38 (+3.23) 85.92 (+1.48)

The † indicates our reimplementation of baseline, i.e., finetuning pretrained VLMs with only the task-related
loss. The best performances are highlighted in bold

that pretrained VLMs using raw images as visual inputs
(e.g., BEiT-3B, mPLUGB, and ALBEF) exhibit superior per-
formance in defending against visual variations compared
to those pretrained VLMs (e.g., VisualBERT, LXMERT, and
UNITERB) that employ object-level region features as visual
inputs. This can be attributed to the fact that pre-extracted
region features lose some image information, which hinders
VQAmodels in comprehending and retrieving visual content
according to a given question.

4.2.3 Robustness Against Multimodal Shortcut Learning

To demonstrate the ability of CIB to defend against multi-
modal shortcuts present in input images and questions, we
conduct experiments on VQA-CE and compare our meth-

ods with existing approaches. Results are summarized in
Table 7. The compared methods in the table can be broadly
classified into two groups: (i) plain models (SAN (Yang et
al., 2016), BLOCK (Ben-Younes et al., 2019), VilBERT (Lu
et al., 2019), and BUTD (Anderson et al., 2018)), and (ii)
bias-reduction methods (RUBi (Cadene et al., 2019), LMH +
RMFE (Gat et al., 2020), ESR (Shrestha et al., 2020), LMH
(Clark et al., 2019), LfF (Nam et al., 2020), LMH + CSS
(Chen et al., 2020), and RandImg (Teney et al., 2020)). These
experimental results are cited from the work (Dancette et al.,
2021). As shown in Table 7, finetuning baseline pretrained
VLMs with CIB achieves significant improvements and out-
performs bias-reduction methods by a considerable margin,
particularly on counterexamples. These results suggest that
the proposed CIB is more effective at alleviating the spurious
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Table 8 Comparison between
different CIB bounds

VLMs CIB Terms PER

I (Y ; T ) I (Xv; T v) I (Xl ; T l ) −I (T v; T l ) Dskl

LXMERT � 70.41

� � � 72.17

� � � 72.07

� � � � 72.28

� � � � � 72.62

UNITERB � 62.68

� � � 64.07

� � � 64.11

� � � � 63.23

� � � � � 64.45

ALBEF � 65.66

� � � 67.11

� � � 67.00

� � � � 66.84

� � � � � 68.00

The best results for each baseline are highlighted in bold

correlations between representations and reducing shortcut
learning involved in multimodal inputs.

4.3 Ablation Studies

4.3.1 Comparison with Alternative CIB Bounds

When finetuning pretrained VLMs with CIB, I (Y ; T ) is
regarded as the task-relatedobjective,while I (Xv, Xl;T v, T l)

serves as a MI regularizer to constrain representation com-
pactness and pursue more robust representations. As stated
in Theorem 1, the upper bound of I (Xv, Xl; T v, T l) con-
sists of four terms: I (Xv; T v), I (Xl; T l), −I (T v; T l), and
Dskl. To analyze the contribution of different terms to
CIB, we perform an ablation study on different meaning-
ful combinations of these terms, that is, provable upper
bounds of I (Xv, Xl; T v, T l), on VQA-Rephrasings using
LXMERT, UNITERB, and ALBEF as baseline pretrained
VLMs. Specifically, the regularizer upper bound has three
other meaningful alternatives: (i) 3

2 [I (Xv; T v)+ I (Xl; T l)],
(ii)−I (T v; T l)+Dskl, and (iii) I (Xv; T v)+I (Xl; T l)+Dskl

(cf. Sect. 1 for proofs). Table 8 presents results on VQA-
Rephrasings. Overall, the ablation results on different bounds
are consistent, indicating that CIB with any meaningful
upper bounds can markedly improve the performance of
baseline pretrained VLMs. However, CIB with our derived
upper bound performs best, empirically demonstrating that
the bound in Theorem 1 is a tighter and more precise
bound. Furthermore, the comparison between upper bound
(iii) I (Xv; T v) + I (Xl; T l) + Dskl and our upper bound
I (Xv; T v)+ I (Xl; T l)− I (T v; T l)+ Dskl suggests that CIB
can effectively facilitate the correlation between visual and

linguistic representations and modality alignment by maxi-
mizing I (T v; T l).

