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Abstract
This paper focuses on long-tailed object detection in the semi-supervised learning setting, which poses realistic challenges, but
has rarely been studied in the literature.We propose a novel pseudo-labeling-based detector calledCascadeMatch.Our detector
features a cascade network architecture, which has multi-stage detection heads with progressive confidence thresholds. To
avoid manually tuning the thresholds, we design a new adaptive pseudo-label mining mechanism to automatically identify
suitable values from data . To mitigate confirmation bias, where a model is negatively reinforced by incorrect pseudo-labels
produced by itself, each detection head is trained by the ensemble pseudo-labels of all detection heads. Experiments on
two long-tailed datasets, i.e., LVIS and COCO-LT, demonstrate that CascadeMatch surpasses existing state-of-the-art semi-
supervised approaches—across awide range of detection architectures—in handling long-tailed object detection. For instance,
CascadeMatch outperformsUnbiased Teacher by 1.9APFix on LVISwhen using a ResNet50-based Cascade R-CNN structure,
and by 1.7 APFix when using Sparse R-CNN with a Transformer encoder. We also show that CascadeMatch can even handle
the challenging sparsely annotated object detection problem. Code: https://github.com/yuhangzang/CascadeMatch.

Keywords Object detection · Long-tailed learning · Semi-supervised learning

1 Introduction

Though object detection has been significantly advanced in
the supervised learning domain by neural network-based
detectors (Liu et al., 2016; Ren et al., 2015; Lin et al., 2017b;
Tian et al., 2019; Carion et al., 2020), there is still a large
room for improvement in semi-supervised object detection
(SSOD). In practice, SSOD is desirable because annotat-
ing bounding boxes and their object classes are both costly
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and time-consuming. Most existing semi-supervised object
detectors (Sohn et al., 2020b; Liu et al., 2021a; Zhou et al.,
2021a; Tang et al., 2021a, b; Arazo et al., 2020; Wang et al.,
2021e; Yang et al., 2021) are learned by estimated pseudo-
labels, which are assigned to bounding box proposals and
filtered by a single fixed confidence threshold. Such a com-
bination of pseudo-labeling and confidence thresholds-based
filtering has been largely inspired by research on semi-
supervised image classification (Berthelot et al., 2019; Xie
et al., 202a; Sohn et al., 2020a; Rizve et al., 2021).

Most existing studies are conducted on the COCO
dataset (Lin et al., 2014) that has curated categories and
highly balanced data distributions. However, real-world
problems are much more challenging than what the COCO
dataset represents in that data distributions are often long-
tailed, i.e., a majority of classes have only a few labeled
images, which could easily result in an extremely biased
detector. In recent years, the research community has paid
increasing attention to long-tailed object detection, with sev-
eral relevant datasets released, such as LVIS (Gupta et al.,
2019) and COCO-LT (Wang et al., 2020). However, to our
knowledge, none of the existing studies has been devoted to
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Fig. 1 Motivation of our research. a The Average Precision (AP) and
Average Recall (AR) curves, obtained using different fixed confidence
thresholds (denoted by τ ). Clearly, none of the chosen thresholds gives
the best trade-off. b The distribution of prediction scores for a long-
tailed dataset,which shows ahighdegree of imbalance between the three

class groups. c Sorted number of samples per class seen by the model
during training. CascadeMatch retains muchmore pseudo-labeled sam-
ples than Unbiased Teacher with respect to the common and rare classes

long-tailed object detection in the semi-supervised setting, a
more challenging yet practical problem.

Implementing semi-supervised object detection algo-
rithms on long-tailed datasets is not trivial. By training
a state-of-the-art semi-supervised detector, i.e., Unbiased
Teacher (Liu et al., 2021a), using a long-tailed LVIS (Gupta
et al., 2019) dataset, we identify the following three major
problems. First, a fixed confidence threshold often fails to
provide a good trade-off between precision and recall. The
shortcoming is evidenced in Fig. 1a, which shows none of the
commonly used thresholds gives the best performance in both
the AP and AR metrics, e.g., a fixed threshold of 0.6 returns
the highest recall but has the lowest precision. Second, by
digging deeper into the distribution of prediction scores, we
observe that the model’s predictions are biased toward the
frequent classes (see Fig. 1b). Finally, we identify the reason
why using a fixed threshold leads to low confidence—and
hence low prediction accuracy—on the common and rare
classes: the model’s exposure to these classes during train-
ing is substantially reduced compared to that to the frequent
classes (see Fig. 1c).

To overcome these problems, we propose CascadeMatch,
a novel pseudo-labeling-based approach to addressing long-
tailed and semi-supervised object detection. Specifically,
CascadeMatch features a cascade pseudo-labeling (CPL)
design, which contains multi-stage detection heads. To
control the precision-recall trade-off, we set progressive con-
fidence thresholds for detection heads to focus on different
parts. The early detection head is assigned a small confidence
threshold to improve recall, while the subsequent heads are
assigned larger confidence thresholds to ensure precision.
The use of multiple heads also allows the unique chance for
us to deal with confirmation bias – a phenomenon where
a model is iteratively reinforced by incorrect pseudo labels
produced by itself. In particular, we show the possibility of
using ensemble predictions from all detection heads as the
teacher’s supervision signal to obtain more reliable pseudo
labels for training each individual detection head. To deal

with the issue of biased prediction score distributions to
frequent classes, we propose an adaptive pseudo-label min-
ing mechanism (APM) that automatically identifies suitable
class-wise threshold values from data with minimal human
intervention. As shown in Fig. 1c, with the APMmodule, our
approach can retainmore pseudo-labels for common and rare
classes than the previous SOTA approach (Liu et al., 2021a),
boosting the performance for classes with small sample sizes
(Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10).

