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Abstract
This paper introduces a set of numerical methods for Riemannian shape analysis of 3D surfaces within the setting of invariant
(elastic) second-order Sobolev metrics. More specifically, we address the computation of geodesics and geodesic distances
between parametrized or unparametrized immersed surfaces represented as 3Dmeshes. Building on this, we develop tools for
the statistical shape analysis of sets of surfaces, including methods for estimating Karcher means and performing tangent PCA
on shape populations, and for computing parallel transport along paths of surfaces. Our proposed approach fundamentally
relies on a relaxed variational formulation for the geodesic matching problem via the use of varifold fidelity terms, which
enable us to enforce reparametrization independence when computing geodesics between unparametrized surfaces, while also
yielding versatile algorithms that allow us to compare surfaces with varying sampling or mesh structures. Importantly, we
demonstrate how our relaxed variational framework can be extended to tackle partially observed data. The different benefits
of our numerical pipeline are illustrated over various examples, synthetic and real.
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1 Introduction

1.1 Motivation

Over the past decades, advances in imaging techniques and
devices have led to significant growth in the quantity and
quality of “shape data” in several fields, such as biomedi-
cal imaging, neuroscience, and medicine. By “shape data”,
we mean objects whose predominantly interesting features
are of geometric and topological nature; examples of which
include functions, curves, surfaces or probability densities.
Naturally, this prompted the emergence of newmathematical
and algorithmic approaches for the analysis of such objects,
which led to the development of the growing fields of geo-
metric shape analysis and topological data analysis, see e.g
Younes (2010), Srivastava and Klassen (2016), Kendall et
al. (1999), Edelsbrunner and Harer (2022), Carlsson (2014),
Bronstein et al. (2008, 2021).

In this paper, we will focus on 3D surface data, which
is becoming increasingly prominent in several areas due to
the emergence of high accuracy 3D scanning devices. The
domain of geometric shape analysis has produced several
mathematical frameworks and numerical algorithms for the
comparison and statistical analysis of 3D surfaces that have
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proven to be useful in numerous applications (Jermyn et al.,
2017; Srivastava&Klassen, 2016;Younes, 2010). In the con-
text of shape analysis of surfaces,we distinguish between two
fundamentally different scenarios: the analysis of surfaces
with known point correspondences (parametrized surfaces),
and that of surfaces where the point correspondences are
unknown (unparametrized surfaces). In the discrete case, i.e.
for simplicial meshes, working with parametrized surfaces
thus involves having known one-to-one correspondences
between the surfaces’ vertices, which implies in particu-
lar that their mesh structures are required to be consistent.
There exists a plethora of different numerical frameworks
for shape analysis of parametrized surfaces, see e.g. Jermyn
et al. (2017), Kilian et al. (2007), Rumpf and Wirth (2015a),
Iglesias et al. (2018) and Pierson et al. (2022) and the ref-
erences therein. Nevertheless, one rarely ever encounters
3D surface data with consistent mesh structures in practical
applications, and thus methods designed for shape analysis
of parametrized surfaces are severely limited when used for
applications with real data. This motivates the need for reg-
istering unparametrized surfaces, i.e., finding the unknown
point correspondences between them, as well as the devel-
opment of tools to compare unparametrized surfaces, i.e. to
quantify similarity between them, and for the statistical anal-
ysis of unparametrized surfaces.

While algorithms that are designed for the comparison
and statistical analysis of unparametrized surfaces usually
lead to a counterpart for dealing with parametrized surfaces,
the converse is unfortunately far from being true. In the
past, this difficulty has been approached by first register-
ing the data in a pre-processing step under a certain metric
or objective function, before subsequently comparing and
perform statistical analysis of the data independently of this
registration metric (Audette et al., 2000). This practice is,
however, being increasingly questioned as it is easy to con-
struct examples where it leads to a severe loss in the data
structure, see e.g. Srivastava and Klassen (2016) and the
references therein. This motivates the need for a more com-
prehensive solution, where the registration, comparison and
statistical analysis are performed jointly. In the field of geo-
metric shape analysis, this is achieved by viewing the space
of parametrized surfaces as an infinite-dimensional manifold
and equipping it with a Riemannian metric that is invariant
under the action of the reparametrization (registration) group.
This invariance implies that the Riemannian metric descends
to a metric on the quotient space of unparametrized surfaces,
which consequently allowsus to perform the registration, sur-
face comparison and ensuing statistical analysis in a unified
framework.

1.2 RelatedWork in Riemannian Shape Analysis

The Riemannian approach to shape analysis has several ben-
efits. First, a Riemannianmetric models a very natural notion
of similarity: a Riemannian metric measures the cost of
deformations, and can thus be used to define the distance
(similarity) between two surfaces as the cost of the cheapest
deformation that transforms one surface (the source) onto the
other (the target). Furthermore, a Riemannian framework not
only leads to a notion of similarity between pairs of surfaces,
but also allows one to compute optimal point correspon-
dences and optimal deformations (called geodesics) between
the (aligned) surfaces, cf. Figs. 1 and 2 for various exam-
ples that are computed with the framework of the present
paper. Finally, the Riemannian approach directly allows one
to apply the methods of geometric statistics (Pennec, 2006;
Pennec et al., 2019) to develop a comprehensive statistical
framework for shape analysis, cf. the algorithms developed
in Sect. 5.

Riemannian metrics on spaces of surfaces come in two
flavors: intrinsic metrics, which are defined directly on the
surface, and extrinsic metrics, which are inherited from
right invariant metrics on the diffeomorphism group of R3.
Intuitively the first approach corresponds to deforming the
surface only, while the second approach applies a defor-
mation of the whole ambient space in which the surface is
embedded. The latter, which is inherited from the principles
ofGrenander’s pattern theory (Grenander, 1996), has notably
led to the celebrated LDDMM framework, for which pow-
erful numerical toolboxes have been developed (Beg et al.,
2005; Charlier et al., 2021).

The present paper operates in the intrinsic setup. More
specifically, we deal with the class of reparametrization
invariant Sobolev metrics on spaces of surfaces. This class
of metrics was first introduced in the context of spaces of
curves by Michor and Mumford (2007), and Mennucci et
al. (2008). While these two articles focused on the theoreti-
cal properties of these Riemannian metrics, several ensuing
numerical frameworks have been developed, see e.g. Srivas-
tava et al. (2011), Bauer et al. (2019a), Nardi et al. (2016)
and the references therein. Subsequently, this framework has
been generalized to the space of surfaces by the last author
and collaborators (Bauer et al., 2011, 2020). While several
of the theoretical results for these metrics on the space of
curves have been generalized for the space of surfaces (e.g.,
localwell-posedness of the geodesic equation, non-vanishing
geodesic distance), a comprehensive numerical framework is
largely missing.

The most popular numerical approach for shape analy-
sis of surfaces is based on the Square Root Normal Field
(SRNF) framework proposed in Jermyn et al. (2012). This
framework defines the SRNF transformation φ, which is a
mapping from the space of surfaces I that takes values in
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Fig. 1 Examples of optimal deformations (geodesics) betweendifferent
types of data with unknown point correspondences: genus zero surfaces
(line 1 and 2), higher genus surfaces with boundaries and inconsistent
topologies (line 3 and 4), shape complexes (line 5 and 6), partial match-
ing (line 7). Animations of the obtained surface deformations can be
found in the supplementary material and on the github repository

Fig. 2 Point correspondences obtained after matching two
unparametrized surfaces: the coloring of the two surfaces encode
the obtained point correspondences. In addition, we highlight the
obtained matching for selected points by displaying connecting lines

L2(S2,R3), where S2 is the unit sphere. This mapping can
then be used to define a (pseudo) distance function on I via
the pullback of the L2 distance. This framework is related
to intrinsic Riemannian metrics on surfaces as the resulting
(pseudo) distance function is a first-order approximation of
the geodesic distance of a particular (degenerate) Sobolev

metric of order one (Jermyn et al., 2012). The simplicity
of the computation of this pseudo-distance has led to sev-
eral implementations (Bauer et al., 2021; Laga et al., 2017),
which have been shown to be effective in applications, see
e.g. Kurtek et al. (2014), Joshi et al. (2016), Matuk et al.
(2020) and Laga et al. (2022).

However, the SRNF framework has several theoretical
shortcomings: first, the non-injectivity of φ implies that the
pullback of the L2 metric by φ is degenerate. Consequently,
there arises the phenomenon that distinct shapes are indis-
tinguishable by the SRNF shape distance. This behavior was
originally studied in (Klassen & Michor, 2020) and was fur-
ther discussed in (Bauer et al., 2022b), where it was shown
that for each closed surface there exists a convex surface
which is indistinguishable by the SRNF distance. More-
over, the image of I via φ is not convex, which implies
that the SRNF distance is indeed only a first-order approx-
imation of a geodesic distance function rather than a true
geodesic distance on I, i.e., the SRNF distance does not
come from geodesics (optimal deformations) in I. Further-
more, the problem of inverting the SRNF transformation φ

to recover an optimal deformation in I from a geodesic in
L2(S2,R3) is highly ill-posed.

Consequently, to overcome the theoretical challenges of
the SRNF pseudo-distance, it is natural, instead, to consider
the reparametrization invariant Sobolev metrics mentioned
previously. In Su et al. (2020), a first step towards obtain-
ing a more general numerical framework was achieved: the
authors proposed a numerical framework for a family of first-
order Sobolevmetrics. Themain drawback of this framework
is the requirement for the data to be given by a spherical
parametrization, which severely limits its applicability in
practical contexts (see the comments below). In addition,
numerical experiments suggested that it would be beneficial
to consider metrics that involve higher-order terms to prevent
the occurrence of certain numerical instabilities. Prior to the
present paper, and to the best of the authors’ knowledge, no
implementation of more general (higher) order metrics was
available.

The major difficulty in the implementation of these Rie-
mannian frameworks is the discretizationof the reparametriza-
tion group. In Laga et al. (2017) and Su et al. (2020), the
authors used a discretization via spherical harmonics. These
methods provide a relatively fast and stable approach for
solving the registration of two spherical surfaces but requires
that the surfaces are of genus-zero and are given by their
spherical parametrizations. However, in most applications,
data is typically given as triangular meshes that are not a pri-
ori homeomorphic to S2. As the reparametrization problem
is highly non-trivial and computationally expensive, a better
approach for working with real data consists of developing
methods that deal directly with triangular meshes.
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Inspired by the use of tools from geometric measure the-
ory and in particular by varifold norms with the LDDMM
model, Bauer et al. (2021) proposed a varifold matching
framework to register surfaces with respect to the SRNF
pseudo-distance. This approach provides several benefits:
notably, the reparametrization group does not need to be dis-
cretized and its action on I does not need to be implemented.
This allows one to work with simplicial meshes without
having to first produce spherical parametrizations. More-
over, it extends to the analysis of surfaces with more general
topologies with or without boundaries. Yet, this framework
still suffers from the theoretical disadvantages of the SRNF
pseudo-distance discussed above and it has been observed
that the degeneracy of the distance can also lead to impor-
tant numerical artefacts (c.f. Fig. 7 below). Consequently, it
seems natural to combine this framework with more general
Riemannian metrics on I, which is one of the main contri-
butions of the present article, as we explain in the following
section.

1.3 Contributions

The central contribution of the present paper is the devel-
opment of an open-source numerical framework for the
statistical shape analysis of surfaces (triangular meshes)
under second-order reparametrization invariant Sobolevmet-
rics. In addition, our framework allows one to deal with
topologically inconsistent and/or partially observed data. The
code is available on github:

https://github.com/emmanuel-hartman/H2_SurfaceMatch

Towards this end, we extended the relaxed varifold match-
ing framework of Bauer et al. (2021) to compute the
geodesic distance with respect to a reparametrization invari-
ant second-order Sobolev metric on I and introduce a
natural discretization of this metric for triangular meshes.
This framework is the first implementation of higher-order
Sobolev metrics on parametrized and unparametrized sur-
faces. In contrast with Bauer et al. (2021), our framework
directly produces geodesics (i.e. the optimal deformation
path), and the addition of higher-order terms prevents the
formation of numerical artefacts as mentioned above. By
splitting the metric into separate terms, we are also able to
control the geometric changes penalized by the metric. This
allows us to model different deformations as well as con-
trol the regularizing effects of the higher-order terms, thus
making our framework versatile for a variety of applications.

In addition to providing a framework for surface match-
ing, we develop a comprehensive statistical pipeline for the
computation of Karcher means, tangent principal component
analysis, and parallel transport. As an application of the lat-
ter, we demonstrate how it can be used for motion transfer
between surfaces. Thus, our framework is well adapted to the

statistical analysis of populations of shapes such as the ones
appearing in biomedical applications. To further improve the
robustness of our proposed methods, we also implement a
weighted varifoldmatching framework by extending the idea
proposed in the context of curves and shape graphs by Sukur-
deep et al. (2022). The joint estimation of weights on the
source surface enables this augmented model to deal more
naturally with partial matching constraints or missing parts
in the target shape, or differences in topology between the
two shapes.