4.3.2 Impact of MI Estimator on CIB

In practice, any sample-based upper bound estimator of MI
can be utilized to approximate I (Xv; T v) and I (Xl; T l), and
any differentiable MI lower bound estimator can be applied
to approach I (T v; T l). To analyze the impact of different MI
estimators on CIB, we consider the following experimental
settings: (i) We alternately utilize L1Out (Poole et al., 2019)
instead of CLUB (Cheng et al., 2020) as the estimator of MI
upper bound to approximate I (Xv; T v) and I (Xl; T l). (ii)
We approximate I (T v; T l) with the three other estimators
of MI lower bound, i.e., InfoNCE (Oord et al., 2018), NWJ
(Nguyen et al., 2010), and MINE (Belghazi et al., 2018).
Table 9 presents comparisons between different MI estima-
tors on VQA-Rephrasings using LXMERT, UNITERB, and
ALBEF as baselines. These results consistently demonstrate
that CIB can effectively improve the performance of base-
lines with different transformer architectures and that the
effectiveness of CIB does not depend on a specific MI esti-
mator.

4.3.3 Impact of Hyperparameter on CIB

When using CIB as the training objective to adapt pre-
trained VLMs to the downstream VQA task, β controls the
tradeoff between redundancy and compression in represen-
tations, which is the crucial hyperparameter. Consequently,
we perform a grid search for β. Specifically, we consider the
following values: β ∈ [1 × 10−6, 1 × 10−5, 5 × 10−5, 1 ×
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Table 9 Impact of different MI estimators on CIB

VLMs MI Estimator *PER
Upper Bound Lowe Bound

LXMERT 70.41

L1Out NWJ 72.31

CLUB InfoNCE 72.34

CLUB MINE 72.48

CLUB NWJ 72.62

UNITERB 62.68

L1Out NWJ 64.27

CLUB InfoNCE 64.14

CLUB MINE 64.32

CLUB NWJ 64.45

ALBEF 65.66

L1Out NWJ 67.68

CLUB InfoNCE 68.00

CLUB MINE 67.91

CLUB NWJ 68.00

The best results for each baseline are highlighted in bold

10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2, 5 × 10−2].
Figure 3 illustrates the variation curve of VQA-Score (PER)
on VQA-Rephrasings with increasing logβ. We observe that
the performance starts to boost when β is quite small, indi-
cating the effectiveness of CIB in improving the performance
of baseline pretrained VLMs.When β increases to 5×10−5,
1× 10−4, and 1× 10−4, UNITERB, LXMERT, and ALBEF
respectively achieve the best performance.Beyond that point,
the performance typically begins to degrade, suggesting that
extremely compressed representations of pretrained VLMs
may start to compromise model performance.

4.3.4 Impact of Internal Representation on CIB

As illustrated in Fig. 1b, for pretrained VLMs with two-
stream encoders (e.g., LXMERT and ViLBERT), there is
an alternative option for internal representations, i.e., T =
[T ′v, T

′l ], which are the visual and linguistic representations
after the vision transformer layers ( fθVTran ) and language
transformer layers ( fθLTran ). When finetuning the two-stream
pretrained VLMs with CIB, we analyze the impact of dif-
ferent internal representations by replacing the original T =
[T v, T l ] in LCIB with T = [T ′v, T

′l ]. Table 10 shows the
VQA-Score for PER on VQA-Rephrasings, revealing that
different internal representations have a slight impact on the
PER performance of CIB. This indicates that for two-stream
pretrained VLMs, using the visual and linguistic represen-
tations after the vision and language transformer layers as
internal representations to estimate the mutual information
terms inLCIB is also a feasible approach.

