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Abstract
We present a novel bipartite graph reasoning Generative Adversarial Network (BiGraphGAN) for two challenging tasks:
person pose and facial image synthesis. The proposed graph generator consists of two novel blocks that aim to model the
pose-to-pose and pose-to-image relations, respectively. Specifically, the proposed bipartite graph reasoning (BGR) block aims
to reason the long-range cross relations between the source and target pose in a bipartite graph, which mitigates some of the
challenges caused by pose deformation. Moreover, we propose a new interaction-and-aggregation (IA) block to effectively
update and enhance the feature representation capability of both a person’s shape and appearance in an interactive way. To
further capture the change in pose of each part more precisely, we propose a novel part-aware bipartite graph reasoning
(PBGR) block to decompose the task of reasoning the global structure transformation with a bipartite graph into learning
different local transformations for different semantic body/face parts. Experiments on two challenging generation tasks with
three public datasets demonstrate the effectiveness of the proposed methods in terms of objective quantitative scores and
subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/BiGraphGAN.

Keywords GANs · Bipartite graph reasoning · Person pose synthesis · Facial expression synthesis

1 Introduction

In this paper, we focus on translating a person image from
one pose to another and a facial image from one expression to
another, as depicted inFig. 1a. Existingpersonpose and facial
image generation methods, such as Ma et al. (2017); Ma and
Sun (2018); Siarohin et al. (2018); Tang et al. (2019c); AlBa-
har and Huang (2019); Esser et al. (2018); Zhu et al. (2019);
Chan et al. (2019); Balakrishnan and Zhao (2018); Zanfir et
al. (2018); Liang et al. (2019); Liu et al. (2019); Tang et al.
(2019c); Zhang et al. (2020) typically rely on convolutional

Communicated by Martin Fergie.

B Hao Tang
hao.tang@vision.ee.ethz.ch

1 Department of Information Technology and Electrical
Engineering, ETH Zurich, Zurich, Switzerland

2 Terminus AI Lab, Terminus Group, Beijing, China

3 Department of Engineering Science, University of Oxford,
Oxford, UK

4 Department of Information Engineering and Computer
Science (DISI), University of Trento, Trento, Italy

layers. However, due to the physical design of convolutional
filters, convolutional operations can only model local rela-
tions. To capture global relations, existing methods such as
Zhu et al. (2019); Tang et al. (2019c) inefficiently stack mul-
tiple convolutional layers to enlarge the receptive fields to
cover all the body joints from both the source pose and the
target pose. However, none of the above-mentioned methods
explicitly consider modeling the cross relations between the
source and target pose.

Rather than relying solely on convolutions/Transformers
in the coordinate space to implicitly capture the cross rela-
tions between the source pose and the target pose, we
propose to construct a latent interaction space where global
or long-range (can also be understood as long-distance,
which means that the distance between the same joint on
the source pose and the target pose very long) reasoning
can be performed directly. Within this interaction space, a
pair of source and target joints that share similar semantics
(e.g., the source left-hand and the target left-hand joints)
are represented by a single mapping, instead of a set of
scattered coordinate-specific mappings. Reasoning the rela-
tions of multiple different human joints is thus simplified to
modeling those between the corresponding mappings in the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-022-01722-5&domain=pdf
http://orcid.org/0000-0002-2077-1246
https://github.com/Ha0Tang/BiGraphGAN


International Journal of Computer Vision (2023) 131:644–658 645

Fig. 1 Illustration of our motivation. We propose a novel BiGraph-
GAN (Fig. (c)) to capture the long-range cross relations between the
source pose Pa and the target pose Pb in a bipartite graph. The node
features from both the source and target poses in the coordinate space

are projected into the nodes in a bipartite graph, thereby forming a fully
connected bipartite graph. After cross-reasoning the graph, the node
features are projected back to the original coordinate space for further
processing

interaction space. We thus build a bipartite graph connect-
ing these mappings within the interaction space and perform
relation reasoning over the bipartite graph. After the reason-
ing, the updated information is then projected back to the
original coordinate space for the generation task. Accord-
ingly, we design a novel bipartite graph reasoning (BGR) to
efficiently implement the coordinate-interaction space map-
ping process, as well as the cross-relation reasoning by graph
convolution network (GCNs).

In this paper, we propose a novel bipartite graph reason-
ing Generative Adversarial Network (BiGraphGAN), which
consists of two novel blocks, i.e., a bipartite graph reasoning
(BGR) block and an interaction-and-aggregation (IA) block.
The BGR block aims to efficiently capture the long-range
cross relations between the source pose and the target pose
in a bipartite graph (see Fig. 1c). Specifically, the BGR block

first projects both the source pose and target pose feature from
the original coordinate space onto a bipartite graph. Next, the
two features are represented by a set of nodes to form a fully
connected bipartite graph, onwhich long-range cross relation
reasoning is performed by GCNs. To the best of our knowl-
edge, we are the first to use GCNs to model the long-range
cross relations for solving both the challenging person pose
and facial imagegeneration tasks.After reasoning,weproject
the node features back to the original coordinate space for
further processing.Moreover, to further capture the change in
pose of each part more precisely, we further extend the BGR
block to the part-aware bipartite graph reasoning (PBGR)
block, which can capture the local transformations among
body parts.