1.4 Outline

Our paper is structured as follows: In Sect. 2, we introduce
the family of H2-metrics (second-order Sobolev metrics)
on the space of parametrized and unparametrized surfaces.
In Sect. 3, we formulate a varifold-based relaxed matching
problem that allows us to estimate geodesics and distances
induced by H2-metrics on the shape space of unparametrized
surfaces. We then describe a set of numerical approaches for
the computation of these geodesic and distance estimates in
Sect. 4, before leveraging these algorithms for the develop-
ment of more general tools for the statistical shape analysis
of sets of surfaces in Sect. 5. Finally, we extend our second-
order elastic surface analysis framework to the setting of
surfaceswhichmayhave incompatible topological properties
or exhibit partially missing data in Sect. 6.

2 Sobolev Metrics on Surfaces

In this section, we introduce the theoretical background on
second-order elastic Sobolev Riemannian metrics for spaces
of parametrized andunparametrized surfaces,whichwill pro-
vide the key ingredient of our statistical framework for shape
analysis of surfaces.

2.1 Metrics on Spaces of Parametrized Surfaces

We begin by introducing themain definitions and known the-
oretical results on second-order Sobolev metrics for spaces
of parametrized surfaces in R

3, which we shall rely on for
the remainder of this paper. Let M denote a 2-dimensional
compact manifold, possibly with boundary, whose local
coordinates are denoted by (u, v) ∈ R

2. A parametrized
immersed surface in R

3 is an oriented smooth mapping
q ∈ C∞(M,R3), which in addition, we assume to be regu-
lar, i.e., we require its differential dq to be injective at every
point of M . The set of all such parametrized surfaces, which
we denote by I, is itself an infinite-dimensional manifold,
where the tangent space at any q ∈ I, denoted TqI, is given
by C∞(M,R3). Any such tangent vector h ∈ TqI can be
thought of as a vector field along the surface q.
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Next we introduce the reparametrization groupD, which
is the group of orientation-preserving diffeomorphisms ofM ,
i.e., the space of all ϕ ∈ C∞(M) such that det(Dϕ(u, v)) >

0 for all (u, v) and ϕ−1 ∈ C∞(M), where Dϕ denotes the
differential (or Jacobian) of the diffeomorphism ϕ. For any
immersed surface q ∈ I and ϕ ∈ D, we say that q ◦ ϕ ∈ I
is a reparametrization of q by ϕ.

Our goal is to equip the manifold I with a Riemannian
metric that will subsequently enable us to develop a frame-
work for the comparison and statistical shape analysis of
surfaces. Recall that any Riemannian metric G on I induces
a (pseudo) distance on this space, which is given for any two
parametrized surfaces q0, q1 ∈ I by

distG(q0, q1) = inf
q(·)∈Pq1

q0

∫ 1

0

√
Gq(t)(∂t q(t), ∂t q(t))dt, (1)

with the infimum being taken over the space of all paths of
immersed surfaces connecting q0 and q1, which we write as:

Pq1
q0 := {

q(·) ∈ C∞([0, 1], I) : q(0) = q0, q(1) = q1
}
,

(2)

with ∂t q(t) denoting the derivative with respect to t of this
path. In finite dimensions this distance, which is called the
geodesic distance, is always non-degenerate, i.e., a true dis-
tance. In our infinite-dimensional setting it can, however, be
degenerate (Michor & Mumford, 2005).

As our main goal will be the analysis of unparametrized
surfaces, we will require our Riemannian metric to be invari-
ant under the action of the aforementioned reparametrization
group D, i.e., we require G to satisfy

Gq(h, k) = Gq◦ϕ(h ◦ ϕ, k ◦ ϕ) (3)

for all q ∈ I, h, k ∈ TqI and ϕ ∈ D, which will imply that
the induced geodesic distance as defined in (1) satisfies

distG(q0, q1) = distG(q0 ◦ ϕ, q1 ◦ ϕ) (4)

for all q0, q1 ∈ I and ϕ ∈ D. This will later allow us to
consider the induced Riemannian metric (and distance func-
tion) on the quotient space of unparametrized surfaces, cf.
Sect. 2.2.

The simplest and potentially most natural such metric is
the reparametrization invariant L2-metric, which is given by

Gq(h, k) =
∫
M

〈h, k〉 volq , (5)

where volq is the surface area measure of the immersion q,
which in local coordinates (u, v) is given by

volq = |qu × qv|dudv,

Fig. 3 The inducedpullbackmetric onM of an immersionq : M → R
3

where the subscripts denote partial derivatives,× denotes the
cross product on R

3, and | · | denotes the norm on R
3. This

Riemannianmetric is, however, not useful for any application
in shape analysis, as it results in vanishing geodesic dis-
tance on both the spaces of parametrized and unparametrized
surfaces (Bauer et al., 2012;Michor&Mumford, 2005).Van-
ishing geodesic distance refers to the phenomenon where the
geodesic distance induced by the L2-metric between any two
surfaces is zero.

Consequently, we are interested in stronger Riemannian
metrics that inducemeaningful distances. A natural approach
to strengthen the metric consists of incorporating deriva-
tives of the tangent vector, leading to the class of first-order
Sobolev metrics. Therefore we let gq = q∗〈·, ·〉 be the pull-
back metric of the Euclidean metric on R

3, see Fig. 3 for an
explanation of this construction.

A first-order Sobolev metric is then given by

Gq(h, h) =
∫
M

〈h, h〉 + g−1
q (dh, dh) volq . (6)

To interpret the first-order term g−1
q (dh, dh), we view the

differential dh as a vector valued one form, i.e., as a map
from T M to R

3. Then the inverse of the pullback metric
g−1
q can be used to pair such mappings. To understand this

pairing better, we can fix a set of coordinates and view all the
involved objects as matrix fields. Then we have

g−1
q (dh, dh) = tr(dh.g−1

q .dhT ), (7)

where dhT denotes the point wise transpose of the matrix
field dh. By the results of Bauer et al. (2011), we know
that this metric indeed overcomes the degeneracy of the L2-
metric, i.e., the corresponding geodesic distance function is
non-degenerate.

Next we further decompose the first-order term into four
different terms which each have a geometric interpretation.
Therefore, we write

dh = dhm + dh+ + dh⊥ + dh0, (8)

where

dhm = 1

2
dqg−1

q (dqT dh + dhT dq) − 1

2
tr(g−1

q dqT dh)dq

123



1188 International Journal of Computer Vision (2023) 131:1183–1209

dh+ = 1

2
tr(g−1

q dqT dh)dq

dh⊥ = dh − dqg−1
q dqT dh

dh0 = 1

2
dqg−1

q (dqT dh − dhT dq).

A straight-forward calculation shows that these terms are
orthogonal with respect to the inner product

∫
M
g−1
q (·, ·) volq ,

see (Su et al., 2020). Consequently we have:

∫
M
g−1
q (dh, dh) volq

=
∫
M
g−1
q (dhm, dhm) volq +

∫
M
g−1
q (dh+, dh+) volq

+
∫
M
g−1
q (dh⊥, dh⊥) volq +

∫
M
g−1
q (dh0, dh0) volq .

The geometric meaning of the first three terms becomes clear
in the following result:

Remark 1 (Su et al. 2020) Let q ∈ I and h ∈ TqI. The term∫
M
g−1
q (dhm, dhm) volq

measures the change of the pull-backmetric gq while keeping
the volume form constant (shearing). The second term∫
M
g−1
q (dh+, dh+) volq

measures the change of the volume density volq (scaling),
while the third term∫
M
g−1
q (dh⊥, dh⊥) volq

measures the change in the normal vector nq (bending).

The interpretation of the last summand is less clear: it can
be thought of as measuring the deformation of the local
parametrization by a rotation in the parameter space M .

Remark 2 The class of first-order Sobolev (pseudo-) metrics,
i.e. metrics obtained as weighted combinations of the four
first-order terms discussed above, have often been referred
to as elasticmetrics in the shape analysis literature (Jermyn et
al., 2012, 2017). Beyond just the mere high level analogy of
these metrics measuring some form of bending or stretching
energies, it turns out that these can in fact be more precisely
connected to classical linear elasticity, specifically as the thin
shell limit of the elastic energy of a layered isotropic mate-
rial. For the purpose of concision, we will not elaborate on

this particular point in this paper, but this connection will be
highlighted in more details in an upcoming preprint.

The above considerations suggest that metrics of this form
provide a meaningful class of metrics for shape analysis of
surfaces: they overcome the degeneracy of the L2-metric
and admit a physical interpretation of the different terms
involved. There is, however, numerical evidence that these
first order metrics are still too weak for our targeted applica-
tions, see the experiments in Fig. 7. Thuswewill augment the
metric with a further higher-order term involving the Lapla-
cian �q induced by the immersion q, which using Einstein
summation is given in local coordinates (u, v) by

�qh = 1√|gq |
∂u

(√|gq |guv
q ∂vh

)
,

where |gq | denotes the determinant of the pullback metric in
the local coordinate frame.

This allows us to define a second-order term via

∫
M

〈�qh,�qh〉 volq . (9)

By adding up all the zero, first and second-order terms, we
arrive at the main object of the present article: the family of
H2-metrics (second-order Sobolev Riemannian metrics) for
surfaces, which is given by:

Gq(h, k)=
∫
M

(
a0〈h, k〉 + a1g

−1
q (dhm , dkm)

+ b1g
−1
q (dh+, dk+)+c1g

−1
q (dh⊥, dk⊥)

+ d1g
−1
q (dh0, dk0) + a2〈�qh, �qk〉

)
volq .

(10)

Here a0, a1, b1, c1, d1, a2 are non-negative weighting
coefficients for the different terms in the metric. Note that
this family incorporates the Riemannian metric correspond-
ing to the SRNF (pseudo) distance (Jermyn et al., 2017) and
the families of elastic Riemannian metrics as proposed by
Jermyn et al. (2012) and Su et al. (2020). For a general treat-
ment of properties of Sobolev metrics we refer to the article
(Bauer et al., 2011), and for a detailed explanationof the influ-
ence of these coefficients on our numerical experiments, see
the discussion in Sect. 4.7.

The following result, which summarizes the invariances
of our family of metrics, ensures that the metric descends
to quotient spaces with respect to the corresponding group
actions:
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Lemma 1 The family of H2-metrics G is invariant under the
action of the group of reparametrizations D, the group of
rotations Rot(R3) and the group of translations R3, i.e., for
any q ∈ I, h, k ∈ TqI, R ∈ Rot(R3) and τ ∈ R

3 we have

Gq(h, k) = GR(q◦ϕ)+τ (R(h ◦ ϕ), R(k ◦ ϕ)). (11)

It follows that geodesic distance is also preserved by these
transformations.

Proof The invariance to the finite dimensional groups of rota-
tions and translations follows by the fact that all the terms
of the metric are invariant under this action. The invari-
ance under the action of the infinite-dimensional group of
reparametrization D follows from an application of the sub-
stitution formula for integration. 
�

Having defined the class of H2-metrics, we can now for-
mulate the two main building blocks for our framework for
the comparison and statistical shape analysis of surfaces: the
geodesic boundary problem and the geodesic initial value
problem.
Geodesic Boundary Value Problem Given two parametrized
surfaces q0 and q1, the geodesic boundary value problem
consists in finding paths of shortest length that connect the
given surfaces q0 and q1, i.e., calculating the geodesic dis-
tance between q0 and q1. Here the Riemannian length of a
path q : [0, 1] → I is defined as

L(q) :=
∫ 1

0

√
Gq(t)(∂t q(t), ∂t q(t))dt . (12)

Paths of minimal length are called minimizing geodesics.
By a standard result in Riemannian geometry (Lang, 2012),
findingminimizing geodesics is equivalent tominimizing the
Riemannian energy:

E(q) := 1

2

∫ 1

0
Gq(t)(∂t q(t), ∂t q(t))dt . (13)

In Sect. 4 we will explain how to discretize this functional
for discrete meshes, which will in turn allow us to solve
the minimization problem using standard finite dimensional
optimization methods. Note that the solution of the geodesic
boundary value problem gives rise to both optimal (i.e.,
energy-minimizing) deformations as well as a notion of a
distance between the given shapes. Thus, this operation will
be the main building block of all our algorithms.
Geodesic Initial Value Problem While the geodesic bound-
ary value problem searches for the shortest path between two
given surfaces, the geodesic initial valueproblemsearches for
the optimal deformation path of a given surface in a given ini-
tial deformation direction. Solving the geodesic initial value
problem amounts to solving the geodesic equation, which

is the first-order optimality condition of the energy func-
tional defined above. In our situation, the geodesic equation
will be a non-linear partial differential equation that is of
second-order in time and fourth-order in the two-dimensional
space coordinates. As this equation is rather lengthy and not
particularly insightful, we refrain from formulating it here
and instead refer the interested reader to the article (Bauer
et al., 2020), where the geodesic equation is derived for a
general class of Riemanniann metrics on I that are induced
by abstract pseudo-differential operators and thus include in
particular the class of metrics studied in the present work. In
addition, Bauer et al. (2020) established localwell-posedness
(existence and uniqueness) of the corresponding (geodesic)
initial value problem. To circumvent dealing directly with
the intricacies and difficulty of solving highly non-linear and
higher-order partial differential equations, we instead calcu-
late the solution to the initial value problemusing themethods
of discrete geodesic calculus as developed in Rumpf and
Wirth (2015b); see Sect. 4 for a detailed description.

