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Abstract
Unsupervised person re-identification has achieved great success through the self-improvement of individual neural networks.
However, limited by the lack of diversity of discriminant information, a single network has difficulty learning sufficient dis-
crimination ability by itself under unsupervised conditions. To address this limit, we develop a population-based evolutionary
gaming (PEG) framework in which a population of diverse neural networks are trained concurrently through selection, repro-
duction, mutation, and population mutual learning iteratively. Specifically, the selection of networks to preserve is modeled
as a cooperative game and solved by the best-response dynamics, then the reproduction and mutation are implemented by
cloning and fluctuating hyper-parameters of networks to learn more diversity, and population mutual learning improves the
discrimination of networks by knowledge distillation from each other within the population. In addition, we propose a cross-
reference scatter (CRS) to approximately evaluate re-IDmodelswithout labeled samples and adopt it as the criterion of network
selection in PEG. CRS measures a model’s performance by indirectly estimating the accuracy of its predicted pseudo-labels
according to the cohesion and separation of the feature space. Extensive experiments demonstrate that (1) CRS approximately
measures the performance of models without labeled samples; (2) and PEG produces new state-of-the-art accuracy for person
re-identification, indicating the great potential of population-based network cooperative training for unsupervised learning.
The code is released on github.com/YunpengZhai/PEG.
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1 Introduction

Person re-identification (re-ID) aims to match persons in
an image gallery collected from non-overlapping camera
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networks, which has attracted increasing interest thanks to
its wide applications in security and surveillance. Though
supervised re-ID methods (Yang et al., 2020; Zheng et
al., 2016) have achieved very decent results, they are
largely dependent on sufficient data with expensive manual
annotation, which also require substantial personal identity
information and entail privacy issues. By contrast, unsuper-
vised re-ID not only reduces the cost of labeling but also
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protects personal privacy without checking images manu-
ally. Commonly, unsupervised re-ID can be divided into two
categories: unsupervised domain adaptation (UDA) (Zhai
et al., 2020; Zhong et al., 2020) and fully unsupervised re-
ID (FU) (Chen et al., 2021; Lin et al., 2019) depending on
whether using extra labeled data. In this study,wewillmainly
focus on the fully unsupervised setting which learns directly
from unlabeled images and allows for more scalability in
real-world deployments.

To address the challenges of unsupervised re-ID, recent
efforts concentrate on training individual neural networks by
means of a self-improvement strategy (Song et al., 2018;
Ge et al., 2020). They attempt to learn better representa-
tions based on self-predicted pseudo-labels via clustering
algorithms (Caron et al., 2018) or graph neural networks
(Ye et al., 2017). However, a single model can use such a
self-learning mechanism only to enhance the discrimination
ability it already has and cannot tackle the incorrectly pre-
dicted pseudo-labels, which prevents it from maximizing its
discrimination. Due to the lack of diversity of single mod-
els, incorrect pseudo-labels are likely to remain the same
after unsupervised training such as the false positive samples
where images of different persons are clustered into the same
group or the false negative samples where the images of the
same person are clustered into different groups, as shown in
Fig. 1. Importantly, since models learn diverse discrimina-
tion with different architectures, the incorrect pseudo-labels
predicted by a model may be predicted correctly by another
model, marked by boxes in Fig. 1b. In this paper, we attempt
to address unsupervised re-ID by multiple model training,
in which the complementary information of different mod-
els can be integrated and utilized effectively to explore the
various latent knowledge contained in unlabeled data (the
quantitative analysis is shown in Sect. 4.4.1).

However, multiple model training still faces two chal-
lenging issues: (1) How to learn diverse discrimination with
multiple different models? (2) How to select a set of better
models from many diverse models for training? To tackle
these issues, we propose a population-based evolutionary
gaming (PEG), which selects and trains discriminative mod-
els by exploration and exploitation of their diversity. PEG
trains a population of models concurrently by iterative selec-
tion, reproduction, mutation, and population mutual learning
of neural networks, as shown in Fig. 2. Specifically, selection
adapts thewhole population to the unlabeled data by selecting
and preserving the optimal subset of networks with com-
plementary discrimination ability while abandoning other
networks out of the subset. This combinatorial optimization
of networks in selection is modeled as a multi-agent coop-
erative game and solved by the best response dynamics, in
which each agent attempts to learn the best response to the
other agents’ action and thus leads toNash equilibrium.Then,
reproduction andmutation are performedon the selectedpop-

ulation to increase its diversity by making multiple copies
of each network and applying a stochastic disturbance to
their hyper-parameters. Selection and reproduction jointly
maintain the size of the population. Afterward, population
mutual learning is conducted among networks to assemble
and further explore the discrimination capacity via knowl-
edge distillation within populations. Each network learns
representations from both population-shared pseudo-labels
and soft-labels predicted by other individual networks. Uti-
lizing periodically performing selection, reproduction and
mutation, population mutual learning, the evolutionary gam-
ing process enables favorable traits and knowledge of neural
networks to be transmitted through successive generations.

In the evolution gaming, a core issue is to define the utility
function of the game, that is, the criterion of network selec-
tion in the evolution.However, the evaluation ofCNNmodels
without labeled datasets has not been well studied. Here, we
propose cross-reference scatter (CRS), which can approx-
imately evaluate the quality of networks using unlabeled
samples. Generally, the pseudo-labels predicted by better
networks are more accurate; however, their accuracy cannot
be directly evaluated when the ground truth is unavailable.
Moreover, models trained by more accurate pseudo-labels
tend to achieve larger intra-cluster cohesion and inter-cluster
separation in the feature space because incorrect labels will
enforce models to separate samples of the same class or
aggregate samples of different classes. Motivated by this
phenomenon, we indirectly evaluate a network according
to the feature cohesion and separation of a reference model
that is trained by pseudo-labels of the evaluated network.
Hence, the CRS is defined by the ratio of the inter-cluster and
intra-cluster variance of features to measure both separation
and cohesion. We demonstrate that the CRS approximately
reflects the discrimination capacity ofmodelswithout ground
truth data and thus promotes the evolution gaming to learn
better representations.

A preliminary version of this work has been partially
published (Zhai et al., 2020), which has demonstrated
the effectiveness of mutual learning among multiple net-
works in unsupervised conditions. Based on that version,
this manuscript has made great improvements, including:
(1) We propose a novel population-based evolutionary gam-
ing (PEG) framework (Sect. 3.1). The previous algorithm
works passively only on given networks, and cannot adap-
tively select the most suitable models from the model base.
Based on the mutual learning, PEG additionally contains an
iterative selection of networks via a multi-agent cooperative
game preventing the weak networks to distract the over-
all discrimination capability (Sect. 3.1.1). (2) We propose
a new cross-reference scatter (CRS) to approximately mea-
sure re-IDmodelswithout labeleddata. To evaluate themodel
discrimination, the previous version introduced inter-/intra-
cluster scatter to roughly modulate the weights of models
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(a) (b) (c)

Fig. 1 Feature distribution of the same samples with different methods
where each color denotes a person identity. Single model training (b)
uses the self-learning mechanism only to enhance the discrimination
ability it already has before training (a) and still suffers from inaccurate

pseudo-labels. However, multi-model training (c) explores and exploits
the complementary information among different models (marked by
corresponding colored boxes) and achieves more discrimination

during mutual learning. However, it cannot be considered
as the utility function of the cooperative game in PEG due
to the lack of capability to accurately evaluate models. This
paper improves inter-/intra-cluster scatter to cross-reference
scatter by adding a cross-reference evaluation (CR) scheme
(Sect. 3.1.1). (3) More qualitative and quantitative exper-
iments are conducted to evaluate the effectiveness of the
method, including but not limited to the validation and anal-
ysis of CRS, the cooperative game, and PEG.

In summary, our contribution is as follow:

– It proposes a novel population-based evolutionary gam-
ing framework for unsupervised person re-ID which
trains a diverse population of neural networks by iterative
selection, reproduction, mutation and mutual learning.

– It introduces a multi-agent cooperative game for the
selection of networks in the PEG, which aims to find and
preserve an optimal subset of the population on unlabeled
data.

– It investigates the evaluation of re-ID models using unla-
beled data and proposes a cross-reference scatter which
approximately measures a model’s discrimination capa-

bility by indirectly estimating its predicted pseudo-labels
according to the cohesion and separation of feature space.

– Experiments show that PEG outperforms state-of-the-
art methods on large-scale datasets, indicating the great
potential of population-based multiple model training.

2 RelatedWorks

2.1 Unsupervised Person Re-ID

Unsupervised person re-ID can be categorized into Unsuper-
vised Domain Adaptation (UDA) and Fully Unsupervised
Re-ID (FU). UDA methods try to train a re-ID model by
unlabeled target data together with labeled source data, while
FU methods attempt to train models with only unlabeled
data after pre-training. Despite the different data conditions,
most UDA and FU methods adopt similar learning strate-
gies which can be summarized into two categories. A line
of works are mainly based on alignment to reduce distri-
bution shift between cameras or domains in pixel level,
such as SPGAN (Deng et al., 2018), CamStyle (Zhong et
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al., 2019b), HHL (Zhong et al., 2018), ECN (Zhong et
al., 2019), ATNet (Liu et al., 2019), PDA-Net (Li et al.,
2019), DG-Net++ (Zou et al., 2020) and GCL (Chen et
al., 2021), or feature level, such as TJ-AIDL (Wang et al.,
2018), DAAM (Huang et al., 2019), UCDA-CCE (Qi et al.,
2019) IICS (Xuan & Zhang, 2021) and CAP (Wang et al.,
2020). This line of methods sufficiently utilize the reliable
information of camera or domain styles but ignore the latent
relationship among unlabeled samples, which hinders them
from better performance. Another line of works are based on
pseudo label discovery, which rely on the iteration of pseudo-
label mining andmodel fine-tuning (Fan et al., 2018; Song et
al., 2018; Zhang et al., 2019; Jin et al., 2020; Zhao et al., 2020;
Zheng et al., 2021), such as BUC (Lin et al., 2019), SSG (Fu
et al., 2019; Zhai et al., 2020), HCT (Zeng et al., 2020) and
SpCL (Ge et al., 2020). Recent works mainly focus on label
generation, label refinery, the assistance of extra information,
and optimization of representation. BUC (Lin et al., 2019)
proposed a bottom-up clustering approach to generate pseudo
labels. To reduce pseudo label noise, DCML (Chen et al.,
2020) selected credible training samples andMMT (Ge et al.,
2020) proposed a mutual learning scheme for better pseudo
labels. JVTC (Li & Zhang, 2020) and CycAs (Wang et al.,
2020) explore temporal information to refine visual similar-
ity. Contrastive learning with feature memory bank has been
widely used in many works to learn more robust representa-
tion (Zheng et al., 2021; Chen et al., 2021). SpCL (Ge et al.,
2020) progressively generated more reliable clusters for the
unified contrastive loss. Cluster Contrast (Dai et al., 2021)
proposed to store feature vectors and compute contrast loss
in the cluster level. Although great success has been made,
this line of methods usually leverage a single model to learn
the knowledge that it already has, making it hard to learn
sufficient capability due to the lack of diverse discrimina-
tion. To alleviate this problem, we propose PEG based on
multi-model training where diversity of discrimination can
be explored and exploited by the evolution of networks.