We present comprehensive experiments on two chal-
lenging long-tailed object detection datasets, namely LVIS
v1.0 (Gupta et al., 2019) and COCO-LT (Wang et al., 2020),
under the SSOD setting. Overall, CascadeMatch achieves the
best performance on both datasets in all metrics. Notably,
on LVIS, CascadeMatch improves upon the most competi-
tive method, i.e., Unbiased Teacher (Liu et al., 2021a), by
2.3% and 1.8%APFix in the rare and common classes, which
confirm the effectiveness of our design for long-tailed data.
Importantly, CascadeMatch is general and obtains consistent
improvements across a variety of detection architectures,
covering both anchor-based R-CNN detectors (Ren et al.,
2015; Cai and Vasconcelos, 2019) and the recent Sparse R-
CNN detector (Sun et al., 2021) with the Pyramid Vision
Transformer encoder (PVT) (Wang et al., 2021d) (Table 7).
We also conduct various ablation studies to confirm the effec-
tiveness of each of our proposed modules.

We also apply CascadeMatch to another challenging
sparsely-annotated object detection (SAOD) setting (Wu et
al., 2019; Zhang et al., 2020; Wang et al., 2021b; Zhou et al.,
2021b) where training data are only partially annotated and
contain missing annotated instances. Again, CascadeMatch
yields considerable improvements over the supervised-only
baseline and a state-of-the-art method (Zhou et al., 2021b)
(Table 10). Finally, we provide several qualitative results and
analyses to show that our proposed CascadeMatch method
generates high-quality pseudo labels on both SSOD and
SAOD settings.
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2 RelatedWork

2.1 Semi-Supervised Object Detection

It has been a topical research area due to its importance to
practical applications (Rosenberg et al., 2005; Misra et al.,
2015; Tang et al., 2016;Wang et al., 2018; RoyChowdhury et
al., 2019; Jeong et al., 2019; Gao et al., 2019; Li et al., 2020a;
Sohn et al., 2020b; Tang et al., 2021a; Jeong et al., 2021;
Zhou et al., 2021a; Yang et al., 2021; Xu et al., 2021; Zhang
et al., 2022; Liu et al., 2022; Chen et al., 2022b, a; Li et al.,
2022a; Mi et al., 2022; Guo et al., 2022; Li et al., 2022c; Liu
et al., 2022). Various semi-supervised object detectors have
been proposed in the literature, and many of them borrow
ideas from the semi-supervised learning (SSL) community.
In CSD (Jeong et al., 2019) and ISD (Jeong et al., 2021),
consistency regularization is applied to the mined bounding
boxes for unlabeled images. STAC (Sohn et al., 2020b) uses
strong data augmentation for self-training.

Recently, pseudo-labeling-based methods have shown
promising results on several benchmark datasets, which are
attributed to a stronger teacher model trained by, e.g., a
weighted EMA ensemble (Liu et al., 2021a; Tang et al.,
2021b; Yang et al., 2021; Xu et al., 2021; Zhang et al.,
2022; Chen et al., 2022b, a), a data ensemble (Tang et al.,
2021b), or advanced data augmentation (Zhou et al., 2021a;
Tang et al., 2021b). To overcome the confirmation bias, Unbi-
ased Teacher (Liu et al., 2021a) employs focal loss (Lin et
al., 2017b) to reduce the weights on overconfident pseudo
labels, while others use uncertainty modeling (Wang et al.,
2021e) or co-training (Zhou et al., 2021a) as the counter-
measure. Li et al. (2022c) propose dynamic thresholding
for each class based on both localization and classification
confidence. LabelMatch (Chen et al., 2022a) introduces a
re-distribution mean teacher based on the KL divergence dis-
tribution between teacher and student models. DSL (Chen et
al., 2022b) assigns pixel-wise pseudo-labels for anchor-free
detectors. Unbiased Teacherv2 (Liu et al., 2022) introduces a
new pseudo-labeling mechanism based on the relative uncer-
tainties of teacher and student models.

It is worth noting that most existing methods are designed
for class-balanced datasets like MS COCO (Lin et al., 2014),
while their capabilities to handle long-tailed datasets like
LVIS (Gupta et al., 2019) have been largely under-studied—
to our knowledge, none of existing research has specifically
investigated long-tailed object detection in the SSL setting.
Instead, themajority of existingSSLalgorithms are evaluated
on class-balanced datasets (Jeong et al., 2019; Sohn et al.,
2020b; Liu et al., 2021a; Xu et al., 2021). Our work takes
the first step toward a unified approach to solving unlabeled
data and the long-tailed object detection problem, which we
hope to inspire more work to tackle this challenging setting.

2.2 Long-tailed Object Detection

Though object detection has witnessed significant progress
in recent years (Ren et al., 2015; Lin et al., 2017b; Cai and
Vasconcelos, 2019; Tian et al., 2019; Carion et al., 2020;
Sun et al., 2021), how to deal with the long-tailed problem
remains an open question (Zhang et al., 2021c). Most exist-
ing methods fall into two groups: data re-sampling (Gupta
et al., 2019; Shen et al., 2016; Hu et al., 2020; Wu et al.,
2020) and loss re-weighting (Tan et al., 2020; Ren et al.,
2020; Wang et al., 2021c; Tan et al., 2021; Zhang et al.,
2022b; Wang et al., 2021a; Feng et al., 2021; Chang et
al., 2021; Zhou et al., 2021b; Li et al., 2022b; He et al.,
2022). Some recent works (Zang et al., 2021; Li et al.,
2021; Ghiasi et al., 2021) suggest that data augmentation
is useful for long-tailed recognition. In terms of data re-
sampling, Repeated Factor Sampling (RFS) (Gupta et al.,
2019) assigns high sampling rates to images of rare classes.
A couple of studies (Li et al., 2020b; Wang et al., 2020)
have suggested using different sampling schemes in decou-
pled training stages. When it comes to data re-weighting, a
representative method is equalization loss (Tan et al., 2020,
2021), which raises the weights for rare classes based on
inverse class frequency. Seesaw Loss (Wang et al., 2021a)
automatically adjusts class-specific loss weights based on a
statistical ratio between the positive and negative gradients
computed for each class. MosaicOS (Zhang et al., 2021a) is
one of the early studies that uses weakly-supervised learning
to help long-tailed detection. Their study assumes the avail-
ability of weakly-annotated class labels. In contrast, we take
a pure semi-supervised setting without assuming any anno-
tations in the unlabeled set. In our work, we first investigate
how to exploit unlabeled data to improve the performance of
detectors trained on long-tailed datasets.