In the context of our statistical shape analysis framework
for surfaces, the geodesic initial value problem will be of
importance for calculating shape averages, for principal com-
ponent analysis and in our motion transfer applications.

2.2 Metrics on Unparametrized Surfaces

In the previous section we introduced a class of Rieman-
nian metrics on the space of parametrized surfaces. Our
main goal is, however, to compare surfaces regardless of
how they are parametrized. To this end, we introduce the
space of unparametrized surfaces, which is defined as the
quotient space of parametrized immersed surfaces modulo
the reparametrization group, i.e., S = I/D, and refer to it
as shape space. This space consists of equivalence classes
[q] = {q ◦ ϕ;ϕ ∈ D}.

Since the family of H2-metrics on I introduced in (10)
is reparametrization invariant, cf. Lemma 1, it induces a cor-
responding family of Riemannian metrics on the quotient
space; such a construction is referred to as a Riemannian
submersion, see Bauer et al. (2011) for a detailed explanation
in the context of Sobolev metrics on surfaces. Consequently
the geodesic distance distG given in (1) corresponding to an
H2-metric G descends to a distance function on the quotient
shape space which is given as follows:

distS([q0], [q1]) = inf
ϕ∈D

distG(q0, q1 ◦ ϕ). (14)

By expanding the expression above, one notes that for given
surfaces [q0] and [q1], computing the geodesic distance can
be written as the following constrained minimization prob-
lem:
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distS([q0], [q1])
= inf

ϕ∈D
inf

q(·)∈Pq1◦ϕ
q0

∫ 1

0
Gq(t)(∂t q(t), ∂t q(t))dt, (15)

where the space of paths of immersed surfaces Pq1◦ϕ
q0 is

defined in (2). In practice, computing this distance thus
requires solving a matching problem that consists of finding
the optimal reparametrization and optimal path of immer-
sions between the surfaces. We refer to the constrained
minimization problem in (15) as the geodesic boundary value
problem on shape space. Compared to the matching prob-
lem for parametrized surfaces, the main difficulty in terms of
numerically solving this problem consists of discretizing the
action of the reparametrization groupD. We will circumvent
this issue by introducing a relaxed version of (15), which
will make use of methods from geometric measure theory,
cf. Sect. 3.

While the geodesic boundary value problem on shape
space is significantly more challenging than its counterpart
on parametrized surfaces, it turns out that the geodesic initial
value problem for these two spaces is essentially equivalent:
solving the geodesic initial value problem on the space of
parametrized surfaces for an initial condition that is in the
tangent space of shape space, called a horizontal initial con-
dition, gives rise to a solution in the space of unparametrized
surfaces. This observation follows from powerful results in
Riemanniangeometry and inparticular from the conservation
law for the horizontal initial momentum, which stems from
the reparametrization invariance of the Riemannian metric
(Bauer et al., 2011). Consequently, this will allow us to use
the samemethods for solving the initial value problem on the
space of parametrized and unparametrized surfaces, which
will be described in Sect. 4.

Remark 3 We can also consider the space of unparametrized
surfaces modulo rotations and translation. Since the class
of H2-metrics is also invariant with respect to these finite
dimensional group actions, cf. Lemma1, it descends to a class
of Riemannianmetrics on this quotient space. Computing the
induced geodesic distance on this quotient space involves an
additional minimization over the rotation group Rot(R3) and
over the translation group R3 in addition to minimizing over
the reparametrization group and over the space of paths of
immersed surfaces.

3 RelaxedMatching Problem

We now focus our attention on the actual computation of the
geodesic distance on the shape space of surfaces. As out-
lined in the previous section via Eq. (15), this computation
involves a joint optimization over paths of immersed surfaces
and reparametrizations. In practice, the space of parametrized

surfaces I, and hence the path of immersions, can be dis-
cretized by considering a triangular mesh as the domainM of
the function space I, and considering piece-wise linear func-
tions defined on M , which gives rise to triangulated surfaces,
as outlined in Bauer et al. (2021). More general discretiza-
tions schemes, such as spline discretizations, could be used
as well. Discretizing the paths of immersed surfaces implies
that the minimization over those paths can be framed quite
naturally as a standard finite dimensional optimization prob-
lem, as we will outline in Sect. 4. However, dealing with the
minimization over the infinite-dimensional reparametriza-
tion group is typically more difficult, and discretizing such
a group and its action on surfaces is not straightforward.
Recently, an alternative approach was proposed in Bauer et
al. (2021)where thisminimization over reparametrizations of
q1 is dealt with indirectly by instead introducing a relaxation
of the end time constraint using a parametrization blind data
attachment term. Broadly speaking, this approach consists in
considering the relaxed matching problem:

inf

{∫ 1

0
Gq(t)(∂t q(t), ∂t q(t))dt + λ�(q(1), q1)

}
, (16)

where the minimization occurs over paths of immersed sur-
faces q(·) ∈ C∞([0, 1], I) that satisfy the initial constraint
q(0) = q0 only, and where �(q(1), q1) is a term that mea-
sures the discrepancy between the endpoint of the path q(1)
and the true target surface q1, with λ > 0 being a bal-
ancing parameter. If we choose a discrepancy term � that
is independent of the parametrization of either of the two
surfaces, then solving the relaxed problem above would
yield �(q(1), q1) ≈ 0, which yields q(1) ≈ q1 ◦ ϕ. Thus,
this approach allows us to approximate the end time con-
straint in (15) without the need to explicitly model the
reparametrization itself. Furthermore, this relaxed matching
framework allows for inexact matching when computing the
distance, which will turn out to be crucial when extending
this framework to surfaces that can exhibit different topolo-
gies, such as surfaces with different genuses, and to surfaces
with partial correspondences, as we shall outline in Sect. 6.

3.1 Varifold Representation and Distance

We now describe how to construct the key ingredient in the
relaxed model outlined above, namely, an effective and sim-
ple to compute data attachment term � which gives a notion
of discrepancy between unparametrized surfaces. Among
different possible approaches, we will rely specifically on
methods derived from geometric measure theory which have
been used for that particular purpose in several past works
on surface registration (Bauer et al., 2021; Charon & Trouvé,
2013; Feydy et al., 2017; Roussillon & Glaunès, 2019; Vail-
lant & Glaunès, 2005), see also the recent survey (Charon et
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al., 2020). In this paper, we adopt the framework of oriented
varifolds introduced in Kaltenmark et al. (2017), following
an approach similar to the authors’ previous works (Bauer et
al., 2019a, 2021; Sukurdeep et al., 2022).We point out, how-
ever, that the majority of the present work could be adapted
without much difficulty to some of the other types of data
attachment terms developed in the aforementioned papers.

Given any parametrized surface q ∈ I, the varifold μq

associated to q is a positive Radon measure on the product
spaceR3×S2, where S2 is the unit sphere.More specifically,
μq is the image measure (q, nq)∗ volq where nq is the unit
oriented normal field of q, and volq is the area form on M
induced by q. In other words, for any Borel set B ⊂ R

3× S2,
μq(B) is the total area with respect to volq of all (u, v) ∈ M
such that (q(u, v), nq(u, v)) belongs to B. A fundamental
property is that this varifold representation does not depend
on the parametrization of q. Namely, for any ϕ ∈ D, one has
μq◦ϕ = μq , and thus it induces a well-defined mapping on
the quotient space S which can be further shown to be an
embedding of S into the space of varifolds.

Then, any norm ‖ · ‖ on the space of varifolds should
induce a distance on S, given for any [q0], [q1] ∈ S by
‖μq0 − μq1‖, where we again emphasize that this expres-
sion does not depend on the choice of parametrizations for
q0 and q1 in the respective equivalence classes [q0] and [q1].
While there are many possible metrics that one can intro-
duce on spaces of measures, norms defined from positive
definite kernels on R

3 × S2 have been shown to lead to
particularly advantageous expressions for numerical compu-
tations. Specifically, following the setting of Kaltenmark et
al. (2017), we consider the class of norms ‖ ·‖V ∗ , where V is
a reproducing kernel Hilbert space of functions on R3 × S2,
whose kernel is of the form

kV (x1, n1, x2, n2) = 	(|x1 − x2|)
(n1 · n2) , (17)

inwhich	 and
 are two functions defining a radial kernel on
R
3 and a zonal kernel on S2, respectively.We discuss specific

choices for	 and
whenpresenting our numerical approach
for solving the relaxed matching problem in Sect. 4.4.

Following from the particular form ofμq0 andμq1 as well
as the reproducing kernel property in V , the inner product of
the two varifolds in V ∗ can be explicitly derived as:

〈μq0 , μq1〉V ∗ =
∫∫

M×M
	

(|q0(u0, v0) − q1(u1, v1)|
)



(
nq0(u0, v0) · nq1(u1, v1)

)
volq0(u0, v0) volq1(u1, v1).

(18)

Consequently, the squared varifold kernel distance between
μq0 and μq1 is obtained as follows:

‖μq0 − μq1‖2V ∗ = ‖μq0‖2V ∗ − 2〈μq0 , μq1〉V ∗ + ‖μq1‖2V ∗ .

(19)

It can be shown that, under the right regularity and density
assumptions on the kernel kV (c.f. Proposition 4 in Kalten-
mark et al., 2017), the above leads to a true distance when
restricting to embedded unparametrized surfaces. However,
note that there is no notion of geodesics in S corresponding
to the varifold distance, as the straight path (1− t)μq0 + tμq1
in V ∗ is not associated to a corresponding path in the space of
surfaces, due to the non-surjectivity of themapping q �→ μq .
Yet, the squared varifold distance ‖μq0 − μq1‖2V ∗ still pro-
vides a valid discrepancy term for the relaxed matching
problem in (16), which has the additional important advan-
tage of being simple to discretize and evaluate numerically,
as we shall detail in Sect. 4.4.

Lastly, we point out that the above varifold discrepancy
metrics are also equivariant to the action of rigid motions.
Specifically, for any q0, q1 ∈ I and any R ∈ Rot(R3), τ ∈
R
3, we have

‖μRq0+τ − μRq1+τ‖2V ∗ = ‖μq0 − μq1‖2V ∗ ,

which follows directly from the form of the kernel (17).

3.2 Relaxed Surface Matching

The squared varifold distance is ideally suited for use as the
discrepancy term� in the relaxedmatching problem outlined
in (16) due to its reparametrization invariance, which finally
allows us to formulate the varifold-based relaxed matching
problem for surfaces:

Given q0, q1 ∈ I, we consider the variational prob-
lem:

inf

{∫ 1

0
Gq(t)(∂t q(t), ∂t q(t))dt+λ‖μq(1)−μq1‖2V ∗

}
,

(20)

where the minimization occurs over paths of immersed
surfacesq(·) ∈ C∞([0, 1], I) that satisfy the initial con-
straint q(0) = q0, and where λ > 0 is a balancing
parameter.

Note that the (relaxed) endpoint constraint q(1) ≈ q1 ◦ ϕ

for some ϕ ∈ D is encoded in the varifold attachment
term. The interpretation of the two terms in the relaxed
energy (20) is as follows: the first term (the energy of the
path of immersed surfaces) measures the cost of the opti-
mal deformation, whereas the second term is merely a data
attachment term that enforces the endpoint constraint. In this
relaxed surface matching framework, we refer to q0 as the
source, q1 as the target and q(1) as the deformed source.
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We note, however, that the model formulated in (20) is
asymmetric in the sense that interchanging q0 and q1 will
affect the obtained minimizer. Although this is a common
phenomenon for relaxed optimization problems,we next pro-
pose a symmetric formulation of the varifold-based relaxed
geodesic boundary value problem. To do so, we will lift the
constraint of q(0) being q0 and instead add a second varifold-
based data attachment term which measures the similarity of
q(0) and q0:

Given q0, q1 ∈ I, we consider the variational prob-
lem:

inf

{∫ 1

0
Gq(t)(∂t q(t), ∂t q(t))dt + λ0 ‖μq(0)

− μq0‖2V ∗ + λ1 ‖μq(1) − μq1‖2V ∗

}
,

(21)

where the minimization is performed over paths of
immersed surfaces q(·) ∈ C∞([0, 1], I), and where
λ0, λ1 > 0 are balancing parameters.

