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Abstract
Central catadioptric cameras with a single effective viewpoint contain both mirrors and pinhole cameras that increase the
imaging field of view. In this study, the common pole–polar properties of central catadioptric sphere or line images are
investigated and used for camera calibration. From these properties, the pole and polar with respect to the image of absolute
conic and the modified image of absolute conic, respectively, can be recovered according to the generalized eigenvalue
decomposition. Moreover, these techniques are valid for paracatadioptric sensors with the degenerate conic dual to the
circular points being considered. At least three images of spheres or lines are required to completely calibrate any central
catadioptric camera. The intrinsic parameters of the camera, the shape of reflective mirror, and the distortion parameters can be
linearly estimated using the algebraic and geometric constraints of the sphere or line images obtained by the central catadioptric
camera. The obtained experimental results demonstrate the effectiveness and feasibility of the proposed calibration algorithm.

Keywords Camera calibration · Sphere and line images · Image models · Pole–polar properties

1 Introduction

Camera calibration forms a potential bridge between the two-
dimensional (2D) image and three-dimensional (3D) space,
which is widely used in many computer vision tasks, such
as 3D reconstruction Jiménez and de Miras (2012), SLAM
Durrant-Whyte and Bailey (2006), video surveillance. Gen-
erally, this process is based on a pinhole camera model Ying
and Zha (2006); Yang et al. (2020); Daucher et al. (1994).
However, catadioptric cameras have a wider field of view
(FOV) Ying and Hu (2004) than that of traditional pinhole
cameras owing to the progress in optics; therefore, camera
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calibration based on a catadioptric model has received sig-
nificant research attention.

A catadioptric sensor uses a combination of lenses and
mirrors that are carefully arranged together. Choosing the
shapes of the mirrors is an important part for catadioptric
sensors Baker and Nayar (1999). As noted in Baker and
Nayar (1998), it is highly desirable that a catadioptric sys-
tem have a single viewpoint. The reason a single viewpoint
is so desirable is that it permits the generation of geometri-
cally correct perspective images from the images captured by
the catadioptric cameras Baker and Nayar (1999). Such sys-
tems are extensively used now for robotic perception Tahri
and Araújo (2012) and navigation Scaramuzza and Siegwart
(2008). Furthermore, the catadioptric systems are classified
in two groups, central and non-central, based on the unique-
ness of an effective viewpoint; those having a single effective
viewpoint are central catadioptric sensors Geyer and Dani-
ilidis (2001). There are four different types of mirrors used
in the central catadioptric system including the parabolic,
elliptical, hyperbolic, and plane ones. Geyer and Daniilidis
(2001) unified these four cases and showed that the imag-
ing process for all central catadioptric systems is isomorphic
to the two-step projective mapping based on a unit viewing
sphere. Many calibration algorithms are currently used for
central catadioptric cameras, which will be introduced later.
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1.1 RelatedWork on Central Catadioptric Camera

Self-calibration Kang (2000); Svoboda and Pajdla (2002).
This approach does not require calibration objects, and
its constraints are defined by the selected images. Kang
(2000) presented a self-calibration algorithm using the cor-
responding points of multiple images as constraints. He used
consistency of pairwise correspondence with the imaging
characteristics of the catadioptric camera to seek the calibra-
tion parameters together with the essential matrix. However,
this methods are sensitive to noise and do not yield accurate
matching points.

Point-based calibration Schönbein et al. (2014); Deng et
al. (2007); Puig et al. (2011). These methods use calibra-
tion patterns containing either three-dimensional (3D) or
two-dimensional (2D) points. Deng et al. (2007) proposed a
simple algorithmbased on a 2D calibration pattern for central
catadioptric cameras. In this method, the mirror parame-
ter and FOV of the camera are used to obtain the initial
intrinsic parameters, initialize the extrinsic parameters using
the relationship between the pinhole and central catadiop-
tric model, and nonlinearly optimize both the intrinsic and
extrinsic parameters by minimizing the reprojection errors.
Although this calibration algorithm is relatively simple and
can use only one or several images containing 2D calibration
patterns, it requires accurate initial values, while the mirror
parameter and FOVof the camera are unknown inmost cases.

Line-based calibration Zhang et al. (2011); Barreto and
Araujo (2005); Ying and Hu (2004). In these methods, it
is not necessary to know the relative positions of the lines
with respect to that of the camera; the latter can be calibrated
using only the properties of the line image. Based on the rela-
tionship between the concurrent lines, Zhang et al. (2011)
proposed a rough-to-fine approach to calibrate central cata-
dioptric cameras, where the intrinsic and mirror parameters
are initialized using the line properties and further updated
by varying the position of the line image on the metric plane
to rectify the conic. All parameters are optimized by mini-
mizing the reprojection errors of the corners. Although this
method divides the calibration problem into several more
robust solutions, it easily produces cumulative errors. Ying
and Hu (2004) nonlinearly estimated the aspect ratio, prin-
cipal points, and skew factor from the geometric invariants
of a metric catadioptric image of lines after initializing the
intrinsic parameters. They found that two line images were
sufficient to determine the effective focal length and mirror
parameter using the intersections of two conics. However,
the use of this method to analyze some critical cases, specif-
ically those with high noise levels, can result in a low degree
of robustness.

Circle-based calibration Duan et al. (2014a, b). These
techniques use only the circle image in a scenewithout know-
ing the position of any circle in space. Duan et al. (2014a)

demonstrated that the paracatadioptric projection of a circle
was a quartic curve. Through application of these constraints,
an equation of the circle image can be fitted to derive the focal
length of the paracatadioptric camera; however, this method
can only be used to calibrate traditional cameras with three
degrees of freedom and does not allow for determination of
the skew and aspect factors.