Meanwhile, the IA block is proposed to effectively and
interactively enhance a person’s shape and appearance fea-
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tures. We also introduce an attention-based image fusion
(AIF) module to selectively generate the final result using an
attention network. Qualitative and quantitative experiments
on two challenging person pose generation datasets, i.e.,
Market-1501 (Zheng et al., 2015) and DeepFashion (Liu et
al., 2016), demonstrate that the proposed BiGraphGAN and
BiGraphGAN++ generate better person images than several
state-of-the-art methods, i.e., PG2 (Ma et al., 2017), DPIG
(Ma & Sun, 2018), Deform (Siarohin et al., 2018), C2GAN
(Tang et al., 2019c), BTF (AlBahar & Huang, 2019), VUNet
(Esser et al., 2018), PATN (Zhu et al., 2019), PoseStylizer
(Huang et al., 2020), and XingGAN (Tang et al., 2020b).

Lastly, to evaluate the versatility of the proposedBiGraph-
GAN, we also investigate the facial expression generation
task on the Radboud Faces dataset (Langner et al., 2010).
Extensive experiments show that the proposed method
achieves better results than existing leading baselines, such
as Pix2pix (Isola et al., 2017), GPGAN (Di et al., 2018),
PG2 (Ma et al., 2017), CocosNet (Zhang et al., 2020), and
C2GAN (Tang et al., 2019c).

The contributions of this paper are summarized as follows:

– We propose a novel bipartite graph reasoning GAN
(BiGraphGAN) for person pose and facial image synthe-
sis. The proposed BiGraphGAN aims to progressively
reason the pose-to-pose and pose-to-image relations via
two novel blocks.

– We propose a novel bipartite graph reasoning (BGR)
block to effectively reason the long-range cross relations
between the source and target pose in a bipartite graph,
using GCNs.

– We introduce a new interaction-and-aggregation (IA)
block to interactively enhance both a person’s appear-
ance and shape feature representations.

– We decompose the process of reasoning the global struc-
ture transformation with a bipartite graph into learning
different local transformations for different semantic
body/face parts, which captures the change in pose of
each part more precisely. To this end, we propose a novel
part-aware bipartite graph reasoning (PBGR) block to
capture the local transformations among body parts.

– Extensive experiments on both the challenging person
pose generation and facial expression generation tasks
with three public datasets demonstrate the effectiveness
of the proposed method and its significantly better per-
formance compared with state-of-the-art methods.

Some of the material presented here appeared in Tang and
Bai (2020). The current paper extends (Tang & Bai, 2020) in
several ways:

– More detailed analyses are presented in the “Introduc-
tion” and “Related Work” sections, which now include

very recently published papers dealing with person pose
and facial image synthesis.

– We propose a novel PBGR block to capture the local
transformations among body parts. Equipped with this
new module, our BiGraphGAN proposed in Tang and
Bai (2020) is upgraded to BiGraphGAN++.

– We present an in-depth description of the proposed
method, providing the architectural and implementation
details, with special emphasis on guaranteeing the repro-
ducibility of our experiments. The source code is also
available online.

– We extend the experimental evaluation provided in Tang
and Bai (2020) in several directions. First, we con-
duct extensive experiments on two challenging tasks
with three popular datasets, demonstrating the wide
application scope of the proposed BiGraphGAN and
BiGraphGAN++. Second, we also include more state-of-
the-art baselines (e.g., PoseStylizer (Huang et al., 2020)
and XingGAN Tang et al. (2020b)) for the person pose
generation task, and observe that the proposed BiGraph-
GAN and BiGraphGAN++ achieve better results than
both methods. Lastly, we conduct extensive experiments
on the facial expression generation task, demonstrating
both quantitatively and qualitatively that the proposed
method achieves much better results than existing lead-
ing methods such as Pix2pix (Isola et al., 2017), GPGAN
(Di et al., 2018), PG2 (Ma et al., 2017), CocosNet (Zhang
et al., 2020), and C2GAN (Tang et al., 2019c).

2 RelatedWork

Generative Adversarial Networks (GANs) (Goodfellow et
al., 2014) have shown great potential in generating realis-
tic images (Shaham, 2019; Karras et al., 2019; Brock et al.,
2019; Zhang et al., 2022a, b; Tang & Sebe, 2021b; Tang et
al., 2020c). For instance, Shaham et al. proposed an uncon-
ditional SinGAN (Shaham, 2019) which can be learned from
a single image. Moreover, to generate user-defined images,
several conditional GANs (CGANs) (Mirza & Osindero,
2014) have recently been proposed. A CGAN always con-
sists of a vanilla GAN and external guidance information
such as class labels (Po-Wei et al., 2019; Choi et al., 2018;
Zhang et al., 2018a; Tang et al., 2019a), text descriptions (Xu
et al., 2022; Tao et al., 2022), segmentationmaps (Tang et al.,
2019d; Park et al., 2019; Tang et al., 2020d; Liu et al., 2020;
Wu et al., 2022; Songsong et al., 2022; Tang & Shao, 2022;
Ren et al., 2021; Tang & Sebe, 2021a; Tang et al., 2020a),
attention maps (Kim et al., 2020; Tang et al., 2019e; Mejjati,
2018; Tang et al., 2021), or human skeletons (AlBahar &
Huang, 2019; Balakrishnan & Zhao, 2018; Zhu et al., 2019;
Tang et al., 2018, 2020b).
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In thiswork,we focus on thepersonpose and facial expres-
sion generation tasks, which aim to transfer a person image
from one pose to another and a facial image from one expres-
sion to another, respectively.
Person Pose Generation is a challenging task due to the
pose deformation between the source image and the target
image.Modeling the long-range relations between the source
and target pose is the key to solving this. However, existing
methods, such as Balakrishnan and Zhao (2018); AlBahar
and Huang (2019); Esser et al. (2018); Chan et al. (2019);
Zanfir et al. (2018); Liang et al. (2019); Liu et al. (2019),
are built by stacking several convolutional layers, which can
only leverage the relations between the source pose and the
target pose locally. For instance, Zhu et al. Zhu et al. (2019)
proposed a pose-attentional transfer block (PATB), in which
the source and target poses are simply concatenated and then
fed into an encoder to capture their dependencies.
Facial Expression Generation aims to translate one facial
expression to another (Tang et al., 2019b, c; Pumarola et
al., 2020; Choi et al., 2018). For instance, Choi et al.
(2018) proposed a scalable method that can perform facial
expression-to-expression translation for multiple domains
using a single model. Pumarola et al. (2020) introduced
a GAN conditioning scheme based on action unit (AU)
annotations, which describes in a continuous manifold the
anatomical facial movements defining a human expression.
Finally, Tang et al. (2019c) proposed a novel Cycle in Cycle
GAN (C2GAN) for generating human faces and bodies.