This symmetric formulation of the relaxedmatching prob-
lem has several advantages which we will leverage in the
implementation and simulations presented in the next sec-
tions. First, for λ0 = λ1, the variational problem (21) is
indeed symmetric in the sense that for any path t �→ q(t),
the time reversed path t �→ q(1 − t) has the same energy
value for the problem of matching q1 onto q0 and thus the
value of the infimum is the same for both matching prob-
lems. More importantly, the introduction of q(0) allows us
to decouple the topological or mesh properties of the immer-
sions in the path q(·) with those of the source shape q0. As
we shall explain more in details in Sect. 4, this allows us
to select the vertex sampling and mesh structure of the sur-
faces in the geodesic path independently of that of the source
q0, which can be used to adapt the efficient multiresolution
scheme of Bauer et al. (2021) for numerically solving the
matching problem.

4 Numerical Optimization Approach

In this section, we will present a set of numerical approaches
for solving the geodesic boundary value problem for param-
etrized surfaces introduced earlier in Sect. 2.1, the varifold-
based relaxedmatching problem for unparametrized surfaces
introduced in Sect. 3.2, as well as the geodesic initial value
problem introduced in Sect. 2. Our source code is openly
available at:

https://github.com/emmanuel-hartman/H2_SurfaceMatch

First, we describe how to discretize parametrized surfaces.
We will do so by considering oriented triangulated surfaces,
which are also called oriented triangular meshes, that are
represented by a set of vertices, edges, and faces. We view
the vertices V of a mesh as an ordered set of points in R

3,
i.e.,

V := {vi ∈ R
3|0 ≤ i < n},

where n is the number of vertices in the mesh. Occasionally
we may want to view V equivalently as a single point inR3n .
The edges E of a triangular mesh are subset of N2 where
(i, j) ∈ E if and only if there is an oriented edge from vi
to v j . Similarly, we view the faces F of a triangular mesh
as a subset of N3 where (i, j, k) ∈ F if and only if the
vertices vi , v j , and vk make up a face in the triangular mesh
such that (v j − vi ) × (vk − vi ) points in the direction of the
oriented normal vector. Canonically, we choose to use only
the representative (i, j, k) of a face such that i < j, k.

In the context of the geodesic boundary value problem
for parametrized surfaces, the relaxed matching problem for
unparametrized surfaces, and the initial value problem, we
are required to solve optimization problems over paths of
immersed surfaces. In the discrete setting, wewill solve these
minimization problems by searching over paths of meshes
that each lie in a solution space, M, defined as the set of
meshes with a fixed combinatorial structure, i.e., the set of
meshes with a fixed number of vertices and a fixed set of
edges and faces. Thus, each q ∈ M is determined precisely
by the locations of the vertices and it is natural to consider
M ∼= R

3n . However, we can equivalently view q ∈ M as a
piecewise linear surface determined exactly by the vertices.
Therefore we view q as the map

q :
⊔
f ∈F

σ 2
f → R

3, (22)

where for each f ∈ F , σ 2
f is the simplex given by

σ 2
f :=

{[
x
y

]
∈ R

2+
∣∣∣∣ x + y < 1

}
,

and q restricted to σ 2
f for f = (i, j, k) is given by

q|σ 2
f

([
x
y

])
:=

[
x
y

]
·
[
v j − vi
vk − vi

]
+ vi .

This interpretation of ameshwill proveuseful for defining the
geometric quantities used in the definition of the H2-metric.

4.1 The H2-Metric on the Space of Triangular Meshes

To establish a numerical framework based on the class of H2-
metrics defined in (10),wemust first establish a discretization
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of each of the components that appear in its definition. The
field of discrete differential geometry establishes discrete
counterparts to smooth geometric quantities such as volume
forms, derivatives and the Laplacian. A review of the deriva-
tions of these discrete quantities can be found e.g. in Crane
(2018). We will either discretize these quantities per face
or per vertex of a given triangular mesh depending on the
context in which they will be used in our computation.

Recall that q ∈ M is entirely determined by the vertices
V ∈ R

3n . Thus, it is natural to discretize tangent vectors on
the vertices of the mesh, i.e., a tangent vector h is viewed as
a set of vectors in R

3 assigned to each vertex v ∈ V of the
mesh. Therefore,

h := {hv ∈ R
3|v ∈ V } ∈ R

3n .

Next, we will explain how we discretize the terms that
appear in the definition of the H2-metric, i.e., the volume
form, the pullback metric, the normal vector, and the surface
Laplacian. For a graphic explanation of our discretization,
we refer to Fig. 4.

Recall thatwhenwe view amesh as amapq, as in (22), it is
affine on the simplex corresponding to each face. Therefore,
it is natural to discretize the first-order terms on each face.
Given a face f ∈ F , where we will assume f = (0, 1, 2)
for simplicity of notation, with vertices v0, v1, v2 ∈ R

3, we
have

dq f =
[
e01
e02

]
where ei j = v j − vi .

Given a tangent vector h, we can compute its differential on
the face f as

dh =
[
h1 − h0
h2 − h0

]
.

Consequently a discrete version of the pullback metric gq ,
the volume density volq and the normal vector nq are given
by:

g f =
[ |e01|2 e01 · e02
e01 · e02 |e02|2

]
,

vol f = 1

2
|e01 × e02|,

n f = e01 × e02
|e01 × e02| .

We denote these discrete versions by g f , vol f and n f to
emphasize that they are defined on the faces.

Given that the faces are affine, it is somewhat “unnatural”
to discretize the Laplacian, a second-order quantity, on the
faces of a mesh. Rather, the natural place to discretize the
surface Laplacian is on the dual cells of a mesh. Each such

Fig. 4 Defining H2-metrics using discrete differential geometry. The
cell dual to the vertex v is shown in blue

dual cell corresponds to a vertex of the mesh; see Fig. 4 for
an illustration. Given a tangent vector h = {hv ∈ R

3|v ∈ V }
to a mesh q = (V , E, F) ∈ M, the Laplacian �q applied to
h at a vertex v ∈ V is given by

(�qh)v =
∑

w|(v,w)∈E
or(w,v)∈E

(cot(αvw) + cot(βvw))(hv − hw).

where αvw and βvw are angles as shown in Fig. 4. This dis-
cretization can be derived using either finite elementmethods
as in Crane (2018) or discrete exterior calculus as in Crane
et al. (2013).

The zeroth and second-order terms of the metric contain
also the volume form of our mesh, which was previously
defined for each face. In order to assign this volume form to
a vertex v (instead of to the faces), we sum up one third of
the volume of each face containing v. Thus, the volume form
at a vertex v is given by

volv = 1

3

∑
f |v∈ f

vol f .

Thus we have derived discrete versions of all terms that
appear in the definition of the H2-metric. Therefore, given a
mesh q ∈ M and a pair of tangent vectors h, k ∈ TqM we
arrive at the following expression for the discrete version of
the family of H2-metrics:

Gq(h, k) =
∑
v∈V

a0〈h, k〉 volv

+
∑
f ∈F

(
a1g

−1
f (dhm, dkm) + b1g

−1
f (dh+, dk+)

+ c1g
−1
f (dh⊥, dk⊥) + d1g

−1
f (dh0, dk0)

)
vol f

+
∑
v∈V

a2〈�qh,�qk〉 volv
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4.2 Discretizing the H2 Path Energy

Having discussed how to compute the Riemannian metric
at a triangular mesh, we now explain how to discretize the
Riemannian energy of a path of meshes. Indeed, given a path
of triangular meshes in the solution space, denoted by V :
[0, 1] → M, we compute the path energy of V (t) via

∫ 1

0
GV (t)

(
V̇ (t), V̇ (t)

)
dt,

where V̇ (t) denotes the derivative with respect to time of the
path. We re-emphasize that each mesh in the path has the
same, fixed combinatorial structure, implying that the path
is entirely determined by the locations of the vertices of the
meshes, hence the notation V above. Furthermore, we note
that a further discrete approximation is required to compute
the energy of the path, namely we have to discretize the time
interval [0, 1]. To that end, we consider piecewise-linear (PL)
approximations for paths of meshes. Given a PL path with
N + 1 evenly spaced breakpoints 0 = t0 < t1 < · · · < tN =
1, we can compute the tangent vector for the first N points
via finite differences. Thus for i ∈ {0, 1, ..., N −1}, we have

V̇ (ti ) = N (V (ti+1) − V (ti )) where ti = i

N
.

As a result, the energy of a PL path inM reduces to

E(V ) = 1

2N

N−1∑
i=0

GV (ti )(V̇ (ti ), V̇ (ti )). (23)

4.3 Solving the Geodesic Boundary Value Problem
for Parametrized Surfaces

We are now able to formulate our numerical approach for
solving the geodesic boundary value problem (BVP) between
parametrized surfaces. Given source and target surfaces
q0, q1 ∈ I respectively, whose discretized versions are deter-
mined by their vertices V0 and V1 respectively, our goal will
be to approximate solutions to the geodesic boundary value
problem in M by minimizing the energy in (23) over all PL
paths with fixed endpoints, those being V0 and V1 respec-
tively. In doing so, we have reduced the boundary value
problem to a finite dimensional, unconstrained minimization
problem onR3n(N−1); the free variables being the vertices of
the interpolating meshes between V0 and V1. We implement
the discrete energy functional (23) using pytorch, which
allows us to take advantage of the automatic differentiation
functionality to calculate the gradient of this energy with
respect to the vertices of the interpolating meshes. We then
use the L-BFGS algorithm, as introduced in Liu and Nocedal

(1989), to minimize the energy. We describe this process in
Algorithm 1 below.

Algorithm 1 Geodesic BVP for Parametrized Surfaces
procedure Parametrized_Geodesic_BVP(V0, V1, V )
V0, V1 : vertices of the given source and target surfaces
V : initial guess for vertices of the interpolatingmeshes of the PL path

cost(V ) = E([V0, V , V1])
V = L- BFGS(V , cost)
return V

To speed up computations (convergence), we imple-
mented a multi-resolution method in time, i.e., we iteratively
refine the temporal discretization of the path and repeat
Algorithm 1, where we initialize at each iteration with an
up-sampled version of the previous solution. An example of
a solution to the boundary value problem for parametrized
surfaces can be seen in Fig. 5.

4.4 Discretizing theVarifold Norm

In order to tackle the varifold-based relaxed matching prob-
lem for unparametrized surfaces introduced in (20), we must
discuss the discretization of the varifold data attachment term
‖μq(1) − μq1‖2V ∗ introduced in Sect. 3.1. We specifically
need to compute the squared kernel distance between the two
varifoldsμq(1) andμq1 associated to the piecewise linear sur-
faces given by the two triangular meshes (V (1), E0, F0) and
(V1, E1, F1) respectively. The power of the varifold frame-
work is that it applies equally well to this case and allows us
to compare discrete shapes with significantly different mesh
structures, including those with different topologies.

Indeed,wenote that an efficient discretizationof the kernel
inner product of (18) consists in approximating the integral of
the kernel over each pair of faces from F0 and F1 respectively
by using its value at those faces’ centers. In other words, we
consider the following approximation:

〈μq(1), μq1〉V ∗

≈
∑
f0∈F0

∑
f1∈F1

	(|c f0 − c f1 |)
(n f0 · n f1) vol f0 vol f1 ,

where c f denotes the barycenter of the face f given by c f =
1
3

∑
v|v∈ f v. We emphasize that the quantities c f0 , n f0 and

vol f0 are here calculated based on the vertices V (1) of the
endpoint of the path of meshes, with the edges and faces E0

and F0 being the same as for the initial mesh in the path. The
full discrepancy term ‖μq(1) − μq1‖2V ∗ is then once again
calculated as in (19), i.e., through a squared expansion of
the norm induced by the kernel inner product (18), where
each of the inner products is approximated as above. We
emphasize that if the two meshes are exactly aligned, then
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the discrepancy term ‖μq(1) − μq1‖2V ∗ will be minimized,
while its value will be larger if the two meshes are highly
misaligned.

Although several choices of kernels are available (cf.
Charon et al., 2020; Kaltenmark et al., 2017 formore detailed
presentations), in all the numerical simulations of this paper,

we specifically chose 	(|c f0 − c f1 |) = exp(−|c f0−c f1 |2
σ 2 ), a

Gaussian kernel of width σ > 0, for the radial kernel on R3.
The value of this scale parameter σ is typically adapted to
the size of the surfaces to be matched. As for the zonal kernel
on S2, we take 
(n f0 · n f1) = (n f0 · n f1)

2, which is known
as the Cauchy-Binet kernel on the sphere.

Since the calculation of the varifoldmetric involves a num-
ber of kernel evaluations that is quadratic in the number of
faces, it typically represents the bulk of the numerical cost
of the proposed matching algorithm. For this reason, in our
implementation, we rely on the pykeops library (Charlier
et al., 2021), which provides efficient GPU routines to com-
pute such large sums of kernel functions and enables the
automatic differentiation of those expressions.

