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Abstract
The challenge of unsupervised person re-identification (ReID) lies in learning discriminative features without true labels.Most
of previous works predict single-class pseudo labels through clustering. To improve the quality of generated pseudo labels, this
paper formulates unsupervised person ReID as a multi-label classification task to progressively seek true labels. Our method
starts by assigning each person image with a single-class label, then evolves to multi-label classification by leveraging the
updated ReID model for label prediction. We first investigate the effect of precision and recall rates of pseudo labels to the
ReID accuracy. This studymotivates the Clustering-guidedMulti-class Label Prediction (CMLP), which adopts clustering and
cycle consistency to ensure high recall rate and reasonably good precision rate in pseudo labels. To boost the unsupervised
learning efficiency, we further propose the Memory-based Multi-label Classification Loss (MMCL). MMCL works with
memory-based non-parametric classifier and integrates local loss and global loss to seek high optimization efficiency. CMLP
and MMCL work iteratively and substantially boost the ReID performance. Experiments on several large-scale person ReID
datasets demonstrate the superiority of our method in unsupervised person ReID. For instance, with fully unsupervised setting
we achieve rank-1 accuracy of 90.1% onMarket-1501, already outperforming many transfer learning and supervised learning
methods.

Keywords Person re-identification · Unsupervised learning · Multi-label classification

1 Introduction

Recent years have witnessed the great success of person re-
identification (ReID), which learns discriminative features
from labeled images with deep Convolutional Neural Net-
work (CNN) (Zheng et al., 2016; Krizhevsky et al., 2012;
He et al., 2016). Because it is expensive to annotate per-
son images across multiple cameras, recent research efforts
start to focus on unsupervised person ReID. The challenge
of unsupervised person ReID lies in learning discriminative
features without true labels. To conquer this challenge, most
of recent works (Lin et al., 2018; Wang et al., 2018; Yu et al.,
2019;Wei et al., 2018; Deng et al., 2018; Zhong et al., 2018a,
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2019; Chen et al., 2019; Wu et al., 2019; Li et al., 2019; Qi
et al., 2019; Zhang et al., 2019) define unsupervised person
ReID as a transfer learning task, which leverages labeled data
on other domains for model initialization or label transfer.
Among them, someworksminimize the discrepancybetween
source and target domain to a common feature space (Wei et
al., 2018; Zhong et al., 2019; Lv et al., 2018; Lin et al., 2018;
Wang et al., 2018). Some others estimate the pseudo labels
for the target dataset (Fu et al., 2019; Zhang et al., 2019; Ge
et al., 2020a). Detailed review of existing methods will be
presented in Sect. 2.

Thanks to the above efforts, the performance of unsuper-
vised person ReID has been significantly boosted. However,
there is still a considerable gap between supervised and unsu-
pervised person ReID performance. Meanwhile, the setting
of transfer learning leads to limited flexibility. As discussed
in many works (Long et al., 2015; Yan et al., 2017;Wei et al.,
2018), the performance of transfer learning is closely related
to the domain gap between source and target datasets, e.g.,
large domain gap degrades the performance on target dataset.
It is non-trivial to estimate the domain gap and select suitable
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source datasets for transfer learning in unsupervised person
ReID.

This paper targets to boost the performance of unsuper-
vised person ReID without leveraging any manual anno-
tations. Previous works mainly adopt single-class label of
contrastive learning (Wu et al., 2018) or clustering to gen-
erate pseudo labels (Lin et al., 2019). Single-class labels
cannot represent sample similarity well. Iterative clustering
suffers from noise accumulation. To address those issues,
our method uses classification model to predict multi-class
pseudo labels. As illustrated in Fig. 1, we treat each unla-
beled person image as a class, and train the ReID model to
assign each image with a multi-class label. In other words,
the ReID model is trained to classify each image to multi-
ple positive classes belonging to the same identity. As each
person has multiple images, this framework effectively iden-
tifies images of the same identity and differentiates images
of different identities. This in-turn facilitates the ReIDmodel
to optimize inter and intra class similarities. Compared with
previous methods (Lin et al., 2019; Wu et al., 2018), which
classify each image into a single class, the multi-label classi-
fication has potential to exhibit better efficiency and accuracy
for person feature learning. It also avoids the noise accumu-
lation in sample clustering by leveraging the updated ReID
model for label prediction.