2.2 Multiple Model Ensemble

There is a considerable number of previous works on ensem-
bles with neural networks. Explicit ensemble methods often
train a series of base-level networks and average the predic-
tions across themas thefinal result,which have lowefficiency
during both training and testing (Hansen & Salamon, 1990;
Perrone & Cooper, 1992; Krogh & Vedelsby, 1994; Diet-
terich, 2000; Huang et al., 2017; Lakshminarayanan et al.,
2017). Recently, implicit ensemble methods are explored to
tackle this problem. A typical approach (Srivastava et al.,
2014;Wan et al., 2013; Huang et al., 2016; Singh et al., 2016)
generally create a series of networkswith sharedweights dur-
ing training and then implicitly ensemble them at test time.
Another approach (Shen et al., 2019) focuses on label refin-

ery by distilling and transferring knowledge from a variety of
trained networks to a single network for higher discrimina-
tion capability.However, these supervisedmethods cannot be
directly used on unsupervised re-ID tasks, especially when
the training set and the testing set share non-overlapping label
space. On the other hand, existing methods accomplish the
ensemble on all base-level networks while they ignore the
problem that a very weak base-level network could drag
down the overall performance when included. Commonly,
“All” is not the “Best”. In this work, we propose a cooper-
ative game in the selection phase of the framework to find
and preserve the optimal combination of base-level networks
using the unlabeled data and obtain progressive ensemble by
an iterative population evolutionary gaming under unsuper-
vised conditions.

2.3 Algorithmic GameTheory

Machine learning methods with multi-agent game are pro-
posed to address various tasks, such as image genera-
tion (Goodfellow et al., 2014), attacks and defenses for
deep learning (Yuan et al., 2019), playing computer games
(Vinyals et al., 2019; Peng et al., 2020), etc. SVM can be
considered as a game between two agents where one agent
challenges the other to find the best hyper-plane after pro-
viding the most difficult points for classification. Generative
adversarial networks (GANs) (Goodfellow et al., 2014) train
two networks, the discriminator and the generator, against
each other in order to generate images that can pass for real
data. Thesemethods are designed for non-cooperative games
where agents have contrary rewards. However, in this work,
the selection of networks is modeled as a multi-agent coop-
erative game, where rewards are global and shared by all
agents. Althoughmethods with cooperative games have been
explored for reinforcement learning (Peng et al., 2020), they
can not be used for such a computer vision task.Our approach
consider the Best-response dynamics in cooperative game
theory to solve a Nash equilibrium of model selection strat-
egy.

2.4 Unsupervised EvaluationMetrics of Models

Metrics used in person re-ID always depend on samples with
ground truth, such as mean Average Precision (mAP) and
Cumulative Match Characteristic (CMC) curve, which are
calculated between model prediction and the corresponding
ground truth labels. However, these supervised metrics are
not available during unsupervised learning when labels of
data are unknown, therefore, they cannot be used as the cri-
terion of the model selection in our PEG framework. On the
other hand, several unsupervised evaluation metrics which
require no data label have been designed to measure the
performance of clustering algorithms as internal evaluation
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metrics (Davies & Bouldin, 1979; Baker & Hubert, 1975;
Hubert & Levin, 1976; Maulik & Bandyopadhyay, 2002;
Halkidi et al., 2002). For example, the silhouette coefficient
(Rousseeuw, 1987) estimates the average distance between
each point in one cluster and points in the nearest neighboring
cluster. The Dunn index (Dunn, 1973) calculates the ratio
of the minimum of inter-cluster distance to the maximum of
intra-cluster distance between samples. Nevertheless, these
cluster validations cannot be directly used for the evaluation
of re-IDmodels, for example, by the quality of clusteringwith
their extracted features under the same clustering algorithm.
That’s because the distribution of feature clusters cannot
measure the performance of models, especially in unsuper-
vised settings. For instance, the metrics may estimate well
clustering of features even when the model is poor but only
is trained to overfit on its inaccurate labels. In this paper,
we propose a cross-reference scatter which approximately
measures a model’s discrimination capability by indirectly
estimating its predicted pseudo-labels. It utilizes the pseudo-
labels to train a reference network for a few iterations and
then observes the cohesion and separation of its feature space
to estimate the discrimination of the evaluated model. This
method mines the latent visual relationships between image
samples and so can approximately estimate models’ discrim-
ination on unlabeled data.

2.5 Population-Based Evolutionary Training

Population-based evolution has been widely studied to solve
real-valuedoptimization problems. For distancemetric learn-
ing, a related task of re-ID, EDML (Fukui et al., 2013) and its
variants (Kalintha et al., 2019;Ali et al., 2020)were proposed
to optimize a linear or non-linear transformation using differ-
ential evolution. However, these approaches cannot address
the training of deep neural networks in re-ID due to the large
scale of learnable parameters. Our approach is inspired by
and built upon another line of Population Based Training
(PBT) (Jaderberg et al., 2017), which is originally proposed
for optimization of hyperparameters of networks. PBT trains
a population of networks and performs periodically a process
of exploiting and exploring, leading to automatic learning of
the best configurations. It has been proved effective for a
suite of challenging problems, including Atari and StarCraft
II of reinforcement learning (Vinyals et al., 2019; Jader-
berg et al., 2019), training Generative Adversarial Network
(GAN) (Jaderberg et al., 2017) and data augmentation (Ho et
al., 2019). However, such a population-based training of net-
works has not been explored in unsupervised conditions, in
which the criterion of network selection is difficult to deter-
mine. On the other hand, existing PBT approaches follow
the principle of best individual selection, while our method
selects and preserves optimal groups of networks that are
more complementary. We additionally incorporate mutual

learning within the population into the framework, leading
to superior performance on the unsupervised re-ID.

3 Methodology

3.1 Population-Based Evolutionary Gaming

Due to the lack of diversity of individual networks, sufficient
discrimination for unsupervised person re-ID is difficult to
achieve. In contrast to previous works that use a single net-
work for self-training, we propose a PEG that concurrently
trains a diverse population of neural networks through an evo-
lutionarygame. In our formulation, the populationP contains
K networks, each of which is denoted as M(θ, φ). θ is the
learnable parameters, and φ is its hyper-parameters includ-
ing the learning rate and loss ratios. The proposed training
algorithm consists of three iterative phases, namely, selection
to preserve adaptive networks, reproduction and mutation
to learn more diversity, and population mutual learning to
assemble knowledge, as illustrated in Fig. 2. The procedure
of PEG is also described in Algorithm 1.

Algorithm 1 Population-based Evolutionary Gaming
Input: Unlabeled dataset {X}.
Input: Initial population P of K models {Mk} with parameters {θk}
and hyper-parameters {φk}, k = 1, ..., K .
Output: The inference model M(θ).
1: for each generation do
2: // Selection
3: Select L models from the population P by the cooperative game

in Sect. 3.1.1,
{Ml , l = 1, ..., L}=SELECTION(P , L).

4: Update the population P ← {Ml , l = 1, ..., L}.
5: // Reproduction&Mutation
6: for each model Ml do
7: Clone H models of Ml : Ml

h(θ l
h, φl

h) = Ml(θ l , φl ), h =
1, ..., H .

8: Mutate the hyper-parameters of the cloned models:
φl

h ∼ U((1 − r)φl
h, (1 + r)φl

h), h = 1, ..., H .
9: Add the cloned model into the population, P ← P +

{Ml
h(θ l

h, φl
h)}, h = 1, ..., H

10: end for
11: Update the population size K ← L × (H + 1)
12: // Population mutual learning
13: Optimize parameters ofmodels inP by populationmutual learn-

ing in Sect. 3.1.3:
{θk} ← PML(X, {θk}),k = 1, ..., K .

14: end for
15: Select a model for inference: M(θ)=SELECTION(P , 1)
16: Return The inference model M(θ).

3.1.1 Selection

Since poor models may drag down the performance in mul-
tiple model training, we first propose a selection phase to
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Fig. 2 Population-based evolutionary gaming framework.PEG iter-
atively performs selection, reproduction and mutation and population
mutual learning to learn diverse and discriminative models under unsu-
pervised conditions. In every generation, (1) selection preserves the
optimal combination of models through a cooperative game with a set

of selector agents to maximize the utility function (CRS). (2) Repro-
duction andmutation clonemodels and fluctuate their hyper-parameters
to explore more diversity. (3) Population mutual learning trains mod-
els with mutated hyper-parameers by knowledge distillation from each
other to enhance and assemble their discrimination

preserve better models in PEG. Given a population P of
K neural network models {M1, . . . ,MK }, selection aims
to find an optimal subset of the population that is more
adaptive to the given data, as shown in Fig. 2. Then, net-
works of the subset are preserved for later training, while
other networks are abandoned to reduce the population size.
The selection scheme is considered as a multi-agent coop-
erative game among L selector agents characterized by
(A1,A2, . . . ,AL , u), where Al is the action space of agent
l; and u : A → R denotes the utility function of the joint
action A ∈ A1 × A2 × . . . × AL . The action of each agent
al ∈ Al is to select one neural network from the popula-
tion P , Al = {M1, . . . ,MK }. The number of agents is
restricted due to the limitation of computational resources.
In the cooperative game, agents pursue the same goal to
maximize their team utility u. To maximize the discrimi-
nation and complementarity of the preserved networks, we
define the utility function u by the performance of the ensem-
ble model. However, a model’s performance is difficult to
estimate without labeled testing data. To address this prob-
lem, we design cross-reference scatter Jcr to evaluate the
ensemble model and consider it the formula of the utility

function, u(A) = Jcr (ϑ(A)), where ϑ denotes the ensem-
blemodel produced by the networks currently selected by the
agents. The detailed description of the cross-reference scatter
will be provided in Section 3.1.1. Since there are approxi-
mately K L possible action combinations, a global optimal
solution is impossible to derive by enumerating all the pos-
sibilities. Therefore, we turn to obtain a Nash equilibrium
solution Ã = {ãl}, where each agent attempts to learn the
best response to the other agents’ actions:

u(a′
l , Ã−l) ≤ u(Ã), (1)

where a′
l is any unilateral deviation, Ã−l = {ãl ′ }l ′ �=l and

−l represents all agents except al . We solve Eq. 1 via best-
response dynamics. Each agent acts in a circularmanner until
it falls into aNash equilibrium,where the action of each agent
is the best response to the other agents. Below, we provide
the detailed procedure of the cooperative selection game.

