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Abstract
Multi-scale learning frameworks have been regarded as a capable class ofmodels to boost semantic segmentation. The problem
nevertheless is not trivial especially for the real-world deployments, which often demand high efficiency in inference latency.
In this paper, we thoroughly analyze the design of convolutional blocks (the type of convolutions and the number of channels in
convolutions), and the ways of interactions across multiple scales, all from lightweight standpoint for semantic segmentation.
With such in-depth comparisons,we conclude three principles, and accordingly deviseLightweight andProgressively-Scalable
Networks (LPS-Net) that novelly expands the network complexity in a greedy manner. Technically, LPS-Net first capitalizes
on the principles to build a tiny network. Then, LPS-Net progressively scales the tiny network to larger ones by expanding a
single dimension (the number of convolutional blocks, the number of channels, or the input resolution) at one time to meet
the best speed/accuracy tradeoff. Extensive experiments conducted on three datasets consistently demonstrate the superiority
of LPS-Net over several efficient semantic segmentation methods. More remarkably, our LPS-Net achieves 73.4% mIoU on
Cityscapes test set, with the speed of 413.5FPS on an NVIDIA GTX 1080Ti, leading to a performance improvement by 1.5%
and a 65% speed-up against the state-of-the-art STDC. Code is available at https://github.com/YihengZhang-CV/LPS-Net.

Keywords Convolutional neural networks · Semantic segmentation · Lightweight · Scalable

1 Introduction

Semantic segmentation is to assign semantic labels to every
pixel of an image or a video frame. With the development
of deep neural networks, the state-of-the-art networks have
successfully pushed the limits of semantic segmentation
with remarkable performance improvements. For exam-
ple, DeepLabV3+ (Chen et al., 2018c) and Hierarchical
Multi-Scale Attention (Tao et al., 2020) achieve 82.1% and
85.4% mIoU on Cityscapes test set, which are almost sat-
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urated on that dataset. The recipe behind these successes
originates from multi-scale learning. In the literature, the
recent advances involve utilization of multi-scale learning
for semantic segmentation along three different dimensions:
U-shape (Chen et al., 2020; Peng et al., 2017), pyramid
pooling (Chen et al., 2018c; Zhao et al., 2017), and multi-
path framework (Chen et al., 2016; Tao et al., 2020). The
U-shape structure hierarchically fuses the features to grad-
ually increase the spatial resolution and naturally produce
multi-scale features. Thepyramidpoolingmethods delve into
multi-scale information through executing spatial or atrous
spatial pyramid pooling at multiple scales. Unlike the for-
mer two research schemes, the multi-path frameworks resize
the input image to multiple resolutions or scales and feed
each scale into an individual path of a deep network. By
doing so, the multi-path design places the input resolutions
from high to low in parallel and explicitlymaintains the high-
resolution information rather than recovering from low-scale
feature maps. As a result, the learnt features are potentially
more capable of classifying and localizing each pixel.

We employ this elegant recipe of multi-path framework
and further evolve such type of architectures with good
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Fig. 1 LPS-Net executes the growth of network complexity through
expanding a single dimension of the number of convolutional blocks
(depth), the number of channels (width), or the input resolution (reso-
lution) at one time

accuracy/speed tradeoff for semantic segmentation. Our
philosophies are from two perspectives: (1) lightweighting
computational units for semantic segmentation, and (2) pro-
gressively scaling up the network while balancing accuracy
and inference latency.Wepropose to explore thefirst problem
by probing the basic unit of convolutional blocks, includ-
ing the type of convolutions and the number of channels in
convolutions, on the basis of several uniqueness (e.g., large
feature maps, thin channel widths) in efficient semantic seg-
mentation. Moreover, we further elaborate different ways of
interaction across multiple paths with respect to the accu-
racy/speed tradeoff. Based on these lightweight practice, we
build a tiny model, and then progressively expand the tiny
model along multiple possible dimensions and select a sin-
gle dimension that achieves the best tradeoff in each step to
alleviate the second issue of accuracy/speed balance.

To materialize the idea, we present Lightweight and
Progressively-Scalable Networks (LPS-Net) for efficient
semantic segmentation. Specifically, LPS-Net bases the
multi-path design upon the low-latency regime. Each path
takes the resized image as the input to an individual net-
work, which consists of stacked convolutional blocks. The
networks across paths share the same structure but have inde-
pendent learnable weights. The outputs from all the paths
are aggregated to produce the score maps, which are upsam-
pled via bilinear upsampling for pixel-level predictions. In
an effort to achieve a lightweight and efficient architecture,
we look into the basic unit of convolutional blocks and
empirically suggest to purely use 3 × 3 convolutions with
2n-divisible channel widths. Furthermore, we capitalize on a
simple yet effective way of bilinear interpolation to encour-
age mutual exchange and interactions between paths. With
these practical guidelines, LPS-Net first builds a tiny net-

Fig. 2 Comparisons of inference speed/accuracy tradeoff onCityscapes
validation set. LPS-Net (-S, -M, and -L) which are progressively
expanded along multiple dimensions demonstrate a good balance
between accuracy and inference speed compared to other manually-
/auto-deigned models

work and then scales the tiny network to a family of larger
ones in a progressive manner. Technically, LPS-Net executes
the growth of network complexity through expanding a single
dimension of the number of convolutional blocks, the number
of channels, or the input resolution at one time, as depicted in
Fig. 1. In our case, LPS-Net ensures a good balance between
accuracy and inference speed during expansion, and shows
the superiority over othermanually-/auto-deignedmodels, as
shown in Fig. 2.

In summary, we have made the following contributions:
(1) The lightweight design of convolutional blocks and the
way of path interactions in multi-path framework are shown
capable of regarding as the practical principles for efficient
semantic segmentation; (2) The exquisitely devised LPS-Net
is shown able to progressively expand the network complex-
ity while striking the right accuracy-efficiency tradeoff; (3)
LPS-Net has been properly verified through extensive experi-
ments over three datasets, and superior capability is observed
on both NVIDIA GPUs and embedded devices in our exper-
iments.

2 RelatedWorks

2.1 Semantic Segmentation

With the success of convolutional neural networks (CNNs),
FCN (Long et al., 2015) which deploys CNN in a fully
convolutional manner enables dense semantic prediction
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and end-to-end training for semantic segmentation. Follow-
ing FCN, researchers propose various techniques, which
achieve remarkable performances. For example, in order to
extract multi-scale context information which is known to
be critical for pixel labeling tasks (Ladický et al., 2009),
PSPNet (Zhao et al., 2017) applies spatial pyramid pooling
and DeepLab (Chen et al., 2018b, c) utilizes parallel dilated
convolutions with different rates. Yuan et al. (2021) propose
to use object context represented as a dense relation matrix
to emphasize the contribution of object information. Multi-
layer feature aggregation (Ghiasi & Fowlkes, 2016; Peng
et al., 2017; Qiu et al., 2017; Fu et al., 2019; Lin et al.,
2019; Nirkin et al., 2021) is performed to recover the spatial
information loss caused by spatial reduction in the network.
Chen et al. (2016) and Tao et al. (2020) capitalize on the
multi-path framework to improve the predictions. Benefiting
from neural architecture search (NAS) (Zoph & Le, 2017;
Zoph et al., 2018; Liu et al., 2019b; Qiu et al., 2019) which
is introduced to automatically generate optimal neural net-
works, researchworks can search dense prediction cell (Chen
et al., 2018a), hierarchical network architectures (Liu et al.,
2019a), and densely connected neural architectures (Zhang et
al., 2021) for semantic segmentation. Such efforts aremade to
achieve high-quality segmentation but without taking infer-
ence latency into account.