Unlike existing person pose and facial expression genera-
tion methods, which model the relations between the source
and target poses in a localized manner, we show that the
proposed BGR block can bring considerable performance
improvements in the global view.
Graph-Based Reasoning Graph-based approaches have
been shown efficient at reasoning relations inmany computer
vision tasks such as semi-supervised classification (Kipf &
Welling, 2017), video recognition (Wang & Gupta, 2018),
crowd counting (Chen et al., 2020), action recognition (Yan
et al., 2018; Peng et al., 2020), face clustering (Wang et al.,
2019; Yang et al., 2019), and semantic segmentation (Chen
& Rohrbach, 2019; Zhang et al., 2019).

In contrast, to these graph-based reasoning methods,
which model the long-range relations within the same fea-
ture map to incorporate global information, we focus on
developing two novel BiGraphGAN and BiGraphGAN++
frameworks that reason and model the long-range cross rela-
tions between different features of the source and target pose
in a bipartite graph. Then, the cross relations are further
used to guide the image generation process (see Fig. 1). This
idea has not been investigated in existing GAN-based person
image generation or even image-to-image translation meth-
ods.

3 Bipartite Graph Reasoning GANs

We start by introducing the details of the proposed bipar-
tite graph reasoning GAN (BiGraphGAN), which consists
of a graph generator G and two discriminators (i.e., the
appearance discriminator Da and shape discriminator Ds).
An illustration of the proposed graph generatorG is shown in
Fig. 2. It contains threemain parts, i.e., a sequence of bipartite
graph reasoning (BGR)blocksmodeling the long-range cross
relations between the source pose Pa and the target pose Pb,
a sequence of interaction-and-aggregation (IA) blocks inter-
actively enhancing both the person’s shape and appearance
feature representations, and an attention-based image fusion
(AIF) module attentively generating the final result I

′
b. In the

following,wefirst present the proposedblocks and then intro-
duce the optimization objective and implementation details
of the proposed BiGraphGAN.

Figure 2 shows the proposed graph generator G, whose
inputs are the source image Ia , the source pose Pa , and the
target pose Pb. The generator G aims to transfer the pose of
the person in the source image Ia from the source pose Pa to
the target pose Pb, generating the desired image I

′
b. Firstly,

Ia , Pa , and Pb are separately fed into three encoders to obtain
the initial appearance code Fi

0, the initial source shape code

F pa
0 , and the initial target shape code F pb

0 . Note that we use
the same shape encoder to learn both Pa and Pb, i.e., the
two shape encoders used for learning the two different poses
share weights.

3.1 Pose-to-Pose Bipartite Graph Reasoning

The proposedBGRblock aims to reason the long-range cross
relations between the source pose and the target pose in a
bipartite graph. All BGR blocks have an identical structure,
as illustrated in Fig. 2. Consider the t-th block given in Fig. 3,
whose inputs are the source shape code F pa

t−1 and the target

shape code F pb
t−1. The BGR block aims to reason these two

codes in a bipartite graph via GCNs and outputs new shape
codes. It contains two symmetrical branches (i.e., the B2A
branch and A2B branch) because a bipartite graph is bidirec-
tional. As shown in Fig. 1c, each source node is connected to
all the target nodes; at the same time, each target node is con-
nected to all the source nodes. In the following, we describe
the detailed modeling process of the B2A branch. Note that
the A2B branch is similar.
FromCoordinate Space to Bipartite-Graph Space Firstly,
we reduce the dimension of the source shape code F pa

t−1 with
the function ϕa

(
F pa
t−1

) ∈RC×Da , where C is the number of
featuremap channels, and Da is the number of nodes of F pa

t−1.

Then we reduce the dimension of the target shape code F pb
t−1

with the function θb

(
F pb
t−1

)
=Hᵀ

b ∈RDb×C , where Db is the
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Fig. 2 Overview of the proposed graph generator, which consists of
a sequence of bipartite graph reasoning (BGR) blocks, a sequence
of interaction-and-aggregation (IA) blocks, and an attention-based
image fusion (AIF) module. The BGR blocks aim to reason the long-
range cross relations between the source pose and the target pose in
a bipartite graph. The IA blocks aim to interactively update a per-
son’s appearance and shape feature representations. The AIF module

aims to selectively generate the final result via an attention network.