(1) Initialization of agent actions: randomly initialize al ∈
Al for l = 1, . . . , L .
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(2) For agent l, solve the optimal action of agent al in
response to the actions of the other L − 1 agents. The
objective for optimization of al can be formulated as,

a∗
l = argmax

âl∈Al

u(âl , a−l), (2)

where a−l means all agents except al .
(3) Then update the joint action to (a∗

l , a−l), as a∗
l is a best

response to a−l .

A ← (a∗
l , a−l). (3)

(4) Repeat steps 2 to 3 for agent l + 1.
(5) If the joint action A has not changed in the last L − 1

optimization rounds, the utility falls into Nash equilib-
rium, where every agent implements the best response
to all other agents. In this case, we stop the optimiza-
tion process, preserve the selected networks for the next
generation, and abandon the other networks.

Cross-reference Scatter
A core issue is to estimate a model’s performance using

unlabeled data in the selection phase of the proposed evo-
lutionary game; however, such a measurement has not been
explored. In this study, we propose a cross-reference scat-
ter (CRS) for the approximate evaluation of re-ID models
using unlabeled samples. Generally, the pseudo-labels pre-
dicted by better networks are more accurate, but the specific
accuracy of the labels cannot be directly evaluated without
the ground truth. However, models trained by more accurate
pseudo-labels tend to achieve larger intra-cluster cohesion
and inter-cluster separation in the feature space because
incorrect labels will enforce models to separate samples of
the same class or aggregate samples of different classes,
which is difficult to accomplish. Therefore, it is reasonable to
indirectly evaluate a network according to the feature cohe-
sion and separation of a reference model that is trained by
pseudo-labels which are predicted with the evaluated model.

First, we introduce an inter-/intra-cluster scatter (ICS) to
estimate the separation and cohesion of clusters in the fea-
ture space. Although existing metrics such as DBI (Davies
& Bouldin, 1979), SC (Rousseeuw, 1987) have been stud-
ied to estimate clustering, they usually pay more attention to
the hard edge samples of clusters while ignoring the over-
all distribution, and thus are not applicable to measure re-ID
models. Inspired by the objective of linear discriminant anal-
ysis, that is, to maximize the ratio of the between-class
variance and thewithin-class variance, the inter-/intra-cluster
scatter is defined as the ratio of the inter-cluster variance and
intra-cluster variance in the clustered feature space.Given the
set of images represented by feature vectors f(X |Θ), where
Θ denotes the parameters of the feature extractor network,

Algorithm 2 Cross Reference Scatter (CRS)
Input: Unlabeled dataset {X}.
Input: Evaluated model Θ .
Input: Reference model θre f .
Output: CRS of the evaluated model: Jcr (Θ).
1: Extract features on {X} by the evaluated model Θ: f(X|Θ).
2: Generate pseudo-labels ˜Y (Θ) of X by clustering samples using

f(X|Θ).
3: Train the reference model θre f with {X, ˜Y (Θ)} for a fixed number

of iterations by optimizing Eq. 12, 14.
4: Calculate ICS of the reference model θre f on {X}: J (X|θre f ) by

Eq. 7.
5: Jcr (Θ) = J (X|θre f ).
6: Return CRS of the evaluated model: Jcr (Θ).

we cluster all samples into M groups as C. We measure the
cohesion of each cluster by the variance of features assigned
to it. The intra-cluster scatter of cluster Ci is defined as

Si
intra(X |Θ) =

∑

x∈Ci

[f(x |Θ) − μi ]T [f(x |Θ) − μi ], (4)

where μi = ∑

x∈Ci
f(x |Θ)/ni is the centroid of cluster Ci

(with ni samples). Then, the intra-cluster scatter of all clus-
ters is computed as

Sintra(X |Θ) =
M

∑

i=1

Si
intra(X |Θ). (5)

Tomeasure the separation of feature clusters, the inter-cluster
scatter is defined as the variance of cluster centroids

Sinter (X |Θ) =
M

∑

i=1

ni [μi − μ]T [μi − μ], (6)

where μ = ∑N
n=1 f(xn|Θ)/N is the center of the entire

dataset. Considering both the separation and cohesion of fea-
ture clusters, the inter-/intra-cluster scatter J (X |Θ) is defined
as the ratio of the inter-cluster scatter and intra-cluster scatter

J (X |Θ) = Sinter (X |Θ)/Sintra(X |Θ). (7)

J (X |Θ) increases when the inter-cluster scatter is larger and
the intra-cluster scatter is smaller, which entails larger sepa-
ration and cohesion within feature clusters.

Utilizing inter-/intra-cluster scatter (ICS), we attempt
to evaluate a model by indirectly estimating its predicted
pseudo-labels in a cross-reference (CR) manner. Given a
network model with parameter Θ for evaluation, we first
implement the model to extract the convolutional features of
all samples f(X |Θ). Then, minibatch k-means clustering is
performed on f(X |Θ) to classify all samples into M different
clusters. After clustering, the produced cluster IDs are used
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Fig. 3 Illustration of evaluation scheme of the proposed cross-reference
scatter (CRS), which approximately measures a model’s discrimination
capability by the inter-/intra-cluster scatter of a reference model that is
briefly trained using pseudo-labels predicted by the evaluated model

as pseudo-labels ˜Y (Θ) for samples X . To estimate the accu-
racy of the predicted pseudo-labels ˜Y (Θ), we adopt them as
supervision to train a reference model with parameters θre f

by optimizing the cross-entropy loss with label smoothing
and the softmax triplet loss for a certain number of itera-
tions, and then measure the separation and cohesion of the
reference model by computing the inter-/intra-cluster scat-
ter J (X |θre f ) as cross reference scatter (CRS) Jcr (Θ). The
value of CRS is then used for model evaluation, where a
larger CRS indicates better discrimination capability of the
evaluated model Θ . The evaluation scheme is illustrated in
Fig. 3 and the detailed process is shown in Algorithm 2.

Importantly, we use the k-means clustering because the
fair comparison of CRS among models requires the same
cluster number during clustering. Specifically, since CRS is
defined by the ratio of intra-cluster variance and inter-cluster
variance, it is relative to the cluster numbers. For example, a
larger cluster number may lead to a larger CRS value due to
the smaller intra-cluster variances. And the cluster numbers
by other clustering algorithms, i.e. DBSCAN, with different
evaluated feature models are likely to be different, making it
unfair to compare their CRS for model selection.

For fast and fair evaluation, we adopt a slight network,
OSNet, with the same initial parameters as the reference
model to evaluate different models. The number of train-
ing iterations of it is set to a small value from 500 to 1000
according to the number of samples.

3.1.2 Reproduction andMutation

Reproduction and mutation provide more diversity within
the population by reproducing networks and mutating their
hyper-parameters, including the learning rate and loss ratios
after selection. In the reproduction and mutation phase, each
network reproduces multiple descendants, one of which pre-
serves the original hyper-parameters while the others apply
a stochastic disturbance to their hyper-parameters to attempt
to learn different information and increase the diversity of the
population. Specifically, themutated hyper-parametersφ′ are

Algorithm 3 Population Mutual Learning (PML)
Input: Unlabeled dataset {X}. PopulationP of K models parameterized
by {θk}, k = 1, . . . , K .
Output: Updated neural network parameters {θk}.
1: for each epoch do
2: Extract ensemble features on {X} by combinatorial model ϑ(P):

f(X|ϑ(P)) = [f(X|θ1); . . . ; f(X|θk)].
3: Generate pseudo-labels ˜Y of X by clustering samples using

f(X|ϑ(P)).
4: for each iteration t , mini-batch B ⊂ X do
5: Randomly sample S networks {θks } ⊂ {θk}, each indexed by

ks , s = 1, . . . , S.
6: Calculate soft-labels from temporally average model of each

sampled network with {Θks
T }: p(xi∈B|Θks

T ), Pi∈B(Θ
ks
T )

7: Calculate output of each current model with {θks }:
p(xi∈B|θks ), Pi∈B(θks ).

8: Update parameters {θks } by optimizing Eq. 16.
9: Update temporally average model weights {Θks

t } following
Eq. 8.

10: end for
11: end for
12: Return Networks parameters {θk}, k = 1, . . . , K .

sampled from a uniform distribution U((1 − r)φ, (1 + r)φ)

that fluctuates within r of the original value. The steps 5-
11 in Algorithm 1 summarize the process of reproduction
and mutation. Note that the mutation does not immediately
change the weight parameters of neural networks. Changes
occur to them when networks are trained by their mutated
hyper-parameters in mutual learning.

3.1.3 Population Mutual Learning

After mutation, population mutual learning is performed
among networks in the population P to access and assemble
diverse discrimination capability using unlabeled data in an
iteratively collaborative way, as shown in Fig. 2. Each net-
work accomplishes learning from the whole population by
means of its own hyper-parameters acquired from mutation.
The learning scheme consists of a clustering-based pseudo-
label prediction procedure and a mutual feature learning
procedure. In each iterative epoch, pseudo-labels are first
predicted for all samples via clustering and then utilized to
fine-tune the networks of the population. In this phase, net-
works learn representations of images in two ways: from the
shared pseudo-labels predicted by the whole population via
clustering and from the output of other networks as soft labels
via knowledge distillation. The procedure of this population
mutual learning is described in Algorithm 3.

Pseudo-label prediction. Pseudo-labels are predicted at
the beginning of each iterative epoch. In order to predict
reliable pseudo-labels, the framework utilizes all networks
in the population {M1, . . . ,MK } jointly as a combinatorial
model ϑ(P) to extract features for sample clustering. The
clustering-based pseudo-label prediction procedure consists
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of three steps in total: (1) First, ensemble features of unla-
beled samples {X} are obtained by concatenating features
that are individually extracted by all networks, f(X|ϑ(P)) =
[f(X|θ1); . . . ; f(X|θk)]; (2) Then, DBSCAN (Ester et al.,
1996) clustering is performed on f(X|ϑ(P))to classify all
unlabeled samples into M different clusters. (3) The pro-
duced cluster IDs are used as pseudo-labels ˜Y for the training
samplesX. The steps 2 and 3 inAlgorithm 3 summarize this
clustering process.

Different from CRS, we use DBSCAN here for model
learning to generate more accurate pseudo-labels, since
DBSCAN has been proven effective and efficient for a lot of
clustering-based unsupervised person re-identification (Ge
et al., 2020; Chen et al., 2021). Compared with the k-means
cluster algorithm, DBSCAN mines sample relations more
accurately according to their densitywithout setting the num-
ber of clusters and then helps learn more discriminative
models.