2.2 Lightweight Networks

The real-world deployments often demand accurate and
efficient networks. To accelerate the inference, there have
been several techniques, e.g., pruning (Han et al., 2016),
factorization (Szegedy et al., 2016), depthwise separable
convolution (Chollet, 2017; Howard et al., 2017), group con-
volution (Krizhevsky et al., 2012), and quantization (Zhang
et al., 2019a) being proposed in the literature. NAS (Ding et
al., 2021a;Wu et al., 2021a) is also employed to optimize the
tradeoff between performance and FLOPs formultiple vision
tasks. To facilitate model deployments and speed up the
inference for semantic segmentation, recent works present
to manually (Fan et al., 2021; Li et al., 2019a, 2020b) or
automatically (Chen et al., 2020; Li et al., 2020a, 2019b;
Lin et al., 2020; Zhang et al., 2019b) design lightweight net-
works. ICNet (Zhao et al., 2018) employs a cascade network
structure to achieve real-time segmentation. BiSeNet (Yu
et al., 2021a, 2018a) treats the spatial details and category
semantics of the images separately to obtain a lightweight
network. DFANet (Li et al., 2019) designs a feature reuse
method to incorporate multi-level context into encoded fea-
tures. SFNet (Li et al., 2020b, 2022) boosts the segmentation
by broadcasting high-level features to high-resolution fea-
tures of backbone networks with cheap operations. Fan et
al. (2021) propose a short-term dense concatenate module
to enrich features with scalable receptive field and multi-

scale information in a lightweight network. Lite-HRNet (Yu
et al., 2021b) utilizes the high-resolution design pattern of
HRNet (Wang et al., 2021) and introduces conditional chan-
nelweighting to replace costly pointwise (1×1) convolutions
in shuffle blocks (Zhang et al., 2018). BiAlignNet (Wu et al.,
2021b) augments the BiSeNet by employing a gated flow
alignment module to align features in a bidirectional way.
To automate lightweight network design, CAS (Zhang et
al., 2019b) presents resource constraints to achieve an accu-
racy/computation tradeoff and GAS (Lin et al., 2020) further
integrates a graph convolution network as a communica-
tion mechanism between different blocks. Li et al. (2019b)
prunes the search space with a partial order assumption to
search a balanced network. Chen et al. (2020) forms a search
space integratingmulti-resolution branches and calibrates the
balance between accuracy and latency by an additional reg-
ularization. AutoRTNet (Sun et al., 2021) jointly optimizes
network depth, downsampling strategies, and the way of fea-
ture aggregation to obtain real-time segmentation networks.

Despite having such lightweight networks, the way to bal-
ance speed and accuracy for efficient semantic segmentation
is not fully explored. Unlike theworks like (Zhao et al., 2018;
Yu et al., 2021b) whichmodel different resolutions with stan-
dard Residual Conv blocks, our work aims at probing the
basic design of Conv blocks, including the type of convolu-
tions and the number of channels, particularly for efficient
semantic segmentation. Instead of pre-fixing two-path design
in networks like BiSeNet (Yu et al., 2021a, 2018a) and
BiAlignNet (Wu et al., 2021b), we exquisitely devise a pro-
gressive expansion paradigm to scale up the network. Such
expansion dynamically balances the depth, width, resolution,
and the number of paths of the networks to strike the right
accuracy-efficiency tradeoff.

2.3 Summary

Our work focuses on developing light-weight and scalable
networks for efficient semantic segmentation upon the low-
latency regime. The proposal of LPS-Net contributes by
studying not only the practical design of convolutional blocks
and the way of path interactions in multi-path framework for
semantic segmentation, but also how a scalable multi-path
network can be nicely expanded to meet the right accu-
racy/speed balance.

3 LPS-Net

Weproceed to present our core proposal, i.e., the Lightweight
and Progressively-Scalable Networks (LPS-Net). Specifi-
cally, we first introduce the macro architecture in LPS-Net
that employs the multi-path recipe. Then, three design
principles are presented to upgrade this architecture from
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Fig. 3 An overview of the design space in our proposed LPS-Net. The
red block and blue block represent the convolutional blockwith stride=2
and stride=1, respectively. The size of output feature map is given for
each stage. Please note that the 3-path network here is an example to

depict the macro architecture, and the number of paths in LPS-Net is
dynamically determined by the parameter R = {ri |Ni=1} which is opti-
mized for the right tradeoff along the network expansion

lightweight standpoint, including the type of convolutions,
the number of channels in convolution, and the way of
interaction across multiple paths. Based on these practical
guidelines, a family of scalable LPS-Net is devised in a pro-
gressivemanner by expanding a single dimension at one time
to seek the best speed/accuracy tradeoff.

3.1 Macro Architecture

Figure3 depicts an overview of the macro architecture in
our LPS-Net. Themacro architecture is basically constructed
in the multi-path design, which resizes the input image to
multiple scales and feeds each scale into an individual path.
Formally, given the input image with resolution H × W ,
LPS-Net with N paths (e.g., N = 3 in Fig. 3) resizes the
image to ri H × riW , which acts as the input of the i-th
path. Here ri denotes the scaling ratio. Each path is imple-
mented as a stack of convolutional blocks in five stages, and
the j-th stage contains Bj blocks. The number of channels
(i.e., channel width) are maintained within each stage. Sim-
ilar to (Chen et al., 2018c), the first convolutional block in
Stage 1∼4 reduces the spatial dimension by a factor of two.
By doing so, the resolution of output feature map from the
last stage is ri H

16 × riW
16 . Moreover, we place interaction mod-

ules at the end of Stage 3∼5, aiming to encourage the mutual
exchange and interactions between paths. The outputs of all
paths are aggregated and fed into a segmentation head to pro-
duce the score maps with num_classes channels. Finally, we
perform bilinear upsampling over the score maps, yielding
the outputs with resolution H × W that exactly matches the
input resolution. Please note that the scaling ratios of paths
R = {ri |Ni=1}, the repeated number of convolutional blocks
B = {Bj |5j=1}, and the number of channels C = {C j |5j=1} in
this macro architecture can be flexibly set to make the net-
work structure tailored to the target inference time and adjust
the scalability of LPS-Net.
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Fig. 4 A comparison between standard convolution and depthwise sep-
arable convolution. The dash line is a optional skip connection and the
directed acyclic graph of depthwise separable convolution is a standard
version. The shape of input/output feature map is 32× 128× 128, and
the activation layers are omitted in the figure

3.2 Convolutional Block

Convolutional block is the basic computing unit in Con-
volutional Neural Networks. The stack of convolutional
blocks naturally consumes a high percentage of inference
time throughout the entire network. Therefore, lightweight-
ing convolutional block is essential for an efficient network.
In this section, we delve into the design of basic computa-
tional block in LPS-Net along two dimensions: (1) the type
of convolutional block, and (2) the number of channels.

3.2.1 The Type of Convolutional Block

In pursuit of less computational complexity, a series of
innovations have been proposed to remould convolutional
blocks (Han et al., 2020; He et al., 2016; Howard et al.,
2017; Zhang et al., 2018). In these works, the amount of
floating-point operations (FLOPs) is often utilized as the
measurement of computational complexity, which guides
the design of lightweight network for image recognition.
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The FLOPs metric measures the computational complexity
of networks in a device-irrelevant manner, and is generally
exploited to theoretically analyze the network complex-
ity, with the assumption that the network has been well
implemented. However, FLOPs ignores the memory access
cost (MAC) and the degree of parallelism that substantially
impact the inference latency of networks, thereby resulting
in the discrepancy between FLOPs and actual latency. The
latency metric is directly measured on devices and is more
applicable to model deployment in real-world applications,
which expect the networks to be actually (not theoretically)
efficient. That motivates us to utilize the latency metric
for searching lightweight networks. More importantly, the
extension of lightweight designs from image recognition to
semantic segmentation is not trivial due to several unique-
ness in efficient semantic segmentation (e.g., larger feature
maps and thin channel widths).

To this end, we perform a comparison between the
standard convolution and the widely-adopted depthwise sep-
arable convolution (SepConv) (Chollet, 2017; Howard et al.,
2017; Tan & Le, 2019) in Fig. 4. Here we set the shape of
input feature map as 32 × 128 × 128, which is the most
common shape in lightweight networks for semantic seg-
mentation. The latency is evaluated by executing the block
on a PC (i7-8700K/16GB RAM) with an 1070Ti GPU. The
FLOPs-efficiency, which denotes the number of floating-
point operations that is processed in per unit of run time,
is utilized as the efficiency metric. This metric is com-
puted by dividing the FLOPs of a network by its inference
latency to estimate if the network is device-friendly or well-
implemented on the given devices. A high FLOPs-efficiency
indicates that the numerical computation of the network is
efficiently processed by the device, i.e., device-friendly. As
shown in Fig. 4, the FLOPs-efficiency of standard convo-
lution (3987 MFLOPs/ms) is about 10× more than that of
SepConv (357 MFLOPs/ms). Accordingly, we utilize the
standard convolution as the building block in LPS-Net.