2.3 Semi-Supervised Learning (SSL)

Numerous SSL methods are based on consistency learn-
ing (Sajjadi et al., 2016; Berthelot et al., 2019, 2020; Sohn et
al., 2020a; Zheng et al., 2022;Yang et al., 2022),which forces
a model’s predictions on two different views of the same
instance to be similar. Recent state-of-the-art consistency
learning methods like MixMatch (Berthelot et al., 2019),
UDA (Xie et al., 202a) and FixMatch (Sohn et al., 2020a)
introduce strong data augmentations (Xie et al., 202a) to
the learning paradigm—they use predictions on weakly aug-
mented images as the target to train the model to produce
similar outputs given the strongly augmented views of the
same images.

Another research direction related to our work is pseudo-
labeling (Bachman et al., 2014; Lee, 2013; Iscen et al., 2019;
Xie et al., 2020b; Oh et al., 2022), which is typically based on
a teacher-student architecture: a teacher model’s predictions
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are used as the target to train a student model. The teacher
model can be either a pretrainedmodel (Sohn et al., 2020a) or
an exponentialmoving average of the studentmodel (Rasmus
et al., 2016; Laine and Aila, 2017; Tarvainen and Valpola,
2017; Liu et al., 2021a). Some studies (Arazo et al., 2020)
have also demonstrated that using the student model being
trained to produce the target can reach decent performance—
the trick is to inject strong noise to the student model, such
as applying strong data augmentations to the input (Sohn et
al., 2020a).

A common issue encountered in pseudo-labelingmethods
is confirmation bias (Arazo et al., 2020), which is caused by a
constant feed of incorrect pseudo labels with high confidence
to the model. And such a vicious cycle would reinforce since
the model will become increasingly inaccurate and subse-
quently provide more erroneous pseudo labels. To mitigate
the issue of confirmation bias, existing methods have tried
using an uncertainty-based metric (Rizve et al., 2021) to
modulate the confidence threshold or using the co-training
framework (Han et al., 2018; Qiao et al., 2018) that simulta-
neously trains two neural networks each giving pseudo labels
to the other. In this work, to prevent each detection head from
overfitting its own prediction errors, the pseudo labels to train
each detection head are formed by the ensemble predictions
of multiple detection heads. This strategy is new in the liter-
ature.

It is worth noting that most aforementioned algorithms
are evaluated on class-balanced datasets while only very
few recent works apply SSL for long-tailed image classi-
fication (Hyun et al., 2020; Kim et al., 2020; Yang and Xu,
2020; Wei et al., 2021; Lee et al., 2021; Fan et al., 2022; Oh
et al., 2022) or semantic segmentation (He et al., 2021; Hu
et al., 2021). The detection task requires predicting both the
class labels and object locations, which is much harder than
the classification-only task.Thepseudo-labeling-based semi-
supervisedmethods are unable to predict high-quality pseudo
labels for detection task as accurately as for classification
task, in the presence of class imbalance. This motivates us
to improve the pseudo-labeling quality for semi-supervised
and long-tailed detection using a cascade mechanism.

3 Our Approach: CascadeMatch

3.1 Problem Definition

Given a labeled datasetDl = {(x, y∗, b∗)}with x, y∗ and b∗
denoting image, label and bounding box, respectively,1 and
an unlabeled dataset Du = {x}, the goal is to learn a robust
object detector using bothDl andDu .We further consider the

1 For simplicity, we use a single proposal in our formulations, which
can be easily extended to a batch of proposals.

issue of long-tailed distribution (Gupta et al., 2019), which is
common in real-world data but have been largely unexplored
in existing semi-supervised object detection methods. More
specifically, let ni and n j denote the number of images for
class i and j respectively, and assume i is a frequent class
while j is a rare class. In a long-tailed scenario, we might
have ni � n j .

3.2 An Overview

A brief overview of the main paradigm of our proposed Cas-
cadeMatch is illustrated in Fig. 2. CascadeMatch features
a cascade pseudo-labeling (CPL) design and an adaptive
pseudo-label mining (APM) mechanism. The former aims
to generate pseudo-labels and filter out low-quality labels in
a cascade fashion to improve the trade-off between precision
and recall, while the latter aims to automate threshold tuning.
CascadeMatch only modifies a detector’s head structure and
thus can be seen as a plug-and-play module that fits into most
existing object detectors including the popular anchor-based
R-CNN series like Cascade R-CNN (Cai and Vasconcelos,
2019) or more recent end-to-end detectors like Sparse R-
CNN (Sun et al., 2021). CascadeMatch can also take either
CNNs (He et al., 2016) or Transformers (Liu et al., 2021b)
as the backbone.

3.3 Discussion

A cascade structure benefits from the “divide and conquer”
concept, where each stage is dedicated to a specific sub-
task. This notion of cascading has been found practical and
useful in many computer vision systems. For the detection
task, finding an accurate IoU threshold to separate the pos-
itive and negative region proposals is impossible. To allow
a better precision-recall trade-off, Cascade R-CNN uses the
cascade structure to progressively increase the IoU thresh-
old for different stages. Recall that pseudo labeling faces a
similar dilemma in pinpointing a single confidence thresh-
old to separate the valid pseudo-labels and noisy background
region proposals. It is thus natural for CascadeMatch to use
the cascade structure with a set of progressive confidence
thresholds. Note that the confidence threshold of Cascade-
Match is class-specific and self-adaptive. We will provide
the details in Sect. 3.5.