Mutual feature learning Utilizing the predicted pseudo-
labels, the framework aims to organize networks within the
population to learn from each other and enhance them-
selves in a mutual learning manner, as shown in Fig. 2.
In each training iteration, the same batch of images with
different random augmentations is first fed to all the net-
works in the population parameterized by {θk} to predict
the classification confidence predictions {p(xn|θk)} and fea-
ture representations {f(xn |θk)}. The classification confidence
predictions are computed by a linear transformation of the
feature representations followed by a softmax function. To
transfer knowledge from one network to others, the outputs
of each network serve as soft labels for training other net-
works. However, directly using the current predictions as soft
labels to train each model decreases the independence of the
model outputs, which might result in error amplification. To
avoid this issue, the temporally averagedmodel (Tarvainen&
Valpola, 2017) of each network, which preserves more origi-
nal knowledge, is used to generate reliable soft pseudo-labels
for supervision. The parameters of the temporally averaged
model of network θk at current iteration t are denoted as Θk

t ,
which is updated as

Θk
t = αΘk

t−1 + (1 − α)θk, (8)

where α ∈ [0, 1] is the scale factor, and the initial temporal
average parameters are Θk

0 = θk . For each network Mk ,
three loss functions are computed as optimization objectives:
mutual identity loss, mutual triplet loss and voting loss. The
mutual identity loss (Zhang et al., 2018) ofmodels learned by
a certain networkMe is defined as the cross entropy between
the ID prediction of the student networkMk and the teacher

network Me

Lk←e
mid = − 1

N

N
∑

n=1

p(xn|Θe)T logp(xn|θk). (9)

The mutual triplet loss (Ge et al., 2020) of models learned by
a certain networkMe is defined as the binary cross entropy

Lk←e
mtri = − 1

N

N
∑

n=1

[

Pn(Θe) logPn(θk)

+ (1 − Pn(Θe)) log(1 − Pn(θk))

]

,

(10)

where Pn(θk) denotes the softmax of the feature distance
between negative sample pairs

Pn(θk) = e‖f(xn |θk )−f(xn−|θk )‖

e‖f(xn |θk )−f(xn+|θk )‖ + e‖f(xn |θk )−f(xn−|θk )‖ , (11)

where xn+ denotes the hardest positive sample of anchor xn

according to the pseudo-labels˜Y and xn− denotes the hardest
negative sample. ‖ · − · ‖ denotes L2 distance.

To learn stable and discriminative knowledge from the
pseudo-labels obtained by clustering, we introduce voting
loss, which consists of the classification loss and triplet loss.
For each model Mk , the classification loss is defined as the
cross entropy with label smoothing (Szegedy et al., 2016)

Lk
id = − 1

N

N
∑

n=1

q̃T logp(xn|θk), (12)

where q̃ is the smoothing label according to pseudo-labels
˜Y . Each element is calculated by

q̃ j =
{

1 − ε + ε
M j = ỹn

ε
M j �= ỹn

, (13)

The softmax triplet loss is defined as:

Lk
tri =

− 1

N

N
∑

n=1

log
e‖f(xn |θk )−f(xn−|θk )‖

e‖f(xn |θk )−f(xn+|θk )‖ + e‖f(xn |θk )−f(xn−|θk )‖
(14)

where xn+ denotes the hardest positive sample of anchor xn

according to the pseudo-labels and xn− denotes the hardest
negative sample. The voting loss is defined by summarizing
the classification loss and the triplet loss

Lk
vot = widLk

id + wtr iLk
tri , (15)
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where wid and wtr i are the loss ratios. For each model Mk ,
the overall optimized objective is defined by

Lk = 1

K − 1
(wmid

K
∑

e �=k

Lk←e
mid + wmtri

K
∑

e �=k

Lk←e
mtri ) + Lk

vot . (16)

Each model is trained by its own hyper-parameters φ =
{ε,wid , wtr i , wmid , wmtri } to explore different information.
In addition, direct descendants of the same networks do not
learn from each other in the mutual learning phase since they
acquire similar knowledge. Note that training of a large-size
population requires unaffordable computational resources.
To address this problem, we use a random sampling strat-
egy of networks. Specifically, for each batch of data, mutual
learning is performed only on a randomly sampled subset of
networks, as shown in step 5 in Algorithm 3.

3.2 Analysis of Escaping Capacity

Here we analyze the escaping capacity from the local opti-
mum of our approach. The optimization of our approach can
be formulated into two interactive phases. The first one is to
optimize the label assignment of samples according to fea-
ture models

argmin
˜Y

fa(˜Y ,Θ, X), (17)

where ˜Y is the assigned labels and fa is the objective loss
function of the phase which is determined by the used clus-
tering algorithm. Θ and X denote the model parameters and
input samples, respectively. The second phase is to opti-
mize the parameters of feature models according to the label
assignment

argmin
Θ

fm(Θ, ˜Y , X |φ). (18)

fm(·|φ) is loss function to train the models Θ as Eq. 16,
and φ is the hyper-parameters. The two optimization phases
interact as a two-agent game and the local optimum occurs
when the game halts at a Nash equilibrium:

∃ (˜Y ∗,Θ∗),
s.t .

˜Y ∗ = argmin
˜Y

fa(˜Y ,Θ∗, X),

Θ∗ = argmin
Θ

fm(Θ, ˜Y ∗, X |φ).

(19)

In our approach, function fm(·|φ) will be changed when the
hyper-parameters φ are mutated to new values φ′, leading to
the shift of the local optimalmodel parametersΘ∗. Therefore
the Nash equilibrium between ˜Y and Θ will be broken, and

the local optimum at (˜Y ∗,Θ∗) will not exist exactly since
the mutation changes the condition of the Nash equilibrium.

4 Experiments

4.1 Datasets and EvaluationMetrics

We evaluate the proposedmethod on three large-scale person
re-identification benchmarks includingMarket-1501 (Zheng
et al., 2015), DukeMTMC-reID (Ristani et al., 2016; Zheng
et al., 2017) and MSMT17 (Wei et al., 2018).

Market-1501 This dataset contains 32,668 images of
1,501 identities from 6 disjoint cameras, among which
12,936 images from 751 identities form a training set, 19,732
images from 750 identities (plus a number of distractors)
form a gallery set, and 3,368 images from 750 identities form
a query set.

DukeMTMC-reID This dataset is a subset of the
DukeMTMC. It consists of 16,522 training images, 2228
query images, and 17,661 gallery images of 1812 identities
captured using 8 cameras.Of the 1812 identities, 1404 appear
in at least two cameras and the rest (distractors) appear in a
single camera.

MSMT17 contains 126,441 images of 4,101 IDs cap-
tured from a 15-camera network. The training set has 32,621
images of 1,041 identities, and the testing set has 93,820
images of 3,060 identities. During inference, 11,659 images
are selected as query and the other 82,161 images are used
as gallery from the testing set.

Evaluation Metrics: We use the Cumulative Matching
Characteristic (CMC) curve and mean average precision
(mAP) for performance evaluations and comparisons.

4.2 Implementation Details

Model settings. We adopt eight models with architectures
of similar-weight parameters to initialize the population,
including DenseNet-121 (Huang et al., 2017), DenseNet-
169, IBN-DenseNet-121 (Pan et al., 2018), IBN-DenseNet-
169, Inception-v3 (Szegedy et al., 2016), ResNet-50, IBN-
ResNet-50a and IBN-ResNet-50b. All model are pretrained
using ImageNet (Deng et al., 2009). In every model, the con-
volutional feature output by the last pooling layer is used for
image representation.
PEG settings. The maximum size of networks in the selec-
tion phase L is set to 3 for experiments. A lightweight
OSNet (Zhou et al., 2019) is used as the reference model of
CRS for faster training. In addition, we conduct minibatch
k-means clustering for CRS, and the number of clusters M
is set to 500 for Market-1501 and DukeMTMC-reID follow-
ing MMT (Ge et al., 2020). In the reproduction and mutation
phase, each network reproduces 3 networks with mutation
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factor r = 0.5. The whole population evolves for 3 gen-
erations in total. Our method is trained on 4 GPUs under
PyTorch framework. During testing, we use only one net-
work which is selected by CRS in the population for feature
representations.
Training settings. In mutual learning, we calculate k-
reciprocal Jaccard distance (Zhong et al., 2017) for cluster-
ing, where k1, k2 are set to 6 and 30, respectively. We set
the minimum cluster samples to 4 and a distance threshold
to 0.6 for DBSCAN (Ester et al., 1996). During training, the
input image is resized to 256 × 128, and traditional image
augmentation is performed via random flipping and random
erasing. For each class from the training set, a mini-batch of
256 is sampled with P = 16 randomly selected classes and
K = 16 randomly sampled images for computing the hard
batch triplet loss. We use the Adam (Kingma & Ba, 2014)
with weight decay 0.0005 to optimize parameters. In popula-
tion mutual learning, the learning rate is fixed to 0.00035 for
the overall 15 epochs. In each epoch, the temporal ensemble
momentum α in Eq. 8 is set to 0.999.

4.3 Comparison with State-of-the-Arts

We compare PEGwith state-of-the-art person re-IDmethods
in Tables 1 and 2 on Market-1501, DukeMTMC-reID and
MSMT17 datasets, respectively. The performance of our full
approach is reported as PEG(Full). In addition, we also eval-
uate PEG using the same backbone of ResNet50 as most of
the other methods since backbones are important for feature
learning. However, the backbones of models are automati-
cally selected in our selection phase. To guarantee a model
with ResNet50 is preserved in the population, we limit PEG
to choose at least one ResNet50 network at every time of
selection. The results tested by ResNet50 are reported as
PEG/ResNet50.

Previous unsupervised methods can be categorized into
unsupervised domain adaptation (UDA) and fully unsu-
pervised (FU) methods. State-of-the-art UDA methods are
first listed and compared in Tables 1 and 2, including
MMCL (Wang & Zhang, 2020), JVTC (Li & Zhang, 2020),
DG-Net++ (Zou et al., 2020), ECN++ (Zhong et al., 2020),
AD-Cluster (Zhai et al., 2020), MMT (Ge et al., 2020),
DCML (Chen et al., 2020), MEB-Net (Zhai et al., 2020),
MetaCam-DSCE (Yang et al., 2021), SpCL (Ge et al., 2020)
and GLT (Zheng et al., 2021). All these methods usually
rely on an annotated source domain to provide basic dis-
crimination and transfer it to the target domain. Without any
identity annotation from source domains, our proposed PEG
outperforms all of them on Market-1501, DukeMTMC-reID
datasets, andmost of themonMSMT17dataset except SpCL.
The results indicate the better capacity of PEG to explore the
information of the unlabeled data by exploiting the diver-
sity of multiple models. On the other hand, although other

approaches have also been proposed to utilize multiple mod-
els, such as MMT and MEB-Net, our PEG still surpasses
them by exploring and exploiting the diversity of multi-
ple models through evolutionary gaming. With mutation to
provide more diverse discrimination, it automatically finds
and preserves the optimal combination of networks from the
population in every generation and thus achieves better per-
formance in the end.