3.2.2 The Number of Channels

The channel width is another important factor that influ-
ences the FLOPs-efficiency of convolutions. Theoretically,
the computational complexity necessitates quadratic pro-
gression with the increase of channel width. However, due
to the highly-optimized software (e.g., BLAS, cuDNN)
and hardware (e.g., CUDA Core, Tensor Core) in modern
libraries/devices, the relation between defacto inference time
and channel width in practice becomes fuzzy. To analyze this
relation, we compare FLOPs and latency of 3 × 3 convolu-
tions with different channel widths in Fig. 5. As expected,
FLOPs grows quadratically when increasing the channel
width from 1 to 17 (see the blue curve in Fig. 5a). Mean-
while, the latency only linearly grows and reaches plateaus
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Fig. 5 Efficiency comparisons of 3×3 convolutionswith channelwidth
from 1 to 17, interval 1 (a), and 8 to 72, interval 8 (b). The spatial
resolution of input feature map is fixed as 128 × 128 and the latencies
are measured on an NVIDIA GTX 1070Ti GPU with TensorRT

at around 8 and 16 channel widths (see the red curve in
Fig. 5a). Such setups of channel width with high FLOPs-
efficiency are regarded as the “sweet spots” for convolutions.
Similarly, high FLOPs-efficiencies are attained at 32 and 64
channel widths in Fig. 5b. These sweet points are mainly
attributed to the highly parallelizable implementation of con-
volutions with 2n-divisible channel width. As a result, we
make the channel width of the convolution in LPS-Net to be
2n-divisible with n as large as possible.

3.3 Multi-Path Interaction

In an effort to elegantly diffuse the complementary infor-
mation across multiple scales, we design the multi-path
interaction module that encourages mutual exchange and
interactions between pathes in our LPS-Net. Concretely,
we define the interaction module I as {xouth , xoutl } =
I({xinh , xinl }), where {xinh , xinl } and {xouth , xoutl } denote the
input pair and output pair, respectively. The input pair con-
sists of a high-resolution feature map xinh ∈ R

C×Hh×Wh

and a low-resolution feature map xinl ∈ R
C×Hl×Wl , where

Hh ≥ Hl andWh ≥ Wl . The resolution of each path remains
unchanged during the interaction.

Here, we study six variants of interaction modules
which can be grouped into three categories as shown
in Fig. 6). For the first category (Direct-A/B), the trans-
formed low-resolution features are directly integrated into
the high-resolution ones through element-wise summation
or channel-wise concatenation. Rather than simply com-
bining the features from two paths, the second category
employs attention mechanism to boost the multi-path inter-
action, namelyAttention-A/B. Specifically, inAttention-A, an
attention map Att(xinl ) is first calculated from xinl , and we
apply it over the transformed xinh and xinl before aggregation:

{
xouth =U(F(xinl )∗Att(xinl ))+F(xinh )∗U(1−Att(xinl ))

xoutl =F(xinl )∗Att(xinl )
,(1)
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Fig. 6 Diagrams of six multi-path interaction modules. These variants
of interaction modules can be grouped into three categories: direct fea-
ture aggregation (a, b), attention-augmented feature aggregation (c, d),
and bilateral feature interaction (e, f)

where F and U denote the convolutional transformation
and spatial upsampling, respectively. Attention-B further
upgrades the simple attention in a bi-direction manner by
integrating each path with the attention derived from another
path.

In practice, the above four types of interaction modules
are computationally expensive due to the heavy transforma-
tions and attentions. Thus, techniques (Chen et al., 2016; Tao
et al., 2020; Yu et al., 2021a; Zhao et al., 2018) usually place
them at the end of the multi-path networks, while leaving
the path interactions at early stages unexploited. To alleviate
this issue, two efficient interaction modules are devised to
enable the interactions at early stages, namely Bilateral-A/B.
Bilateral-A transforms low-resolution feature and injects it
into the high-resolution one, and vice versa. Such symmet-
rical design treats each network path equally and the simple
transformation triggers the interaction at early stages in an
efficient fashion. Bilateral-B further eliminates the convolu-
tional transformation in Bilateral-A, leading to the simplest
interaction by solely applying spatial resizing and element-

Table 1 Expanding operations along three dimensions

Depth �B Width �C Resolution �R

{0, 1, 1, 1, 1}
{0, 0, 1, 1, 1}
{0, 0, 0, 1, 1}

{4, 8, 16, 32, 32}
{0, 8, 16, 32, 32}
{0, 0, 16, 32, 32}
{0, 0, 0, 32, 32}

{1/8, 0, 0}
{0, 1/8, 0}
{0, 0, 1/8}

wise summation on input feature maps:

{xouth , xoutl } = {xinh + U(xinl ), xinl + D(xinh )}, (2)

where U and D denote upsampling and downsampling of
the feature maps. The comparisons between all the six vari-
ants of interactions will be elaborated in the experiments,
and we empirically verify that Bilateral-B achieves the best
speed/accuracy tradeoff. Therefore, we adopt Bilateral-B as
the default interaction module in our LPS-Net.

3.4 Scalable Architectures

Next, we elaborate our progressive expansion process to
automatically develop a series of scalableLPS-Net.Given the
selected convolutional block and interactionmodule, a partic-
ular LPS-Net architecture can be defined asN = {B, C,R},
whereB, C,R are adjustable parameters described inSect. 3.1.
The network complexity is thus determined by these param-
eters from three dimensions. Depth dimension (B) is the
number of blocks which determines the ability of the net-
work to capture the high-level semantic information.Width
dimension (C), i.e., the number of channels at each stage,
impacts the learning capacity of each convolution. Resolu-
tion dimension (R) represents the spatial granularity of each
path. To balance the three dimensions when designing LPS-
Net architecture, we start by building a tiny network, and
then expand a single dimension at one time in a progressive
manner.

Technically, we set the parameters of tiny network N 0

as B0 = {1, 1, 1, 1, 1}, C0 = {4, 8, 16, 32, 32}, and R0 =
{1/2, 0, 0}. Please note that the path with r = 0 is not
included, and thus the tiny network only contains a single
path. In this way, the tiny network is very efficient with only
0.38ms latency on a single GPU, and we further scale it to
the heavier ones by multi-step expansion.

Following the key principle that the searched networks
should have fewer layers/channels at the early stages, and
more layers/channels at the later stages,we define the ten can-
didates of expanding operations (� = �B∪�C∪�R) along
the three dimensions in Table 1. The spirit behind this princi-
ple is that the extraction/representation of high-level seman-
tic information of images demandsmore layers/channels than
that of low-level features. Such an empirical principle has
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been widely adopted for manually (e.g., BiSeNetV2 (Yu
et al., 2021a)) and automatically (e.g., CAS (Zhang et al.,
2019b)) designing networks. To this end, when expanding
the depth/width of shallow layers, we enforce the deeper lay-
ers to be expanded at the same time, and the width of deep
layers is expanded faster than shallow ones.

When N = {B, C,R} is expanded by δ, δ will be added
to N along its corresponding dimension and produce the
expanded network (e.g. {B + δ, C,R} when δ ∈ �B). For
each step, we greedily determine the executed expanding
operation by comparing the tradeoff between speed and accu-
racy of each operation δ ∈ �. Specifically, for the i-th step,
the target latency after expansion is first determined by the
maximum latency across different expanding operations:

LT = max
δ∈�

Lat(N i−1 + δ), (3)

where N i−1 denotes the architecture from the last step and
Lat(·) measures the latency of the network. Then, a stepsize
for each operation is calculated as:

kδ = argmin
k≥1

|Lat(N i−1 + k · δ) − LT |, (4)

targeting for better aligning the resultant latency to LT

after expanding different operations. Nevertheless, since the
expansion only produces networks in discrete steps, the
latencies of the expanded networks may exceed LT . If the
selection of operation only depends on the performances of
expanded networks, it may be biased to the operations which
leads to a larger latency increase. To tackle this issue, the
optimal expanding operation δ∗ is finally selected by maxi-
mizing the ratio of performance increase and latency increase
after expanding at each step:

δ∗ = argmax
δ∈�

Per f (N i
δ ) − Per f (N i−1)

Lat(N i
δ ) − Lat(N i−1)

N i
δ = N i−1 + kδ · δ

, (5)

where Per f (·) evaluates the performances of semantic seg-
mentation. As such, starting from the tiny network N 0, we
iteratively perform the network expansion I times and finally
derive a family ofLPS-Netwith different complexities.Algo-
rithm 1 summarizes the expansion algorithm of LPS-Net.