4.4 Discussion and Analysis

4.4.1 Effectiveness of CIB for Standard VQA Performance

To analyze the impact of CIB on standard VQA performance
(i.e., whether the representation compression impairs the
standard VQA performance), we utilize CIB as the objective
to train the aforementioned baseline pretrained VLMs on the
VQA v2 training and validation sets. The results on VQA
v2 test-dev are shown in Table 11.2 Overall, training base-
line pretrained VLMs with the proposed CIB can slightly
improve the standard VQA performance. In particular, the
performance improvement of VisualBERT and ALBEF is
relatively significant. This because that their visual inputs
contain more redundant information, such as image back-
ground and visual content irrelevant to the given question
(VisualBERT and ALBEF respectively adopt 100 region-
level features and 900 patch-level features as visual inputs).
Therefore, our hypothesis is that a certain degree of compres-
sion of representations can reduce the redundant information
learned from inputs and make the obtained representations
more compact and robust. Noting that, in contrast to the
significant improvement in input robustness, CIB leads to rel-
atively limited improvement in standard performance. This
observation also indirectly indicates that the proposed CIB is
carefully designed and tailored to improve input robustness
when adapting pretrained VLMs for the downstream VQA.

4.4.2 Effectiveness of CIB Against Adversarial Attack

To analyze the impact of CIB on defending against adver-
sarial attacks, we conduct experiments considering the fol-
lowing attacks and dataset: (i) L4A (Ban & Dong, 2022),
which adds pretrained adversarial perturbations (PAPs) to
the low-level layer of pretrained models, can effectively
fool the finetuned models on downstream tasks without any
knowledge of the tasks. (ii) AdVQA (Sheng et al., 2021), an
adversarial benchmark collected using a human-and-model-
in-the-loop paradigm to attack state-of-the-art VQA models
and obtain human-adversarial examples, can effectively eval-
uate the human-adversarial robustness of VQA models. The
effectiveness of a model in defending against adversarial
attacks is measured by the model VQA-Score under these
attacks.

For (i), as proposed in the work (Ban & Dong, 2022),
we consider three different ways for perturbation generation,
i.e., L4Abase, L4Afuse, and L4Augs. Before finetuning the pre-

2 Since we do not utilize the additional question-answer pairs from
VG (Krishna et al., 2017) for data augmentation in our experiments and
some other detail differences, there are minor differences between our
re-implementation† of the baseline pretrained VLMs and the published
results in the original papers.
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Fig. 3 Variation curve of VQA-Score (PER) on VQA-Rephrasings as logβ increases

Table 10 Impact of different internal representations obtained by the
two-stream pretrained VLMs on CIB

VLMs LCIB PER

LXMERT I (Y ; T ) 70.41

I (Y ; T ) − β I (Xv, Xl ; T
′v, T

′l ) 72.53

I (Y ; T ) − β I (Xv, Xl ; T v, T l ) 72.62

ViLBERT I (Y ; T ) 59.16

I (Y ; T ) − β I (Xv, Xl ; T
′v, T

′l ) 62.23

I (Y ; T ) − β I (Xv, Xl ; T v, T l ) 62.28

The best results for each baseline are highlighted in bold

trained ALBEF with a text generation loss and the proposed
CIB as a training objective, we first utilize the three methods
above to generate PAPs by lifting the neuron activations of
low-level layers of the ALBEF. Next, we separately add the
generated PAPs to input images and finetune the pretrained
ALBEF on the VQA v2 training and validation sets, and test
their performance on VQA v2 test-dev. Figure 4 shows the
performance comparison, where the blue bar marked with
red performance indicates the VQA-Score drop with respect
to the standard performance under an attack. From the figure,
we can observe that CIB markedly reduces the performance
drop, demonstrating its ability to better alleviate the vulner-
ability of VQA models to such attacks. For (ii), following