State-of-the-art fully unsupervisedmethods are then listed
and compared in Tables 1 and 2 including BUC (Lin et
al., 2019), SSL (Lin et al., 2020), JVTC (Li & Zhang,
2020), MMCL (Wang & Zhang, 2020), MPRD (Ji et al.,
2021), HCT (Zeng et al., 2020), CycAs (Wang et al., 2020),
GCL (Chen et al., 2021), UGA (Wu et al., 2019), IICS (Xuan
& Zhang, 2021), IN unsup. (Fu et al., 2021), SpCL (Ge et al.,
2020), OPLG (Zheng et al., 2021), CAP (Wang et al., 2020),
ICE (Chen et al., 2021) andClusterContrast (Dai et al., 2021).
Especially, ICE (aware) denotes using extra camera informa-
tion, and ICE (agnostic) denotes not using it. The compared
approaches mainly rely on the pseudo-label discovery of sin-
gle networks. Among them, methods tagged by “*” denote
that elaborate extra temporal information is additionally used
to improve the discrimination, such as CycAs and UGA,
while our approach only considers person appearance simi-
larity. The performance of these methods is provided just for
reference since it is not our point to explore the extra temporal
information, and our method does not use any of them. The
fully unsupervised methods are separated into two groups,
including linear classifier based methods and memory bank
based methods:

(1) Comparison with linear classifier based methods
For the linear classifier based methods, our approach with
ResNet50 achieves better performance than most of them
only except CycAs and UGA on the MSMT17 dataset, as
shown in Tables 1, and 2. Different from the other two
datasets, CycAs and UGA with extra temporal information
achieves better performance on MSMT17 because images in
the dataset are more diverse and harder to cluster accurately,
making the elaborate extra temporal information particularly
important. Nevertheless, these methods still suffer from the
lack of diversity in single model training, which prevented
them from maximizing their discrimination under unsuper-
vised conditions. The superior performance of PEG can be
attributed to the multiple model training, which improves
the networks’ discriminative capability by mutual learning
among diverse networks. And it can also be attributed to the
selection of PEG, which preserves the more discriminative
models in every generation and achieves the better perfor-
mance of them. In addition, our full approach PEG(Full)
further improves the re-ID performance by automatically
selecting better architectures.

(2) Comparison with memory bank based methods
Memory banks (Ge et al., 2020) were employed in many
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Table 1 Comparison with
person re-identification
state-of-the-art methods on
Market-1501 and
DukeMTMC-reID datasets

Methods Market-1501 DukeMTMC-reID
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Unsupervised domain adaptation

MMCL (Wang & Zhang, 2020) 60.4 84.4 92.8 95.0 51.4 72.4 82.9 85.0

JVTC (Li & Zhang, 2020) 61.1 83.8 93.0 95.2 56.2 75.0 85.1 88.2

DG-Net++ (Zou et al., 2020) 61.7 82.1 90.2 92.7 63.8 78.9 87.8 90.4

ECN++ (Zhong et al., 2020) 63.8 84.1 92.8 95.4 54.4 74.0 83.7 87.4

AD-Cluster (Zhai et al., 2020) 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5

MMT (Ge et al., 2020) 71.2 87.7 94.9 96.9 65.1 78.0 88.8 92.5

DCML (Chen et al., 2020) 72.6 87.9 95.0 96.7 63.3 79.1 87.2 89.4

MEB-Net (Zhai et al., 2020) 76.0 89.9 96.0 97.5 66.1 79.6 88.3 92.2

MetaCam-DSCE (Yang et al., 2021) 76.5 90.1 – – 65.0 79.5 – –

SpCL (Ge et al., 2020) 77.5 89.7 96.1 97.6 – – – –

GLT (Zheng et al., 2021) 79.5 92.2 96.5 97.8 69.2 82.0 90.2 92.8

Fully unsupervised—linear classifier based

LOMO (Liao et al., 2015) 8.0 27.2 41.6 49.1 4.8 12.3 21.3 26.6

Bow (Zheng et al., 2015) 14.8 35.8 52.4 60.3 8.3 17.1 28.8 34.9

UMDL (Peng et al., 2016) 12.4 34.5 52.6 59.6 7.3 18.5 31.4 37.6

BUC (Lin et al., 2019) 29.6 61.9 73.5 78.2 22.1 40.4 52.5 58.2

SSL (Lin et al., 2020) 37.8 71.7 83.8 87.4 28.6 52.5 63.5 68.9

JVTC (Li & Zhang, 2020) 41.8 72.9 84.2 88.7 42.2 67.6 78.0 81.6

MMCL (Wang & Zhang, 2020) 45.5 80.3 89.4 92.3 40.2 65.2 75.9 80.0

MPRD (Ji et al., 2021) 51.1 83.0 91.3 93.6 43.7 67.4 78.7 81.8

HCT (Zeng et al., 2020) 56.4 80.0 91.6 95.2 50.7 69.6 83.4 87.4

*CycAs (Wang et al., 2020) 64.8 84.8 – – 60.1 77.9 – –

GCL (Chen et al., 2021) 66.8 87.3 93.5 95.5 62.8 82.9 87.1 88.5

*UGA (Wu et al., 2019) 70.3 87.2 – – 53.3 75.0 – –

IICS (Xuan & Zhang, 2021) 72.1 88.8 95.3 96.9 59.1 76.9 86.1 89.8

IN unsup. (Fu et al., 2021) 72.4 87.8 - - 64.9 80.3 – –

PEG/ResNet50 82.8 92.8 97.5 98.7 70.4 82.2 90.8 93.6

PEG(Full) 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5

Fully unsupervised—memory bank based

SpCL (Ge et al., 2020) 73.1 88.1 95.1 97.0 65.3 81.2 90.3 92.2

OPLG (Zheng et al., 2021) 78.1 91.1 96.4 97.7 65.6 79.8 88.6 91.6

ICE(agnostic) (Chen et al., 2021) 79.5 92.0 97.0 98.1 67.2 81.3 90.1 93.0

ClusterContrast (Dai et al., 2021) 82.6 93.0 97.0 98.1 72.8 85.7 92.0 93.5

PEG+CCL/ResNet50 83.3 93.4 97.3 98.4 74.4 84.6 92.1 94.0

PEG+CCL(Full) 87.1 94.6 98.0 98.8 76.8 86.4 93.1 95.0

CAP (Wang et al., 2020) 79.2 91.4 96.3 97.7 67.3 81.1 89.3 91.8

ICE(aware) (Chen et al., 2021) 82.3 93.8 97.6 98.4 69.9 83.3 91.5 94.1

PEG+ICE/ResNet50 83.3 94.1 97.8 98.5 71.0 84.4 92.0 94.3

PEG+ICE(Full) 84.5 94.3 98.0 98.5 72.8 85.3 92.5 94.3

“*”Denotes the methods using extra temporal information. PEG (Full) denotes the overall performance of
our approach. For a fair comparison, PEG/ResNet50 is tested with the same ResNet50 backbone as most
compared methods. PEG+CCL and PEG+ICE denote training with ClusterContrast (Dai et al., 2021) and
ICE (Chen et al., 2021) as baselines, respectively. The performance of our approach is highlighted with bold
fonts
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recent methods (Dai et al., 2021) to replace the linear classi-
fier before the softmax cross-entropy loss function to improve
unsupervised re-ID performance. Specifically, memory bank
based methods can be further categorized into two groups
including i) ClusterContrast, SpCL, and OPLG that learn
general memories for all cameras, and ii) ICE and CAP that
design specificmemories for each camera. Since our research
mainly focuses on the problem of training multiple mod-
els, it is independent of these methods for training single
models. And they are not contradictive with our main con-
tribution and are compatible with our method. To verify this,
we additionally report our performance on the two typical
stronger baselines of ClusterContrast asPEG+CCL, and ICE
as PEG+ICE respectively in Tables 1 and 2.

For the camera-general memory bank based methods,
PEG+CCL / ResNet50 surpasses most of other state-of-the-
art methods only except ClusterContrast for Rank-1 accuracy
on DukeMTMC-reID. For ClusterContrast, the relatively
poor Rank-1 on DukeMTMC-reID dataset shows its weak-
ness for some hard negative samples which were mistakenly
identified as the same persons, because the soft mutual losses
in mutual learning lack the certainty of labels and may not
learn strong capability to separate hard negative samples.
However, robust improvement of PEG is mainly shown by
other metrics, especially the higher mAP on all benchmarks,
indicating that PEG deals better with those hard positive
samples, which is more important for the practical appli-
cation of security. Furthermore, our full approach of PEG +
CCL (Full) produces a new state-of-the-art performance on
Market1501 and DukeMTMC-reID. The better performance
can be attributed to the fact that the diverse population pro-
vides more reliable supervision for each other. The improved
results also demonstrate that our evolution gaming approach
is easily combined with different loss functions and can be
further improved by more effective losses.

For the camera-specific memory bank based methods,
PEG+ICE / ResNet50 outperforms all the comparedmethods
on the three datasets and produces a new state-of-the-art per-
formance on MSMT17 dataset. The superior performance to
the PEG+CCL onMSMT17 can be attributed to that camera-
specific memories alleviate the strong camera variance in
the dataset which has 15 cameras. However, camera-specific
memories are complementary with our PEG framework and
can be further improved for better performance.

4.4 Ablation Study

4.4.1 Evaluation of Components

Detailed ablation studies are performed to evaluate the com-
ponents of PEG as shown in Table 3.