4 Experiments

We empirically verify the merit of our LPS-Net by conduct-
ing a thorough evaluation of efficient semantic segmentation
on Cityscapes (Cordts et al., 2016). Expressly, we first under-
take the experiments for semantic segmentation to validate
the lightweight designs of the convolutional blocks and the

Algorithm 1 The progressive expansion in LPS-Net.
1: Input:
2: Expanding operations �

3: number of expansion steps I
4: Output:
5: A family of LPS-Net with different latencies:
6: N = {N i |i = 0, 1, 2, 3, ..., I }
7: Initialization:
8: N 0 = {B0, C0,R0}
9: = {{1, 1, 1, 1, 1}, {4, 8, 16, 32, 32}, {1/2, 0, 0}}
10: P = Per f (N 0), L = Lat(N 0), i = 1
11: Do:
12: while i ≤ I do
13: for all δ ∈ � do
14: L ′

δ = Lat(N i−1 + δ)

15: end for
16: LT = max({L ′

δ |δ ∈ �})
17: for all δ ∈ � do
18: kδ = argmin

k≥1
|Lat(N i−1 + k · δ) − LT |

19: N i
δ = N i−1 + kδ · δ

20: 	 Expand N i−1 using δ with stepsize kδ .
21: Pδ = Per f (N i

δ )

22: 	 Train and evaluate N i
δ for semantic segmentation.

23: Lδ = Lat(N i
δ )

24: end for
25: δ∗ = argmax

δ∈�

(Pδ − P)/(Lδ − L)

26: 	 Select operation by comparing tradeoffs.
27: Update: N i = N i−1 + kδ∗ · δ∗, P = Pδ∗ , L = Lδ∗
28: end while

way of interactions across paths in LPS-Net with a pre-fixed
structure. The second experiment examines the accuracy and
latency tradeoffs along the progressive growth of network
complexity of LPS-Net with regard to the number of con-
volutional blocks, the number of channels, and the input
resolution. The third experiment compare LPS-Net with
two progressive expansion schemes to verify the merit of
our greedy algorithm on progressive expansion. The fourth
experiment compares three scalable levels of LPS-Net with
several state-of-the-art fast semantic segmentation methods
anddemonstrates the better tradeoffs. Furthermore,we evalu-
ate the transferability of the three versions of LPS-Net, which
are learnt on Cityscapes, on BDD100K (Yu et al., 2018b) and
CamVid (Brostow et al., 2008) datasets for semantic segmen-
tation. We also migrate our LPS-Net to embedded devices
and prove the efficacy on two different devices. We further
scale up LPS-Net and verify that it has the ability to achieve
better segmentation results in a more efficient way. Finally,
we validate the high flexibility of LPS-Net on two object
detection tasks.

4.1 Datasets

The Cityscapes dataset contains 5,000 urban street images
with high-quality pixel-level annotations of 19 classes. The
image resolution is 1, 024 × 2, 048. All the images are split
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into three sets of 2,975, 500 and 1,525 for training, validation,
and testing, respectively. For fair comparison, the additional
set of 23,473 coarsely annotated images of this dataset is
not utilized in our experiments. We train LPS-Net on the
training set and evaluate the networks on the validation set.
Following the standard protocol in (Fan et al., 2021; Lin
et al., 2020; Zhang et al., 2019b), LPS-Net is learnt on the
training plus validation sets when submitting the model to
online Cityscapes server and reporting the performance on
the testing set.

To further examine the generalization of LPS-Net, we
re-evaluate the networks on BDD100K (Yu et al., 2018b)
and CamVid (Brostow et al., 2008) datasets. BDD100K is a
recently released urban street dataset. For semantic segmen-
tation, BDD100K includes 8,000 images being annotated
with the consistent labels in Cityscapes. In between, 7,000
and 1,000 images are exploited for training and validation,
respectively. The image resolution is 720 × 1, 280. CamVid
consists of 5 video sequences with resolution 720×960, and
is labeled at one frame per second with 11 semantic cate-
gories. 468 and 233 labeled frames in CamVid is utilized for
training and testing, respectively.

4.2 Implementation Details

We implement our proposal on PyTorch (Paszke et al., 2019)
platformand employmini-batchStochasticGradientDescent
(SGD) algorithm for model optimization. In the training
stage, we utilize the cross-entropy loss and train LPS-Net
from scratch for 90K iterations, with a batch size of 16,
momentum 0.9 and weight decay 0.0005. “Poly” policy with
power 0.9 is adopted with initial learning rate 0.01. We use a
crop size of 768×768 and exploit color-jittering, randomhor-
izontal flip and random scaling (0.5× ∼ 2.0×) to augment
training data. Model re-parameterization (Ding et al., 2021b)
is also adopted for training. To further improve the capability
of multi-path networks, we involve more powerful training
strategies for the experiments in Sect. 4.6, including Ima-
geNet (Russakovsky et al., 2015) pre-training, large crop size
(768 × 1, 536), more training iterations (180K) and online
hard element mining (Chen et al., 2020; Fan et al., 2021).
Note that these strategies only enhance the network train-
ing and have no influence on model inference. Such training
strategies employed for experiments on Cityscapes dataset
are adjusted to train LPS-Net on BDD100K and CamVid
datasets. For the experiments on BDD100K, we use a crop
size of 720×1280 and the other strategies remain unchanged.
For CamVid, we train the LPS-Net for 40K iterations, with
a batch size of 12, an initial learning rate of 0.03, and a crop
size 720 × 960. ImageNet pre-training and online hard ele-
ment mining are also involved in experiments on BDD100K
and CamVid.

In the inference stage, we input the image into our
LPS-Net and perform semantic segmentation without any
evaluation tricks (e.g., flipping, sliding-window testing and
multi-scale inference), which in general improve the perfor-
mance but at the expenses of extra latency. The Intersection
over Union (IoU) per category and mean IoU over all the
semantic categories are utilized as the performance metric.
The inference latency of the network is measured by running
networks with batch size of 1 on one NVIDIA GTX 1070Ti
(Sects. 4.3, 4.4, 4.5 and 4.9), 1080Ti (Sects. 4.6 and 4.8) or
embedded devices (Sect. 4.7) with TensorRT in FP32 mode,
unless otherwise stated.

4.3 Evaluation on Lightweight Designs

We first examine the lightweight designs of the convo-
lutional blocks and the ways of interactions across paths
in LPS-Net. We start the validation on the impact of the
type of convolutional blocks. Specifically, we capitalize on
seven convolutional blocks to build the corresponding multi-
path networks. Following (Chen et al., 2016; Ding et al.,
2021b), B and R of all the networks are respectively set to
{1, 2, 4, 7, 7} and {1, 1/4, 0}. The channel widths C are set to
{1c, 2c, 4c, 8c, 8c} for all the networks, where c is to adjust
the inference latency of each network to approximate 5ms
for fair comparisons. In order to purely verify the convolu-
tional blocks irrespective of the interaction influence, we do
not include any path interactions here and exploit channel-
wise concatenation to aggregate the outputs from all paths of
the multi-path network.

Table 2 summarizes the mIoU performances, latencies,
FLOPs, and FLOPs-efficiencies of the multi-path networks
built on seven types of convolutional blocks. Similar to the
observations in Sect. 3.2, 3 × 3 SepConv shows a very low
FLOPs-efficiency. Conditioning on almost the same latency
with 3 × 3 Conv, the utilization of 3 × 3 SepConv results
in much fewer FLOPs, making the computational capabil-
ity of the network weak. 3 × 3 SepConv is also inferior to
3 × 3 Conv in terms of mIoU performance. Furthermore,
ShuffleNet Unit, Inverted Residual and Ghost Module are
proven to be three very effective and lightweight convolu-
tional blocks and all three blocks involve 3 × 3 SepConv.
Inverted Residual and Ghost Module have benefited from
the inverted residual structure with linear bottleneck and a
series of linear transformations with cheap cost, respectively.
They both greatly improve 3×3 SepConv, but the mIoU per-
formances are still lower than that of 3 × 3 Conv. Residual
contains a stack of two 3 × 3 convolutions with a shortcut
connection and is extended to Bottleneck by stacking three
convolutions (1× 1, 3× 3, 1× 1) instead of two. The use of
1×1 convolution in Bottleneck leads to block fragmentation
and affects its FLOPs-efficiency. Compared to 3×3 Conv, an
extra short cut in Residual slightly lowers FLOPs-efficiency
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and increases the latency by ∼3%. Benefiting from the high
FLOPs-efficiency and better tradeoff, 3×3 Conv exhibits the
highest mIoU (66.2%) with the lowest latency (5.08ms). We
further analyze the high FLOPs-efficiency of 3×3Conv from
the perspective of devices. FLOPs-lightweight convolutions
(e.g. Ghost Module and 3× 3 SepConv) usually suffer from
a low ratio of computing to memory operations (Gholami et
al., 2018) and introduce extra overheads like kernel launch-
ing and synchronization. In contrast, 3 × 3 Conv is more
friendly to devices and could be accelerated by the Wino-
grad supported in modern computing libraries like cuDNN.
As such, 3 × 3 Conv has high FLOPs-efficiency. To further
verify the effectiveness of 3×3 Conv in other latency ranges
and hardware platforms, we change B from {1, 2, 4, 7, 7} to
{1, 2, 2, 4, 4} for faster inference, and utilize both the 1070Ti
(GPU) and the NVIDIA Jetson Nano (embedded device)
for latency measurement. For the two hardware platforms
1070Ti and Nano, we adjust the parameter c to make the
inference latency of each network approximate 3.5ms and
100ms, respectively. As detailed in Table 2, 3 × 3 Conv
achieves the best tradeoff with high FLOPs-efficiency across
different latency ranges and hardware platforms. Figure7a
visualizes the mIoU-latency curves of the multi-path net-
works built up with seven types of convolutional blocks. As
expected, the curve of 3×3 Conv is over all the other curves,
showing its better tradeoff. Thus, we exploit the 3× 3 Conv
as the convolutional block in LPS-Net.