Belowweprovide the technical details of the twokey com-
ponents in CascadeMatch, namely cascade pseudo-labeling
(Sect. 3.4) and adaptive pseudo-label mining (Sect. 3.5). For
clarity, in Sect. 3.4 we first present CascadeMatch in an
anchor-based framework and later explain the modifications
needed for an end-to-end detector.
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Fig. 2 The pipeline of our approach. a: Overview of CascadeMatch’s
cascade pseudo-labeling module. The supervision signal for unlabeled
data corresponds to the ensembled pseudo label. Confidence thresholds,
{τk}k∈1,...,3, are independently computed for each stage via our adaptive
pseudo-label mining module. b: Computation of the adaptive pseudo-

label mining module. The classification confidence values predicted for
each class c ∈ {1, . . . ,C} on labeled proposals are aggregated in the
per-class queue. For class c, the confidence value distribution is esti-
mated where the mean μc and the standard deviation σc are used to
determine the class-specific thresholdτ ck at the k-th cascade stage

3.4 Cascade Pseudo-Labeling

3.4.1 Model Architecture

For an anchor-based framework (Ren et al., 2015; Cai and
Vasconcelos, 2019), the CascadeMatch-based detector starts
with a CNN as the backbone for feature extraction, e.g.,
ResNet50 (He et al., 2016), which is then followed by a
region proposal network (RPN) (Ren et al., 2015) for gener-
ating object proposals. See Fig. 2a for the architecture.

The detector has K heads following the Cascade R-
CNN (Cai and Vasconcelos, 2019) pipeline. The parameter
K controls the trade-off between performance and efficiency,
which can be adjusted by practitioners based on their needs.
Increasing the number of headswill improve the performance
at the cost of speed. In the paper, we followed previous cas-
cade methods Cai and Vasconcelos (2019), Sun et al. (2021)
to use K = 3 heads. We will provide the ablation studies
of varying the value of K in Table 4 of Sect. 4.4. Formally,
given an image x, the first-stage detection head predicts for
an object proposal b0 (generated by the RPN) a class proba-
bility distribution p1(y|x, b0) and the bounding box offsets
b1. Then, the second-stage detection head predicts another
probability p2(y|x, b1) using the refined bounding box from
the first stage;2 and so on and so forth.

3.4.2 Labeled Losses

With labeled dataDl = {(x, y∗, b∗)}, we train each detection
head using the classification lossCls(·, ·) (for proposal classi-

2 With a slight abuse of notation, b1 in p2(y|x, b1) contains the com-
plete coordinates of the bounding box rather than the regressed offsets.

fication) and the bounding box regression loss Reg(·, ·) (Ren
et al., 2015). Formally, we have

�labeledcls =
∑

(x,y∗)∼Dl

K∑

k=1

Cls(y∗, pk(y|x, bk−1)), (1)

�labeledreg =
∑

(x,b∗)∼Dl

K∑

k=1

Reg(b∗, bk). (2)

3.4.3 Unlabeled Losses

To cope with unlabeled images, we adopt a pseudo-labeling
approach with a teacher-student architecture where the
teacher’s estimations on unlabeled data are given to the stu-
dent as supervision. Such a paradigm has been widely used
in previous semi-supervised methods (Sohn et al., 2020b;
Liu et al., 2021a; Zhou et al., 2021a; Tang et al., 2021a, b;
Wang et al., 2021e). Different from previous methods, we
focus on tackling the confirmation bias issue (Arazo et al.,
2020) when designing our architecture. We observe that the
ensemble predictions are more accurate than using each indi-
vidual prediction (please refer to Table 5 of Sect. 4.4 formore
details), so we use the ensemble predictions from all detec-
tion heads as the teacher supervision signal (teacher module
in Fig. 2a). Formally, given an unlabeled image x ∼ Du , the
ensemble prediction pt is computed as

pt = 1

K

K∑

k=1

pk(y|x, bk−1) and bt = 1

K

K∑

k=1

bk, (3)

where K is the number of heads. Let qt = max(pt ) be the
confidence and q̂t = argmax(pt ) the pseudo label, we com-
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pute the classification loss and the bounding box regression
loss for unlabeled data using

�unlabeledcls =
∑

x∼Du

K∑

k=1

1(qt ≥ τ
q̂t
k )Cls(q̂t , pk(y|x, bk−1)),

(4)

�unlabeledreg =
∑

x∼Du

K∑

k=1

1(qt ≥ τ
q̂t
k )Reg(bt , bk), (5)

where τ
q̂t
k is a self-adaptive confidence threshold specific to

class q̂t . We detail the design of class-specific self-adaptive
thresholds in Sect. 3.5.

3.4.4 Training

Similar to most region-based object detectors, our Cascade-
Matchmodel is learned using four losses: a region-of-interest
(ROI) classification loss �roicls = �labeledcls + λu · �unlabeledcls , an
ROI regression loss �roireg = �labeledreg + λu · �unlabeledreg , and
two other losses for the RPN, i.e., the objectness classifi-
cation loss �

rpn
cls and the proposal regression loss �

rpn
reg , as

defined in (Ren et al., 2015). The loss parameter λu controls
the weight between the supervised term �lcls and the unsu-
pervised term �ucls . By default, we set the unsupervised loss
weight λu = 1.0.

3.4.5 Transfer to End-to-End Object Detector

CascadeMatch is readily applicable to an end-to-end detec-
tor. We use Sparse R-CNN (Sun et al., 2021) as an example.
Two main modifications are required: 1) Since region pro-
posals are learned from a set of embedding queries as in
DETR (Carion et al., 2020), we do not need an RPN and
the RPN loss �rpn ; 2) The classification loss is replaced by
the focal loss (Lin et al., 2017b) while the regression loss
is replaced by L1 and GIoU loss (Rezatofighi et al., 2019).
We show the universality of CascadeMatch on anchor-based
detector (i.e., Cascade R-CNN) and an end-to-end detector
(i.e. , Sparse R-CNN) in the experiments, see Table 7.

3.5 Adaptive Pseudo-label Mining

Determining a confidence threshold for pseudo labels is a
non-trivial task, not to mention that each class requires a
specific threshold to overcome the class-imbalance issue—
many-shot classes may need a higher threshold while
few-shot classes may favor a lower threshold.Moreover, pre-
dictive confidence typically increases as the model observes
more data (see Fig. 3a), and therefore, dynamic thresholds
are more desirable.