The symbols Fi=
{
Fi
j

}T

j=0
, F pa=

{
F pa
j

}T−1

j=0
, F pb=

{
F pb
j

}T−1

j=0
,

F̃ pa=
{
F̃ pa
j

}T−1

j=0
, and F̃ pb=

{
F̃ pb
j

}T−1

j=0
denote the appearance codes,

the source shape codes, the target shape codes, the updated source shape
codes, and the updated target shape codes, respectively

Fig. 3 Illustration of the proposed bipartite graph reasoning (BGR) block t , which consists of two branches, i.e., B2A and A2B. Each branch aims
to model cross-contextual information between shape features F pa

t−1 and F pb
t−1 in a bipartite graph via GCNs

number of nodes of F pb
t−1. Next, we project F pa

t−1 to a new
feature Va in a bipartite graph using the projection function
HT
b . Therefore we have:

Va = Hᵀ
b ϕa

(
F pa
t−1

) = θb

(
F pb
t−1

)
ϕa

(
F pa
t−1

)
, (1)

where both functions θb(·) and ϕa(·) are implemented using
a 1×1 convolutional layer. This results in a new feature
Va∈RDb×Da in the bipartite graph,which represents the cross
relations between the nodes of the target pose F pb

t−1 and the
source pose F pa

t−1 (see Fig. 1c).

Cross Reasoning with a Graph Convolution After pro-
jection, we build a fully connected bipartite graph with

adjacency matrix Aa∈RDb×Db . We then use a graph con-
volution to reason the long-range cross relations between the
nodes from both the source and target poses, which can be
formulated as:

Ma = (I − Aa)VaWa, (2)

where Wa∈RDa×Da denotes the trainable edge weights. We
follow (Chen & Rohrbach, 2019; Zhang et al., 2019) and
use Laplacian smoothing (Chen & Rohrbach, 2019; Li et
al., 2018) to propagate the node features over the bipartite
graph. The identity matrix I can be viewed as a residual sum
connection to alleviate optimization difficulties. Note that
we randomly initialize both the adjacency matrix Aa and the
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weights Wa , and then train them by gradient descent in an
end-to-end manner.
From Bipartite-Graph Space to Coordinate Space After
the cross-reasoning, the new updated feature Ma is mapped
back to the original coordinate space for further processing.
Next, we add the result to the original source shape code F pa

t−1
to form a residual connection (He et al., 2016). This process
can be expressed as:

F̃ pa
t−1 = φa(HbMa) + F pa

t−1, (3)

where we reuse the projection matrix Hb and apply a linear
projection φa(·) to projectMa back to the original coordinate
space. Therefore, we obtain the new source feature F̃ pa

t−1,
which has the same dimension as the original one F pa

t−1.
Similarly, the A2B branch outputs the new target shape

feature F̃ pb
t−1. Note that the idea behind the proposed BGR

block was inspired by the GloRe unit proposed in Chen and
Rohrbach (2019). The main difference is that the GloRe unit
reasons the relations within the same feature map via a stan-
dard graph, while the proposed BGR block reasons the cross
relations between feature maps of different poses using a
bipartite graph.

3.2 Pose-to-Image Interaction and Aggregation

As shown in Fig. 2, the proposed IA block receives the
appearance code Fi

t−1, the new source shape code F̃ pa
t−1, and

the new target shape code F̃ pb
t−1 as inputs. The IA block aims

to simultaneously and interactively enhance Fi
t , F

pa
t and

F pb
t . Specifically, the shape codes are first concatenated and

then fed into two convolutional layers to produce the atten-
tion map At−1. Mathematically,

At−1 = σ
(
Conv

(
Concat

(
F̃ pa
t−1, F̃

pb
t−1

)))
, (4)

where σ(·) denotes the element-wise Sigmoid function.
Appearance and shape features are crucial to generate

the final person image since the appearance feature mainly
focus on the texture and color information of clothes, and
the shape feature mainly focus on the body orientation
and size information. Thus, we propose the “Appearance
Code Enhancement” to learn and enhance useful person
appearance feature, while the “Shape Code Enhancement”
to learn and enhance useful person shape feature. Having
both “Appearance Code Enhancement” and “Shape Code
Enhancement” together can generate realistic person image.
Appearance Code Enhancement After obtaining At−1, the
appearance Fi

t−1 is enhanced by:

Fi
t = At−1 ⊗ Fi

t−1 + Fi
t−1, (5)

where ⊗ denotes the element-wise product. By multiplying
with the attention map At−1, the new appearance code Fi

t at
certain locations can be either preserved or suppressed.
Shape Code Enhancement As the appearance code gets
updated through Eq. (5), the shape code should also be
updated to synchronize the change, i.e., update where to
sample and put patches given the new appearance code.
Therefore, the shape code update should incorporate the new
appearance code. Specifically, we concatenate Fi

t , F
pa
t−1 and

F pb
t−1, and pass them through two convolutional layers to

obtain the updated shape codes F pa
t and F pb

t by splitting
the result along the channel axis. This process can be formu-
lated as:

F pa
t , F pb

t = Conv
(
Concat

(
Fi
t , F̃

pa
t−1, F̃

pb
t−1

))
. (6)

In this way, both new shape codes F pa
t and F pb

t can syn-
chronize the changes caused by the new appearance code
Fi
t .

3.3 Attention-Based Image Fusion

In the T -th IA block, we obtain the final appearance code
Fi
T . We then feed Fi

T to an image decoder to generate the
intermediate result Ĩb. At the same time, we feed Fi

T to an
attention decoder to produce the attention mask Ai .