Sphere-based calibration Zhao et al. (2018, 2020); Ying
and Zha (2008). These methods require only sphere images
to perform camera calibration without any metric informa-
tion. Zhao et al. (2018) proposed a calibration technique for
catadioptric cameras using the geometric properties of the
sphere and its antipodal images. They found that the van-
ishing point was orthogonal to the direction of its polar on
such images. Moreover, Zhao et al. (2020) found that the
sysmetric axis of two antipodal circles is the polar of the
infinity point of the support plane with respect to the abso-
lute conic (AC). Nevertheless, those methods were limited
to paracatadioptric camera by using the properties of antipo-
dal points Wu et al. (2008). Ying and Zha (2008) introduced
the modified image of the absolute conic (MIAC) produced
by the double contact with the sphere images on the cen-
tral catadioptric perspective plane. This was constructed by
utilizing the projective geometric properties of the sphere
image and their application to calibrate the catadioptric
camera.

1.2 Contributions of this Paper

Various calibration algorithms for central catadioptric cam-
eras have been developed; however, the common pole–polar
properties of multiple sphere or line images on the central
catadioptric perspective plane have not been determined. In
this study, we propose a novel linear calibration procedure
for central catadioptric cameras based on the geometric and
algebraic properties of the sphere or line images. Themotiva-
tion for this study arose from the following facts background.
Spheres and lines are considered important image features
and have been studied widely for camera calibration Ying
and Zha (2006); Liu et al. (2017). It is well known that, for
conventional cameras, the occluding contour of a sphere and
the projection center form a right circular cone. We find that
for a catadioptric system, the sphere or line image and the
virtual optical center form an oblique cone. However, the
mirror boundary and projection center form a right circular
cone. Previous studies Ying and Zha (2006); Daucher et al.
(1994) identified an interesting phenomenon, where some
special conic pairs encode an infinity point on the support-
ing plane. Moreover, we studied the properties of the right
circular cone intensively and explored how a pair of right cir-
cular cones encapsulates an infinity point Yang et al. (2020).
Based on these main principles for a pinhole, we revealed
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that there also exists an infinity point in the catadioptric sys-
tem, which corresponds to the generalized eigenvectors of
the right circular cone and oblique cone. Furthermore, we
demonstrate that the vanishing point and its polar provide a
pole–polar relationship with respect to the image of absolute
conic (IAC)Wu et al. (2004). Moreover, we explore the alge-
braic properties of two oblique cones produced by two sphere
or line images, which contribute to a new linear method for
estimating the MIAC. According to the algebraic relation-
ship between the IAC and MIAC, the shape of the reflective
surface can be recovered. Then, the distortion coefficients
are determining using rotational symmetry of a projective
cone. Therefore, given an image of three or more lines or
spheres, it follows that any catadioptric system can be fully
calibrated, which involves recovering the intrinsic parame-
ters of the camera, the shape of the reflective mirror, and the
distortion parameters.

The main contributions of this work are fourfold:
(1) The sphere can be used as a calibration feature for cen-

tral catadioptric camera. Although both lines and spheres are
mapped into the conic in the catadioptric image, it is more
difficult to precisely fit the conic of a line than that of a sphere
Ying and Hu (2004). This is mainly because there are only
small portions of the conic visible on the image plane. More-
over, a line image can be seen as a special case of a sphere
image Ying and Zha (2008). Therefore, a sphere image is
preferred considering the catadioptric system. Moreover, we
propose a novel method for determining the type of mir-
ror using only the sphere image, which is to the best of our
knowledge, the first work to do so.

(2) Some novel geometric and algebraic properties are
presented; the generalized eigenvectors of the right circular
cone and oblique cone are the pole and polar with respect to
the IAC.

(3) A novel approach is the recovery of the distortion
parameters without using a chessboard for calibration.

(4) Ourmethod is valid for any central catadioptric system
and generalizes the pole–polar relationship for paracatadiop-
tric sensors by considering the degenerate conic dual the
circular points (CDCP).

The remainder of this paper is organized as follows. Sec-
tion 2 briefly outlines the projections of a sphere and a line
obtained by a central catadioptric camera and their alge-
braic properties. In Sect. 3, calibration algorithms based
on the common pole–polar characteristics of sphere and
line images are described in detail. Section 4 presents the
results obtained using the proposed method on simulated
and experimental data. Section 5 discusses the results of the
study. Finally, Sect. 6 summarizes the conclusions of this
study.

Fig. 1 Projections of the sphere and line acquired by catadioptric cam-
era. The green line L is projected to a circle on the surface of the sphere.
Further, line image ĈL is acquired on the central catadioptric image
plane through a collineation. Similarly, purple and blue represent the
projection process of a sphere and the occluding contour, respectively

2 Preliminaries

In this section, we briefly review the imaging process of cen-
tral catadioptric cameras and algebraic properties of sphere
and line images.

2.1 Imaging Process Used in Central Catadioptric
Camera

Geyer and Daniilidis (2001), Geyer and Daniilidis (2000)
proposed a unifying theory for all central catadioptric sys-
tems and demonstrated that the imaging model of central
catadioptric camera is isomorphic to the two-step projec-
tive mapping based on the unit viewing sphere. Moreover,
Barreto (2004) introduced a modified version of the afore-
mentioned projection model, which consists of a three-step
process with the non-linearity of the mapping. As shown in
Fig. 1, the world coordinate system (WCS) O − xw ywzw is
set up, where the center O of the unit sphere serves as the
origin. Let the nonhomogeneous coordinates of a space point

P be
[

X Y Z
]T
, so that the projection of P on the virtual

unit sphere in the WCS is Pw = P
‖P‖ = [

Xw Yw Zw

]T
,

where ‖P‖ = √
X2 + Y 2 + Z2. The WCS goes ξ units

along the zw direction to establish the mirror coordinate sys-
tem (MCS) Oc − xm ym zm , where Oc can be considered a
virtual optical center; therefore, the point Pw can be rep-

resented by
[

Xw Yw Zw + ξ
]T

in the MCS. The distance
ξ = ‖O − Oc‖ (0 ≤ ξ ≤ 1) between the origins O and
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Oc can be considered as a parameter characterizing different
types of mirrors in the central catadioptric camera Geyer and
Daniilidis (2000). Specifically, the mirror is a plane if ξ = 0,
an ellipsoid or hyperboloid if 1 < ξ < 1, and a paraboloid if
ξ = 1. Note that when ξ > 1, the unified projection model
can approximate fisheye projections Ying and Hu (2004).