To solve the aforementioned problems, we propose an
Adaptive Pseudo-label Mining (APM) module, which is an
automatic selection mechanism for predicted pseudo-labels.
Specifically, at each iteration,we first aggregate the ensemble
predictionsmade on each ground-truth class using the labeled
proposals (see Figure 2a), and then select a threshold such
that a certain percentage of the confidence values can pass
through. The challenge lies in how to select the threshold
with minimal human intervention. We automate the selec-
tion process by (1) computing the mean μc and the standard
deviation σc based on the confidence values for each class,
and (2) setting the class-specific threshold τ ck for stage-k as
τ ck = μc + σc ∗ εk . An illustration is shown in Fig. 2b.

The formulation above is simple butmeaningful. In partic-
ular, since the predictive confidence values for each class are
updated every iteration, the mean μc will increase gradually,
which naturally makes τ ck self-adaptive to the learning pro-
cess without extra designs. By increasing εk moderately in
different stages, we maintain the progressive pattern of con-
fidence threshold for different stages (e.g., τ1 < τ2 < · · · <

τK ) for any class. In this work, we choose εk ∈ {1, 1.5, 2} for
the three stages. The ablation study is provided in Table 3 of
Sect. 4.4. In the experiments, we show that the progressive
design is useful to control the precision and recall trade-off.

4 Experiments

4.1 Datasets

We evaluate our approach on two long-tailed object detec-
tion datasets: LVIS v1.0 (Gupta et al., 2019) and COCO-
LT (Wang et al., 2020). LVIS v1.0 widely serves as a testbed
for the long-tailed object detection task (Tan et al., 2020,
2021; Li et al., 2020b; Wang et al., 2020; Hu et al., 2020;
Zhang et al., 2022b; Wang et al., 2021a; Feng et al., 2021;
Chang et al., 2021; Zhou et al., 2021b). Three class groups
are defined in LVIS v1.0: rare [1, 10), common [10, 100),
and frequent [100, -) based on the number of images that
contain at least one instance of the corresponding class.
COCO-LT (Wang et al., 2020) is used to demonstrate the gen-
eralizability of our approach. Similarly, COCO-LT defines
four class groupswith the following ranges: [1, 20), [20, 400),
[400, 8000), and [8000, -). For both LVIS and COCO-LT,
we use the MS-COCO 2017 unlabeled set as the unlabeled
dataset, which contains 123,403 images in total and has a
labeled-to-unlabeled ratio of roughly 1 : 1.

4.2 Metrics

We adopt the recently proposed FixedAP (denoted byAPFix)
metric (Dave et al., 2021), which does not restrict the num-
ber of predictions per image and can better characterize the
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(a) (b)

Fig. 3 a Visualization of predictive confidence scores throughout
training. We find that the predicted scores have the increasing ten-
dency, which motivates us to propose the Adaptive Pseudo-label

Mining (APM) module that using dynamic thresholds. b Impact of the
burn-in stage. Clearly, the burn-in stage improves the performance

long-tailed object detection performance. Following Dave et
al. (2021), we adopt the following notations for the metrics
of different class groups: APFixr for rare classes, APFixc for
common classes, and APFixf for frequent classes. For COCO-
LT dataset, the symbols AP1, AP2, AP3 and AP4 correspond
to the bins of [1, 20), [20, 400), [400, 8000) and [8000,−)

(i.e., number of training instances).

4.3 Implementation Details

For the anchor-based detector, we employ the two-stage
detector, Cascade R-CNN (Cai and Vasconcelos, 2019) with
the FPN (Lin et al., 2017a) neck. ResNet50 (He et al., 2016)
pre-trained from ImageNet is used as the CNN backbone.
For the end-to-end detector, we adopt Sparse R-CNN (Sun et
al., 2021) with the PyramidVision Transformer (PvT) (Wang
et al., 2021d) encoder. All settings for the parameters, such
as learning rate, are kept the same as previous work (Liu et
al., 2021a). We list the value of our used hyper-parameters
in Table 1. All models are trained with the standard SGD
optimizer on 8 GPUs. Similar to previous methods (Sohn et
al., 2020b; Liu et al., 2021a; Tang et al., 2021b), we also have
a “burn-in” stage to stabilize training. Specifically, we pre-
train the detector using labeled data first for several iterations,
and then include unlabeled data in the training process.

4.4 Ablation Studies

Before discussing the main results of long-tailed and semi-
supervised object detection, we investigate the effects of
the two key components of CascadeMatch, i.e., the cascade
pseudo-labeling (CPL) and adaptive pseudo-label mining
(APM), as well as some hyper-parameters. The experiments
are conducted on the LVIS v1.0 validation dataset.

Table 1 List of hyper-parameters used for different detectors

Hyper-parameter Detector Value

Optimizer Cascade R-CNN SGD

Learning rate 0.01

Weight decay 0.0001

Optimizer Sparse R-CNN AdamW

Learning rate 0.000025

Weight decay 0.0001

Input image size Both [1333, 800]
Batch size for labeled data 16

Batch size for unlabeled data 16

4.4.1 Cascade Pseudo-Labeling

The results are detailed in Table 2.We first examine the effect
of the cascade pseudo-labelingmodule. The top row contains
the results of the supervised baseline, while the second row
corresponds to the combination of the baseline and CPL.
We observe that CPL clearly improves upon the baseline.
Notably, CPL improves the performance in all groups: +2.2
for the rare classes, +4.0 for the common classes, and +4.2
for the frequent classes.