Effectiveness ofmultiplemodel trainingMultiplemodel
training usually achieves better performance than single

Table 2 Comparison with person re-identification state-of-the-art
methods on MSMT17 dataset

Methods MSMT17
mAP R-1 R-5 R-10

Unsupervised domain adaptation

ECN (Zhong et al., 2020) 10.2 30.2 41.5 46.8

MMT (Ge et al., 2020) 24.0 50.1 63.5 69.3

SpCL (Ge et al., 2020) 26.8 53.7 65.0 69.8

Fully unsupervised—linear classifier based

MMCL (Wang & Zhang, 2020) 11.2 35.4 44.8 49.8

TAUDL (Li et al., 2018) 12.5 28.4 – –

UTAL (Li et al., 2019a) 13.1 31.4 – –

IICS (Xuan & Zhang, 2021) 18.6 45.7 57.7 62.8

*UGA (Wu et al., 2019) 21.7 49.5 – –

*CycAs (Wang et al., 2020) 26.7 50.1 – –

PEG/ResNet50 24.5 48.4 61.5 67.5

PEG(Full) 30.9 57.9 69.7 74.5

Fully unsupervised—memory bank based

SpCL (Ge et al., 2020) 19.1 42.3 55.6 61.2

ICE(agnostic) (Chen et al., 2021) 29.8 59.0 71.7 77.0

ClusterContrast (Dai et al., 2021) 27.6 56.0 66.8 71.5

PEG+CCL/ResNet50 33.4 61.3 73.4 77.8

PEG+CCL(Full) 41.8 69.1 79.5 82.9

CAP (Wang et al., 2020) 36.9 67.4 78.0 81.4

ICE(aware) (Chen et al., 2021) 38.9 70.2 80.5 84.4

PEG+ICE/ResNet50 42.1 72.0 82.0 85.4

PEG+ICE(Full) 44.9 73.9 83.2 86.3

“*”Denotes the methods using extra temporal information. PEG (Full)
denotes the overall performance of our approach. For a fair compar-
ison, PEG/ResNet50 is tested with the same ResNet50 backbone as
most compared methods. PEG+CCL and PEG+ICE denote training
with ClusterContrast (Dai et al., 2021) and ICE (Chen et al., 2021) as
baselines, respectively. The performance of our approach is highlighted
with bold fonts

model training because of the complementary discrimina-
tion of different models. In this section, we first introduce a
baseline multi-model ensemble without mutual learning for
comparison that only uses voting loss in Eq. 15 to train net-
works jointly, denoted as Multi-model. With eight networks
used for ensemble, pseudo-labels are predicted by concate-
nating the features outputted from all networks and then used
to supervise the training of each network individually by opti-
mizing the voting loss. We also report the result of the single
model baseline using the best architecture, ResNet50-IBNa.
As shown in Table 3, Multi-model outperforms the single
model training by large margins, indicating that more accu-
rate pseudo-labels can be predicted using multiple models.

Effectiveness of population mutual learning Popula-
tion mutual learning conducts knowledge distillation among
all base models for the better ensemble. Compared with the
baseline ensemble asMulti-model,models achieve better per-
formance with mutual learning among themselves, as Multi-
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Table 3 Ablation studies of
PEG using eight initial networks
under unsupervised conditions

Methods Market-1501 DukeMTMC-reID
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Single model baseline 69.6 84.9 92.9 94.9 55.9 72.8 81.9 85.4

Multi-model 76.4 89.7 95.6 97.1 63.4 79.0 87.0 90.0

Multi-model + PML 78.5 90.4 96.1 97.6 66.1 80.3 88.3 91.2

Multi-model + PML + Sel. 79.2 90.9 96.3 97.5 66.9 80.8 88.8 91.6

Multi-model + PML + Sel. + Rep.&Mut. 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5

Single architecture + PEG 80.1 90.9 96.3 97.4 69.4 82.1 90.3 92.9

Single model baseline denotes the best performance of single model training using self-improvement mecha-
nism. Multi-model means that all models are used for pseudo label prediction and every model is then trained
individually. PML denotes population mutual learning. Sel., Rep. and Mut. denote selection, reproduction and
mutation in PEG framework, respectively. Single architecture + PEG denotes the population is initialized
with a single model

model + PML in Table 3. For example, the mAP is improved
by 2.1% and 2.7% on Market-1501 and DukeMTMC-reID,
respectively. The improvement can be attributed to that mod-
els additionally learn the distribution predicted by other
models which contain more discriminative information.

In addition, more detailed ablation studies are performed
to evaluate the components of mutual learning as shown
in Table 5. In this experiment, three networks (DenseNet-
121-IBNa, DenseNet-169-IBNa, and ResNet-50-IBNa) are
trained concurrently. We first validate the temporally aver-
age model by removing it, denoted as PML w/o ΘT . For
this experiment, we directly use the prediction of the current
networks parameterized by θT instead of the temporally aver-
age networks with parameters ΘT as soft labels. As Table. 5
shows, distinct drops are observed, indicating that networks
tend to degenerate to be homogeneous without using tem-
porally average models, which substantially decreases the
learning capability. Then we evaluate the mutual loss in
Sect. 3.1.3 from two aspects: the mutual identity loss and the
mutual triplet loss. The former is denoted as PML w/o Lmid .
Results show that mAP drops from 79.2 to 77.2% onMarket-
1501 dataset and from 66.9 to 65.1% on DukeMTMC-reID
dataset. Similar drops can also be observed when studying
the mutual triplet loss, which is denoted as PML w/o Lmtri .
The effectiveness of the mutual learning, including both two
mutual losses, can be largely attributed to that it enhances the
discrimination capability of all networks. Overall, the perfor-
mance of the mutual learning ensemble largely outperforms
the baseline ensemble. We also compare the mutual learn-
ing ensemble with two supervised upper bounds, which are
trained using ground truths. The Single Model denotes eval-
uation using the best single model, and the Ensemble Feature
denotes evaluation using feature ensemble among multiple
networks. Our mutual learning ensemble is relatively close
to them with evaluation using a single model.

Effectiveness of selection Selection phase in PEG finds
and preserves an optimal subset of base networks for better
multi-model training. The experiment with mutual learn-
ing and selection is denoted as Multi-model + PML + Sel.

in Table 3. For this experiment, the selection is performed
to preserve a combination of 3 networks from all 8 net-
works using the cooperative game in Sect. 3.1.1, then the
preserved models are trained by mutual learning. Experi-
mental results show that the selection phase improves the
performance of Multi-model + PML even using fewer mod-
els. The superior performance indicates that some models
may be redundant and cannot provide more discrimination
but require more computation during training. However, the
selection effectively preserves better models with the pro-
posed cooperative gaming while abandoning weak models
that could even degrade the overall discrimination capability
of the whole ensemble. Without those weaker models, mod-
els will achieve better discrimination from more reliable and
efficient mutual learning.

Effectiveness of reproduction and mutation Reproduc-
tion and mutation drive the PEG framework to train more
diverse models by mutating their hyper-parameters, which is
the key to the exploration of model diversity in our evolution
process. With this component, PEG achieves the best perfor-
mance in Table 3 as Multi-model + Sel. + Rep.& Mut.. The
effectiveness of reproduction and mutation can be attributed
to the exploration of trainingmore diversemodels with selec-
tion preserving the better ones of them after mutual learning.
Beneficial from the iteration of reproduction, mutation, and
selection, PEG keeps exploring and exploiting diverse and
discriminative capacity for better re-ID models. In addi-
tion, multiple network ensemble with different architectures
is also used to exploit their diversity. To further validate
the effectiveness for the diversity of reproduction and muta-
tion, we evaluate PEG with only a single model to initialize
the population with reproduction and mutation, as Single
architecture + PEG in Table 3. Compared with the single
model baseline, the experiment improves the accuracy by
large margins, and it also outperforms the multi-model with-
out reputation and mutation. The results demonstrate that
reputation and mutation are more important for exploring
diversity. Moreover, our full approach of PEG with both
multiple architectures and reputation&mutation performs the
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Table 4 Ablation studies of
PEG on a stronger baseline of
cluster contrast loss (CCL)

Methods Market-1501 DukeMTMC-reID
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

CCL-Single 83.3 92.6 96.8 97.9 74.4 86.2 92.1 93.9

CCL-Multi 79.4 91.2 96.8 97.8 68.9 81.6 89.9 91.7

CCL-Multi + Sel. 84.3 92.9 97.1 98.2 74.9 86.3 92.4 94.1

CCL-Multi + PEG 87.1 94.6 98.0 98.8 76.8 86.4 93.1 95.0

CCL-Single denotes the baseline using the model of IBN-ResNet50. CCL-Multi means that all models are
used for pseudo label prediction and every model is then trained individually. Sel. denotes selection, and PEG
denote our full method

Table 5 Ablation studies of
components of population
mutual learning (PML) on
selected models without
reproduction and mutation

Methods Market-1501 DukeMTMC-reID
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Supervised upper bound

Single Model 84.4 94.1 97.9 98.8 71.2 85.5 92.5 94.3

Ensemble Feature 86.4 94.9 98.0 98.9 77.7 88.9 94.5 95.6

Baseline Ensemble (Only Lvot ) 76.6 89.1 95.7 97.2 63.2 77.2 87.5 91.0

PML w/o ΘT 73.3 87.9 95.3 97.1 62.6 77.5 87.0 90.1

PML w/o Lmid 77.2 90.2 95.9 97.4 65.1 79.2 88.5 91.2

PML w/o Lmtri 77.0 89.6 95.8 97.4 65.3 79.3 88.8 91.2

PML 79.2 90.9 96.3 97.5 66.9 80.8 88.8 91.6

Supervised Upper Bound—Deepmodels trained using the labelled training images. Single Model—evaluation
using the best single model. Ensemble Feature—evaluation using feature ensemble amongmultiple networks.
Baseline Ensemble -Models jointly trained by shared pseudo-labels butwithoutmutual learning.Lvot (Eq. 15),
ΘT (Eq. 8), Lmid (Eq. 9) and Lmtri (Eq. 10) are described in Sect. 3.1.3

best, demonstrating that the diversities from the two compo-
nents are complementary.

GeneralizationAnalysisTovalidate the generalization of
our approach with different baseline training methods, abla-
tion studies on a stronger baseline of cluster contrast loss
are evaluated as shown in Table 4. Compared with the single
model, it performs not good when directly using multiple
models for pseudo-label prediction, denoted as CCL-Multi.
The distinct degradation of performance indicates that the
weak models make a negative impact on such a stronger
baseline. The models converge quickly to the inaccurate
pseudo label partially predicted by the weak models and can
no longer be improved. However, the performance of the
multi-model is largely improved using the selection before
training. It demonstrates that the selection still preserves bet-
ter models effectively and abandons the weak models which
are harmful to the ensemble. Furthermore,CCL-Multi + PEG
produces the best performance on both datasets, validating
the effectiveness of themutation and reproduction. The supe-
rior results show that our PEG is effective and generalizable
for different baseline methods.

4.4.2 Evaluation of Cross-Reference Scatter

In this section, we first validate the basic motivation of the
cross-reference scatter, the phenomenon that more accurate
labels lead to larger intra-cluster cohesion and inter-cluster
separation in the trained feature space. We use inter-/intra-

cluster scatters (ICS) to measure the separation as well as
the cohesion over the feature space of models. As shown
in Fig. 4, a larger ICS means larger inter-cluster separation
and intra-cluster cohesion. We evaluate the ICS of models
trained by labels with different accuracy. Specifically, the
label accuracy is controlled by replacing a part of the ground
truth with randomly incorrect labels. The results shown in
Fig. 5 indicate a positive correlation between the ICS and the
label accuracy, which confirms the basic hypothesis of CRS.