The second step is non-linear mapping described by a
function h̄(1) from the MCS, where h̄(1) corresponds to
re-projecting the point Pw into a point p̄ = h̄ (Pw) =[

Xw

Zw+ξ
Yw

Zw+ξ
1
]T

on the plane at infinity π∞ Barreto

(2004). Generally, a camera exhibits radial distortion, which
is dominated by the first radial components Andrew (2001).
In this study, we only considered a two-degree radial distor-
tion model

p̄distorted =
(
1 + k1r2 + k2r4

)
p̄undistorted (1)

where p̄distorted = [
xdistorted ydistorted

]T
are the normal-

ized coordinates with distortion, p̄undistorted =
[

xundistorted yundistorted
]T

are the ideal nonhomogeneous
coordinates of p̄, and r2 = xundistorted

2 + yundistorted
2.

Once distortion is applied, the final projection is mapping
the point p̄distorted onto the point p̂ in the catadioptric image
plane π I after a collineation Hc by the following equation

λpp̂ = Hc
[

xdistorted ydistorted 1
]T

(2)

where

Hc=KcRcMc (3)

and λp is a nonzero scale factor. The projection trans-
formation Hc depends on the calibration matrix Kc =⎡

⎣
fx 0 u0

0 fy v0
0 0 1

⎤

⎦ of the virtual camera, the mirror parameters

Mc =
⎡

⎣
η − ξ 0 0
0 ξ − η 0
0 0 1

⎤

⎦ (the values for (ξ, η) are detailed

in Barreto (2004)), and the rotation matrix Rc between the
camera and the mirror.

Definition 1 Ying and Zha (2008) For the central catadiop-
tric system, let ω = Hc

−THc
−1 represent the IAC; in this

case, ω̃ = Hc
−T

⎡

⎣
1 − ξ2 0 0

0 1 − ξ2 0
0 0 1

⎤

⎦Hc
−1 = H̃

−T
c H̃

−1
c

corresponds to the MIAC.

Definition 2 Andrew (2001) A line μ̄ = C̄v̄ is defined by a
point v̄ and conic C̄. The point v̄ is dubbed the pole of μ̄ with
respect to C̄, and the line μ̄ is the polar of v̄ with respect to
C̄.

Table 1 Center, principal axes, major and minor axes of the sphere
image

Euclidean parameters

Center
[

nx (nz − ξd0) ny (nz − ξd0) �
]T

Principal axes μ̄=[ −ny nx 0
]T ;

ῡ=
[

nx� ny� −
(

n2
x + n2

y

)
ny

]T

Major and minor axes

√
n2x +n2y+n2z −d2

0

�
;

(d0−ξmz )
2
√

n2x +n2y+n2z −d2
0

�2

�=
(

n2
x + n2

y

) (
ξ2 − 1

) + (d0 − ξnz)
2

Definition 3 Andrew (2001) If a point v̄ and line μ̄ satisfy
both the pole–polar relationship with respect to C̄m and C̄,
then v̄ and μ̄ are the common poles and polar of C̄m and C̄,
respectively.

Definition 4 Andrew (2001) A plane normal directionD and
the intersection line μ̄ of the plane with π∞ are in pole–polar
relation with respect to the absolute conic �̄∞.

2.2 Catadioptric Projection of Sphere and Line
Images

Using the central catadioptric projection model described in
the previous section, a space sphere S is first projected onto
a small circle CS on the unit viewing sphere (see Fig. 1). Let
the unit vector normal to the support plane π S , containing

circle CS , be N=[
n x n y n z

]T
and the distance from the

center O of the unit sphere to the plane π S be d0. Therefore,
a central cone QS is formed by the virtual optical center Oc

and circle CS in the MCS Ying and Zha (2008). Then the
cone QS maps onto the conic curve C̄S in the plane π∞. For
completeness, Table 1 lists the Euclidean parameters of the
conic C̄S .

Similarly, a space line L is projected onto a large circle
CL on the surface of the unit sphere (see Fig. 1). Since the
support planeπ L passes through the unit sphere centerO, the
distance from the unit sphere center O to plane π L is equal
to zero (d0 = 0). Hence, a unified imaging process exists for
both the space line and space sphere. By assuming d0 = 0,
the projection C̄L of the line on the π∞ can be determined
Barreto (2004).

C̄S =
⎡

⎣
(ξ2 − 1)nx

2 + (d0 − ξnz)
2 (ξ2 − 1)nx ny (ξd0 − nz)nx

(ξ2 − 1)nx ny (ξ2 − 1)ny
2 + (d0 − ξnz)

2 (ξd0 − nz)ny

(ξd0 − nz)nx (ξd0 − nz)ny (d02 − nz
2)

⎤

⎦

(4)

C̄L =
⎡

⎣

(
ξ2 − 1

)
nx

2 + ξ2nz
2 (ξ2 − 1)nx ny −nx nz

(ξ2 − 1)nx ny (ξ2 − 1)ny
2 + ξ2nz

2 −nynz

−nx nz −nynz −nz
2

⎤

⎦ (5)
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Notice that the projective rays, joining Oc to the points in
the mirror contour circle Cm on the plane πm form a right
circular cone Qm that cone projects into the conic C̄m on the
π∞, i.e., assuming d0 = 0, nx = 0, ny = 0, and nz = ξ

C̄m =
⎡

⎣
1 0 0
0 1 0

0 0 −1
/
ξ
2

⎤

⎦ (6)

According to Fig. 1 , the points p̂ in the central catadioptric
image plane π I are linearly related to the point p̄ through
a collineation Hc. Hence, from Eq. (2), the sphere image
equation ĈS on the π I is derived as

λSĈS = Hc
−T C̄SHc

−1 (7)

where λS is a nonzero scale factor. Similarly, the projection
ĈL of line L on the π I can be determined using the relation-
ship

λL ĈL = Hc
−T C̄LHc

−1 (8)

By combining Eqs. (7) and (8), we prove that the line
image ĈL is a special form of the sphere image ĈS . To
describe ĈS and ĈL conveniently, parameter Ĉ is used to
express both of these images in a unified form. Similarly,
C̄ denotes conics C̄S and C̄L , and C̄m represents the mirror
boundary.