The attention encoder consists of several deconvolutional
layers and a Sigmoid activation layer. Thus, the attention
encoder aims to generate a one-channel attention mask Ai ,
in which each pixel value is between 0 to 1. The attention
mask Ai aims to selectively pick useful content from both the
input image Ia and the intermediate result Ĩb for generating
the final result I

′
b. This process can be expressed as:

I
′
b = Ia ⊗ Ai + Ĩb ⊗ (1 − Ai ), (7)

where ⊗ denotes an element-wise product. In this way, both
the image decoder and the attention decoder can interact with
each other and ultimately produce better results.

4 Part-Aware BiGraphGAN

The proposed part-aware bipartite graph reasoning GAN
(i.e., BiGraphGAN++) employs the same framework as
BiGraphGAN, presented in Fig. 2, with the only difference
being that we need to replace the BGR block from Fig. 2 with
the new PBGR from Fig. 4.
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Fig. 4 Illustration of the proposed PBGR block t , which consists of
18 branches. Each branch aims to model local transformations between
each source sub-pose F pai

t−1 and each target sub-pose F pbi
t−1 in a bipar-

tite graph via a BGR block presented in Fig. 3. Note that the shape

encoders can share network parameters, so that no extra parameters are
introduced, and the speed of training and testing is not significantly slow
down

4.1 Part-Aware Bipartite Graph Reasoning

The framework of the proposed PBGR block is shown in Fig.
4. Specifically, we first follow OpenPose (Cao et al., 2017)
and decompose the overall source pose Pa and target pose

Pb into 18 different sub-poses (i.e.,
{
Pi
a

}18
i=1, and

{
Pi
b

}18
i=1)

based on the inherent connection relationships among them.
Then the corresponding source and target sub-poses are con-
catenated and fed into the corresponding shape encoder to
generate high-level feature representations.

Consider the t-th block given in Fig. 4. Each source
and target sub-pose feature representation can be repre-
sented as F pai

t−1 and F pbi
t−1 , respectively. Then, the feature

pair
[
F pai
t−1 , F

pbi
t−1

]
is fed to the i-th BGR block to learn the

local transformation for the i-th sub-pose, which can ease the
learning and capture the change in pose of each part more
precisely. Next, the updated feature representations F̃ pai

t−1 and

F̃ pbi
t−1 are concatenated to represent the local transformation

of the i-th sub-pose, i.e., F̃ pi
t−1=

[
F̃ pai
t−1 , F̃

pbi
t−1

]
. Finally, we

combine all the local transformations from all the different
sub-poses to obtain the global transformation between the
source pose Pa and target pose Pb, which can be expressed
as follows:

F̃ p
t−1 = F̃ p1

t−1 + F̃ p2
t−1 + · · · + F̃ pi

t−1 + · · · + F̃ p18
t−1 . (8)

4.2 Part-Aware Interaction and Aggregation

The proposed part-aware IA block aims to simultaneously
enhance F̃ p

t−1 and Fi
t−1. Specifically, the pose feature F̃ p

t−1
is fed into a Sigmoid activation layer to produce the attention
map At−1. Mathematically,

At−1 = σ
(
F̃ p
t−1

)
, (9)

where σ(·) denotes the element-wise Sigmoid function. By
doing so, At−1 provides important guidance for understand-
ing the spatial deformation of each part region between the
source and target poses, specifying which positions in the
source pose should be sampled to generate the correspond-
ing target pose.
Appearance Code Enhancement After obtaining At−1, the
appearance Fi

t−1 is enhanced by:

Fi
t = At−1 ⊗ Fi

t−1 + Fi
t−1, (10)

where ⊗ denotes an element-wise product.
Shape Code Enhancement Next, we concatenate Fi

t and

F pi
t−1, and pass them through two convolutional layers to

obtain the updated shape codes F pai
t and F pbi

t by splitting the
result along the channel axis. This process can be formulated
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Table 1 Quantitative comparison of different methods on Market-1501 and DeepFashion for person pose generation. For all metrics, higher is
better.

Method Market-1501 DeepFashion
SSIM ↑ IS ↑ Mask-SSIM ↑ Mask-IS ↑ SSIM ↑ IS ↑ PCKh ↑

PG2 (Ma et al., 2017) 0.253 3.460 0.792 3.435 0.762 3.090 –

DPIG (Ma & Sun, 2018) 0.099 3.483 0.614 3.491 0.614 3.228 –

Deform (Siarohin et al., 2018) 0.290 3.185 0.805 3.502 0.756 3.439 –

C2GAN (Tang et al., 2019c) 0.282 3.349 0.811 3.510 – – –

BTF (AlBahar & Huang, 2019) – – – – 0.767 3.220 –

PG2∗ (Ma et al., 2017) 0.261 3.495 0.782 3.367 0.773 3.163 0.89

Deform∗ (Siarohin et al., 2018) 0.291 3.230 0.807 3.502 0.760 3.362 0.94

VUNet∗ (Esser et al., 2018) 0.266 2.965 0.793 3.549 0.763 3.440 0.93

PATN∗ (Zhu et al., 2019) 0.311 3.323 0.811 3.773 0.773 3.209 0.96

PoseStylizer∗ (Huang et al., 2020) 0.312 3.132 0.808 3.729 0.775 3.292 0.96

XingGAN∗ (Tang et al., 2020b) 0.313 3.506 0.816 3.872 0.778 3.476 0.95

BiGraphGAN (Ours) 0.325 3.329 0.818 3.695 0.778 3.430 0.97

BiGraphGAN++ (Ours) 0.334 3.592 0.822 3.701 0.802 3.508 0.97

Real Data 1.000 3.890 1.000 3.706 1.000 4.053 1.00

(∗) denotes the results tested on our testing set
Bold values indicate the best results

as:

F pi
t =

[
F pai
t , F pbi

t

]

=Conv
(
Concat

(
Fi
t , F

pi
t−1

))
, i = 1, · · · , 18.