Fig. 4 Results on VQA v2 test-dev under different adversarial attacks

the experimental setups for evaluating input robustness, we
first finetune pretrained UNITERB and LXMERT on the
standard and clean VQA v2 training set, and then evaluate
human-adversarial robustness on the adversarial benchmark
AdVQA. As shown in Table 12, the significant performance
improvement of our method over baselines demonstrates the
robustness ofCIB against human-adversarial attacks. In sum-
mary, the aforementioned experiments consistently suggest
that the proposed CIB, as a generic objective, can potentially

Table 11 Results on VQA v2
test-dev (Goyal et al., 2017)
under standard and clean dataset
setups

VLMs VQA-Score
Baseline + CIB

VisualBERT (Li et al., 2019) 70.80 (70.46†) 71.62 (+1.16)

VL-T5 (Cho et al., 2021) - (70.23†) 71.14 (+0.91)

LXMERT (Tan & Bansal, 2019) 72.42 (72.58†) 72.99 (+0.41)

UNITERB (Chen et al., 2020) 72.70 (71.63†) 72.11 (+0.48)

ALBEF (Li et al., 2021) 74.54 (74.54†) 76.27 (+1.73)

ViLBERT (Lu et al., 2019) 70.55 (70.55†) 71.00 (+0.45)

VL-BERTB (Su et al., 2020) 71.16 (71.20†) 71.59 (+0.39)

The † indicates our reimplementation of baseline, i.e., finetuning pretrained VLMs with only the task-related
loss
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Table 12 Results on AdVQA (Sheng et al., 2021)

Methods VQA-Score
Test Val

VisualBERT (Li et al., 2019) 31.96 28.09

ViLBERT (Lu et al., 2019) 32.01 33.67

ViLT (Kim et al., 2021) 31.00 32.48

UNITERB (Chen et al., 2020) 27.56 29.44

VILLAB (Gan et al., 2020) 27.55 29.36

UNITERL (Chen et al., 2020) 29.66 32.08

VILLAL (Gan et al., 2020) 28.59 30.58

M4C (Hu et al., 2020) 36.57 36.93

UNITERB (Chen et al., 2020)† 36.20 36.73

+ CIB 37.85 (+1.65) 38.23 (+1.50)

LXMERT (Tan & Bansal, 2019)† 36.30 37.09

+ CIB 37.42 (+1.12) 39.10 (+2.01)

The † indicates our reimplementation of baseline, i.e., finetuning pre-
trained VLMs with only the task-related loss. The best performances
are highlighted in bold

Table 13 Results on the RefCOCO+ (Yu et al., 2016) dataset for
weakly-supervised visual grounding

Methods Val Test A Test B

ARN (Liu et al., 2019) 32.78 34.35 32.13

CCL (Zhang et al., 2020) 34.29 36.91 33.56

ALBEFitc (Li et al., 2021) 51.58 60.09 40.19

ALBEFitm (Li et al., 2021) 58.46 65.89 46.25

+ CIB 59.41 67.39 47.18

The best performances are highlighted in bold

alleviate the vulnerability of models to adversarial attacks
when adapting pretrained VLMs to downstream tasks.

4.4.3 Generalizability of CIB to Other Multimodal Task

The proposed CIB is essentially a generic training objective
that can be applied to various multimodal tasks beyond the
VQA task. To evaluate the generalizability of CIB to other
multimodal tasks, we consider the task of weakly-supervised
visual grounding. Following the original experimental setups
of ALBEF (Li et al., 2021), we finetune pretrained ALBEF
with CIB on the RefCOCO+ (Yu et al., 2016) training dataset
in a weakly-supervised setups, i.e., finetuning models using
only image-text supervision without bounding box annota-
tions. From the results in Table 13, we find that using CIB as
the training objective can further improve the performance
of the baseline ALBEFitm, demonstrating that the proposed
CIB can be effectively applied to other multimodal tasks.