3 Calibration

In this section, we discuss the algebraic relationship between
a sphere or line image and the IAC and propose a calibration
procedure for central catadioptric cameras based on these
constraints. Moreover, the CDCP is used in the case of the
paraboloid mirror. Here, it is assumed that the mirror param-
eter remains constant, and that its value can be obtained from
the relationship between IAC and MIAC.

3.1 Orthogonal Constraints Related to the IAC and
MIAC

Proposition 1 As shown in Fig. 2, considering the conics C̄m

and C̄, their common poles v̄ and polar μ̄ can be determined
by the generalized eigenvalue decomposition of the conic
pair

(
C̄m, C̄

)
.

Proof For a common pole and polar of C̄m and C̄, accord-
ing to the Definition 3, the following relationship must be
satisfied
{

μ̄ = C̄v̄
μ̄ = λC̄m v̄

(9)

Fig. 2 Common poles v̄k (k = 1, 2, 3) of C̄m and C̄ on the plane π∞
determined by the generalized eigenvalue decomposition, where v̄1 is
an infinity point on the intersection lineD of planes πm and πS , and the
two other points v̄2 and v̄3 are on the major axis μ̄ = μ̄1. This property
holds in the central catadioptric image plane π after transformationHc

where λ is a nonzero scale factor. Subtracting the equations
in Eq. (9), we obtain

(
λI − C̄

−1
C̄m

)
v̄ = 03×1 (10)

Algebraically, Eq. (10) suggests that the points v̄ correspond
to the generalized eigenvector of

(
C̄m, C̄

)
. Given a common

pole v̄1 of C̄m and C̄, according to the polarity principle
Andrew (2001), the polar μ̄1 corresponding to v̄1 passes
through the two other common poles v̄2 and v̄3. Hence,

λμμ̄1=v̄2 × v̄3 (11)

where λμ is a nonzero scale factor and × denotes the cross
product operation. ��

Proposition 2 In Fig. 2, given a distinct pair of non-

degenerate conics
(
Ĉm, Ĉ

)
, a vanishing point v̂1 and line

μ̂1 exist, which correspond to the generalized eigenvectors

of
(
Ĉm, Ĉ

)
, and also exhibit a pole–polar relationship with

respect to the IAC.

The proof of Proposition 2 is given in Appendix 1.

Proposition 3 For the central catadioptric system, a sphere
or line image Ĉ can be algebraically represented by the
MIAC.
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Proof By simplifying Eqs. (7) and (8) using the procedure
described in Ying and Zha (2008), we obtain

λwĈ = ω̃ − ûûT (12)

where λw is a nonzero scale factor, and û =
√

1−ξ2

d0−ξmz
Hc

−T
⎡

⎢
⎣

√
1 − ξ2mx√
1 − ξ2my

− (ξd0 − mz)
/√

1 − ξ2

⎤

⎥
⎦. ��

Based on the principle of duality of projective geometry Sem-
ple (1952), the following corollary can be formulated

Corollary 1 In dual space, the dual Ĉ
∗

of a sphere image
satisfies the following condition

λw
∗Ĉ∗ = ω̃∗ − û∗û∗T

(13)

where λw
∗ is a nonzero scale factor, ω̃∗ = Hc

⎡

⎣
1 0 0
0 1 0
0 0 1 − ξ2

⎤

⎦

Hc
T is the dual of the modified image of the absolute conic,

called DMIAC, and û∗ = 1√(
1−d02

)Hc

⎡

⎣
mx

my

ξd0 − mz

⎤

⎦.

The corollary is valid; hence, its proof is omitted.

Proposition 4 Assuming that two 3×3 symmetric nonsingu-
lar matrices Ĉ1 and Ĉ2 represent two sphere or line images
for the central catadioptric system, the eigenvectors of the
matrix Ĉ2Ĉ

∗
1 can determine the line l̂

∗
and point x̂∗, which

also have pole–polar relationships with respect to the MIAC.

Proof According to Corollary 1, for the two sphere (line)
images Ĉ1 and Ĉ2 obtained by the central catadioptric cam-
eras in the dual space, the following equations hold true

{
λw1

∗Ĉ∗
1 = ω̃∗ − û∗

1û
∗
1

T

λw2
∗Ĉ∗

2 = ω̃∗ − û∗
2û

∗
2

T (14)

A line l̂
∗ = û∗

1× û∗
2 is defined that connects the two points

u∗
1, u

∗
2. Then, the matrix Ĉ2Ĉ

∗
1 can provide both line l̂

∗
and

point x̂∗, which are the pole and polar for ω̃, respectively.
Note that the rigorous proofs can refer to pinhole cameras
Zhang et al. (2007). ��

3.2 Algebraic Constraints Between Sphere or Line
Images and the CDCP

Generally, a paracatadioptric camera combines a parabolic
mirror with an orthographic camera. In this case, the mirror
parameter ξ is unitary.Moreover, under the parabolic system,

the optical axis of the camera must be aligned with the sym-
metry axis of the mirror Rc=I Barreto (2004). Here, we are
considering the sensor as a global device. This is particularly
important for calibration, because it shows that fx , fy and
η cannot be computed independently Barreto (2004). Then,
the transformationHc is rewritten asHc=Kc. In a parabolic
projection, a line or sphere ismapped to an arc of a circle, and
such a projection is called a line or sphere image, respectively.
In the canonical plane, the two special points (the circular
points) on the infinity line play a crucial role and assume

the forms Ī∞ = [
1 i 0

]T
and J̄∞ = [

1 −i 0
]T
, where

i2 = −1. In the Euclidean coordinate system, the conic C̄
∗
∞

is a degenerate (rank 2) line conic, called the CDCP which
consists of two circular points. It is given in matrix form as

C̄
∗
∞ = Ī∞J̄

T
∞ + J̄∞Ī

T
∞ (15)

For circles, C̄
∗
∞ is fixed under scale, translation and rotation

transformation Andrew (2001).