We also evaluate the cross-reference scatter with different
metrics for clustering algorithm to compare the perfor-
mance of re-IDmodels without ground truth. All comparison
models with different architectures were first pre-trained in
DukeMTMC-reID dataset and then evaluated in Market-
1501 by the metrics. To demonstrate whether a metric can
show the relative performance between models, we evalu-
ate the correlation between the metric scores and the re-ID
performance for all metrics, as shown in Fig. 6. Since CRS
measures models at the start of every generation in PEG but
aims to select themodels that performbetter after training, the
metric scores were calculated before training and the re-ID
performance is evaluated with mAP after the model has been
unsupervised trainedon the unlabeleddata fromMarket1501,
which represents more latent performance of models. We
first compare ICS with two metrics for clustering algorithm
including Davies–Bouldin Index (DBI) and Silhouette Coef-
ficient (SC), as shown in the first line of Fig. 6. All three
metrics are calculateddirectly on the feature spaceof the eval-
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Fig. 4 Illustration of feature distribution with different Inter-/intra-cluster scatters (ICS). A larger ICS means larger cohesion within feature clusters
and larger separation across feature clusters. Best viewed in color

Fig. 5 The positive correlation between inter-/intra-cluster scatter
(ICS) and label accuracy indicates that more accurate labels usually
lead to larger ICS, which means larger cohesion within feature clusters
and larger separation across feature clusters during model training

uated models by performing k-means clustering. For each
metric, we used Spearman’s Rank Correlation (ρ) (Spear-
man, 1961) and Kendall’s Rank Correlation (τ ) (Kendall,
1938) to measure the correlation between the metric scores
and the re-ID performance. However, we clearly see the poor
correlation of themetrics with the re-ID performance accord-
ing to the small ρ and τ , indicating that the distribution of
features before training can not show the real performance
of models. Then we evaluate the three metrics using our
proposed cross-reference (CR) evaluation where metrics are
calculated on the feature distribution of a reference model
trained by predicted labels. As illustrated in the second line of
Fig. 6, correlations are consistently improved by CR, which
validates its effectiveness. Importantly, our CRS (ICS+CR)
performs the highest correlation with ρ = 0.93 and τ = 0.86
among all six comparedmetrics. Besides, we also present the
rankings of models under different metrics in Fig. 7. Com-
pared with the ground truth ranking result in the last column,
CRS achieves a similar ranking ofmodelswhile othermetrics
fail to rank them well. The superior performance of CRS can
be attributed to two reasons.One reason is the cross-reference
evaluation that measures the accuracy of predicted labels can

better reflect models’ performance, and another reason is the
ICS which better measures the convergence degree of the
reference model. Specifically, both DBI and SC focus on the
distribution of the difficult edge samples of clusters while
they ignore the overall distribution and thus cannot measure
well the degree of model convergence.

We also evaluate CRSwith different clustering algorithms
such as DBSCAN. In our work, DBSCAN is adopted in
model learning to generate more accurate pseudo-labels like
many recent unsupervised re-ID works. However, it is not
applicable for CRS because the fair comparison of CRS
amongmodels requires the same cluster number during clus-
tering, while DBSCAN cannot guarantee that. Specifically,
CRS defined by the ratio of intra-/inter-cluster variance is
relative to the cluster numbers. And the cluster numbers
by DBSCAN with different evaluated feature models are
likely to be different, making it unfair to compare their CRS
for model selection. In our work, we use kmeans with the
same cluster number k for all evaluated models. To vali-
date its effectiveness, we evaluate the correlation between
CRS and model performance using different clustering algo-
rithms, as shown in Fig. 8. Compared with kmeans (M =
500), DBSCAN achieves a much lower Spearman’s Rank
Correlation (ρ) (Spearman, 1961) and Kendall’s Rank Cor-
relation (τ ) (Kendall, 1938) between the metric and mAP
values. The results show that CRS with DBSCAN fails to
measure the models, and KMeans does it better. Therefore,
we use kmeans with the same cluster number for CRS.

Furthermore, we study the number of clusters M for k-
means in CRS, which is hard to fix in the real world. We first
compare the correlation betweenCRSand re-IDperformance
with different values of M , as shown in Fig. 8. CRS shows
stronger correlations when M is set to 500 or 700, which is
close to the number of person IDs in the datasets. The good
performance of this cluster number is consistent with other
kmeans based methods like MMT (Ge et al., 2020). When
M is larger, the correlation will be weaker. But the CRS still
basically reflects the performance of re-IDmodels, indicating
it is robust to the cluster number. On the other hand, we also
evaluate the performance of our full method with different
M on both Market1501 and DukeMTMC-reID datasets. As
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Fig. 6 Comparison with different unsupervised measures on the cor-
relation between the measures and re-ID performance (mAP after
unsupervised learning) over different models (point a–h) on Market-
1501 dataset. For each measure, we use Spearman’s Rank Correlation
(ρ) (Spearman, 1961) and Kendall’s Rank Correlation (τ ) (Kendall,

1938) to measure the correlation between the metric and mAP values.
A higher absolute value of ρ (or τ ) indicates a stronger correlation. Our
proposed CRS shows a stronger correlation, indicating that it better
reflects the performance of re-ID models

shown in Table 6, the re-ID performance is generally consis-
tent with the correlations of CRS. PEG performs best when
M is set to 700, where CRS also achieves the highest ρ and
τ , making selection able to select better models.

To validate CRS for very weak evaluated models which
predict mostly wrong pseudo labels, we estimate CRS at dif-
ferent noise levels. Although its predicted labels are partially
wrong for each evaluated model, we add extra noises by dis-
rupting the label order of a particular portion of samples.
As shown in Fig. 9, CRS maintains a stronger correlation
between its values and model performance with the increase
of the noise ratio, indicating its robustness for the wrong
labels. When the noise level is too high such as 0.8, the cor-
relation visibly deteriorated. However, higher CRS can still
roughly reflect the better models.

In addition, we evaluate CRS with different architectures
of the referencemodel. Fourmodels are comparedwith fewer
parameters to more parameters including OSNet, DenseNet-
121, ResNet-50, and ResNet-101. For fair, all reference
models are trained for 500 iterations during the evaluation

Fig. 7 Rankings of 9 models under existing clustering measures and
the proposedmetric “CRS”. The ground truth ranks models by the mAP
after unsupervised learning

of CRS. As shown in Table 7, we observe that models easy
to converge such as OSNet and ResNet-50 show better mea-
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Fig. 8 Comparison of CRS with different cluster settings on the correlation between the measures and re-ID performance (mAP after unsupervised
learning) over different models on Market-1501 dataset
Table 6 Comparison of re-ID
performance using different
cluster numbers M for kmeans
clustering in CRS

Methods Market-1501 DukeMTMC-reID
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

PEG (M = 500) 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5

PEG (M = 700) 85.0 94.1 97.8 98.8 73.3 84.8 92.0 94.1

PEG (M = 900) 83.8 93.1 97.4 98.4 72.3 83.7 91.3 93.8

PEG (M = 1500) 83.6 93.1 97.2 98.5 71.5 84.1 91.6 93.6

PEG (M = 2000) 83.5 93.7 97.8 98.6 71.3 83.6 91.2 93.4

Table 7 Comparisonwith different architecture for the referencemodel
in CRS

Reference model ρ τ Param. Time/iter.

DenseNet-121 0.74 0.57 6.95M 0.99s

ResNet-50 0.86 0.71 23.51M 1.11s

ResNet-101 0.40 0.36 42.50M 1.87s

OSNet 0.93 0.86 1.91M 0.98s

All models are trained for 500 iterations during the evaluation of CRS.
Models easy to converge such as OSNet and ResNet-50 show better
measurement

surement for higher correlation ρ and τ , whilemodels hard to
converge, likeDenseNet-121 andResNet-101, don’t perform
well. Specifically, DenseNet using a dynamic architecture
andResNet-101 have deep layers and amounts of parameters,
therefore they both require much more time to train. Since

only a few training iterations are performed in CRS, the two
architectures cannot show a sufficiently differentiable differ-
ence in feature distributionwhen evaluating differentmodels.
Moreover, we evaluate PEG for CRS with other light-weight
networks as the reference model, including MobileNet and
ResNet18. Different from OSNet specially designed for re-
ID, the other two architectures are designed for general
purpose. Table 8 shows the re-ID performance of PEG with
different reference models for CRS. Our method achieves
comparable re-ID performance consistently on Market-1501
and DukeMTMC-reID datasets. The results indicate that our
CRS metric is model-general for reference models, which is
not limited to certain architectures. In thiswork,we adopt the
OSNet as the referencemodel ofCRS in all other experiments
for less time-consuming and more accurate measurement.
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Fig. 9 Comparison of CRS at different noisy levels of pseudo-labels on the correlation between the measures and re-ID performance (mAP after
unsupervised learning) over different models on Market-1501 dataset
Table 8 Comparison of re-ID
performance of PEG using
different light-weight networks
as reference models in CRS

Reference Models Market-1501 DukeMTMC-reID
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

OSNet 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5

MobileNet 83.9 93.1 97.8 98.6 72.0 83.9 91.2 93.3

ResNet18 84.8 93.8 97.7 98.7 72.1 83.4 91.8 93.8

Table 9 Comparison with different selection strategies for initial net-
work architectures

Selection strategies mAP R-1 R-5 R-10

Deepest 77.9 89.9 96.1 97.1

Most heavyweight 76.7 89.3 96.1 97.5

Cooperative game (ours) 79.2 90.9 96.3 97.5

The results are tested after once selection and mutual learning without
mutation on Market-1501 dataset
Table 10 Comparison between individual selection and group selection
in PEG

Selection strategies mAP R-1 R-5 R-10

Individual selection 82.3 92.7 97.1 98.2

Group selection 83.6 93.3 97.3 98.3

Individual selection selects networkswith better individual performance
(CRS) while group selection selects the network combination with bet-
ter overall performance (CRS)

4.4.3 Analysis of Selection

Comparison with different model selection strategies For
themethod of selection of networks in PEG,we first compare
our cooperative gaming (using the best-response dynamics
according to CRS) with different selection strategies of net-
work architectures, for example, using some of the deepest
or weight-heaviest networks since deeper or weight-heavier
networks generally achieve better performance. Consider-
ing that these strategies can not select networks from ones
with the same architecture, in this experiment, we perform
the selection from networks with different architectures only
once and then train them by mutual learning before testing.
The experiment results shown in Table 9 indicate that our
approach selects better models which achieve higher per-
formance through mutual learning. The better selection can
be attributed to that the CRS approximately measures the
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Fig. 10 Illustration of curves of utility outcome (calculated by CRS)
over the best response dynamics (BRD) iterations in the first selection
phase during population-based training. The utility outcome increases
strictly and eventually halts at a Nash equilibrium

discriminative capability of models by efficiently using the
unlabeled data.