4.4.2 Adaptive Pseudo-label Mining

We then examine the effectiveness of APM. By comparing
the first and third rows in Table 2, we can conclude that
APM alone is also beneficial to the performance, yielding
clear gains of 2.8 APFixr and 2.6 APFixc . Finally, by combin-
ing CPL and APM (the last row), the performance can be
further boosted, suggesting that the two modules are com-
plementary to each other for long-tailed and semi-supervised
object detection. We observe that CPL+APM brings a non-
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Table 2 Ablation studies on 1) cascade pseudo-labeling (CPL) and 2)
adaptive pseudo-label mining (APM)

CPL APM APFix APFixr APFixc APFixf

✗ ✗ 26.3 19.7 25.3 30.3

✓ ✗ 30.1 21.9 29.3 34.5

✗ ✓ 28.9 22.5 27.9 32.8

✓ ✓ 30.5 23.1 29.7 34.7

Bold means the best result
The top row refers to the supervised learning baseline without using the
unlabeled data

Table 3 Ablation study on the selection of the confidence parameter ε

ε1 ε2 ε3 APFix APFixr APFixc APFixf

0.0 0.0 0.0 29.8 21.7 29.1 34.1

0.0 1.0 2.0 30.2 23.3 29.2 34.3

1.0 2.0 3.0 30.3 22.6 29.5 34.4

1.0 1.5 2.0 30.5 23.1 29.7 34.7

Bold means the best result
We observe that the ε works the best with progressive values (ε1 <

ε2 < ε3)

trivial improvement of 1.2% to the rare classes compared
with using CPL only. The predictions on rare classes often
have smaller confidence so the class-specific design in APM
is essential for handling the long-tailed issue.

4.4.3 Hyper-parameter

εk As discussed in Sect. 3.5, our confidence thresholds τk
are adaptively adjusted and governed by a hyper-parameter
εk . In Table 3, we show the effects of using different val-
ues for εk to update the per-class thresholds. Overall, the
performance is insensitive to different values of εk , with
εk = {1.0, 1.5, 2.0} achieving the best performance.
Hyper-parameter K The parameter K denotes the number
of detection heads. We try different values of K , and the
results are shown in Table 4. We observe that from k = 1 to
3, increasing the number of heads will improve the overall
performance at the cost of training speed. The performance
of rare and common classes will drop if we continue to
increase the k from 3 to 4 or 5, probably due to the over-
fitting and undesired memorizing effects of few-shot classes
as we increase the model capacity. In this study, we choose
to follow previous cascade methods (Cai and Vasconcelos,
2019) that use K = 3 heads.

4.4.4 Confirmation Bias

Recall that we use the ensemble teacher to train each detec-
tion head instead of using each individual prediction to
mitigate confirmation bias. To understand how our design

Table 4 Ablation study on the number of detector heads K

K APFix APFixr APFixc APFixf Ttrain

1 26.4 20.4 26.6 28.9 0.36

2 28.0 21.4 27.1 31.9 0.42

3 30.5 23.1 29.7 34.7 0.47

4 30.0 22.1 29.2 34.6 0.59

5 29.9 21.2 29.0 34.9 0.72

Bold means the best result
We also report the training time (seconds) per iteration in the last column

Table 5 Comparison of
pseudo-label accuracy. The
ensemble results is more
accurate than each single head

Iter. 60k 120k 180k

Head 0 32.8 51.5 67.3

Head 1 50.5 62.4 73.2

Head 2 55.1 71.0 84.1

Ensemble 66.4 79.5 88.9

Bold means the best result
See Fig. 4 for visualization

Table 6 Ablation studyon the loss functionweight balancing parameter
�ucls

λu APFix APFixr APFixc APFixf

0.5 30.0 20.9 28.2 36.1

1.5 29.9 21.2 28.3 35.6

1.0 30.5 21.4 28.9 36.4

2.0 29.4 20.4 27.9 35.1

Bold means the best result
We select �ucls = 1.0 that works the best

tackles the problem, we print the pseudo-label accuracy
obtained during training for each detection head and their
ensemble. Specifically, we use 30% of the LVIS training set
as the labeled set and the remaining 70% as the unlabeled set.
Note that the annotations for the unlabeled data are used only
to calculate the pseudo-label accuracy. The results obtained
at the 60k-th, 120k-th and 180k-th iteration are shown in
Table 5. It is clear that the pseudo-label accuracy numbers
for individual heads are consistently lower than that of the
ensemble throughout the course of training, confirming that
using ensemble predictions is the optimal choice.
Hyper-parameter λu To examine the effect of unsupervised
loss weights λu , we vary the unsupervised loss weight λu
from 0.5 to 2.0 on LVIS (Gupta et al., 2019) dataset. As
shown in Table 6, we observe that the model performs best
with our default choice λu = 1.0.

4.4.5 Burn-in Stage

As mentioned at the beginning of Sect. 4, we set a ‘burn-in’
stage to pre-train the detector on the labeled data before train-
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Table 7 Comparisons of mAP against the supervised baseline and
different semi-supervised methods on LVIS v1.0 validation set We
select two different frameworks: Cascade R-CNN (Cai and Vasconce-

los, 2019) andSparseR-CNN(Sunet al., 2021)with different backbones
as the supervised baseline

Method Framework Backbone Schedule APFix APFixr APFixc APFixf

Supervised Cascade R-CNN R-50-FPN 12e 26.3 19.7 25.3 30.3

CSD (Jeong et al., 2019) 26.8 19.9 25.8 31.0

STAC (Sohn et al., 2020b) 27.5 20.3 26.3 32.1

Unbiased teacher (Liu et al., 2021a) 28.6 20.8 27.9 32.8

Soft teacher (Xu et al., 2021) 29.2 21.1 28.4 33.7

Label match (Chen et al., 2022b) 29.4 20.3 29.2 33.8

Cascade match (ours) 30.5 23.1 29.7 34.7

Supervised Cascade R-CNN R-101-FPN 12e 27.1 20.3 26.1 31.1

Unbiased teacher (Liu et al., 2021a) 31.0 24.6 30.2 35.0

Cascade match (ours) 32.9 26.5 31.8 36.8

Supervised Sparse R-CNN PVT 30e 31.7 23.5 29.5 38.0

Unbiased teacher (Liu et al., 2021a) 33.5 24.6 31.4 40.2

Cascade match (ours) 35.2 27.5 33.2 41.1

Bold means the best result
The symbols APFixr , APFixc , and APFixf refer to the Fixed mAP (Dave et al., 2021) of overall, rare, common, and frequent class groups. The ‘12e’
and ‘30e’ schedules refer to 12 and 30 epochs, respectively. We report the average results over three runs with different random seeds

ing on unlabeled data. Similar to previous works (Sohn et al.,
2020b; Liu et al., 2021a; Tang et al., 2021b), such a ‘burn-
in’ stage is used to stabilize initialization results in the early
stage of training. In Fig. 3b, we provide the mAP comparison
of the CascadeMatch with and without the burn-in stage dur-
ing the training. We observed that the model achieves higher
mAP in the early stage with the burn-in stage and converges
into better endpoints compared with the counterparts.