Proposition 5 In paracatadioptric systems, three line or
sphere images provide sufficient constraints to compute the
image Ĉ

∗
∞ of the CDCP.

The proof of Proposition 5 is given in Appendix 1.

3.3 Calibration with Pole and Polar Constraints

If point v̂1 and line μ̂1 are the pole and polar with respect to
a conic ω, respectively, the following relationship holds true

λl μ̂1 = ω v̂1 (16)

whereλl is a nonzero scale factor. This constraint can provide
two independent conditions for the elements of ω; hence,
the complete calibration of the central catadioptric cameras
would require a minimum number of three sphere or line
images.

Proposition 6 once conic Ĉ
∗
∞ has been identified on the

paracatadioptric image plane, the intrinsic parameters of
the camera can be determined.

Proof Under the point transformation p̂ = Hcp̄, where
Hc=Kc is the world-to-image homography, C̄

∗
∞ transforms

to Ĉ
∗
∞ = HcC̄

∗
∞Hc

T . Further, Ĉ
∗
∞ identified in an image

plane using singular-value decomposition (SVD) can bewrit-
ten as

Ĉ
∗
∞ = U

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦UT (17)

Thehomography isHc = Kc = U up to a scale and tranlation
transformation Andrew (2001). ��
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Proposition 7 Once IAC and MIAC have been identified on
the projective plane, the mirror parameter ξ of the camera
can be determined.

Proof The IAC is by definition a virtual conic ω =
Hc

−THc
−1.The transformation Hc can be computed from

the Cholesky decomposition of ω. Moreover, ξ is provided
by ω̃ on the basis of obtaining Hc. ��

3.4 Estimation of Distortion Coefficients

As is the case for most central catadioptric calibration
methods Ying and Zha (2006); Zhang et al. (2007), it is
difficult to provide a solution for the distortion coefficients
compared with the calibration chessboard Andrew (2001),
since the correspondence between the apparent contour point
and its projection is undetermined. Here, we provide a
means to solve lens distortion. Given the (distorted) points
p̂n (n = 1, 2 · · ·) sampled from the mirror boundary and the
projection (principal point) Ô of the equator center, the (dis-
torted) directions of lines l pn = Hc

−1p̂n and lo = Hc
−1Ô

can be obtained through back projection using the calibration
results Andrew (2001), as shown in Fig. 3. From Eq. (1), the
ideal (undistorted) directions of lines l pn

′ and lo′ satisfy the
following

{(
1 + k1r2 + k2r4

)
l pn

′ = l pn(
1 + k1r2 + k2r4

)
lo′ = lo

(18)

Moreover, the angle ϑno
′ between l pn

′ and lo′ is derived
as

ϑno
′ = arccos

(
l pn

′ · lo′
∥∥l pn

′∥∥ · ∥∥lo′∥∥

)

(19)

where · denotes the dot product and ‖·‖ denotes the two-
norm. Further, l pn

′ and lo′ indicate the generator lines
and the revolution axis of the right circular cone Qm ,
respectively. From the properties of the right circular cone,
ϑno

′ (n = 1, 2 · · ·) are all equal. Hence, the radial parame-
ters k1 and k2 can be estimated by minimizing the following
functional

argmin
k1,k2

N∑

n=1

∥∥ϑn+1o
′ − ϑno

′∥∥2 (20)

The final results can be obtained using the Levenberg–
Marquardt algorithm Mei and Rives (2007) with the initial
values k1 = 0 and k2 = 0.

3.5 Calibration Algorithm

Based on the established relationships, the calibration algo-
rithm comprises the following steps (see Alg. 1). Note that

Fig. 3 Properties of the right circular cone: the angles ϑno
′ between the

generator lines l pn
′ and the revolution axis lo ′ of the right circular cone

Qm are equal to each other

CDCP is a degenerate conic and IAC is a nondegenerate
conic. Hence, IAC and CDCP can be distinguished by their
eigenvalues Andrew (2001).

4 Experimental

To confirm the validity of the proposed calibration algorithm,
a series of simulations and real experiments were performed.
Additionally, the effectiveness of the calibration algorithm
was validated by using the sphere images (referred to as
CPS) and the line images (referred to as CPL). Our code and
datasets are available at http://github.com/yflwxc/Camera-
Calibration.

4.1 Simulations

In this section, the correctness of the derived expressions in
the previous section was verified by using synthetic data.
The operating device for this experiment was a notebook
computer, the model of which was Lenovo Legion Y7000
2020 and the processor was i5-10200H. The running plat-
form for the experiment was Matlab R2016b. This section
assumes that initial calibration matrix of the simulation cam-

era is Kc =
⎡

⎣
800 0 320
0 850 240
0 0 1

⎤

⎦, and the mirror parameter is

ξ = 0.8. According to the analysis presented in Sect. 3, the
method proposed in this work requires at least three sphere or
line images to complete the calibration. Therefore, multiple
images were generated to calibrate the central catadioptric
cameras by randomly changing extrinsic parameters, one of
which is shown in Fig. 4. For better visualization, we normal-
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Algorithm 1 Camera calibration algorithm
Require: The images of sphere or lines
Ensure: Calibration parameters; The mirror parameter; Distortion

coefficients
1: Determine the mirror contour Ĉmn and the sphere or line images Ĉn