4.5 Solving the Geodesic Boundary Value Problem
for Unparametrized Surfaces

Using the discretization of the H2-path energy described in
Sect. 4.2 and the discretization of the varifold norm described
in Sect. 4.4, we can reduce both the non-symmetric (20)
and the symmetric (21) relaxed surface matching problem to
a finite dimensional, unconstrained minimization problem.
Note, that free variables for the non-symmetric problem are
the vertices at time ti for i ≥ 1, while the free variables in
the symmetric version include the vertices at time t0. The
main difference between these two algorithms is, however,
that the mesh structure in the non-symmetric version is pre-
scribed by the given data, i.e., the mesh structure (topology)
in the solution space is given by themesh structure (topology)
of the source q0. In the symmetric version the mesh structure
of the solution is a user input and can be different from the
mesh structure of both the source and the target. We describe
this process below in Algorithm 2. To speed up convergence,
we implemented a multi-resolution method in both time and
space, i.e., we iteratively refine the temporal discretization
of the path and the mesh discretization of the surfaces in the
path and repeat Algorithm 2, where we initialize at each iter-
ation with an up-sampled version of the previous solution.

4.6 Solving the Initial Value Problem

We now turn our attention to a numerical approach for solv-
ing the geodesic initial value problem (IVP) on the space
of parametrized surfaces. We re-emphasize, as noted in

Algorithm 2 Relaxed Matching for Unparametrized Sur-
faces
procedure Relaxed_Matching(V0, V1, V )
V0, V1 : triangular meshes for the source and target.
V : initial guess for a PL path inM.

cost(V ) = λ0DistVar(V (0), V0) + E(V )

+λ1DistVar(V (1), V1)
V = L- BFGS(V , cost)
return V

Sect. 2.2, that the geodesic initial value problemon the spaces
of parametrized and unparametrized surfaces are essentially
equivalent. As a result, the procedure we describe in this sec-
tion gives rise to a solution in the space of unparametrized
surfaces as well.

To solve the geodesic initial value problem, we follow the
variational discrete geodesic calculus approach developed in
Rumpf and Wirth (2015b). Given a surface q ∈ M and a
tangent vector h ∈ TqM (which is assumed to be horizontal
for unparametrized surfaces) our method involves approxi-
mating the geodesic in the direction of h with a PL path V
having N + 1 evenly spaced breakpoints. To simplify nota-
tion, we will denote surfaces in the PL path at time ti = i

N
for i = 0, . . . , N by V (ti ) := Vi . At the first step, we set
V0 = q and V1 = q + 1

N h, and find V2 such that V1 is the
geodesic midpoint of V0 and V2, i.e., we solve for V2 such
that

V1 = argmin
Ṽ

[GV0 (Ṽ − V0, Ṽ − V0) + GṼ (V2 − Ṽ , V2 − Ṽ )].

Differentiating with respect to Ṽ and evaluating the resulting
expression at V1, we obtain the system of equations

2GV0(V1 − V0, Bi ) − 2GV1(V2 − V1, Bi )

+DV1G ·(V2 − V1, V2 − V1)i = 0, (24)

where Bi is the i-th basis vector ofR3n .We denote the system
of equations in (24) by F(V2; V1, V0) = 0, where we stress
again that V0 and V1 are here fixed. We solve this system of
equations for V2 using a nonlinear least squares approach,
i.e., by computing

V2 = argmin
Ṽ

‖F(Ṽ ; V1, V0)‖22

via the L-BFGS algorithm, where we again take advantage of
the automatic differentiation capabilities of pytorch in our
implementation. We then iterate this process step by step to
compute V3, V4, . . . , VN . We summarize our approach via
the pseudocode in Algorithm 3. An example of a solution
to the initial value problem can be seen in Fig. 5. These
results show excellent consistency between the solutions of
the corresponding boundary and initial value problems.
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Algorithm 3 Geodesic Initial Value Problem
procedure Geodesic_IVP(q, h, N )
q : a surface in M
h : a tangent vector in TqM
N : number of time steps

Set V0 = q and V1 = q + 1
N h

for t = 2, . . . , N do
Vt = argmin

Ṽ

‖F(Ṽ ; Vt−1, Vt−2)‖22
return V = [V0, V1, . . . , VN ]

Fig. 5 Solution to a parametrized BVP (top) and to the corresponding
IVP (middle), i.e., after solving the BVP, we calculated the correspond-
ing initial velocity of the solution and used this as the initial condition
to solve the IVP. The results are overlaid (bottom) to illustrate the small
discrepancy in the solutions

4.7 Influence of theMetric Coefficients

In this section we present examples detailing the influence
of the choice of constants in the H2-metric on the geodesics
obtained after matching parametrized and unparametrized
surfaces via Algorithms 1 and 2 respectively. We also report
the influence of the constants on the corresponding compu-
tation times, see Table 1.

A synthetic example of a geodesic boundary value prob-
lem for a variety of choices of constants can be seen in
Fig. 6. We note that the zeroth-order term weighted by a0
corresponds to the invariant L2-metric and penalizes how far
the vertices move weighted by their corresponding volume
forms. In Fig. 6 on the second row, we see an example where
a0 dominates the other coefficients and as a result, the further
a vertexmoves, themore shrinking we observe for faces inci-
dent to these vertices. The second-order term weighted by a2
penalizes paths through meshes with high local curvature. In
the third line of Fig. 6, we present a path where a2 is chosen

Fig. 6 Influence of constants. An example of the same bound-
ary value problem with different choices for the H2-metric
coefficients (a0, a1, b1, c1, d1, a2). First row: (1, 1, 1, 1, 1, 1), sec-
ond row: (10, 1, 1, 1, 1, 1), third row: (1, 1, 1, 1, 1, 0.1), fourth
row: (1, 10, 10, 1, 1, 0.1), fifth row: (1, 1, 10, 0, 1, 10), sixth row:
(1, 100, 1, 1, 1, 1)

to be small relative to the other coefficients and as a result the
midpoints of the geodesic with respect to this choice of coef-
ficients have points with higher local curvature. As noted in
Remark 1, the terms corresponding to the weighting coeffi-
cients a1, b1, and c1 measure the shearing of faces, stretching
of faces, and the change in the normal vector, respectively. In
the fourth row of Fig. 6, we choose a1 and b1 to be large and
a2 to be small. As a result, the geodesic with respect to this
choice of coefficients passes through meshes where portions
of the pipe are flattened, which produces vertices with higher
local curvature without shearing or stretching the faces of the
mesh.

In Fig. 7, we highlight the importance of the second order
term for complex matching problems. In this figure we con-
sider a matching problem between two surfaces undergoing
strong deformations, which in addition, have inconsistent
topologies. In previous work of two of the authors (Bauer
et al., 2020), the same example has been considered for the
SRNF pseudo-distance: in this framework the obtained result
admitted significant singularities in the form of thin spikes
that were appearing in areas of high deformations, cf. the

Table 1 Time per iteration (in s)
of L-BFGS optimization for
solving parametrized and
unparametrized boundary value
problems with respect to first
order (H1) and second order
(H2) Sobolev metrics as well as
the LDDMM diffeomorphic
model (see next section), using
meshes sampled with different
numbers of vertices

# of vertices Unparametrized BVP Parametrized BVP
H2 H1 SRNF LDDMM H2 H1 SRNF LDDMM

50 0.14s 0.11s 0.08s 0.11s 0.08s 0.07s 0.05s 0.04s

200 0.15s 0.12s 0.09s 0.12s 0.08s 0.07s 0.06s 0.04s

800 0.17s 0.13s 0.10s 0.14s 0.09s 0.08s 0.07s 0.05s

3200 0.23s 0.21s 0.17s 0.27s 0.13s 0.11s 0.08s 0.06s

12800 1.39s 0.67s 0.55s 1.12s 0.30s 0.28s 0.21s 0.15s

51200 6.99s 3.88s 3.73s 14.70s 0.73s 0.69s 0.59s 1.12s

All experiments are run on an Intel 3.2 GHz CPU with a Gigabyte GeForce GTX 2070 1620 MHz GPU
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Fig. 7 Matching of two skulls with highly incompatible topol-
ogy. Top row: Geodesic w.r.t. to an H2-metric with coefficients:
(1, 1, 1, 1, 1, 2). Bottom row: the deformed source q(1) for dif-
ferent metrics and methods: the SRNF pseudo distance obtained
with the code of Bauer et al. (2021) (yellow), an H1-metric with
coefficients: (1, 1, 1, 1, 1, 0) (green), an H2-metric with coefficients:
(1, 1, 1, 1, 1, 2) (turquoise), an H2-metric with coefficients allowing

for partial matching: (1, 1, 1, 1, 1, 2) (violet). The target is displayed on
the right. One can observe the regularizing effect of the second-order
terms (turquoise and violet) and, in addition, how topological incon-
sistencies (such as the thin arc near the left ear) are correctly removed
in the partial matching framework (violet) instead of getting shrunk to
almost zero volume (turquoise)

yellow skull in Fig. 7. We repeated this experiment using the
metrics implemented in this article; in the second figure (the
skull in green) one can see the resulting endpoint of an H1-
metric. While the resulting match is slightly superior to the
one of the SRNF framework, it still exhibits some of the spike
singularities. A theoretical explanation for the appearance of
these singularities can be found in the observation that the
H1-metric is not strong enough to control the L∞-norm—by
the Sobolev embedding theorem the H1-metric is exactly at
the critical threshold. Consequently small areas can move far
with a limited cost, which can potentially lead to these spike
type singularities. This observation suggests that this behav-
ior should not occur for higher-order metrics and, indeed,
this is also reflected in our experiment: the turquoise skull,
whichwas obtained using an H2-metric, does not exhibit any
spike singularities and leads to an overall superior matching.
Note, that the thin arc in the right ear region of the skull is
not a spike, but stems from the inconsistent topology of the
shapes, cf. the arc at the right ear of the animal skull. We
tackle these topological inconsistencies in Sect. 6, where we
introduce a partial matching framework which would auto-
matically erase such regions.

Remark 4 With our relaxed matching framework, one can
obtain an adequate matching even when the meshes under
consideration are of low quality, i.e., even if they include a
certain level of degradation caused by topological or geo-
metric noise, such as the presence of holes or degenerate

triangles for instance. Indeed, our approach avoids the need
for an exact matching of the source and target meshes (thanks
to the varifold relaxation term in our variational formulation
of the matching problem), which helps us avoid instances
where enforcing an exact matching would lead to e.g. over-
fitting parts of the source to noisy parts in the target, thus
leading to inaccurate results; see the experiments in Sukur-
deep et al. (2019) for an illustration in the context of planar
curves. Moreover, in our framework, the mesh structure for
solutions to the geodesic boundary value problem is user-
defined, i.e., meshes in the geodesic path can be prescribed
to have any desired topology or resolution (independently
of the mesh structure and resolution of the boundary shapes
(i.e., the source and/or target)). In the case where the mesh
quality of the boundary shapes is low, issues might arise as
the varifold term ismost sensitive to large discrepancies in the
match. Yet, with proper initialization, this issue can be mit-
igated and we still obtain desirable results. This is depicted
in Fig. 7, where we are able to match two skulls despite the
presence of topological noise in the data.

4.8 Comparison with Other ShapeMatching
Frameworks

While the previous section outlines how our approach for
surface matching compares with other intrinsic Rieman-
nian frameworks based on the SRNF and H1-metrics, in
this section, we present a (theoretical) comparison of our
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approach with a wider class of numerical frameworks for
surface matching. For an overview on a variety of surface
matching frameworks, we refer the interested reader to the
survey article (Biasotti et al., 2016). This survey includes,
amongst others, an overview of methods based on the met-
ric (measure) space approach for shape matching, where one
considers geometric objects (e.g. point clouds or meshes)
as metric spaces (possibly with a probability distribution
defined on them), and in which objects are compared via
Gromov–Haussdorf distances, or via its extensions like the
Gromov–Wasserstein distance (Mémoli, 2011). Here, we
will focus mainly on extrinsic Riemannian models for shape
analysis (Beg et al., 2005; Younes, 2010), the functional map
framework (Ovsjanikov et al., 2012; Ren et al., 2018) and
the related evolutionary non-isometric geometric matching
(ENIGMA) approach (Edelstein et al., 2019) for obtaining
shape correspondences, as well as shape interpolation meth-
ods based on as-isometric-as-possible or as-rigid-as-possible
deformations (Kilian et al., 2007), Hamiltonian dynamics
(Eisenberger & Cremers, 2020) or thin shell models (Igle-
sias et al., 2018), and finally deep learning based approaches
for shape registration (Cosmo et al., 2020;Huang et al., 2021;
Trappolini et al., 2021).