4.5 Qualitative Results

4.5.1 Visualization of Visual Attentional Objects

To empirically explore why CIB can improve input robust-
ness, we utilize the pretrained LXMERT (Tan & Bansal,
2019) as a representative and conduct the following experi-
ments. First, we enumerate the image-question pairs, whose
answers are correctly predicted by the LXMERT finetuned
with CIB but incorrectly predicted by the baseline LXMERT
finetuned without CIB, from the VQA-Rephrasings dataset.
Next, we compute the attention score between the final rep-
resentation Z ∈ R

d used for answer prediction and the
input visual representation Xv ∈ R

K×d of object regions
using the formula, i.e., scoreattn = softmax(Z · (Xv)T/

√
d).

Finally, we utilize the magenta and green color to highlight
the top two objects with the highest attention scores in the

Fig. 5 Visualization of the top two objects with the highest attention scores. The image-question pairs originate from VQA-Rephrasings. Objects
with the best and second attention scores are marked in magenta and green. The wrongly predicted answers are marked in red (Color figure online)
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Fig. 6 Qualitative examples of the baseline and our method. The correct and wrong answers are highlighted (Color figure online)

image. The results in Fig. 5 show that compared with the
baseline LXMERT, the attended two objects obtained by
the LXMERT finetuned with CIB are more consistent and
question-related. This observation qualitatively illustrates

that using CIB as a training objective to finetune pretrained
VLMs can encourage models to learn more discriminative
representations for different answers and reduce the irrele-
vant information to questions.

123



202 International Journal of Computer Vision (2024) 132:185–207

4.5.2 Visualization of Input Robustness Cases

Figure 6a, b, and c present several qualitative examples
demonstrating robustness to linguistic variations, visual
variations, and multimodal shortcut learning, respectively.
According to the qualitative comparison in Fig. 6, we can fur-
ther observe that compared to the baseline that finetunes the
pretrainedLXMERTwith a cross-entropy loss, using the pro-
posed CIB as a training objective to finetune the pretrained
VLM can improve the ability of VQA models to correctly
answer these difficult questions. This empirical evidence
highlights the effectiveness of CIB in defending against such
attacks involving both visual and linguistic inputs.

5 Conclusion

In this paper, we propose to improve input robustness from
the information bottleneck perspective when adapting pre-
trained VLMs to the downstream VQA task. Specifically,
we derive a new IB lower bound (CIB) for vision-language
learning and applyCIB tofinetunepretrainedVLMswith var-
ious architectures for VQA. Extensive experiments on five
robustness datasets consistently demonstrate the effective-
ness and superiority of CIB. In the future, we plan to assess
the effectiveness of CIBwhen tuning pretrained VLMs using
parameter-effective strategies, such as adapter-based tuning
and prompt-based tuning.
Limitation.Redundancy has two sides. One reason why pre-
trained VLMs can significantly improve the performance of
downstream tasks is that they have learned rich and redun-
dant knowledge during the pretraining stage. Practically, for
downstream tasks, especially in-domain tasks, task-related
redundancy can help models quickly adapt to new tasks,
while task-agnostic redundancy may impair model robust-
ness. Our work investigates improving input robustness of
models while preserving their accuracy by seeking a trade-
off between representation compression and redundancy.
Another potential research direction is to explore how to
explicitly reduce task-agnostic redundancy and adequately
exploit task-related redundancy when adapting pretrained
VLMs to downstream tasks, particularly out-of-domain
tasks.

Acknowledgements This work was supported by the National Science
Foundation of China (Grant No. 62088102).

A Appendix

A.1 Proof for Theorem 1

To prove the Theorem 1 stated in Sect. 3.2, we first enumerate
some properties of mutual information (MI). Specifically, for
any random variables X , Y and Z , we have:

(P1) Positivity:

I (X; Y ) ≥ 0, I (X; Y |Z) ≥ 0.

(P2) Chain rule:

I (X , Y ; Z)

= I (Y ; Z) + I (X; Z |Y ),

= I (X; Z) + I (Y ; Z |X),

= 1

2
[I (Y ; Z) + I (X; Z) + I (X; Z |Y ) + I (Y ; Z |X)] .

(P3) Chain rule (Multivariate Mutual Information):

I (X; Y ; Z) = I (Y ; Z) − I (Y ; Z |X).