(n ≥ 3) using conic fitting techniques
2: Obtain the common pole v̂n1 and polar μ̂n1 of sphere or line images

Ĉn and mirror boundary Ĉmn by solving Eqs. (10) and (11)
3: Determine ω(IAC) or Ĉ

∗
∞ (CDCP) using Eq. (16)

4: if IAC is true then
5: Obtain the common pole x∗ and polar l∗ of sphere or line images

Ĉi , Ĉ j by solving Eq. (14)
6: Determine ω̃ (MIAC) using Eq. (16)
7: if ω and ω̃ are positive definite then

8: Compute matrix Hc
T and H̃c

T
by performing Cholesky fac-

toriztion and matrix inversion for ω and ω̃

9: Estimate the mirror parameter ξ from Definition 1
10: else
11: Repeat Step 1, 2, and 3
12: end if
13: end if
14: if CDCP is true then
15: Compute matrix Hc = Kc = U by performing the singular-

value decomposition for Ĉ
∗
∞

16: Return the mirror parameter ξ = 1
17: else
18: Repeat Step 1, 2, and 3
19: end if
20: Determine the radial distortion coefficients k1 and k2 using Eq. (20)

ized the image data here. In the case of different noise levels
σ , mirror parameters ξ , and numbers of images N , multiple
calibration imageswere obtained to evaluate the performance
of our algorithm. For the evaluation metrics of the algorithm,
here is mainly based on the difference between the ground
truth (GT) and the estimate (EST), including: the focal length
errors E f , the principal point errors Euv0, the mirror param-
eter errors Eξ , and the total errors Etotal , which are defined
as follows. Note that the intrinsic parameters range from 0 to
1000, and the mirror parameter 0 ≤ ξ ≤ 1. Hence, they are
weighted to the same magnitude.

E f = ‖ fxGT − fx E ST ‖2 + ∥∥ fyGT − fyE ST
∥∥
2 (21)

Euv0 = ‖u0GT − u0E ST ‖2 + ‖v0GT − v0E ST ‖2 (22)

Eξ = 1000 × ‖ξGT − ξE ST ‖2 (23)

Etotal = E f + Euv0 + Eξ (24)

As in the calibration of conventional cameras, the redun-
dancy and accuracy of calibration data is a key factor for
attenuating the effect of calibration data noise into the cali-
bration precision. Therefore, we firstly test the performance
with respect to the number of images. We vary the number of
images from 3 to 21 and each images are added with Gaus-
sian noise with zero mean and standard deviation 0.2 pixels.
For each number of images, we performed 20 independent

Fig. 4 a Sphere and b line images generated by the simulated camera

Fig. 5 Sensitivities of the proposed algorithm with different number of
images N . Themean errors of f , uv0 and ξ are plotted in panels (a)–(c),
respectively. The size of the shadow indicates the standard deviation

trials and then analyzed the mean errors and standard devia-
tions of the recovered parameters. The calibration results are
shown in Fig. 5. We find that the relative errors and standard
deviations both decrease with the increase in the number of
images. In particular, when the number of images is greater
than 6, all errors are less than 2 pixels and standard devi-
ations keep at a low level stably. The main reason is that
an increase in the number of images will reduce the singu-
larity of the proposed algorithm. The results in Fig. 5 have
verified the effectiveness of the proposed calibration algo-
rithm.

For analyzing the influence of different noise levels on
the algorithms, each points on the conic were corrupted
with zero-mean Gaussian noise with different variance σ

varying from 0 to 1. For each level σ , we performed 20
independent trials by using the proposed algorithm and
their errors are computed over each run. And the results
were shown in Fig. 6. As can be seen from Fig. 5, high
noise will make the calibration result inaccurate. However,
compared with CPL, CPS obtained smaller errors under at
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Fig. 6 Sensitivities of the proposed algorithm with different noise lev-
els σ . The mean errors of f , uv0 and ξ are plotted in panels (a)–(c),
respectively

the same noise level. This is expected because the accu-
racy of the obtained calibration results highly depends on
the accuracy of the extracted conics. The main reason for
above these results is that the more contour points (see
Fig. 4) improves the performance of the conic fitting. This
observation is similar to the results stated in Ying and Hu
(2004).

In order to test the influence ofmirror parameter change on
calibration results, the mirror parameter of each image was
changed to generate Sets 1–4, whose the parameters were
shown in Table 2. For each set of images, 20 independent
experiments were performed to analyze the errors of the esti-
mated parameters. The experimental results were shown in
Table 2. Table 2 indicates that our methods are better for cal-
ibrating hyperbolic or elliptical sensors, e.g. a smaller mirror
parameter is used. Themain reason for this is thatwe compute
the pole and polar of CDCP, which is a degenerate conic.

Fig. 7 Experimental images. a Several lines were taken using a para-
catadioptric camera. b Four pairs of pole and polar

Table 3 The distortion and intrinsic parameters (unit: pixel) obtained
from paracatadioptric images of line

Algorithm Parameters

fx fy u0 v0 k1 k2

CPL 315.86 316.27 520.47 396.11 0.01 0.04

CL 313.16 313.58 517.52 397.41 – –

4.2 Experimental Results with Real Data

For further performance evaluation of the proposed cali-
bration method, we performed several experiments under
different scenes:

(1) For paracatadioptric cameras: For further perfor-
mance evaluation of the proposed calibration method, the
public real image sets were used, which were taken by an
uncalibrated paracatadioptric camera with an FOV of 180◦
Barreto and Araujo (2005), as shown in Fig. 7a. In addition,
we compare CPL with the method proposed by Barreto and
Araujo (2005) (denoted as CL). Generally, it is difficult to fit
the line image in catadioptric systems Ying and Zha (2008).
Hence, a conic fitting algorithm Barreto and Araújo (2006)
was used to solve this problem. We used line images to cali-
brate the camera by CPL and CL. Moreover, Fig. 7b showed
four pairs of pole and polar obtained from CPL. The calibra-
tion results were listed in Table 3. Table 3 showed that the
calibration results for CPL were close to those for CL, and
the difference of each parameter is within 2.95 pixels.