4.5 Main Results

4.5.1 Baselines

In this section, we compare our method against the super-
vised baseline (without using the unlabeled data) and state-
of-the-art semi-supervised learning methods on the LVIS
v1.0 and COCO-LT datasets. We select four representative
semi-supervised detection algorithms to compare with: 1)
CSD (Jeong et al., 2019) is a consistency regularization-
based algorithm that forces the detector to make identical
predictions under different augmentations. 2) STAC (Sohn
et al., 2020b) is a pseudo-labeling-based method that uses
an off-line supervised model as a teacher to extract pseudo-
labels. 3) Unbiased Teacher (Liu et al., 2021a) and 4) Soft
Teacher (Xu et al., 2021) are also a pseudo-labeling-based
method that uses the exponential moving average (EMA)
ensemble to provide a strong teacher model. Soft Teacher
uses extra box jittering augmentation to further boost the
performance. 5) LabelMatch Chen et al. (2022a) introduces
a re-distribution mean teacher based on the KL divergence

Table 8 Results on COCO-LT validation set set

Method AP AP1 AP2 AP3 AP4

Supervised 25.4 2.5 16.2 29.9 33.7

CSD 25.9 (+0.5) 2.0 15.2 32.1 34.0

STAC 26.4 (+1.0) 2.2 16.3 32.4 34.1

UT 26.7 (+1.3) 2.2 18.0 31.8 34.3

Ours 27.8 (+2.4) 4.0 20.4 32.4 34.5

Bold means the best result
The symbols AP1, AP2, AP3 and AP4 denote the bin of [1, 20),
[20, 400), [400, 8000), [8000,−) training instances. The symbol ‘UT’
is the abbreviation of the Unbiased Teacher (Liu et al., 2021a) algorithm

distribution between teacher and student models. Unbiased
Teacher, Soft Teacher andLabelMatch are strongbaselines so
the comparisonwith themcanwell demonstrate the effective-
ness of our approach. We use the open-source code provided
by the authors and re-train the model on the LVIS v1.0
and COCO-LT datasets, respectively. All baselines and our
approach use the Equalization Loss v2 (EQL v2) (Tan et al.,
2021) as the default classification loss. EQL v2 improves
the model’s recognition ability by down-weighting negative
gradients for rare classes.

4.5.2 Results on LVIS v1.0

Table 7 shows the results on LVIS. When using Cascade R-
CNN and ResNet50 as the backbone, our approach improves
APFix from the supervised baseline’s 26.3 to 30.5, achieving
4.2 mAP improvement. Compared with LabelMatch, which
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Fig. 4 The pseudo labels generated on the LVIS training dataset under the semi-supervised object detection setting (SSOD) setting. The green
color refers to the true-positive predicted results; purple color refers to false-positive detection results (Zoom in for best view) (Color figure online)

is the strongest baseline, CascadeMatch still maintains clear
advantages. Overall, the results presented in the experiments
validate the effectiveness of the cascade pseudo-labeling
design and the adaptive pseudo-label mining mechanism.

4.5.3 Results on COCO-LT

As shown in Table 8, an absolute improvement of 2.4 inmAP
is obtained byCascadeMatch over the supervised baseline on
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Table 9 Comparisons of training memory (MB), training time Ttrain
(sec/iter) and inference time Ttest (sec/iter) on the LVIS dataset

Method Memory Ttrain Ttest

Supervised 5889 0.2248 0.2694

CSD 6452 0.3310 0.2767

STAC 6801 0.4110 0.2702

Unbiased teacher 7366 0.4616 0.2761

Soft teacher 8029 0.4589 0.2718

Label match 8240 0.4918 0.2698

Ours 7432 0.4733 0.2734

Bold means the best result

COCO-LT. The results indicates the generalizability of the
CascadeMatch across multiple datasets.

4.5.4 Large Model & More Architectures

Table 7 also shows the results using other architectures.
With ResNet101 as the backbone under the Cascade R-CNN
framework, CascadeMatch outperforms Unbiased Teacher
by 1.9 APFixr and 1.6 APFixc . With Sparse R-CNN and
the Transformer encoder, CascadeMatch also gains clear
improvements: 1.7 APFix and 2.9 APFixr . Such results show
that our proposed method is general to various architectures.

4.5.5 Computation Budgets

We report the training memory, training time, and inference
time against the supervised baseline and different semi-
supervisedmethods, as shown in Table 9. All themethods are
based on the Cascade-RCNN framework with the ResNet50-
FPN backbone and report on one Nvidia V100 GPU.We can
see that when compared with the supervised baseline, CSD
has an increased memory footprint and training time because
of the extra steps during training like data augmentation and
forward pass on unlabeled data. For pseudo-labeling meth-
ods, likeUnbiased Teacher and LabelMatch, the training cost
further increases with the generation of pseudo-labels. Our
CascadeMatch method shares similar memory and training
time as Unbiased Teacher, thus is comparable to recent semi-
supervisedmethods in terms of the training cost.We also find
all these methods (including ours) have negligible overhead
in the inference stage, with almost the same inference time
as the supervised learning baseline.