Then,we study how the interactions across paths influence
the accuracy-latency tradeoff of the multi-path networks.
In this comparison, the network parameters B and R are
kept unchanged. We fix c = 16 and exploit 3 × 3 Conv
as the convolutional block to construct the multi-path net-
works. Table 3 details the mIoU performance and latency
when integrating different path interactions in multi-path
networks. As expected, the results across six ways of inter-
actions consistently indicate that using interaction exhibits
bettermIoUperformance and higher latency against Baseline
which does not involve path interaction. More specifically,
the larger mIoU improvements are attained when employ-
ing the Bilateral-A/B interactions than the Direct-A/B and
Attention-A/B interactions. Bilateral-B purely basing on
bilinear interpolation leads to less increase of latency than
Bilateral-Awhich uses two additional convolutional transfor-
mations. Among all the six interactions, Bilateral-B achieves
the largest mIoU gain of 3.0% with the least extra latency of
0.29ms, and hence we utilize Bilateral-B as the path inter-
action in our LPS-Net. To consolidate such a choice, we
additionally validate the interactions by integrating them into
the multi-path networks with c = 12 and c = 8, respec-
tively. The inference latencies are measured on both 1070Ti
and Nano. Table 3 summarizes the comparisons of interac-
tions from the perspective of mIoU-latency tradeoff, which
are also demonstrated in Fig. 7b, c. The experimental results
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Table 3 Performance comparisons on Cityscapes validation set between multi-path networks with different interactions

Interaction c = 16 c = 12 c = 8

mIoU Latency (ms) mIoU Latency (ms) mIoU Latency (ms)
(%) 1070Ti Nano (%) 1070Ti Nano (%) 1070Ti Nano

Baseline 66.9 5.68 183 45.5 3.92 127 39.6 2.38 70

Direct-A 67.9 +1.0 6.42 +0.74 209 +25 46.7 +1.2 4.56 +0.64 145 +18 40.8 +1.2 2.75 +0.37 78 +8

Direct-B 68.1 +1.2 6.49 +0.81 209 +26 46.8 +1.3 4.59 +0.66 145 +18 41.7 +2.1 2.76 +0.38 78 +9

Attention-A 68.2 +1.3 6.42 +0.74 210 +27 47.5 +1.9 4.66 +0.73 146 +19 43.0 +3.4 2.82 +0.44 79 +9

Attention-B 68.6 +1.7 6.99 +1.31 227 +44 48.4 +2.9 4.95 +1.03 155 +28 43.9 +4.3 2.99 +0.61 85 +15

Bilateral-A 69.6 +2.7 6.48 +0.80 210 +27 51.1 +5.5 4.64 +0.71 145 +18 45.6 +6.0 2.77 +0.39 79 +9

Bilateral-B 69.9 +3.0 5.97 +0.29 192 +9 51.8 +6.3 4.32 +0.39 133 +6 45.6 +6.0 2.63 +0.25 74 +4
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Fig. 8 a Progressively expanding LPS-Net on Cityscapes. Each dot
denotes an expanded networks and each colored segment of the curve
represents an expansion along a specific dimension. b Comparisons
of different neural architecture search (NAS) algorithms performed in
our search space for efficient semantic segmentation. c Progressively

expandingLPS-Net onCityscapeswith different initialization.Note that
the inference latencies here are measured with 1070Ti GPU, and perfor-
mances are evaluated by training networks without powerful strategies
described in Sect. 4.2

verify that Bilateral-B achieves the best tradeoff across dif-
ferent latency ranges and devices.

4.4 Evaluation on Progressively-Scalable Scheme

Next, we analyze the accuracy-latency balance as the pro-
gressive expansion of LPS-Net proceeds. Figure8a depicts

the first 14 steps of the process on Cityscapes. Table 4 fur-
ther details the parameters, latency, mIoU performance and
expanding dimension of the network at each expansion step
of LPS-Net in Fig. 8a.We initialize LPS-Netwith a tiny struc-
ture and the network parameters are B0 = {1, 1, 1, 1, 1},
C0 = {4, 8, 16, 32, 32}, R0 = {1/2, 0, 0}. The mIoU and
latency of such start point is 24.1% and 0.38ms, respectively.
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Table 4 Network Parameters (Depth-B, Width-C and Resolution-R), latency, mIoU performance and expanding dimension of the network at each
expansion step of LPS-Net

Step B C R Latency (ms) mIoU (%) Dimension Name

0 {1, 1, 1, 1, 1} {4, 8, 16, 32, 32} {1/2, 0, 0} 0.38 24.1 – –

1 {1, 1, 1, 8, 8} {4, 8, 16, 32, 32} {1/2, 0, 0} 0.49 41.4 Depth –

2 {1, 1, 1, 8, 8} {4, 16, 32, 64, 64} {1/2, 0, 0} 0.63 53.4 Width –

3 {1, 1, 1, 8, 8} {8, 24, 48, 96, 96} {1/2, 0, 0} 0.98 57.8 Width –

4 {1, 1, 1, 8, 8} {8, 24, 48, 96, 96} {5/8, 0, 0} 1.25 60.1 Resolution –

5 {1, 3, 3, 10, 10} {8, 24, 48, 96, 96} {5/8, 0, 0} 1.80 62.3 Depth –

6 {1, 3, 3, 10, 10} {8, 24, 48, 96, 96} {5/8, 1/4, 0} 2.53 64.6 Resolution –

7 {1, 3, 3, 10, 10} {8, 24, 48, 96, 96} {3/4, 1/4, 0} 3.37 66.1 Resolution LPS-Net-S

8 {1, 3, 3, 10, 10} {8, 24, 48, 96, 96} {1, 1/4, 0} 5.17 69.5 Resolution LPS-Net-M

9 {1, 3, 3, 10, 10} {8, 24, 64, 128, 128} {1, 1/4, 0} 7.07 70.8 Width –

10 {1, 3, 3, 10, 10} {8, 24, 64, 160, 160} {1, 1/4, 0} 9.52 71.4 Width LPS-Net-L

11 {1, 3, 3, 10, 10} {8, 24, 64, 160, 160} {9/8, 1/4, 0} 12.38 72.0 Resolution –

12 {1, 3, 3, 10, 10} {8, 24, 64, 160, 160} {11/8, 1/4, 0} 17.81 73.0 Resolution –

13 {1, 3, 3, 10, 10} {8, 32, 80, 192, 192} {11/8, 1/4, 0} 25.14 74.2 Width –

14 {1, 3, 3, 10, 10} {8, 32, 96, 224, 224} {11/8, 1/4, 0} 31.18 74.8 Width –

Note that the inference latencies here are measured with 1070Ti GPU, and performances are evaluated by training networks without powerful
strategies described in Sect. 4.2

As shown in the figure, expanding one certain dimension of
Depth (the number of convolutional blocks),Width (the num-
ber of channels), or the input Resolution in LPS-Net always
improves the mIoU performance. The fact that the selected
dimension is various to strike the best mIoU performance-
inference latency tradeoff at different steps necessitates the
use of multiple dimensions for expansion.