First, we discuss the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework of Beg et al. (2005)
and Younes (2010), which stands as the main alternative Rie-
mannian framework for shape analysis. In contrast to the
intrinsicmetrics considered in this paper, theLDDMMmodel
consists in building shape metrics extrinsically via right-
invariant metrics on a given subgroup of Diff(R3), the group
of diffeomorphisms of the ambient space. Then the distance
and geodesic between two surfaces is essentially computed
by looking for a diffeomorphism of the whole space that
warps the source onto the target surfacewhileminimizing the
kinetic energy as defined by the metric on Diff(R3). There
are several fundamental differences between the intrinsic and
extrinsic frameworks, which have already been emphasized
in previous publications (Bauer et al., 2019a, b). To give a
brief summary of those differences, a first important distinc-
tion is that the LDDMM approach imposes more constraints
on the regularity of the surface transformation as it must
be induced by a smooth deformation of the ambient space
itself. A direct consequence is that this approach guarantees
diffeomorphic evolution of the source shape and thus pre-
vents the formation of singularities or self-intersection along
geodesics, which is in general not the case with the intrinsic
H2-metric framework (see Bauer et al., 2019a for examples
of such phenomenon in the space of curves). On the other
hand, geodesics in the diffeomorphic model are only well-
defined between surfaces that belong to the same orbit for the
action of the specific subgroup of diffeomorphisms and thus
relaxing the problem using e.g. varifold distances is a neces-
sity in practice. From a numerical point of view, LDDMM

registration is also an optimal control problem, and it is typ-
ically solved based on a geodesic shooting scheme (Vialard
et al., 2012). The Hamiltonian dynamical equations gener-
ally require evaluating kernel functions between all pairs of
vertices in the source surface. Thus the complexity for the
integration of these systems is quadratic in the number of
vertices, which is an important difference with the linear
complexity one gets with intrinsic metrics. This implies that
for surfaces with a large number of vertices, the complex-
ity of each iteration of the matching optimization scheme
is dominated by the computation of the varifold term and
its gradient in the intrinsic framework of this paper while it
becomes dominated by the integration of the Hamiltonian
system in the case of LDDMM. This is illustrated in Table
1 that shows the time per iteration of the optimization algo-
rithm for the different models.

Another popular method for the analysis of unregistered
surfaces is the functional map framework (Ovsjanikov et
al., 2012; Ren et al., 2018), which allows one to find opti-
mal maps (optimal point-to-point correspondences) between
pairs of surfaces by finding optimal pairings between real-
valued functions defined on the surfaces. This is done by
using a least squares approach to solve a linear system based
on the Laplace-Beltrami operator and Wave (or Heat) Ker-
nel Signature descriptors. These quantities describe the local
geometry of surfaces and the method is largely successful
at matching regions with similar local geometries. However
the global matching of the framework benefits significantly
from a good prior selection of landmarks, and extensions of
the method, such as the evolutionary non-isometric geomet-
ric matching (ENIGMA) approach (Edelstein et al., 2019),
have been proposed to obtain point-to-point correspondences
in a fully automatic way, even in the context of surfaces
with different topologies. Moreover, such methods struggle
with topological or geometric noise, such as the presence of
holes, degenerate triangles or thin spikes in themeshes,which
is a difficulty that our intrinsic H2-metric framework han-
dles well, as demonstrated in Fig. 7. Furthermore, methods
for shape matching using optimal transport techniques have
been proposed. In particular, the Gromov–Wasserstein dis-
tance for object matching (Mémoli, 2011) treats surfaces as
metric-measure spaces and solves for a probabilistic coupling
that preserves pairwise distances of points in the metric-
measure spaces. From such couplings, one can produce
approximate point-to-point correspondences of metric mea-
sure spaces. The computation of pairwise distance matrices
limits the effectiveness of these methods for high resolution
meshes as these computations are quadratic with respect to
the number of vertices. Furthermore, approaches like func-
tional maps, Gromov–Wasserstein, and ENIGMA allow us
to obtain approximate point-to-point correspondences, but
they do not provide an optimal deformation between the reg-
istered shapes. Thus the optimal deformations have to be
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calculated in a second (independent) post processing step,
using e.g. the as-isometric-as-possible, as-rigid-as-possible
framework of Kilian et al. (2007), the Hamiltonian dynam-
ics method given by Eisenberger and Cremers (2020) or a
thin shell model as presented in Iglesias et al. (2018). Con-
sequently, in this setup, the registration, deformation, and
statistical shape analysis are performed separately, which has
been shown to be less desirable as it can introduce a signif-
icant bias in the resulting statistical analysis (Srivastava &
Klassen, 2016). As discussed in Sect. 1, onemajor advantage
of Riemannian frameworks, including intrinsic frameworks
like the one presented in this paper or extrinsic frameworks
like LDDMM, is that they do not suffer from this shortcom-
ing as the registration, geodesic interpolation and statistical
analysis are all performed under the same metric setting.

More recently, several deep learning methods for the reg-
istration and analysis of surfaces have emerged (Cosmo et al.,
2020; Huang et al., 2021; Trappolini et al., 2021). Suchmeth-
ods are exciting as they can provide significant computational
gains by allowing one to register, or even interpolate between
surfaces, via a simple forward pass through a pre-trained
network, which can be highly desirable in practice espe-
cially when working with very large and high dimensional
datasets of surfaces. Nevertheless, the quality of point-to-
point correspondences or optimal deformations obtained via
these deep learning methods relies on having access to a very
large database of ground truths to train the network, which
in practice is difficult and costly to obtain. As a result of this
lack of good training data, these deep learning methods are
thus susceptible to having poor generalization capabilities,
resulting in situations where the method performs poorly on
data that is significantly different or of significantly worse
quality than the training data. One potential future applica-
tion of our intrinsic H2-metric framework is that it could be
used to generate high quality training data (in the form of
geodesic distances, point-to-point correspondences or opti-
mal deformations) for deep learningmethods for the analysis
of surfaces. Such ideas have recently been introduced in the
case of functional data (Chen & Srivastava, 2021; Nunez et
al., 2021) and in the setting of planar curves (Hartman et
al., 2021; Nunez et al., 2020), where early results have been
encouraging.

5 Statistical Shape Analysis of Surfaces

Beyond the comparison of two surfaces, the mathematical
and numerical framework developed in the previous sec-
tions can be used as building blocks for the development
of more general tools for the statistical shape analysis of
sets of surfaces. In this section, we discuss in particular
how to extend our approach to calculate sample averages,
perform principal component analysis, and approximate par-

allel transport between parametrized and unparametrized
surfaces. Our implementation of these statistical shape anal-
ysis methods are available in our open source code1.

5.1 Karcher Mean

A central tool in any statistical shape analysis toolbox is
the notion of a Karcher mean. Let (M,G) be a (possi-
bly) infinite-dimensional Riemannian manifold with cor-
responding geodesic distance function distG . Given data
x1, . . . , xK ∈ M, the Karcher mean x̄ is the minimizer of
the sum of squared distances to the given data points, i.e.,

x̄ = argmin
x∈M

K∑
k=1

distG(x, xk)
2. (25)

Note that the existence and uniqueness of the Karcher mean
is a priori not guaranteed, but requires that the data is suf-
ficiently concentrated, i.e., belongs to a ball in the geodesic
distance whose radius depends on the curvature of the man-
ifold M. The Karcher mean can be computed by a gradient
descent method, as proposed e.g. in Pennec (2006). This
method requires the computation of K geodesic boundary
value problems at each gradient step, where usually a rela-
tively large number of iterations (gradient steps) is necessary.

For computational efficiency, we instead implemented an
alternative algorithm to approximate theKarchermean based
on the iterative geodesic centroid procedure as proposed e.g.
in Ho et al. (2013): Given data points x1, . . . xK ∈ M and
an initial guess x0, we generate a sequence of estimates for
the Karcher mean, namely x̂i for i = 0, . . . , Niter where
Niter = O(K ), by setting x̂0 = x0, and iteratively defining
x̂i = x(1/(i + 1)), with x(t) being the geodesic connecting
x̂i−1 to a data point xk which has been uniformly chosen at
random (with replacement) from the dataset. Thus one only
has to calculate Niter = O(K ) geodesics in total, which is
linear in the number of data points.

A pseudo-code of thismethod is presented inAlgorithm 4.
For parametrized surfaces, we can initialize this algorithm
with the Euclidean mean (average) of the vertices of the sur-
faces in our sample, assuming of course that they have been
centered. We then iteratively solve the geodesic boundary
value problem for parametrized surfaces using Algorithm 1,
whose inputs at the i th iteration are the current Karcher mean
estimate V̄ as the source, the randomly chosen surface Vk
as the target, and a linearly interpolated path between the
source and target as initial guess for the PL path V . For
unparametrized surfaces, there is the additional difficulty that
the data might have inconsistent mesh structures. In order to
extend the computation of the Karcher mean to this situation,

1 https://github.com/emmanuel-hartman/H2_SurfaceMatch.
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one needs to initialize the Karcher mean estimate (V̄ , Ē, F̄)

to some user-definedmesh, whichwill determine the connec-
tivity and topology of the Karcher mean, and then iteratively
solve the relaxed matching problem for unparametrized sur-
faces using Algorithm 2. Note that, as inputs for the relaxed
matching problem at the i th iteration, we can use the current
Karchermean estimate (V̄ , Ē, F̄) as the source, the randomly
chosen surface (Vk, Ek, Fk) as the target, and a constant path
of the Karcher mean estimate for the initial PL path V . An
example of a population of unparametrized shapes can be
seen in Fig. 10, together with their Karcher mean which has
been computed via Algorithm 4.

Algorithm 4 Karcher Mean
procedure Parametrized_Karcher_Mean(V1, . . . , VK )
V1, . . . , VK : vertices of parametrized surfaces from sample

Initialize V̄ = 1
K

∑K
k=1 Vk

for i = 1, . . . , Niter do
Vk ∼ Unif{V1, . . . , VK }
V = Linear_Interpolation(V̄ , Vk)
V = Parametrized_Geodesic_BVP(V̄ , Vk , V )

V̄ = V (1/(i + 1))
return V̄

procedure Unparametrized_Karcher_Mean(V1, ..., VK , V̄ )
V1, . . . , VK : triangular meshes from the sample
V̄ : initial guess for Karcher mean

for i = 1, . . . , Niter do
Vk ∼ Unif{V1, . . . , VK }
V = Linear_Interpolation(V̄ , V̄ )

V = Relaxed_Matching(V̄ , Vk , V )

V̄ = V (1/(i + 1))
return V̄

5.2 Dimensionality Reduction

Dimensionality reduction is a key tool in modern statis-
tics and machine learning. We illustrate how to construct
two popular dimensionality reduction tools for the statistical
shape analysis of surfaces using our framework, namely data
visualization through multidimensional scaling, and princi-
pal component analysis.

5.2.1 Visualizing the Distance Matrix Using
Multidimensional Scaling

Multidimentional scaling (MDS) is a well-known procedure
formapping K points in a high (or infinite) dimensional space
into a lower dimensional space, while maintaining informa-
tion about the pairwise distances between these K points.
More specifically, given a (possibly) infinite-dimensional
Riemannian manifold (M,G) with corresponding geodesic
distance function distG , with data x1, . . . , xK ∈ M, the goal
of MDS is to find points x̂1, . . . , x̂K ∈ R

d for some d > 0

Fig. 8 Visualizing the distance matrix between ten human body shapes
using multidimensional scaling. The geodesic distance naturally clus-
ters the population into male and female shapes

such that:

x̂1, . . . , x̂K

= argmin
y1,...,yK∈Rd

⎛
⎝∑

i �= j

(distG(xi , x j ) − ‖yi − y j‖)2
⎞
⎠

1
2

.

In the context of statistical shape analysis, one can use MDS
to project a dataset of surfaces as points in Euclidean space
for data visualization purposes, or as an intermediary step in
clustering applications with sets of surfaces, see Fig. 8.

5.2.2 Tangent PCA

Principal component analysis (PCA) is an important dimen-
sionality reduction technique in statistics for analyzing the
variability of data in Euclidean space. More precisely, given
data points x1, . . . , xK ∈ R

d having zero mean, the goal of
PCA is to produce a sequence of linear subspaces {W�}d�=1
that maximizes the variance of the data when it is pro-
jected onto those subspaces (Fletcher et al., 2004). This
sequence of linear subspaces W� = span({w1, . . . , w�}) for
� = 1, . . . , d are constructed by finding an orthonormal basis
{w1, . . . , wd} of Rd which can be computed as the set of
ordered eigenvectors of the sample covariance matrix of the
data. Thus, PCA amounts to finding the vectors {w�}d�=1,
which are called the principal components of the data.