4.5.6 Qualitative Results

We show some pseudo-labeling visualization results under
the semi-supervised object detection (SSOD) setting in
Fig. 4. Since we set a progressive confidence threshold τ

from stage 1 to 3, we observe that stage 1 focuses on gen-

Table 10 Experiment results under the Sparsely annotated object detec-
tion (SAOD) setting where missing labels exist in the training set

Missing ratio Ours AP APr APc APf

40% ✗ 22.5 10.4 20.9 29.6

✓ 24.2 13.7 22.4 30.9

20% ✗ 24.7 14.3 22.7 31.4

✓ 26.7 17.2 25.1 32.8

Bold means the best result
We follow previous studies (Zhang et al., 2020; Wang et al., 2021b) to
build a modified LVIS dataset where we randomly erase the annotations
by 20% and 40% per object category

erating redundant pseudo labels with high recall and some
false positive results (in purple). In contrast, stage 3 prefers
high precision pseudo labels, but some prediction results
may be missed. The ensemble of pseudo label predictions
is of high quality and controls the precision-recall trade-off
well. According to the quantitative results in Table 7 and
the qualitative results shown in Fig. 4, we can conclude that
CascadeMatch benefits from more accurate pseudo-labels it
estimates for the unlabeled data.

4.6 Sparsely Annotated Object Detection

4.6.1 Background

The standard semi-supervised learning setting in object
detection assumes that training images are fully annotated.
Amore realistic setting that has received increasing attention
from the community is sparsely annotated object detec-
tion (Wu et al., 2019; Zhang et al., 2020; Wang et al.,
2021b; Zhou et al., 2021b), or SAOD. In the previous
experiments, we have shown that CascadeMatch performs
favorably against the baselines with clear improvements. In
this section, we unveil how CascadeMatch fares under the
SAOD setting.

In SAOD, some images are only partially annotated,
meaning that not all instances in an image are identified by
bounding boxes. Such a phenomenon is in fact common in
existing large-vocabulary datasets like the previously used
LVIS (Gupta et al., 2019) dataset. Unidentified instances are
simply treated as background in existing semi-supervised
approaches. As a consequence, no supervision will be given
to the model with respect to those instances. Different from
SSOD, the goal in SAOD is to identify instanceswithmissing
labels from the training set.

4.6.2 Experimental Setup

We use LVIS as the benchmark dataset. CascadeMatch is
compared with Federated Loss (Zhou et al., 2021b), which
serves as a strong baseline in this setting. Concretely, Fed-
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Fig. 5 The pseudo labels generated on the LVIS training dataset under
the sparsely-annotated object detection setting (SAOD) setting. In
the third column, green color refers to the predicted results that can

be found in the ground truth of the first column; purple color refers
to predicted results that are also missing in the original LVIS dataset
(Zoom in for best view) (Color figure online)
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erated Loss ignores losses of potentially missing categories
and thus uses only a subset of classes for training. To facil-
itate evaluation, we follow previous studies (Zhang et al.,
2020; Wang et al., 2021b) to build a modified LVIS dataset
where a certain percentage of annotations within each cate-
gory are randomly erased. We choose the 20% and 40% as
the percentage numbers. The baseline model is the combi-
nation of Cascade R-CNN (Cai and Vasconcelos, 2019) and
Federated Loss. Noted that it is common to select 50% eras-
ing ratio (Zhang et al., 2020;Wang et al., 2021b) for balanced
datasets.However, for long-tailed datasets erasing 50%anno-
tations would lead to significantly fewer annotations for rare
classes (23.73% of rare classes will have zero annotations).
We chose the 20%and 40% ratios to cover different scenarios
(95.54% and 88.76% of rare classes are preserved that have
at least one annotation).

4.6.3 Results

We experimented with the 20% and 40% missing ratios
on our modified LVIS dataset. The results are reported in
Table 10 where the checkmark symbol means that Cascade-
Match is applied to the model. In both settings, we observe a
clearmargin betweenCascadeMatch and the baseline: +1.8%
and +2.0% gains in terms of overall AP under the settings
of 20% and 40% missing ratios, respectively. Notably, the
gains are more apparent for the rare classes, with +3.3% and
+2.9% gains for the two settings, respectively. The quan-
titative results shown in Table 10 strongly demonstrate the
ability of CascadeMatch in dealing with the SAOD problem.

4.6.4 Qualitative Results

We also show the visualization results of the pseudo-labeling
under the sparsely-annotated object detection (SAOD) set-
ting in Fig. 5. Thefirst column refers to the ground truth labels
from the original LVISdataset. The second column showsour
modified sparsely-annotated LVIS dataset where some anno-
tations are randomly removed with a 40% missing rate and
serves as the training set under the SAOD setting. The third
column contains the prediction results of CascadeMatch. We
observe that CascadeMatch can recover some labels. Since
the original LVIS datasets is sparsely-annotated, Cascade-
Match can also detect objects whose labels are missing in
the original LVIS dataset. The qualitative results in Fig. 5
explain the excellent performance of CascadeMatch on the
SAOD task.

5 Limitation

The trade-off between speed and performance is one of the
key research problems in the area of object detection (Liu

et al., 2016; Ren et al., 2015; Lin et al., 2017b; Cai and
Vasconcelos, 2019; Tian et al., 2019; Carion et al., 2020).
It has been widely acknowledged that achieving a perfect
speed-performance trade-off is extremely difficult (Huang et
al., 2017). To obtain a high-performance detector, one has to
sacrifice on the speed, and vice versa. In this work, our Cas-
cadeMatch processes data in a cascade manner, which leads
to longer training time and slower inference speed compared
to the single-stage detector counterpart. However, given that
the majority of computation takes place in the backbone
while the detection heads are generally “lightweight” (as
they only consist of a few fully connected layers), the lower
speed is outweighed by the improvements in performance.
To further improve the efficiency in real-world deployment,
one could apply model compression techniques to reduce the
model size, and designmore lightweight architectures for the
cascade detection heads.

6 Conclusion

Our research addresses an important but largely under-
studied problem in object detection, concerning both long-
tailed data distributions and semi-supervised learning. The
proposed approach,CascadeMatch, carefully integrates pseudo-
labeling, coupled with a cascade design and an adaptive
threshold tuning mechanism, into a variety of backbones
and detection frameworks, such as the widely used region
proposal-based detectors and more recent fully end-to-end
detectors. The results strongly demonstrate that Cascade-
Match is a better design than existing state-of-the-art semi-
supervised detectors in handling long-tailed datasets such
as LVIS and COCO-LT. The capability to cope with the
sparsely-annotated object detection problem is also well jus-
tified.
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