(P4) Positivity of discrete entropy (for discrete X ):

H(X) ≥ 0, H(X |Y ) ≥ 0.

(P5) Entropy and Mutual Information:

H(X) = H(X |Y ) + I (X; Y ).

Then, we state the following three easily provable lemmas:

Lemma 1 In representation learning, given a random vari-
able X, the random variable Z is defined to be a repre-
sentation of X, we can simply state that Z is conditionally
independent from any other variable in the model once X is
observed. That is, for any variable (or groups of variables)
T1 and T2 in the model, we have

I (Z; T1|X , T2) = 0.

Lemma 2 Given a sequence of random variables X1, X2,
. . . , Xn and a deterministic function f , then ∀ i, j =
1, 2, . . . , n, we have

I (Xi ; f (Xi )) ≥ I (X j ; f (Xi )).

Proof By the definition,

I (Xi ; f (Xi )) = H( f (Xi )) − H( f (Xi ) | Xi ),

I (X j ; f (Xi )) = H( f (Xi )) − H( f (Xi ) | X j ).

Since f is a deterministic function,

H( f (Xi ) | Xi ) = 0,
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H( f (Xi ) | X j ) ≥ 0.

Therefore,

I (Xi ; f (Xi )) ≥ I (X j ; f (Xi )).

�
Lemma 3 Let Z1 and Z2 are the representations of X1 and
X2, then

Iθ (X1; Z1|X2) ≤ KL
(

pθ (Z1|X1)||pψ(Z2|X2)
)
,

Iψ(X2; Z2|X1) ≤ KL
(

pψ(Z2|X2)||pθ (Z1|X1)
)
.

Proof By the definition,

Iθ (X1; Z1|X2)

= Ex1,x2∼p(X1,X2)Ez∼pθ (Z1|X1)

[
log

pθ (Z1 = z|X1 = x1)

pθ (Z1 = z|X2 = x2)

]
,

= Ex1,x2∼p(X1,X2)Ez∼pθ (Z1|X1)

[
log

pθ (Z1 = z|X1 = x1)

pψ(Z2 = z|X2 = x2)

]

− Ex1,x2∼p(X1,X2)Ez∼pθ (Z1|X1)

[
log

pθ (Z1 = z|X2 = x2)

pψ(Z2 = z|X2 = x2)

]
,

= KL
(

pθ (Z1|X1)||pψ(Z2|X2)
)

− KL
(

pθ (Z2|X1)||pψ(Z2|X2)
)
,

≤ KL
(

pθ (Z1|X1)||pψ(Z2|X2)
)
.

If and only if pψ(Z2|X2) coincides with pθ (Z1|X2), the
equality holds. Analogously, Iψ(X2; Z2|X1) ≤ KL
(pψ(Z2|X2)||pθ (Z1|X1)) is proved. �
Next, we utilize the above properties and lemmas to prove
Theorem 1.
Theorem 1 (Upper Bound of I (Xv, Xl; T v, T l)) Given
two groups of random variables X = [Xv, Xl ] and T =
[T v, T l ], I (Xv, Xl; T v, T l) can be upper-bounded with

I (X; T ) = I (Xv, Xl; T v, T l),

≤ I (Xv; T v) + I (Xl; T l)−I (T v; T l) + Dskl,

where Dskl denotes the symmetric Kullback-Leibler (KL)
divergence and can be obtained by averaging the divergences
KL(p(tv|xv)||p(t l |xl)) and KL(p(t l |xl)||p(tv|xv)).

Proof

I (X; T )

= I (Xl , Xv; T ),

(P2)= 1

2

[
I (Xl ; T ) + I (Xv; T ) + I (Xl ; T |Xv) + I (Xv; T |Xl )

]
,

= 1

2

[
I (Xl ; T l , T v) + I (Xv; T l , T v) + I (Xl ; T |Xv) + I (Xv; T |Xl )

]
.