Extending PCA to manifolds, even in a finite dimensional
setting, is not straightforward nor canonical due to the dif-
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ference in tangent space at each point of the manifold. As
a result, several different models and heuristics have been
proposed for manifold PCA. Among those, tangent PCA
(Fletcher et al., 2004) is probably the simplest as it relies on
directly linearizing the problem around a single point (the
Karcher mean). More specifically, let (M,G) be a (pos-
sibly) infinite-dimensional manifold. Consider data points
x1, . . . , xK ∈ M, and a reference point x̄ ∈ M, for which a
natural choice is e.g. theKarchermean of the data points. The
goal of tangent PCA is to find a set of principal component
geodesics for the data. By principal component geodesics,we
mean a set of geodesics all starting at x̄ whose initial veloc-
ities are given by tangent vectors {w�}d�=1 ∈ Tx̄M that are
computed as the principal components of the data in the lin-
ear space Tx̄M. Thus, tangent PCA amounts to performing
standard PCA in Tx̄M, which can be interpreted as finding
the “principal tangent vectors” for the data, i.e., the initial
velocities which uniquely determine the geodesics starting
at the reference point x̄ along which one has to move on M
in order to maximize the “variability” of the data.

We implemented an algorithm for performing tangent
PCA when given a set of K surfaces and a reference point,
with details given in Algorithm 5. Our method consists of
solving K geodesic boundary value problems via Algo-
rithm 1 (for parametrized surfaces) or Algorithm 2 (for
unparametrized surfaces, resp.), using the reference point
as the source and each surface in our dataset as respective
targets. This produces K geodesics, which we use to esti-
mate K tangent vectors {hk} via finite differences, i.e., by
taking the difference between the vertices in the geodesic
paths at the first two time points. We then perform PCA
on these tangent vectors with respect to the metric GV̄ at
the reference point. This is specifically done by computing
the eigendecomposition {λ�, v�} of the K × K Gram matrix
(GV̄ (hi − h̄, h j − h̄))i, j=1,...,K , where h̄ = 1

K

∑K
k=1 hk .

We then recover the principal component vectors w� =∑K
k=1 v�,k(hk−h̄) and the principal component geodesics by

solving initial value problems starting at V̄ in the direction
of λ�w� using Algorithm 3. Note that we solve these IVPs in
the positive and negative principal directions ±λ�w� respec-
tively. While we only write the pseudocode for tangent PCA
on parametrized surfaces in Algorithm 5, the method works
verbatim for the case of unparametrized surfaces, except that
the relaxedmatching algorithm (Algorithm2) is used to solve
the K geodesic BVPs.

To illustrate the effectiveness of tangent space PCA,
cf. Figs. 9 and 10, we first display the principal compo-
nent geodesics for an unparametrized dataset of surfaces in
Fig. 10. As a second, more large scale experiment, we ana-
lyze the faces of the CoMA dataset (Ranjan et al., 2018).
As this data comes with known point correspondences, we
are able to interpret the data as parametrized surfaces. To
evaluate our method we separate the data into a testing set

Fig. 9 Tangent PCA for a set of parametrized surfaces. On the left
we display the first three principal component geodesics of a training
set. On the right, we display a reconstruction of two elements from a
separate testing set, where each vertex is colored based on the Euclidean
error of the reconstruction

of ∼ 2000 meshes and a training set of ∼ 700 meshes. In
Fig. 9, we illustrate the principal component geodesics of
the training set computed using our method. To reconstruct
a target mesh, we then perform an unparametrized geodesic
matching from a template to the target with respect to the
first 40 tangent PCA basis vectors. In particular, we optimize
the relaxed matching energy over all paths where the tangent
vectors of the path can be written as a linear combination
of the tangent PCA bases. In Fig. 9, we also display such a
reconstruction of two surfaces from the testing set. When we
reconstruct the entire testing set in this way we achieve 75%
of all vertices within a Euclidean error of 1mm. For compar-
ison, the percentage of vertices within 1mm accuracy is 47%
when using traditional PCA and 72% when using the Mesh
Autoencoder methods of Ranjan et al. (2018).

Algorithm 5 Tangent PCA (TPCA)

procedure Parametrized_TPCA(V1, . . . , VK , V̄ )
V1, . . . , VK : vertices of parametrized surfaces from sample
V̄ : vertices of the reference point

for k = 1, . . . , K do
V = Linear_Interpolation(V̄ , Vk)
V = Parametrized_Geodesic_BVP(V̄ , Vk , V )

hk = N (V (1/N ) − V (0))
{λ�,w�} = PCA(h1, . . . , hK , V̄ )

for � = 1, . . . , L do
P+

� = Geodesic_IVP(V̄ , λ�w�)

P−
� = Geodesic_IVP(V̄ ,−λ�w�)

return {P+
� , P−

� }
procedure PCA(h1, . . . , hK ,V̄ )

h̄ = 1
K

∑K
k=1 hk

GV̄ = Riemannian H2-metric at V̄
� = (GV̄ (hi − h̄, h j − h̄))i, j=1,...,K
{λ�, v�} = eigenvalues and eigenvectors of�.
w� = ∑K

k=1 v�,k(hk − h̄)

return {λ�,w�}
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Fig. 10 First row: a data set of 10 faces with inconsistent mesh structures. Second row: the first principal component geodesic (in the positive and
negative directions) from the Karcher mean (purple) of the data set. The principal direction is obtained by tangent PCA (Color figure online)

5.3 Parallel Transport

Parallel transport is a method of transporting geometric data
(tangent vectors) between different points in a manifold. In
our situation this concept has a natural application to motion
transfer, as shown in Fig. 11. Given a geodesic (i.e., amotion)
between a source and target surface (e.g. the two cats in
Fig. 11), we can transfer the motion to a new source shape
(e.g. the lioness in Fig. 11) by parallel transporting the ini-
tial velocity from the geodesic motion to the new source
shape, and then solving an initial value problem starting at
the newsource shapewith initial velocity givenby the parallel
transported tangent vector. This procedure requires that we
approximate parallel transport of tangent vectors on M. We
use an implementation of Schild’s ladder to produce a first-
order approximation of parallel transport (Guigui & Pennec,
2021; Kheyfets et al., 2000). Given a Riemannian manifold
M, with x0, x1 ∈ M, h ∈ Tx0M, and letting V be a geodesic
such that V (0) = x0 and V (1) = x1, the calculation of paral-
lel transport using Schild’s ladder requires one to iteratively
compute several small geodesic parallelogramswith one side
corresponding to a small step along V and the other side
being a small step in the direction of h. The transport of h
for this small step along V is defined to be the log map of
the side opposite of h. One then repeats the computation of
these rungs until reaching x1. An algorithmic explanation of
this method is given in Algorithm 6 below.

Algorithm 6 Parallel Transport
procedure Parametrized_Parallel_Transport(V , h, N )
V : geodesic to transport the tangent vector along
h : tangent vector to be transported
N : number of iterations for Schild’s ladder

for i = 1, . . . , N do
W = V ( i−1

N ) + 1
N h

U = Linear_Interpolation((V (i/N ),W ))

M = Parametrized_Geodesic_BVP(V (i/N ),W ,U )
( 1
2

)
k = M − V ( i−1

N )

h = Geodesic_IVP(V ( i−1
N ), 2k)(1) − V (i/N )

return

6 Partial Matching

In this final section, we further extend the second-order elas-
tic surface analysis framework introduced in the previous
sections by augmenting the surface matching model with the
estimation of spatially-varying weights on the source shape.
As we will show, this approach will enable us to compare
and perform statistics on sets of surfaces which may have
incompatible topological properties or exhibit partially miss-
ing data.

6.1 Limitations of the Previous Framework

We start by motivating the need for this extended approach.
Indeed, the relaxed matching framework presented so far
in (21) (as well as its non-symmetric version (20)) is pri-

Fig. 11 Example of parallel transport using Schild’s ladder. We com-
pute the initial tangent vector in the direction of the top geodesic,
use Schild’s ladder to transport the tangent vector along the geodesic

between the leftmost surfaces, and finally compute the geodesic on the
the bottom as an IVP. Animations of the obtained motion transfer can
be found in the supplementary material and on the github repository

123



International Journal of Computer Vision (2023) 131:1183–1209 1203

marily designed for the comparison of complete surfaces
with consistent topology, as illustrated by the examples in
Fig. 12.

Although the matching obtained from (21) is inexact
and may in practice be able to handle small inconsistencies
including topological noise, it remains ill-suited for datasets
involving surfaceswith significantmissing parts or important
topological differences (either artifactual or not). Attempt-
ing to compare two such surfaces based on model (21) is
likely to lead to highly singular behaviour in the estimated
geodesics and distances. This was already emphasized in the
case of planar shapes (such as curves and shape graphs) in
the authors’ previous publication (Sukurdeep et al., 2022),
and can be further observed in the case of 3D surfaces, as
seen e.g. in Fig. 7 with the formation of geometric artifacts
such as the thin arc around the ear of the skull, and in Fig. 12
with phalanges that shrink to almost zero volume.

To address this shortcoming in our model, we propose to
incorporate partial matching capabilities in our framework.
Extending the idea introduced in Sukurdeep et al. (2022), we
do so indirectly by considering surfaces augmented with a
weight function defined on their support, leveraging the flex-
ibility of the varifold representation for that purpose. This
will lead to a new matching formulation between pairs of
weighted surfaces, where, in combination to the geometric
matchingprocess, one canvary theweights assigned to differ-
ent components or parts of the source surface. In particular,
this allows us, by setting weights to 0 in specific areas, to
remove parts of the source when they have no corresponding
parts in the target surface, as shown in Figs. 12 and 13.

6.2 TheVarifold Norm on the Space ofWeighted
Surfaces

We first define a parametrized weighted surface as a couple
(q, ρ), where q ∈ I is a parametrized surface as previously
defined and ρ : M → [0, 1] is a function on the parameter
space M . For each (u, v) ∈ M , one can interpret ρ(u, v)

as the weight assigned to the point q(u, v) on the surface.
The primary reason to assume the values of ρ in the interval
[0, 1] is that we are focusing on the issue of partial matching.
In such a scenario, it is indeed natural to impose this con-
straint, with the interpretation being that the weight function
to be estimated in the matching problem introduced below
should vanish on parts of the transformed surface that need
to get erased to adequately match the target, while remaining
roughly equal to 1 on the other parts. Note that in other situ-
ations such as shapes with multiplicities, one could consider
more general R+-valued weight functions.

Any such weighted surface (q, ρ) can still be represented
as the varifold that we write μq,ρ := ρ ·μq , which is defined
as the image measure (q, nq)∗(ρ volq), where nq is the unit
oriented normal field of q, as defined earlier in Sect. 2.1, and

ρ volq is the area form on M induced by q rescaled by the
weight function ρ. With this definition, the kernel metrics on
varifolds outlined earlier in Sect. 3.1 immediately induce a
fidelity metric between weighted surfaces. Specifically, the
kernel inner product in V ∗ between two weighted varifolds
μq0,ρ0 and μq1,ρ1 is given explicitly by:

〈μq0,ρ0 , μq1,ρ1〉V ∗

:=
∫∫

M×M
	(|q0 − q1|)
(n0 · n1)ρ0ρ1 volq0 volq1 ,

(26)

where we have dropped the coordinates (u0, v0) and (u1, v1)
in the above expression for concision. This simply amounts
to a weighted version of (18). The squared weighted varifold
kernel distance ‖μq0,ρ0 − μq1,ρ1‖2V ∗ can again be obtained
via a quadratic expansion, exactly as in (19).

6.3 Relaxed Surface Matching withWeights

We are now able to formulate the extension of the matching
problem of Sect. 3.2 to weighted surfaces:

Given a pair of weighted surfaces (q0, ρ0) and
(q1, ρ1), we consider the variational problem:

inf

{ ∫ 1

0
Gq(t)(∂t q(t), ∂t q(t))dt

+ λ0 ‖μq(0) − μq0‖2V ∗ + λ1 ‖μq(1),ρ − μq1,ρ1‖2V ∗
}
,

(27)

where the infimum is taken over paths of immersed sur-
faces q(·) ∈ C∞([0, 1], I), and also over all weight
functions ρ : M → [0, 1], with λ0, λ1 > 0 being bal-
ancing parameters.

In this framework, we refer to (q0, ρ0) as the source,
(q(1), ρ) as the transformed source, and (q1, ρ1) as the tar-
get. Note that in addition to relaxing the end time constraint,
we have also relaxed the initial constraint of q(0) being q0 via
a second varifold fidelity term in the model above. Similarly
to what was explained in the context of (21), this allows us to
choose the topological and mesh properties of the path q(·)
independently of those of the source q0, once again paving
the way for the use of the efficient multiresolution scheme
from Bauer et al. (2021) to numerically solve this matching
problem between weighted surfaces. We note that one could
also formulate an asymmetric version of problem (27) by
instead enforcing the initial constraint q(0) = q0 as in (20).
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Furthermore, aside from the constraint of ρ taking its val-
ues in [0, 1], the variational problem (27) does not involve
any cost penalty on the weight function. Yet it would be
possible to add regularizers for the weight function to the
functional, including for instance the total variation norm
of ρ − ρ0 as done in Sukurdeep et al. (2022) for planar
shapes so as to promote piecewise constant weight functions.
In the context of partial matching, it may also be relevant to
enforceρ to take values close to 0 or 1, which can be achieved
e.g. by adding a double well pointwise penalty of the form∫
M (ρ(u, v)(ρ(u, v) − 1))2 volq(u, v). A clear downside to

including extra regularizers is the added layer of complexity
to the matching model due to the presence of extra terms and
balancing parameters. For that reason, we decided to focus
this work on the above unpenalized formulation.