Table 2 Different parameters and calibration errors for the proposed algorithm

Sets Parameters Estimation errors

CPS CPL

ξ E f Euv0 Eξ Etotal E f Euv0 Eξ Etotal

1 0.7 0.53 ± 0.37 0.55 ± 0.32 0.43 ± 0.29 1.53±0.65 0.84±0.57 0.92±0.60 0.41±0.52 2.23±1.20

2 0.8 0.73 ± 0.56 0.63 ± 0.51 0.48 ± 0.65 1.89±1.29 1.21±1.34 1.24±0.97 0.71±0.78 3.16±1.75

3 0.9 0.93 ± 0.60 0.69 ± 0.36 0.53 ± 0.43 2.15±1.02 1.56±2.03 1.45±1.20 0.90±1.46 3.87±2.97

4 1 1.63 ± 1.83 1.07 ± 1.02 – 2.70±2.81 2.23±4.78 2.22±3.66 – 4.46±6.71
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(2) For hypercatadioptric cameras: The central catadiop-
tric camera used here had a hyperbolic mirror with FOV of
217.2◦, which is designed by the Center forMachine Percep-
tion, Czech Technical University. And the camera model is
Nikon D560 with an image resolution of 3898×3661 pixels.
Three yellow balls with a diameter of 40 mm were placed
on the ruler (Note that the ruler’s boundary is marked for
better extraction of lines). Here, in order to prove that the pro-
posed algorithm is more universal, three relative positions of
the ball image were considered, e.g. intersection, separation
and tangent (see Fig. 8a–c). They correspond to fairly com-
mon situation in real world scenarios. A projection equation
was obtained for each sphere and line image using the least
square method Fitzgibbon et al. (1999). In this case, we com-
pare CPS and CPL with the method of Ying and Zha (2008)
using these images. Moreover, we mixed the sphere and line
images (two spheres and a line) to evaluate the performance
of this algorithm. The state-of-the-arts using the chessboard
described by Puig et al. (2011); Mei and Rives (2007) and
Scaramuzza et al. (2007) were used because they are highly
accurate and robust. In the experiment, the chessboard had
7×5 feature points, in which the horizontal or vertical spac-
ing between two adjacent feature points was 20 mm and the
target accuracy was 0.1 mm (see Fig. 8d).

As discussed in the previous section, since the correspon-
dence between the apparent contour point and its projection
is undetermined, the proposed method only provided the
initial linear solution. Hence, in the experiment, we con-
sidered two stages of the calibration process: initial linear
solution, the nonlinear refinement. For this comparison, the
accuracy of the calibration results obtained in this study was
verified by analyzing the root mean square (RMS) of the
reprojection errors. Note taht, since the 3D information of
the sphere and line is unknown, we computed the reprojec-
tion errors by using chessboard pattern for CPS, CPL and
Ying and Zha (2008). The results are summarized in Table 4.
Table 4 shows that CPS compared favorably with CPL. This
is mainly because the sphere image is a closed conic, and
a more accurate conic fitting can be achieved. Hence, this
is understandable that mixed images provides good results
comparing with CPL. Comparing the results of the CPS with
the ones obtained usingYing andZha (2008), one can see that
the reprojection error of Ying and Zha (2008) is at least 2.14
times higher. This confirms that the proposedmethod obtains
more accurate initial linear solution. Furthermore, Puig et al.
(2011); Mei and Rives (2007) and Scaramuzza et al. (2007)
refined the calibration parameters by using the checkerboard
calibration pattern,which performed better than the proposed
method. However, our methods were close to those methods,
and the difference of reprojection error is within 7.45 pixels.

3) Image rectification: To further evaluate the accuracy of
our method, we rectified the catadioptric image of Fig. 8a–c
into a perspective image (see Fig. 9) as the calibration results

Fig. 8 Experimental images were taken using a hypercatadioptric cam-
era. a Intersection, b separation, c tangent of ball images and d the
chessboards

Table 4 TheRMSof re-projection errors of initial parameter estimation
and optimization for hypercatadioptric camera (unit: pixel)

Algorithm RMS Re-Projection Error

Initial Optimized

CPS 3.02 –

CPL 8.49 –

Mixed 6.74 –

Ying and Zha (2008) 6.77 –

Puig et al. (2011) 1.83 1.04

Mei and Rives (2007) – 1.17

Scaramuzza et al. (2007) – 1.54

Table 5 Recovering angles between pairs of parallel lines (unit: degree)

a–b c–d e–f h–i Mean Std

Angle error 0.14 0.16 3.37 2.24 1.47 1.60

are known Barreto and Araujo (2005) (the results of CPS are
used). Moreover, we reconstructed several typical lines (see
Fig. 9) and measured the angles between them. The results
were shown in Table 5. As shown in Table 5, the mean and
std of angle error was 1.47◦ and 1.60◦, respectively. It can
be seen that the proposed calibration method is effective in a
certain error range.
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Fig. 9 The parallel lines (cyan) were determined after rectification and
the angles were computed a for line images b–d for sphere images

5 Discussion

The paper presented a novel calibration algorithm for central
catadioptric camera. We chose to consider the sphere under
a catadioptric system since there was complete data for the
sphere image for comparison with the line image. We dis-
covered some novel geometric and algebraic properties. The
algebraic relationship between the sphere or line images and
the mirror is established: the common pole and polar with
respect to the sphere or line images and the mirror are also
the pole and polar with respect to the IAC. Furthermore, the
common pole and polar of the sphere or line images can
be determined from the eigenvectors of the corresponding
matrix pairs. Because sphere or line images can only pro-
vide two new linear constraints for the IAC, at least three of
these images are required to recover it. Similarly, the MIAC
can be determined from the projective invariant properties of
sphere or line image. For paracatadioptric sensors, the tech-
nique is still valid using the CDCP. These properties can be
considered as extensions from the convention camera to the
central catadioptric camera. However, proving the feasibility
of these extensions is not trivial; it requires rigorous proofs
rather than intuitive guesswork. Finally, the mirror parame-
ter may be obtained from the algebraic relation between IAC
and MIAC. In general, cameras exhibit significant lens dis-
tortion. Accordingly, we explored a method of determining
the distortion parameters based on the properties of the right
circular cone. However, it is not an estimate of the closed-
form solution.