The first step is along the network Depth direction and
significantly boosts up the mIoU to 41.4% with only 0.11ms
additional latency.We speculate that this may be the result of
feature enrichment by stacking more blocks particularly in
the context of small channel width and low image resolution.
In this case, deepening networks could readily enhance the
network capability. The second and third steps further expand
Width dimension, and the network after three steps achieves
57.8%mIoUwith less than 1ms latency. The results indicate
that the network tends to expand the Depth andWidth dimen-
sions especially at the very early steps. At the sixth step, the
expansion proceeds along the Resolution direction and starts
to develop a two-path networks. The next two consecutive
steps also work on the factor of Resolution and increaseR to
{1, 1/4, 0}. ThemIoU performance of the two-path networks
at the eighth step reaches 69.5% and the latency is 5.17ms.
That basically verifies the effectiveness of multi-path design
to manage the accuracy-latency balance for semantic seg-
mentation. The following steps continue the expansion along
either the Width or Resolution dimension. We observe that
the performance gain decreases in these steps and speculate
that this may be caused by two reasons: (1) the performance
of the heavyweight model becomes saturated and is hard

to be improved by a large margin, and (2) we utilize the
same training strategy for the models with different scales.
The heavier network usually requires more training epochs,
stronger data augmentation andmore network regularization.
The advance of heavier network is not fully exploited under
our training strategy. Such an expansion process indicates
some practical insights for efficient semantic segmentation.
For example, stacking more blocks for tiny networks could
effectively improve the segmentation with negligible extra
latency. The multi-path fusion is not always the best choice
especially when the networks’ inference latency is extremely
constrained (e.g., ≤ 2ms). Compared to increasing chan-
nel width and enlarging input resolutions, fusing three or
more paths is not optimal for efficient semantic segmenta-
tion. To cover different levels of LPS-Net in complexity, we
choose the networks at the seventh, eighth, and tenth steps as
the small, medium, and large version of LPS-Net. We name
these networks as LPS-Net-S, LPS-Net-M, and LPS-Net-L,
respectively.

To better clarify the effectiveness of our network search
algorithm, we have additionally experimented by remould-
ing existing network search algorithms in CAS (Zhang et al.,
2019b) and EfficientNet (Tan&Le, 2019) in our search space
for efficient semantic segmentation. The performance com-
parisons of different network search algorithms are provided
in Fig. 8b. Particularly, our LPS-Net achieves the highest
mIoU across different latencies. This somewhat reveals the
difficulty to dynamically optimize the input resolutions and
the number of paths for amulti-path network by theNAS-like
auto-searching schemes. Moreover, our progressive expan-
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Table 5 The intuitively designed expanding operations. Such opera-
tions allow the depth and width of each stage in network to be expanded
independently

Depth �B Width �C Resolution �R

{1, 0, 0, 0, 0}
{0, 1, 0, 0, 0}
{0, 0, 1, 0, 0}
{0, 0, 0, 1, 0}
{0, 0, 0, 0, 1}

{4, 0, 0, 0, 0}
{0, 8, 0, 0, 0}
{0, 0, 16, 0, 0}
{0, 0, 0, 32, 0}
{0, 0, 0, 0, 32}

{1/8, 0, 0}
{0, 1/8, 0}
{0, 0, 1/8}

LPS-Net (Default Opera�ons)
LPS-Net (Intui�ve Opera�ons)
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Fig. 9 Comparisons of different candidates of expanding operations

sion also takes the advantage of deriving a series of networks
with various accuracy-speed tradeoffs in one search process,
while CAS requires muchmore search time to seek the archi-
tecture for each target latency independently.

To verify how the initial tiny structure influences the
progressive expansion of LPS-Net, we compare the expan-
sion process by starting from the default point (B0 =
{1, 1, 1, 1, 1}, C0 = {4, 8, 16, 32, 32}, R0 = {1/2, 0, 0})
or a new point (B0 = {1, 1, 1, 2, 2}, C0 = {4, 8, 16, 32, 32},
R0 = {1/2, 0, 0}). Figure8c depicts the first 14 steps of
expansion starting from the two points and shows that the
searching process is less influenced by different start points.

To validate the effectiveness of the design principle of
expanding operations utilized in LPS-Net, we experiment
with a group of modified expanding operations detailed in
Table 5. This intuitive design allows the depth and width
of different stages to be expanded independently. The per-
formance comparisons of different groups of expanding
operations are shown in Fig. 9. Particularly, the default
expanding operations utilized in LPS-Net constantly lead to
higher mIoU across different latencies.

4.5 Comparisons of Progressive Expansion Schemes

To better verify the merit of our greedy algorithm on pro-
gressive expansion, we additionally compared with two

0.3

0.4

0.5

0.6

0.7

Number of networks sampled

UoI
m

20 40 60 80 100 120 140 1600

LPS-Net-S
Surrogate Predic�on (SP)
Tournament Selec�on (TS)

Fig. 10 Comparisons of different progressive expansion schemes

expansion schemes: surrogate prediction (SP) (Liu et al.,
2017), and tournament selection (TS) (Goldberg & Deb,
1990; Real et al., 2017), for searching efficient semantic seg-
mentation networks. In our implementations, we run the two
approaches and enforce the searched networkswith inference
time less than 3.37ms@1070Ti (comparable with LPS-Net-
S). All the searched networks are trained and evaluated on
the Cityscapes dataset without powerful training strategies
like ImageNet pre-training, large crop size, more training
iterations, and online hard element mining. The latencies are
measured with a 1070Ti GPU.

The surrogate prediction (SP) utilizes a sequential model-
based optimization strategy to perform the progressive
expansion in an evolutionary manner. Specifically, we first
expand the tiny network to generate 32 networks as the ini-
tial population by using randomly selected operations. Each
network is regarded as an individual of the population, and
the mIoU represents the fitness of the individual. A surrogate
model learnt on the population is then employed to predict
the mIoU of a network without actually training it. For each
expansion step, we transverse all the possible expansions of
each individual and select the 16 most promising expanded
network architectures with respect to the prediction by the
surrogate model. Note that all the expanded networks with
latencies larger than 3.37ms are filtered out before the selec-
tion. The selected networks are trained to obtain their final
mIoU and exploited to upgrade the surrogate model.

The tournament selection (TS) based progressive expan-
sion uses repeated pairwise competitions of random indi-
viduals for population updating. Specifically, we set the
population size as 32 and initialize the population via random
expansion, e.g., surrogate prediction based expansion. For
each expansion step, we randomly choose two individuals
from the population and compare their fitness. The indi-
vidual with lower fitness is removed and the other one is
further expanded by using a randomly selected operation.
The expanded individual is trained and evaluated for seman-
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Table 6 Inference latencies/FPS of LPS-Net measured on NVIDIA
GTX 1070Ti/1080Ti with the resolution 1024 × 2048

LPS-Net-S LPS-Net-M LPS-Net-L GPU

Latency 3.37 5.17 9.52 1070Ti

(ms) 2.42 3.71 6.59 1080Ti

FPS 296.7 193.4 105.0 1070Ti

413.5 269.7 151.8 1080Ti

Table 7 Performance comparisons on Cityscapes validation set
between different training strategies of LPS-Net

mIoU (%) LPS-Net-S LPS-Net-M LPS-Net-L

baseline 66.1 69.5 71.4

+ImageNet 69.3 71.5 73.3

+LargeCrop 71.3 73.5 75.1

+MoreIters 72.5 75.4 76.7

+OHEM 73.9 76.5 78.2

tic segmentation on the Cityscapes, and included into the
population. We employ 16 workers to asynchronously and
repeatedly update the population until the number of sam-
pled networks reaches 160.

To compare the efficiency of SP, TS, and LPS-Net, we
plot the mIoU on the Cityscapes validation set of the best
network sought by each method versus the number of net-
works that are sampled (fully trained and validated). As
shown in Fig. 10, the mIoU of the best networks consistently
increases when searching for larger segmentation models.
More remarkably, our LPS-Net-S achieves 66.1%mIoUwith
3.37ms latency at the cost of 70 sampled networks while the
other two competitors fail to find a network with a better
latency-mIoU tradeoff. That demonstrates the search effi-
ciency of our LPS-Net.