(11)

In this way, both new shape codes F pai
t and F pbi

t can syn-
chronize the changes caused by the new appearance code
Fi
t .

5 Model Training

Appearance and Shape DiscriminatorsWe adopt two dis-
criminators for adversarial training. Specifically, we feed the
image-image pairs (Ia , Ib) and (Ia , I

′
b) into the appearance

discriminator Dapp to ensure appearance consistency. Mean-
while, we feed the pose-image pairs (Pb, Ib) and (Pb, I

′
b) into

the shape discriminator Dsha for shape consistency. Both
discriminators (i.e., Dapp and Dsha) and the proposed graph
generator G are trained in an end-to-end way, enabling them
to enjoymutual benefits fromeach other in a joint framework.
Optimization ObjectivesWe follow (Zhu et al., 2019; Tang
et al., 2020b) and use the adversarial lossLgan , the pixel-wise
L1 lossLl1, and the perceptual lossLper as our optimization
objectives:

L f ull = λganLgan + λl1Ll1 + λperLper , (12)

where λgan , λl1, and λper control the relative importance of
the three objectives. For the perceptual loss, we follow (Zhu
et al., 2019; Tang et al., 2020b) and use the Conv1_2 layer.
Implementation Details In our experiments, we follow
previous work (Zhu et al., 2019; Tang et al., 2020b) and
represent the source pose Pa and the target pose Pb as two
18-channel heat maps that encode the locations of 18 joints
of a human body. The Adam optimizer (Kingma & Ba,
2015) is employed to learn the proposed BiGraphGAN and
BiGraphGAN++ for around 90K iterations with β1=0.5 and
β2=0.999.

In our preliminary experiments, we found that as T
increases, the performance gets better and better. However,
when T reaches 9, the proposed models achieve the best
results, and then the performance begins to decline. Thus, we
set T=9 in the proposed graph generator. Moreover, λgan ,
λl1, λper in Equation (12), and the number of feature map
channels C , are set to 5, 10, 10, and 128, respectively. The
proposed BiGraphGAN is implemented in PyTorch (Paszke
et al., 2019).

6 Experiments

6.1 Person Pose Synthesis

DatasetsWefollowpreviousworks (Maet al., 2017; Siarohin
et al., 2018; Zhu et al., 2019) and conduct extensive exper-
iments on two public datasets, i.e., Market-1501 (Zheng et
al., 2015) and DeepFashion (Liu et al., 2016). Specifically,
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Fig. 5 Qualitative comparisons
of person pose generation on
Market-1501. a From left to
right: Source Image (Ia), Source
Pose (Pa), Target Pose (Pb),
Target Image(Ib), PG2 (Ma et
al., 2017), VUNet (Esser et al.,
2018), Deform (Siarohin et al.,
2018), BiGraphGAN (Ours),
and BiGraphGAN++ (Ours). b
From left to right: Source Image
(Ia), Source Pose (Pa), Target
Pose (Pb), Target Image(Ib),
PATN (Zhu et al., 2019),
PoseStylizer (Huang et al.,
2020), XingGAN (Tang et al.,
2020b), BiGraphGAN (Ours),
and BiGraphGAN++ (Ours)

we adopt the training/test split used in Zhu et al. (2019);
Tang et al. (2020b) for fair comparison. In addition, images
are resized to 128×64 and 256×256 on Market-1501 and
DeepFashion, respectively.
Evaluation Metrics We follow (Ma et al., 2017; Siarohin
et al., 2018; Zhu et al., 2019) and employ Inception score
(IS) (Salimans et al., 2016), structural similarity index mea-
sure (SSIM) (Wang et al., 2004), and their masked versions
(i.e., Mask-IS and Mask-SSIM) as our evaluation metrics to
quantitatively measure the quality of the images generated
by different approaches. Moreover, we employ the percent-

age of correct keypoints (PCKh) score proposed in Zhu et
al. (2019) to explicitly evaluate the shape consistency of the
person images generated for the DeepFashion dataset.
Quantitative Comparisons We compare the proposed
BiGraphGANandBiGraphGAN++with several leading per-
son image synthesis methods, i.e., PG2 (Ma et al., 2017),
DPIG (Ma & Sun, 2018), Deform (Siarohin et al., 2018),
C2GAN (Tang et al., 2019c), BTF (AlBahar&Huang, 2019),
VUNet (Esser et al., 2018), PATN (Zhu et al., 2019), Pos-
eStylizer (Huang et al., 2020), and XingGAN (Tang et al.,
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Fig. 6 Qualitative comparisons
of person pose generation on
DeepFashion. a From left to
right: Source Image (Ia), Source
Pose (Pa), Target Pose (Pb),
Target Image(Ib), PG2 (Ma et
al., 2017), VUNet (Esser et al.,
2018), Deform (Siarohin et al.,
2018), BiGraphGAN (Ours),
and BiGraphGAN++ (Ours). b
From left to right: Source Image
(Ia), Source Pose (Pa), Target
Pose (Pb), Target Image(Ib),
PATN (Zhu et al., 2019),
XingGAN (Tang et al., 2020b),
BiGraphGAN (Ours), and
BiGraphGAN++ (Ours)

2020b). Note that all of them use the same training data and
data augmentation to train the models.