Moreover, the calibration process fails at certain critical
conditions. First, when one of the commonpolar of the sphere

or line images passes through or is close to the principal
point, the calibration result is not highly reliable because the
corresponding pole is at infinity with respect to the image
plane. Second, when the three common pole–polar of any
three sphere or line images are reduced to the same common
pole–polar, these images may only provide two constraints;
therefore, the camera cannot be calibrated. Third, when the
common poles of two sphere or line images are collinear,
there are no providing constraints for estimating MIAC;
hence, this case is degenerate for the algorithm proposed
here. However, this situation can be easily avoided in prac-
tice to obtain precise calibration data, especially when more
than three spherical images are available.

6 Conclusion

In this work, we studied the common pole–polar proper-
ties of the sphere and line images obtained by a central
catadioptric camera and applied them to camera calibra-
tion. In general, the developed algorithm requires only three
sphere or line images to linearly calibrate a central catadiop-
tric camera without setting the initial values of its intrinsic
parameters. From the simulated noise sensitivities and repro-
jection errors determined experimentally, it was concluded
that the proposed calibration algorithm is reliable and effi-
cient. However, comparingwith the calibrationmethod using
the chessboard, the proposed method obviously have poor
accuracy. This is understandable since the corners of the
chessboard can be extracted at subpixel accuracy. Howover,
the extraction of the sphere or line image for catadioptric
camera is well known to be a very difficult task. Hence, future
work could improve the conicfitting robustness to obtain high
calibration accuracy.
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Appendix A

In the MCS, the unit normal vectors of planes πm and

π S are OcO=[
0 0 1

]T
and OcN=[

nx ny nz
]T
, respec-

tively. Since the line OcO and the normal OcN are copla-

nar, the corresponding projection points Ō=[
0 0 1

]T
and

N̄=[
nx ny nz

]T
are collinear. Further, the intersection line

D of planes πm and π S is orthogonal to the plane contain-
ing both the normal OcN and OcO. Considering two 3 × 3
symmetric matrices C̄m and C̄, and solving Eq. (9) yields the
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generalized eigenvalue λ1 of
(
C̄m, C̄

)
and the correspond-

ing generalized eigenvector v̄1 (computed by MAPLE) as

λ1 = (d0 − ξnz)
2 and v̄1 = [−ny nx 0

]T
, respectively.

Thus, the point v̄1 = [−ny nx 0
]T

is an infinity point of
the line D. In Fig. 2, according to Eq. (9), the common polar
corresponding to v̄1 with respect to C̄m and C̄ aligns with the

major axis μ̄ = μ̄1 = [−ny nx 0
]T

(see Table 1) formed
by Ō and N̄ Barreto and Araujo (2005). Hence, according
to the Definition 4, the infinite point v̄1 and the line μ̄1 also
exhibit a pole–polar relationship with respect to the absolute
conic �̄∞(not depicted) Andrew (2001). As the projectivity
Hc preserves incidence and collinearity, the property holds in
the central catadioptric image plane after the transformation
Hc. Thus, the pole–polar relation between v̂1 and μ̂1, which
corresponds to the common pole and polar for Ĉm and Ĉ,
respectively, is preserved under the projection transforma-
tionHc. Notably, the locus μ̂1 is no longer the major axis of
the catadioptric sphere or the line image Ĉ. However, from
Fig. 2, the point v̂1 and line μ̂1 can be uniquely determined
from the generalized eigenvectors of the conics Ĉm and Ĉ
, as μ̂1 is the only line intersecting both Ĉm and Ĉ at two
points.

Appendix B

For a paracatadioptric camera, according to Eq. (4), replacing
ξ by 1 yields

C̄S =
⎡

⎣
(d0 − mz)

2 0 (d0 − mz)mx

0 (d0 − mz)
2 (d0 − mz)my

(d0 − mz)mx (d0 − mz)my (d02 − mz
2)

⎤

⎦ (B1)

Consider the dual of circle C̄
∗
S , which satisfies

C̄
∗
S =

⎡

⎣
d02 + mx

2 − 1 mx my (d0 − mz)mx

mx my d02 + mx
2 − 1 (d0 − mz)my

(d0 − mz)mx (d0 − mz)my (d0 − mz)
2

⎤

⎦

(B2)

From Eq. (7), the dual of the conic curve Ĉ
∗
is the paracata-

dioptric image of a line or sphere in the scene satisfying

λw
∗Ĉ∗ = HcC̄

∗
SHc

T (B3)

By simplification, equation Eq. B3 can be rearranged as

λw
∗Ĉ∗ = Ĉ

∗
∞ + v̂∗v̂∗T

(B4)

where Ĉ
∗
∞=Hc

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦Hc
T is the projection of theCDCP,

v̂∗ = 1√(
1−d02

)Hc

⎡

⎣
mx

my

d0 − mz

⎤

⎦. In a similar manner, from

Proposition 4, Ĉ
∗
∞ can be computed by considering the

generalized eigenvectors of any two line or sphere images.
Note that, from Eq. B4 , for paracatadioptric systems, the
dual of the line or sphere image is in double contact with
a degenerated-line (envelope) conic Ĉ

∗
∞ consisting of the

image of the circular points. Similar results can be obtained
using the method presented by Ying and Zha (2008).
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