4.6 Comparisons with State-of-the-Art Methods

We compare our LPS-Net with several state-of-the-art fast
semantic segmentation methods. To ensure the inference
speed is comparable with the most recent works (Chen et
al., 2020; Fan et al., 2021; Yu et al., 2021a), we report the
inference FPS of LPS-Net on an NVIDIAGTX 1080Ti GPU
card here. Table 6 shows the comparisons of inference laten-
cies/FPS measured on NVIDIA GTX 1070Ti and 1080Ti
GPUs. We also exploit a stronger training setting to fairly
compare with the baselines. Table 7 details the performance
contribution of each training strategy, including ImageNet
pre-training (ImageNet), large crop size (LargeCrop), more
training iterations (MoreIters), and online hard element min-
ing (OHEM). The mIoU performances of the three versions
of LPS-Net are consistently improved by using each addi-

tional training strategy and finally reach 73.9%, 76.5%, and
78.2% mIoU on the Cityscapes validation set.

Table 8 summarizes the comparisons of mIoU perfor-
mance and inference FPS on Cityscapes dataset. Note that
only the models with FPS≥100 are included in the table.
Overall, the results across validation and testing sets con-
sistently indicate that LPS-Net exhibits better tradeoffs than
other techniques including hand-crafted networks (e.g., (Fan
et al., 2021; Li et al., 2019)) and auto-designed models
(e.g., (Chen et al., 2020; Zhang et al., 2019b)). In particu-
lar, the mIoU score of LPS-Net-S achieves 73.4% on test set,
making the absolute improvement over the best competitor
STDC1Seg-50 by 1.5%. Moreover, LPS-Net-S is faster than
STDC1Seg-50 and the inference speed reaches 413.5 FPS,
which is impressive. The large version of LPS-Net, i.e., LPS-
Net-L, attains 78.2%/77.3% mIoU on validation/testing set
at 151.8 FPS. It runs 49% faster than DDRNet23slim with
comparable mIoU. Compared with the auto-designed effi-
cient models, LPS-Net-S obtains 0.4% higher test mIoU and
3.8× speed than the best competitor DF1-Seg. In addition,
LPS-Net-L (151.8 FPS) also surpasses the auto-designed
HR-NAS-A (Ding et al., 2021a) (64 FPS) by 3.0% test mIoU.

We showcase the qualitative results of LPS-Net-S, LPS-
Net-M, and LPS-Net-L in Fig. 11. Similar to the observation
in Table 8, the quality of prediction is consistently improved
when the LPS-Net is incrementally expanded. For example,
the prediction in the regions of pole (first row), car (sec-
ond row), and wall (third row) is amended by expanding the
complexity of LPS-Net.

Table 9 further summarizes the comparison between
LPS-Net and several existing neural architecture search
approaches with regard to the performances and search time.
CAS, GAS, and FasterSeg, as the gradient-based meth-
ods (differentiable NAS), do not necessitate to repeatedly
train/evaluate the searched networks and thus spend less time
for searching. Nevertheless, their performances are appar-
ently lower than that of our LPS-Net due to the gap between
training objective during searching and the performance of
the searched network. Compared to SP and TS with progres-
sive expansion, LPS-Net consumes about 700 GPU hours
(70 networks × 10h/network) for LPS-Net-S, which is less
than half of the search time of SP and TS. Moreover, LPS-
Net takes the advantage of deriving a series of networks with
various accuracy-speed tradeoffs in one search process. As
a result, we can obtain the LPS-Net-S/M/L in one searching
process at the cost of 1,000 GPU hours.

To examine the generalization of the network structures
of LPS-Net, we further conduct the experiments on CamVid
and BDD100K datasets with the three versions of LPS-Net
which are learnt on Cityscapes. Table 10 details the compar-
isons of both performance and inference FPS on CamVid.
The first group containsmanually designed lightweightmod-
els, which are BiSeNet (Yu et al., 2018a), BiSeNetV2 (Yu et
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Table 8 Comparisons of mIoU
and inference FPS with the
state-of-the-art methods on
Cityscapes validation & testing
sets. Note that only the models
with FPS≥100 are included in
the table and performances of
LPS-Net are evaluated by
training networks with powerful
strategies described in Sect. 4.2

Method Resolution mIoU (%) FPS GPU Accelerators
Val Test

BiSeNet (Yu et al., 2018a) 768 × 1536 69.0 68.4 105.8 TitanXp

BiSeNetV2 (Yu et al., 2021a) 512 × 1024 73.4 72.6 156.0 1080Ti TensorRT

DABNet (Li et al., 2019) 512 × 1024 - 70.1 104.2 1080Ti

DDRNet23slim (Hong et al., 2021) 1024 × 2048 77.8 77.4 101.6 2080Ti

DFANet A (Li et al., 2019a) 1024 × 1024 - 71.3 100.0 TitanX

DFANet B (Li et al., 2019a) 1024 × 1024 - 67.1 120.0 TitanX

DFANet A’ (Li et al., 2019a) 512 × 1024 - 70.3 160.0 TitanX

Fast-SCNN (Poudel et al., 2019) 1024 × 1024 69.2 68.0 123.5 TitanXp

MSFNet (Si et al., 2020) 512 × 1024 - 71.3 117.0 2080Ti

SFNet(DF1) (Li et al., 2020b) 1024 × 2048 - 74.5 121.0 1080Ti TensorRT

STDC1Seg-50 (Fan et al., 2021) 512 × 1024 72.2 71.9 250.4 1080Ti TensorRT

STDC2Seg-50 (Fan et al., 2021) 512 × 1024 74.2 73.4 188.6 1080Ti TensorRT

STDC1Seg-75 (Fan et al., 2021) 768 × 1536 74.5 75.3 126.7 1080Ti TensorRT

CAS (Zhang et al., 2019b) 768 × 1536 71.6 70.5 108.0 TitanXp

GAS (Lin et al., 2020) 769 × 1537 72.4 71.8 108.4 TitanXp

AutoRTNet-A (Sun et al., 2021) 768 × 1536 72.9 72.2 110.0 TitanXp

DF1-Seg-d8 (Li et al., 2019b) 1024 × 2048 72.4 71.4 136.9 1080Ti TensorRT

DF1-Seg (Li et al., 2019b) 1024 × 2048 74.1 73.0 106.4 1080Ti TensorRT

FasterSeg (Chen et al., 2020) 1024 × 2048 73.1 71.5 163.9 1080Ti TensorRT

TinyHMSeg (Li et al., 2020a) 768 × 1536 - 71.4 172.4 1080Ti TVM

LPS-Net-S 1024 × 2048 73.9 73.4 413.5 1080Ti TensorRT

LPS-Net-M 1024 × 2048 76.5 74.9 269.7 1080Ti TensorRT

LPS-Net-L 1024 × 2048 78.2 77.3 151.8 1080Ti TensorRT

Table 9 Comparisons of performance and search time with different
NAS approaches

Method Performance Search Time
mIoU (%) FPS GPU (GPU Hours)

gradient-based search

CAS 71.6 108.0 TitanXp 144

GAS 72.4 108.4 TitanXp 160

FasterSeg† 73.1 163.9 1080Ti 48

progressive expansion

SP† 72.5 414.5 1080Ti 1,600

TS† 72.6 413.9 1080Ti 1,600

LPS-Net-S† 73.9 413.5 1080Ti 700

LPS-Net-M† 76.5 269.7 1080Ti 800

LPS-Net-L† 78.2 151.8 1080Ti 1,000

The performances of the searched networks are evaluated on the
Cityscapes validation set. † indicate that the FPS is measured with Ten-
sorRT

al., 2021a), DDRNet (Hong et al., 2021), DFANet (Li et al.,
2019a), ICNet (Zhao et al., 2018), MSFNet (Si et al., 2020),
SFNet (Li et al., 2020b), and STDC (Fan et al., 2021). The
auto-designed lightweight architectures are listed in the sec-
ond group, including CAS (Zhang et al., 2019b), GAS (Lin

et al., 2020), AutoRTNet (Sun et al., 2021), FasterSeg (Chen
et al., 2020), and HMSeg (Li et al., 2020a). LPS-Net-S sup-
presses the fastest competitor FasterSeg by 2.5% and the
inference speed achieves 432.4 FPS. LPS-Net-L yields a bet-
ter tradeoff (76.5% mIoU @ 169.3 FPS) than DDRNet23
(76.3% mIoU@94.0 FPS). Table 11 shows the comparisons
betweenDRN (Yu et al., 2017), FasterSeg (Chen et al., 2020),
andLPS-Net on theBDD100Kdataset. Our LPS-Net-S again
leads to an improvement of mIoU by 0.8% and a 99% speed-
up against FasterSeg. The results basically validate LPS-Net
from the perspective of network generalization.