Quantitative comparison results are shown in Table 1.
We observe that the proposed methods achieve the best
results in most metrics, including SSIM and Mask-SSIM
on Market-1501, and SSIM and PCKh on DeepFashion. For
other metrics, such as IS, the proposed methods still achieve
better scores than the most related model, PATN, on both

datasets. These results validate the effectiveness of our pro-
posed methods.
Qualitative Comparisons We also provide visual compari-
son results on both datasets in Figs. 5 and 6. As shown on the
left of both figures, the proposedBiGraphGANandBiGraph-
GAN++ generate remarkably better results than PG2 (Ma et
al., 2017), VUNet (Esser et al., 2018), and Deform (Siarohin
et al., 2018) onbothdatasets. To further evaluate the effective-
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Table 2 Quantitative
comparison of user study (%) on
Market-1501 and DeepFashion.
‘R2G’ and ‘G2R’ represent the
percentage of real images rated
as fake w.r.t. all real images, and
the percentage of generated
images rated as real w.r.t. all
generated images, respectively

Method Market-1501 DeepFashion
R2G ↑ G2R ↑ R2G ↑ G2R ↑

PG2 (Ma et al., 2017) 11.20 5.50 9.20 14.90

Deform (Siarohin et al., 2018) 22.67 50.24 12.42 24.61

C2GAN (Tang et al., 2019c) 23.20 46.70 – –

PATN (Zhu et al., 2019) 32.23 63.47 19.14 31.78

BiGraphGAN (Ours) 35.76 65.91 22.39 34.16

BiGraphGAN++ (Ours) 37.32 66.83 23.76 35.57

Bold values indicate the best results

Table 3 Quantitative
comparison of facial expression
image synthesis on the Radboud
Faces dataset. For all the metrics
except LPIPS, higher is better

Method AMT ↑ SSIM ↑ PSNR ↑ LPIPS ↓
Pix2pix (Isola et al., 2017) 13.4 0.8217 19.9971 0.1334

GPGAN (Di et al., 2018) 0.3 0.8185 18.7211 0.2531

PG2 (Ma et al., 2017) 28.4 0.8462 20.1462 0.1130

CocosNet (Zhang et al., 2020) 31.3 0.8524 20.7915 0.0985

C2GAN (Tang et al., 2019c) 34.2 0.8618 21.9192 0.0934

BiGraphGAN (Ours) 37.9 0.8644 27.5923 0.0806

BiGraphGAN++ (Ours) 39.1 0.8665 29.3917 0.0798

Bold values indicate the best results

ness of the proposedmethods,we compareBiGraphGANand
BiGraphGAN++ with the most state-of-the-art models, i.e.,
PATN (Zhu et al., 2019), PoseStylizer (Huang et al., 2020),
and XingGAN (Tang et al., 2020b), on the right of both fig-
ures. We again observe that our proposed BiGraphGAN and
BiGraphGAN++ generate clearer and more visually plausi-
ble person images than PATN, PoseStylizer, and XingGAN
on both datasets.
User Study We also follow (Ma et al., 2017; Siarohin et al.,
2018; Zhu et al., 2019) and conduct a user study to evaluate
the quality of the generated images. Specifically, we follow
the evaluation protocol used in Zhu et al. (2019); Tang et al.
(2020b) for fair comparison. Comparison results of differ-
ent methods are shown in Table 2. We see that the proposed
methods achieve the best results in all metrics, which further
confirms that the images generated by the proposedBiGraph-
GAN and BiGraphGAN++ are more photorealistic.

6.2 Facial Expression Synthesis

Datasets The Radboud Faces dataset (Langner et al., 2010)
is used to conduct experiments on the facial expression gen-
eration task. This dataset consists of over 8,000 face images
with eight different facial expressions, i.e., neutral, angry,
contemptuous, disgusted, fearful, happy, sad, and surprised.

We follow C2GAN (Tang et al., 2019c) and select 67% of
the images for training, while the remaining 33% are used for
testing. We use the public software OpenFace (Amos et al.,
2016) to extract facial landmarks. For the facial expression-
to-expression translation task, we combine two different

facial expression images of the same person to form an image
pair for training (e.g., neutral and angry). Thus, we obtain
5628 and 1407 image pairs for the training and testing sets,
respectively.
EvaluationMetrics.We followC2GAN (Tang et al., 2019c)
andfirst adopt SSIM (Wang et al., 2004), peak signal-to-noise
ratio (PSNR), and learned perceptual image patch similarity
(LPIPS) (Zhang & Isola, 2018b) for quantitative evaluation.
Note that both SSIM and PSNRmeasure the image quality at
a pixel level, while LPIPS evaluates the generated images at a
deep feature level. Next, we again follow C2GAN and adopt
the amazon mechanical turk (AMT) user study to evaluate
the generated facial images.
Quantitative Comparisons To evaluate the effectiveness of
the proposed BiGraphGAN, we compare it with several lead-
ing facial image generation methods, i.e., Pix2pix (Isola et
al., 2017), GPGAN (Di et al., 2018), PG2 (Ma et al., 2017),
CocosNet (Zhang et al., 2020), and C2GAN (Tang et al.,
2019c).