Moreover, we compare our group selection with the
individual selection in PEG. For individual selection, we
evaluated the CRS of every single network and accordingly
preserved the best L networks.While for group selection, we
use the cooperative game to find and preserve the group of L
networks with the highest overall CRS. Through the iterative
evolutionary game, the group selection performs better, as
shown in Table 10. The superior performance indicates that
networks preserved by the group selection are more comple-
mentary and it helps to achieve a better population in later
evolutionary training.

Convergence analysis of cooperative selection gaming.
We now discuss the convergence of the cooperative gam-
ing of selection. Note that in every iteration of best response
dynamics in Eq. 2, the outcome of the utility function strictly
increases. Thus, no cycles are possible. Since the game is
finite by assumption, it eventually ends, necessarily at a Nash
equilibrium. The convergence of the cooperative game is
illustrated in Fig. 10, where each game eventually halts at
a Nash equilibrium.

4.4.4 Parameter Analysis

Analysis of agent number L in the selection. The agent
number L in the cooperative game of selection determines
the maximal size of the selected subset of networks. Here we
evaluate the performance of our method and computational
cost of the selection over different values of L , as shown in
Fig. 11. Usually, a smaller L will lead to a lack of diver-
sity of the population since only a small number of networks
can be preserved during selection. However, L should not
be very large because it will waste much more computa-
tional resources for solving the best-response dynamics. On
the other hand, a larger L also means the larger size of the
population in the next generation, which will cost more time
for mutual learning among the networks. Taken together, a
L of 3 is proper in our experiments, which achieves good
performance without consuming too many computational
resources.

Fig. 11 Comparison with different agent numbers L in the cooperative
selection game. A larger L leads to better performance but higher time
consumption. The mutation factor r is set to 0.2 for stability

Fig. 12 Performanceof networks in populations over differentmutation
factor r . Each box represents a population and points denote models.
A larger r leads to better performance but larger variance of networks
within populations

Analysis of mutation factor r The mutation factor r in
Sect. 3.1.2 will affect the diversity of populations and so the
evolutionary training processes. We studied this parameter
by setting it to different values and checking the mAP per-
formance of all networks in the populations. Fig. 12 shows
experimental results onMarket-1501,where each circle point
denote a single model. Using a larger r usually leads to a
higher diversity within populations, which further leads to a
higher possibility of achieving better performance. Specifi-
cally, a larger r results in a higher upper bound (maximized
performance) and a similar average value. Notably, the aver-
age values do not represent the final performance. Although
PEG aims to train a population of diverse networks, only one
network is selected automatically according to Cross Ref-
erence Scatter for inference at the end of training, which
is probably to be the better one. Therefore, the final perfor-
mance of ourmethod doesn’t depend on the average values of
the population but depends on the performance of the selected
model. On the other hand, a population with a higher upper
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Fig. 13 Illustration of the model performance in every generation for
5 generation evolution

bound is more likely to select a better model. For example,
when r is set to 0.05 the best model in the population achieves
83.6% mAP, but when r is set to 0.5, there are 1/4 models in
the population that achieve mAP higher than 83.6%, which
may be selected for superior performance. Importantly, the
final model is selected according to Cross Reference Scatter
which is to estimate model performance by unlabeled train-
ing data. Experimental results in Sect. 4.4.2 demonstrated
that better models are likely to have higher CRS values to
be selected. And when r = 0.5 it provides more better mod-
els as candidates for the final selection. However, a larger
r will also bring larger variance and instability of network
performance within populations because it may reproduce
very weak networks that drag down the overall discrimina-
tion capability of the whole population by mutual learning.
Given all of that, we set r to 0.5 for both performance and
stability.

Analysis of the number of generations To analyze the
number of generations, we provide the model performance
in every generation for 5 generation evolution, as shown in
Fig. 13. The performance of models is boosted rapidly in the
first and second generation, and the boost slows down grad-
ually as the generation increases. After three generations of
evolution, the performance is nearly convergent, and models
achieve stable results.

4.4.5 Multiple Models versus Heavyweight Models

Heavyweight networks are more likely to learn discrimi-
native representations than lightweight models since they
have deeper architectures and more parameters. However,
models with heavyweights require more time and computa-

Fig. 14 Comparison between the lightweight networks within the pop-
ulation and heavyweight networks trained individually on two datasets

tional resources during both the training and inference stages,
making them infeasible in practice. Our experiments show
that through PEG, lightweight models can surpass heavy-
weight models with IBN that are individually trained under
unsupervised conditions. Take the market-1501 dataset as an
example. After the evolutionary game of the population of
lightweight networks, all member networks of the popula-
tion achieve better performance than heavyweight networks,
such as ResNet-101, as shown in Fig. 14. Specifically, one
of the networks achieves a much higher mAP of 84.3% than
ResNet-101 with only 1/3 of the parameters. The superior
results can be attributed to two aspects. One is the muta-
tion and selection that sufficiently explore and exploit the
population. Mutation makes networks learn diverse knowl-
edge, and selection maintains the optimal model groups and
abandons the others. The models in the selected and pre-
served groups are complementary, so they produce more
accurate and robust pseudo-labels for the next training phase
and learn more discriminative features. The second reason
is the mutual learning performed among all networks in the
whole population. Since the models preserved by mutation
and selection are diverse and complementary, each contains
only a small part of the knowledge of the whole population.
Through mutual learning, the knowledge of the population
is assembled into each network by distillation, which equips
the models with more discriminative capability. The PEG
method explores the potential of lightweight networks and
searches for the approximate global optimal solution and thus
outperforms the heavyweight models.

4.5 Computational Cost

To evaluate the efficiency and effectiveness of the compu-
tational cost, we evaluate a series of large single models
for reference as shown in Table 11. Experiments are con-
ducted on four V100GPUs. From the perspective of training,
our method requires comparable computational cost with the
large single models (such as ResNetrs420) while achieving
significant performance improvement.And from theperspec-
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Table 11 Comparison of computational cost between single models and PEG with different population sizes

Methods Performance Training cost Testing cost
mAP R-1 Param. /M Complexity /GMac Time /h Param. /M Complexity /GMac

IBN-DenseNet169 57.4 75.2 12.49 2.23 3.5 12.49 2.23

IBN-ResNet50 69.6 84.9 23.51 4.08 3.9 23.51 4.08

IBN-ResNext101 72.2 87.4 42.13 6.54 4.8 42.13 6.54

ResNet200 73.1 88.7 62.65 10.02 8.9 62.65 10.02

ResNetrs420 73.1 86.5 189.84 20.62 19.3 189.84 20.62

PEG (small) 84.1 93.0 72.00 12.62 10.7 12.49 2.23

PEG (large) 84.3 93.7 128.85 24.57 21.1 12.49 2.23

PEG (small) selects only two models during selection, and every model reproduces to 2 times. And PEG (large) follows the original settings
according to the implementation details

tive of testing, ourmethod requires as less computational cost
as the small single models (such as IBN-DenseNet169) and
surpasses them by large margins. More detailed descriptions
are listed below.

(1) The improvement by increasing parameters is lim-
ited for single models on re-ID performance, and our PEG
largely surpasses the best single model with comparable
computations, demonstrating the cost meaningful. Specif-
ically, we evaluate five architectures from lightweight to
heavyweight including IBN-DenseNet169, IBN-ResNet50,
IBN-ResNext101, ResNet200 and ResNetrs420. As param-
eters increase, single models usually achieve better perfor-
mance,whereas they requiremore computational complexity
and time for training. However, the improvement is limited
when the parameters are very large, i.e., ResNetrs420 can-
not surpass ResNet200 even though more than two times of
parameters and training time are used. Compared with sin-
gle models, PEG improves the accuracy by large margins.
Although population-based training demands more cost, the
cost is worth and affordable. Importantly, PEG provides
further improvement that cannot be achieved by simply
increasing model parameters.

To reduce the cost, we provide two implementation ver-
sions of PEG: small and large, with different sizes of the
population. Specifically, PEG(small)maintains a lightweight
population for efficient training, which selects only twomod-
els during selection and every model reproduces to 2 times.
And PEG (large) follows the original settings according to
the implementation details. Significantly, the provided PEG
(small) achieves comparable performance with PEG (large)
and requires only half the training cost. It also outperforms
the best single architecture ResNet200 for more than 10%
of mAP while costing comparable computing resources,
which is more affordable and efficient than the large ver-
sion. We suggest the version of PEG (small) for application
in resource-limited environments.

(2) PEG requires less computational cost for testing,
making it more applicable and valuable in practice. As is
shown in Table 11, the computational complexity during

testing of PEG is largely less than the large single mod-
els, even nearly 1/5 of the best one, ResNet200. It only
requires as less computational cost as small single models
such as IBN-DenseNet169 while surpassing its performance
by large margins. It is because only one network in the popu-
lation is selected in the end for evaluation. Since the training
procedure is only conducted once, while the test will be con-
tinuously repeated in the actual re-ID system, PEG with less
testing cost is applicable and valuable in practice.

To further analyze the training time of every procedure
in our approach, we illustrated the training process over
time in Fig. 15. Among the total training time, model learn-
ing accounts for the largest proportion. Model learning is
performed by data loading, feedforward of all networks,
backward of losses, and updating of parameters. This part
of time is relative to the number and depth of networks. For
example, the time ofmodel learning inGeneration 2 is shorter
than in the other generations because there are only four
networks in the population. The time of the selection stage
is different in the three generations. On the one hand, it is
affected by the number of candidate networks. On the other
hand, it is affected by the convergence of the best-response
dynamics. Moreover, clustering costs the least time, only for
the extraction of features and execution of clustering algo-
rithms.

5 Conclusion

The paper proposed a population-based evolutionary gam-
ing which trains concurrently a population of networks for
unsupervised person re-ID. We demonstrate that the pop-
ulation can evolve and achieve progressive discrimination
through iterative selection to preserve adaptive networks,
reproduction and mutation to provide more diversity, and
mutual learning to assemble knowledge. Moreover, our pro-
posed cross-reference scatter can approximately estimate the
performance of networks using unlabeled data and thus is uti-
lized as the utility of cooperative game in the selection phase.
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Fig. 15 Illustration of time
consumption of every procedure
in our approach. Time of
selection, clustering and model
learning are represented by
green, yellow and white,
respectively. Blue curves
represent the performance of
every model in the population

Our approach not only produces a new state-of-the-art accu-
racy onmultiple benchmarks but also provided a fresh insight
for population-based multi-network training.
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