Since,

I (Xl; T l , T v)

(P2)= I (Xl; T l) + I (Xl; T v|T l),

(P3)= I (Xl; T l) + I (Xl; T v) − I (Xl; T v; T l),

(P3)= I (Xl; T l) + I (Xl; T v) − I (T l; T v) + I (T l; T v|Xl),

(L A1)= I (Xl; T l) + I (Xl; T v) − I (T l; T v),

(L A2)≤ 2I (Xl; T l) − I (T l; T v).

Analogously, I (Xv; T l , T v) is upper bounded by

I (Xv; T l , T v) ≤ 2I (Xv; T v) − I (T l; T v).

And,

I (Xl; T |Xv)

= I (Xl; T l , T v|Xv),

(P2)= I (Xl; T l |Xv) + I (Xl; T v|Xv, T l),

(L A1)= I (Xl; T l |Xv);
I (Xv; T |Xl)

= I (Xv; T l , T v|Xl),

(P2)= I (Xv; T v|Xl) + I (Xv; T l |Xl , T v),

(L A1)= I (Xv; T v|Xl).

Let Dskl = 1
2

(
KL(pθ ||pψ) + KL(pψ ||pθ )

)
,

therefore,

I (X; T )

= I (Xl , Xv; T l , T v),

≤ I (Xl; T l) + I (Xv; T v) − I (T l; T v)

+ 1

2

[
I (Xl; T l |Xv) + I (Xv; T v|Xl)

]
,

(L A3)≤ I (Xl; T l) + I (Xv; T v) − I (T l; T v)

+ 1

2

[
KL

(
pθ (T1|X1)||pψ(T2|X2)

)

+KL
(

pψ(T2|X2)||pθ (T1|X1)
)]

,

= I (Xl; T l) + I (Xv; T v) − I (T l; T v) + Dskl.

�
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A.2 Proof for Alternative Upper Bound

The alternative three upper bounds of I (Xv, Xl; T v, T l) uti-
lized in Sect. 4.3.1 are derived as follows:

Theorem 3 (Upper Bound of I (Xv, Xl; T v, T l)) Given two
groups of random variables X = [Xv, Xl ] and T =
[T v, T l ], the mutual information I (Xv, Xl; T v, T l) can be
upper-bounded with

I (Xv, Xl; T v, T l) ≤ 3

2

[
I (Xv; T v) + I (Xl; T l)

]
.

Proof

I (Xl , Xv; T l , T v)

≤ I (Xl; T l) + I (Xv; T v) − I (T l; T v)

+ 1

2

[
I (Xl; T l |Xv) + I (Xv; T v|Xl)

]
,

≤ I (Xl; T l) + I (Xv; T v)

+ 1

2

[
I (Xl; T l |Xv) + I (Xv; T v|Xl)

]
,

≤ I (Xl; T l) + I (Xv; T v) + 1

2

[
I (Xl; T l) + I (Xv; T v)

]
,

= 3

2

[
I (Xl; T l) + I (Xv; T v)

]
.

�
Theorem 4 (Upper Bound of I (Xv, Xl; T v, T l)) Given two
groups of random variables X = [Xv, Xl ] and T =
[T v, T l ], the mutual information I (Xv, Xl; T v, T l) can be
upper-bounded with

I (Xv, Xl; T v, T l) ≤ I (Xv; T v) + I (Xl; T l) + Dskl.

where Dskl denotes symmetric Kullback–Leibler (KL) diver-
gence and can be obtained by averaging the divergences
KL(p(tv|xv)||p(t l |xl)) and KL(p(t l |xl)||p(tv|xv)).

Proof

I (Xl , Xv; T l , T v)

(Theorem 1)≤ I (Xl; T l) + I (Xv; T v) − I (T l; T v) + Dskl,

(I (T l ;T v)≥0)≤ I (Xl; T l) + I (Xv; T v) + Dskl.