The results in terms of SSIM, PSNR, andLPIPS are shown
in Table 3. We observe that the proposed BiGraphGAN and
BiGraphGAN++ achieve the best scores in all three evalu-
ation metrics, confirming the effectiveness of our methods.
Notably, the proposed BiGraphGAN is 5.6731 points higher
than the current best method (i.e., C2GAN) in the PSNR
metric.
QualitativeComparisonsWealsoprovidequalitative results
compared with the current leading models in Fig. 7. We
observe that GPGAN performs the worst among all com-
parison models. Pix2pix can generate correct expressions,
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Fig. 7 Qualitative comparisons of facial expression translation on Rad-
boud Faces. From left to right: Source Image (Ia), Source Landmark
(Pa), Target Landmark (Pb), Target Image (Ib), Pix2pix (Isola et al.,

2017), GPGAN (Di et al., 2018), PG2 (Ma et al., 2017), CocosNet
(Zhang et al., 2020), C2GAN (Tang et al., 2019c), BiGraphGAN (Ours),
and and BiGraphGAN++ (Ours)

but the faces are distorted. Moreover, the results of PG2 tend
to be blurry. Compared with these methods, the results gen-
erated by the proposed BiGraphGAN are smoother, sharper,
and contain more convincing details.
User Study Following C2GAN (Tang et al., 2019c), we
conduct a user study to evaluate the quality of the images gen-
erated by different models, i.e., Pix2pix (Isola et al., 2017),
GPGAN (Di et al., 2018) , PG2 (Ma et al., 2017), Cocos-
Net (Zhang et al., 2020), and C2GAN (Tang et al., 2019c).
Comparison results are shown in Table 3. We observe that
the proposed BiGraphGAN achieves the best results, which
further validates that the images generated by the proposed
model are more photorealistic.

6.3 Ablation Study

We perform extensive ablation studies to validate the effec-
tiveness of each component of the proposed BiGraphGAN
on the Market-1501 dataset.

Baselines of BiGraphGAN. The proposed BiGraphGAN
has six baselines (i.e., B1, B2, B3, B4, B5, B6), as shown
in Table 4 and Fig. 8 (left). B1 is our baseline. B2 uses the
proposed B2A branch to model the cross relations from the
target pose to the source pose. B3 adopts the proposed A2B
branch to model the cross relations from the source pose to
the target pose. B4 combines both theA2BandB2Abranches
to model the cross relations between the source pose and the
target pose. Note that both GCNs in B4 share parameters. B5
employs a non-sharing strategy between the two GCNs to
model the cross relations. B6 is our full model and employs
the proposed AIF module to enable the graph generator to
attentively determinewhich part ismost useful for generating
the final person image.
Ablation Analysis The results of the ablation study are
shown in Table 4 and Fig. 8 (left). We observe that both
B2 and B3 achieve significantly better results than B1, prov-
ing our initial hypothesis that modeling the cross relations
between the source and target pose in a bipartite graph will
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Fig. 8 Qualitative comparison of ablation study on Market-1501. a Qualitative comparisons of different baselines of the proposed BiGraphGAN.
b Visualization of the learned attention masks and intermediate results

Table 4 Ablation study of the
proposed BiGraphGAN on
Market-1501 for person pose
generation. For both metrics,
higher is better

Baselines of BiGraphGAN SSIM ↑ Mask-SSIM ↑
B1: Our Baseline 0.305 0.804

B2: B1 + B2A 0.310 0.809

B3: B1 + A2B 0.310 0.808

B4: B1 + A2B + B2A (Sharing) 0.322 0.813

B5: B1 + A2B + B2A (Non-Sharing) 0.324 0.813

B6: B5 + AIF 0.325 0.818

Bold values indicate the best results

boost the generation performance. In addition, we see that
B4 outperforms B2 and B3, demonstrating the effective-
ness of modeling the symmetric relations between the source
and target poses. B5 achieves better results than B4, which
indicates that using two separateGCNs tomodel the symmet-
ric relations will improve the generation performance in the
joint network. B6 is better than B5, which clearly proves the
effectiveness of the proposed attention-based image fusion
strategy.

Moreover, we show several examples of the learned atten-
tion masks and intermediate results in Fig. 8 (right) We can
see that the proposed module attentively selects useful con-
tent from both the input image and intermediate result to
generate the final result, thus validating our design motiva-
tion.
BiGraphGAN versus BiGraphGAN++ We also provide
comparison results of BiGraphGAN and BiGraphGAN++
on both Market-1501 and DeepFashion. The results for per-
son pose image generation are shown in Tables 1 and 2.

We see that BiGraphGAN++ achieves much better results
in most metrics, indicating that the proposed PBGR mod-
ule does indeed learn the local transformations among body
parts, thus improving the generation performance. From the
visualization results in Figs. 5 and 6,we can see thatBiGraph-
GAN++ generates more photorealistic images with fewer
visual artifacts than BiGraphGAN, on both datasets. The
same conclusion can be drawn from the facial expression
synthesis task, as shown in Table 3 and Fig. 7. Overall, the
proposed BiGraphGAN++ can achieve better reuslts than
BiGraphGANonboth challenging tasks, validating the effec-
tiveness of our network design.

7 Conclusion

In this paper, we propose a novel bipartite graph reasoning
GAN (BiGraphGAN) framework for both the challenging
person pose and facial image generation tasks. We introduce

123



International Journal of Computer Vision (2023) 131:644–658 657

two novel blocks, i.e., the bipartite graph reasoning (BGR)
block and interaction-and-aggregation (IA) block. The for-
mer is employed to model the long-range cross relations
between the source pose and the target pose in a bipartite
graph. The latter is used to interactively enhance both a per-
son’s shape and appearance features.

To further capture the detailed local structure transfor-
mations among body parts, we propose a novel part-aware
bipartite graph reasoning (PBGR) block. Extensive exper-
iments in terms of both human judgments and automatic
evaluation demonstrate that the proposed BiGraphGAN
achieves remarkably better performance than the state-of-
the-art approaches on three challenging datasets. Lastly, we
believe that the proposed method will inspire researchers to
explore the cross-contextual information in other vision task.
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