Remark 5 We emphasize that in (27), we only allow for
weight variations on the transformed source, which lets us
model in particular the erasure of parts of q(1) so as to match
the target. This is useful e.g. in the context of partialmatching
problems with missing data in the target shape, see Fig. 12.
One can easily adapt the model to allow for weight estima-
tion on the target by minimizing over a weight function ρ̃

defined on q1, with the weights on the transformed source
shape being kept fixed. More generally, one could techni-
cally model weight variations on both shapes, by jointly
optimizing over two weight functions ρ and ρ̃. However, the
latter case requires careful regularization on those functions
in order to prevent the trivial solution of setting all weights
to 0. We will thus leave the study of this case to future work.

6.4 Numerical Optimization withWeights

We now discuss our approach for numerically solving the
matching problem between weighted surfaces, whose dis-
cretization can be performed in similar fashion as previously.
A discrete weighted surface (q, ρ) is once again represented
as a triangular mesh (V , E, F) as in Sect. 4, while the weight
function ρ shall be modelled by its discrete set of values at
the center c f of each face f ∈ F of the mesh, i.e., by the
vector in [0, 1]|F | with entries ρ f := ρ(c f ).

Then, letting (V , E, F, ρ) and (Ṽ , Ẽ, F̃, ρ̃) denote the
discretizations of two weighted surfaces (q, ρ) and (q̃, ρ̃),
we can first approximate the varifold inner product:

〈μq,ρ, μq̃,ρ̃〉V ∗

≈
∑
f ∈F

∑
f̃ ∈F̃

	(|c f − c f̃ |)
(n f · n f̃ )ρ f ρ̃ f̃ vol f vol f̃ ,

where n f , n f̃ and vol f , vol f̃ are the unit normals and volume
forms that have been discretized over the faces f ∈ F and
f̃ ∈ F̃ of themeshes, as outlined inSect. 4.1.The full varifold

fidelity term ‖μq,ρ −μq̃,ρ̃‖2V ∗ is then obtained as in (19), via
the quadratic expansion of the squared norm.

Equipped with the discretizations of the H2-path energy
described in Sect. 4.2, of the varifold norm described in
Sect. 4.4, and of the weighted varifold norm described above,
we are led to numerically solve (27) as finite dimensional
optimization problem, where theminimization occurs jointly
over the vertices of the discretized piece-wise linear path
of meshes V : [0, 1] → M and over the discretized
weight function ρ ∈ [0, 1]|F |. In order to deal with the
box constraints on the values of ρ, we minimize the dis-
cretized matching functional using the bound constrained
limited memory BFGS (L-BFGS-B) algorithm (Byrd et al.,
1995), whose implementation is available through scipy.
We summarize the weighted surface matching approach in
Algorithm 7 below.

Algorithm 7 Relaxed Matching for Weighted Surfaces
procedure Weighted_Matching((V0, ρ0), (V1, ρ1), V , ρ)
V0 : triangular mesh for the source
ρ0 : weights on the source
V1 : triangular mesh for the target
ρ1 : weights on the target.
V : initial guess for a PL path inM.
ρ : initial guess for weights on the transformed source

cost(V , ρ) = λ0DistVar(V (0), V0) + E(V )

+λ1DistVar((V (1), ρ)), (V1, ρ1))
V , ρ = L- BFGS- B(V , ρ, cost)
return V , ρ

6.5 Partial Matching Experiments

To illustrate the capabilities of the weighted surface frame-
work for partial matching, we performed several numerical
experiments. In all the figures, we compute the linear inter-
polation (1 − t)ρ0 + tρ between the initial and estimated
weight function and show this interpolated weight function
along the geodesic through a transparency map in order to
highlight in amore visual way the effect of weight variations.

First, we demonstrate the benefits of weight estima-
tion when comparing surfaces with missing parts, see the
last row of Fig. 1 where we perform a matching with a
partially-observed femur bone, and Fig. 12 where we use
an incomplete set of phalanges. Partially observed or incom-
plete data is a common occurrence in practice and can be due
to several factors, including segmentation issues, inconsistent
field of views or occlusions during the data acquisition pro-
cess. Typically, matching surfaces with missing parts using
standard elastic surface matching techniques will result in
the transformed source getting bent, stretched or compressed
in an attempt to fill in some of those missing parts. This
can result in unnatural deformations (see the fairly extreme
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Fig. 12 Matching with missing data. We use a complete set of pha-
langes (i.e., hand bones) as the source, and a different set of phalanges
as the target, where some bones on the index finger and thumb were
artificially removed. Top row: We matched the surfaces without weight
estimation using Algorithm 2. The parts of the transformed source that
are getting matched to the removed bones from the target get shrunk to
almost zero volume. The estimated geodesic distance is 117.006. Bot-

tom row: We augment the surfaces with weights and use Algorithm 7
to match them. Our model correctly “erases” (i.e., estimates vanishing
weights) the appropriate parts of the transformed source to account for
the corresponding missing bones on the target. This produces a natural
looking geodesic between the source and target, without the production
of singularities, with a lower estimated geodesic distance of 114.564

Fig. 13 Splitting into multiple components. We match a single sphere
with two disconnected spheres using Algorithm 7. The transformed
source q(1) contains a “bridge” between the two spheres in the target
where the algorithm estimates zero weights

shrinking of phalanges in Fig. 12) and in turn in an over-
estimation of the geodesic distance between these surfaces,
making any subsequent statistical shape analysis spurious for
datasets of partially observed surfaces. As evidenced by the
second row of Fig. 12, the proposed approach overcomes
this difficulty through the automatic estimation of vanish-
ing weights at the location on the parts of the source shape
corresponding to the missing ones of the target.

Second, we computed the matching of surfaces with com-
pletely different topologies, as shown with the example of
the skulls in Fig. 7 and the synthetic examples from Figs. 13
and 14. The estimation of vanishingweights indirectly allows
us to recover several useful types of transformations that are
otherwise not achievable in the original model. For instance,
it enables the model to erase the thin arc near the left ear
of the turquoise skull in Fig. 7 as opposed to geometrically
shrinking it. It further allows for the splitting of a surface into
several connected components, as shown in Fig. 13, as well
as the creation of holes when matching surfaces with dif-
ferent genuses, as illustrated by Fig. 14. It should be noted,
however, that this approach does not directly model topolog-
ical changes in the mesh of the transformed source (which
remains the same along the geodesic), but rather allows us
to compare objects with different topologies by erasing parts
of the transformed source via the weight function.

Fig. 14 Matching with highly inconsistent topological structures. We
match a sphere (genus zero surface) and a torus (genus one surface) via
Algorithm 7. Our model artificially accounts for the creation of a hole,
i.e., the change in topology, via the estimation of vanishing weights

Lastly, we considered a case of Karcher mean estimation
under partial observations. As a proof of concept, we com-
puted the Karcher mean of a set of five distinct hands, each
missing a different finger which was artificially removed,
see Fig. 15. Following the same principle as the algorithm
for Karcher mean estimation presented in Sect. 5.1 (Algo-
rithm4),we appliedAlgorithm7 to iteratively solveweighted
matching problems from the current Karcher mean estimate
to a randomly chosen surface from our dataset. As the ini-
tial guess for the Karcher mean, we used a complete hand
(i.e. a closed mesh with five fingers) from a different subject.
While other choices for the initial guess, e.g. an ellipsoid, are
possible, poorly chosen initializations will result in slower
convergence to the Karcher mean and potentially to a lower
mesh quality of the estimated Karcher mean. The joint esti-
mation of weights at each successive matching prevents the
geometric shrinking of one of the fingers and ultimately
results in the realistic looking Karcher mean displayed in
Fig. 15. In Fig. 16, we also show the computed geodesics
from the Karcher mean to each subject. We also report the
Riemannian energy of the geodesic path for each of these
geodesics in Table 2. As a point of comparison, we also ran
the non-weighted Algorithm 2 between the Karcher mean
estimate and each of the corresponding complete hands (i.e.,
without the artificially removed fingers), and report the Rie-
mannian energy of the resulting geodesics in the last column
of Table 2. We observe that the geodesic distance estimates
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Fig. 15 Karcher mean estimation with weights. The data (turquoise)
consists of 5 distinct hands each missing a different finger, and the
Karchermean estimate (yellow) is a complete hand (Color figure online)

Fig. 16 Geodesics between Karcher mean estimate (yellow on the left)
and data points of the example in Fig. 15 (turquoise on the right) (Color
figure online)

reported in Table 2 are comparable and quite consistent in
both scenarios. This point highlights the reliability of the
distance estimates obtained with weight estimation and hints
at the potential viability of this approach for statistical shape
analysis of datasets of partially observed surfaces.

Data Sources

The mesh data for our numerical simulations in this paper
was obtained from several sources, including the meshes
made available by Robert Sumner and Jovan Popovic from

Table 2 Geodesic distances between the Karcher mean estimate and
data points

Missing part Incomplete hand Complete hand
(Algorithm 7) (Algorithm 2)

Thumb 0.610 0.653

Index 0.687 0.708

Middle Finger 0.996 1.007

Ring Finger 0.708 0.789

Pinky 0.642 0.799

the Computer Graphics Group at MIT (Sumner & Popović,
2004), by Wojtek Zbijewski from the Biomedical Engineer-
ing Department at JHU, by Boukhayma et al. from their open
source implementation of Boukhayma et al. (2019), by the
MorphoSource archive (https://www.morphosource.org), the
TOSCA dataset (Bronstein et al., 2008), the dynamic FAUST
dataset (Bogo et al., 2017), the CoMA dataset (Ranjan et al.,
2018), and the dataset of faces from Vlasic et al. (2004).

7 Conclusion and FutureWork

In this paper, we introduced a mathematical framework and
several numerical algorithms for the estimation of geodesics
and distances induced by second-order elastic Sobolev
metrics on the space of parametrized and unparametrized
surfaces. We leveraged our surface matching algorithms to
develop a comprehensive collection of routines for the sta-
tistical shape analysis of sets of 3D surfaces, which includes
algorithms to computeKarchermeans, performdimensional-
ity reduction via multidimensional scaling and tangent PCA,
and estimate parallel transport across surfaces. We also pro-
posed to resolve the issue of partial matching constraints
in the situation of missing data and inconsistent topologies
through the additional estimationof aweight functiondefined
on the source shape. A more in-depth quantitative evalua-
tion and comparison of our method against other approaches
for partial shape matching, such as Cosmo et al. (2016) and
Rodolà et al. (2017) is left for future work.

Finally, we want to mention several limitations of the
method presented in this article. First, parameter selection
may be an important issue in this framework if no reason-
able priors are available for the choice of the H2-metric
coefficients or the kernel scale used to compute the varifold
relaxation term. As we illustrated in the numerical experi-
ments, those can all have significant influence on the quality
of registration and on the behavior of geodesics. While we
use different practical strategies such as multiscale schemes
to mitigate this issue, a subject of active current investigation
is precisely to develop effective approaches to obtain such
parameter estimates in a data-driven way, see (Bauer et al.,
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2022a) for a recent preprint on this topic in the context of
elastic metrics on curves.

A second potential limitation is the choice of initializa-
tion for the geodesic path, as the variational problems we
tackle are non-convex. In this work, we typically initialize
algorithms using a time constant path with either the source
or target mesh. However, one could expect extra robustness
if more adapted initializations are chosen, which could be
computed for instance as the output of some other fast sur-
face matching procedure.

Lastly, while the computational cost of our approach is
favorable when compared to other Riemannian frameworks
for shape analysis, it still involves running an optimization
procedure with quadratic complexity at each iteration. As a
result, the numerical pipelines of this paper might become
somewhat impractical when working with high resolution
meshes (e.g. O(106) vertices or more) or for populations
with a large number of subjects. One way to overcome this
issue would be to leverage deep learning architectures, sim-
ilar to related work in the case of functional data (Chen &
Srivastava, 2021; Nunez et al., 2021) or planar curves (Hart-
man et al., 2021; Nunez et al., 2020). This would reduce the
computation of quantities such as distances and geodesics to
a simple forward pass through a neural network trained from
supervised data obtained fromour intrinsic H2-metric frame-
work. Conversely, many existing neural network methods
applied to surface mesh processing, such as the autoencoder
models of Cosmo et al. (2020), Ranjan et al. (2018) and
Huang et al. (2021), attempt to learn a latent space represen-
tation of the surface dataset using various metric priors as
regularization. We also plan to investigate in the future the
effectiveness of second-order Sobolev metrics to regularize
latent space representation learning of mesh autoencoders.
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