�
Theorem 5 (Upper Bound of I (Xv, Xl; T v, T l)) Given two
groups of random variables X = [Xv, Xl ] and T =

[T v, T l ], the mutual information I (Xv, Xl; T v, T l) can be
upper-bounded with

I (Xv, Xl; T v, T l) ≤ −I (T v; T l) + Dskl.

where Dskl denotes symmetric Kullback–Leibler (KL) diver-
gence and can be obtained by averaging the divergences
KL(p(tv|xv)||p(t l |xl)) and KL(p(t l |xl)||p(tv|xv)).

Please see the work of Federici et al. (2020) for proof.

A.3 Proof for Theoretical Justification of Input
Robustness

Finally, we prove the theoretical justification for the input
robustness of CIB in Eq. (11), i.e., the following inequality:

|I (T ; Y ) − I (T ′; Y )|
= |I (T v, T l ; Y ) − I (T v ′

, T l ′; Y )|,
≤ Bv

1

√
T v

(
I (Xv; T v)

)1/2 + Bv
2 |T v|3/4 (

I (Xv; T v)
)1/4

+ Bv
3

√|T v| (I (Xv ′; T v ′
)
)1/2 + Bv

4 |T v|3/4 (
I (Xv ′; T v ′

)
)1/4

+ Bl
1

√
T l

(
I (Xl ; T l)

)1/2 + Bl
2|T l |3/4

(
I (Xl ; T l)

)1/4

+ Bl
3

√
|T l |

(
I (Xl ′; T l ′)

)1/2 + Bl
4|T l |3/4

(
I (Xl ′; T l ′)

)1/4

+ Bv
0 + Bl

0,

where T v is the finite support of T v and T v ′, and Bv
0 , Bv

1 ,
Bv
2 , Bv

3 , and Bv
4 are constants that depend on the sequence

length K , δ, and p(xv). T l is the finite support of T l and T l ′,
and Bl

0, Bl
1, Bl

2, Bl
3, and Bl

4 are constants that depend on the
sequence length L , δ, and p(xl).

Proof According to triangle inequality and data processing
inequality:

|I (T ; Y ) − I (T ′; Y )|
= |I (T v, T l ; Y ) − I (T v ′

, T l ′; Y )|,
= |I (T v; Y ) + I (T l ; Y |T v) − I (T v ′; Y ) − I (T l ′; Y |T v ′

)|,
= |I (T v; Y ) − I (T v ′; Y )| + |I (T l ; Y |T v) − I (T l ′; Y |T v ′

)|,
≤ |I (T v; Y ) − I (T v ′; Y )| + |I (T l ; Y ) − I (T l ′; Y )|.

Then, we can further approximate each of the two terms on
the upper bound separately. For the first term, using the bound
in thework (Wang et al., 2021),we obtain the following upper
bound:

|I (T v; Y ) − I (T v ′; Y )|
≤ Bv

0 + Bv
1

√
T v

(
I (Xv; T v)

)1/2 + Bv
2

∣∣T v
∣∣3/4 (

I (Xv; T v)
)1/4

+ Bv
3

√|T v| (I (Xv ′; T v ′
)
)1/2 + Bv

4

∣∣T v
∣∣3/4 (

I (Xv ′; T v ′
)
)1/4

,
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where T v is the finite support of T v and T v ′, and Bv
0 , Bv

1 ,
Bv
2 , Bv

3 , and Bv
4 are constants that depend on the sequence

length K , δ, and p(xv). Analogously, the second term can be
bounded by:

|I (T l ; Y ) − I (T l ′; Y )|
≤ Bl

0 + Bl
1

√
T l

(
I (Xl ; T l)

)1/2 + Bl
2

∣∣∣T l
∣∣∣3/4

(
I (Xl ; T l)

)1/4

+ Bl
3

√
|T l |

(
I (Xl ′; T l ′)

)1/2 + Bl
4

∣∣∣T l
∣∣∣3/4

(
I (Xl ′; T l ′)

)1/4
,

whereT l is the finite support of T l and T l ′, and Bl
0, Bl

1, Bl
2,

Bl
3, and Bl

4 are constants that depend on the sequence length
L , δ, and p(xl). Combining the above two terms, Eq. (11) is
proved. �
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