4.7 LPS-Net-S on Embedded Devices

The real-world scenarios often demand the deployments on
embedded devices. Here, we also test the small version of
our LPS-Net, i.e., LPS-Net-S, on two devices of a single
Nano and a single TX2, both of which are based on NVIDIA
Jetson platform. Table 12 compares LPS-Net-S with DF1-
Seg-d8 (Li et al., 2019b), FasterSeg (Chen et al., 2020),
BiSeNetV2 (Yu et al., 2018a), and STDC1Seg-50 (Fan et
al., 2021), regarding the mIoU performance on Cityscapes
and inference speed (FPS) on the two devices. Note that
the inference speed is measured by using FP32 data preci-
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LPS-Net-LLPS-Net-S LPS-Net-MGround TruthImage LPS-Net-LLPS-Net-S LPS-Net-MGround TruthImage

Fig. 11 Example of semantic segmentation results in Cityscapes. The improvements could be observed in the red bounding boxes

sion to avoid performance degradation. Clearly, LPS-Net-S
strikes the superior tradeoff and achieves 10.0/25.6 FPS on
Nano/TX2 at resolution 1024 × 2048, which is 41%/50%
faster than the best competitor STDC1Seg-50 (Fan et al.,
2021). The results demonstrate the advantage of LPS-Net on
embedded devices.

4.8 LPS-Net for Better Segmentation Results

To further scale up LPS-Net for better segmentation results,
we choose the network at the fourteenth expansion step as
the huge version of LPS-Net, namely LPS-Net-H. With the
stronger training setting (including ImageNet pre-training,
large crop size, more training, and online hard element
mining), LPS-Net-H achieves 80.7% mIoU on Cityscapes
validation set at 46 FPS on NVIDIA GTX 1080Ti GPU,

against DeepLabV3+ (Chen et al., 2018c) with 79.6% and
2 FPS. Note that the input images are not augmented (e.g.
resizing and flipping) during inference. The results indi-
cate that our LPS-Net has the ability to surpass models like
DeepLab in a more efficient way.

4.9 LPS-Net for Object Detection

To validate the high flexibility of LPS-Net, we conduct the
experiments on COCO (Lin et al., 2014) and DUTS (Wang
et al., 2017) datasets for efficient object detection and salient
object detection by directly applying the large version of
LPS-Net (i.e., LPS-Net-L). Note that LPS-Net-L is learnt on
Cityscapes for semantic segmentation. Table 13 summarizes
the comparisons of performance and inference speed (FPS).
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Table 10 Comparisons of mIoU and inference FPS with the state-of-
the-art methods on CamVid testing set

Method mIoU (%) FPS GPU

BiSeNet 65.6 175.0 TitanXp

BiSeNet(Res18) 68.7 116.3 TitanXp

BiSeNetV2† 72.4 124.5 1080Ti

BiSeNetV2-L† 73.2 32.7 1080Ti

DDRNet23slim 74.7 230.0 2080Ti

DDRNet23 76.3 94.0 2080Ti

DFANet A 64.7 120.0 TitanX

DFANet B 59.3 160.0 TitanX

ICNet 67.1 27.8 TitanX

MSFNet 72.7 160.0 2080Ti

MSFNet 75.4 91.0 2080Ti

SFNet(DF2)† 70.4 134.1 1080Ti

SFNet(Res18)† 73.8 35.5 1080Ti

STDC1Seg-50† 73.0 197.6 1080Ti

STDC2Seg-50† 73.9 152.2 1080Ti

CAS 71.2 169.0 TitanXp

GAS 72.8 153.1 TitanXp

AutoRTNet-A 73.5 140.0 TitanXp

FasterSeg† 71.1 398.1 1080Ti

HMSeg‡ 75.1 130.8 1080Ti

TinyHMSeg‡ 71.8 278.5 1080Ti

LPS-Net-S† 73.6 432.4 1080Ti

LPS-Net-M† 75.1 317.3 1080Ti

LPS-Net-L† 76.5 169.3 1080Ti

† and ‡ indicate that the FPS ismeasuredwith deep learning accelerators
of TensorRT or TVM

Table 11 mIoU on BDD100K validation set and inference speed (FPS)
on an 1080Ti GPU with TensorRT

Method mIoU (%) FPS

DRN-D-38 55.2 12.9

DRN-D-22 53.2 21.0

FasterSeg 55.1 318.0

LPS-Net-S 55.9 634.7

LPS-Net-M 58.1 495.0

LPS-Net-L 59.3 283.3

For efficient object detection, we build the network fol-
lowing CenterNet (Zhou et al., 2019) by using LPS-Net-L
as the backbone. To align the number of output channels of
LPS-Net-L with that of the original CenterNet backbone, we
additionally append two 3×3 Conv at the end of LPS-Net-L.
The performance is evaluated on the COCO dataset, which
contains 118K, 5K, and 20K images for training, validation,
and testing, respectively.Our remouldedLPS-Net-L achieves
28.9% average precision over all IoU thresholds on the vali-

Table 12 mIoU performance on Cityscapes validation/testing set and
inference speed (FPS) on two embedded devices

Method Resolution mIoU (%) FPS
val test Nano TX2

DF1-Seg-d8 1024x2048 72.4 71.4 3.2 7.7

FasterSeg 1024x2048 73.1 71.5 4.0 10.1

BiSeNetV2 512x1024 73.4 72.6 4.3 10.3

STDC1Seg-50 512x1024 72.2 71.9 7.1 17.1

LPS-Net-S 1024x2048 73.9 73.4 10.0 25.6

Table 13 Comparisons of performance and inference speed (FPS) for
LPS-Net on two object detection tasks

Object Detection (CenterNet) Salient Object Detection
Backbone AP (%) FPS Model MAE FPS

ResNet-18 28.1 401 U2-Net† 0.054 107

LPS-Net-L 28.9 442 LPS-Net-L 0.048 264

dation set, which is higher than 28.1% reported by (Zhou et
al., 2019) using ResNet-18 as the backbone network. Note
that the input images are not augmented during inference.
Using the input resolution 512 × 512, the remoulded LPS-
Net-L attains 442 FPS on one 1070Ti GPU with TensorRT,
which is faster than ResNet-18 (401 FPS).

For the salient object detection task which aims at seg-
menting the most visually attractive objects in an image, we
follow the idea of U2-Net (Qin et al., 2020) and extend our
LPS-Net-L to aU-Net like encoder-decoder architecturewith
several additional 3 × 3 convolutions. Following Qin et al.
(2020), we train our network on DUTS-TR (10,553 images)
and evaluate it on DUTS-TE (5,019 images), both of which
are subsets of the DUTS dataset (Wang et al., 2017). We
report the Mean Absolute Error (MAE) as the performance
metric and measure the inference speed (FPS) on one 1070Ti
GPU with TensorRT. Comparing to the small version U2-
Net† that achieves 0.054 MAE at 107 FPS, our extended
LPS-Net-L yields better tradeoff (0.048 MAE at 264 FPS).

Such experimental results on the tasks of object detection
and salient object detection basically verify the applicability
of LPS-Net when being generalized to other vision taskswith
the large-resolution inputs.

5 Conclusion and Discussion

We have presented Lightweight and Progressively-Scalable
Networks (LPS-Net) which explores the economic design
and progressively scales up the network for efficient semantic
segmentation. Particularly, we analyze the basic convolu-
tional block and the way of path interaction in multi-path
framework which could affect the accuracy-latency tradeoff
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for semantic segmentation. Empirically, we suggest to use
3 × 3 Conv in convolutional blocks and bilinear interpola-
tion to implement interactions across paths. Based on these
guidelines, we first build a tiny network and then extends the
tiny network to a series of larger ones through expanding a
certain dimension ofWidth, Depth or Resolution at one time.
Experiments conducted on three datasets, i.e., Cityscapes,
CamVid and BDD100K, validate our proposal and analy-
sis on both GPUs and embedded devices. More remarkably,
our LPS-Net shows impressive accuracy-latency tradeoff on
Cityscapes: 413.5 FPS on an NVIDIA GTX 1080Ti GPU
or 25.6 FPS on an NVIDIA TX2, with mIoU of 73.4% on
testing set.

Data Availability The image data that support the findings of this
study are available in Cityscapes (Cordts et al., 2016) (https://www.
cityscapes-dataset.com/), BDD100K (Yu et al., 2018b) (https://bdd-
data.berkeley.edu/), CamVid (Brostow et al., 2008) (http://mi.eng.
cam.ac.uk/research/projects/VideoRec/CamVid/), COCO (Lin et al.,
2014) (https://cocodataset.org/), and DUTS (Wang et al., 2017) (http://
saliencydetection.net/duts/).
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