As illustrated in Fig. 1, the proposed framework involves
two components: 1) multi-class label prediction to assign
pseudo labels for each person image, and 2) multi-label
classification loss to measure the discrepancies between pre-
dictedmulti-class labels and classification outputs. To enable
a positive feedback forCNN training, predicted pseudo labels
are expected to be more accurate than classifier outputs.
Meanwhile, the multi-label classification loss should be fast
to compute, because treating each image as a class leads to a
large number of classes. Those two components make it crit-

Fig. 1 Illustrations of the proposed multi-label classification for unsu-
pervised person ReID.We target to assign each unlabeled person image
with amulti-class label reflecting the person identity. This is achieved by
iteratively running CMLP for multi-class label prediction and MMCL
for multi-label classification loss computation. This procedure guides
CNN to produce discriminative features for ReID

ical to design accurate multi-class label prediction algorithm
and effective loss function.

We investigateddifferent algorithms formulti-class pseudo
label generation. For instance, the multi-class label of
an image can be predicted by treating its visually simi-
lar images as positive classes using K-Nearest Neighbor
search (KNN) (Zhong et al., 2019), Similarity Score compar-
ison (SS) (Fan et al., 2018D), or Clustering (Clustering) (Fu
et al., 2019; Zhang et al., 2019;Ge et al., 2020a), respectively.
Fig. 2 illustrates precision and recall rate curves of predicted
positive classes by different algorithms, as well as their ReID
mAP (mean Average Precision) optimized by existing multi-
label classification loss functions (Zhang & Zhou, 2013;
Durand et al., 2019). It can be observed that, those prediction
algorithms present different precision-recall patterns. Clus-
tering tends to find more positive classes, thus produces high
recall and low precision rates. SS gets higher precision and
lower recall rates. Different precision-recall patterns corre-
spond to different performance, i.e., the ReID mAP presents
stronger correlation to the recall rate than to precision. Too
low precision degrades themAP because considerable noises
are involved in loss computation. This observation is consis-
tent with those found in noisy label learningworks, i.e., noisy
labels lead to overfitting and significantly degrade the per-
formance (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Han
et al., 2018).

The above observation motivates us to predict pseudo
labels with high recall rate and reasonably good precision
rate. We propose the Clustering-guided Multi-class Label
Prediction (CMLP) algorithm. CMLP first utilizes Cluster-
ing to adaptively predict the number of positive classes for
each image. This strategy effectively ensures a high recall
rate, e.g., having more neighbors leads to a larger numbers

Fig. 2 Precision and recall rate curves of predicted positive classes by
KNN (Zhong et al., 2019), SS (Fan et al., 2018D), Clustering (Fu et al.,
2019; Zhang et al., 2019;Ge et al., 2020a), aswell as their corresponding
ReIDmAP on theMarket-1501 dataset. It is clear that, the ReIDmAP is
more sensitive to the recall rate than to the precision. Too low precision
means involving considerable noises, thus degrades the mAP as the
training goes on
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of positive classes for an image. To further ensure a good
precision rate, CMLP filters noisy classes with cycle consis-
tency, which considers neighborhood similarity to spot and
remove noisy labels.

Predicted pseudo labels allow for model training with a
proper multi-label classification loss. Treating each image as
a class leads to a huge number of classes, making it expensive
to train classifiers like Fully Connected (FC) layers. We thus
further study an efficient multi-label classification loss func-
tion. As shown in Fig. 1, we adopt the feature of each image
as a classifier and store it in a memory bank. By updating
the memory bank, we achieve an efficient classifier learning.
Based on the memory bank, we propose the Memory-based
Multi-label Classification Loss (MMCL). MMCL addresses
the vanishing gradient issue in traditional multi-label classi-
fication loss (Zhang & Zhou, 2013; Durand et al., 2019) by
abandoning the sigmoid function and enforcing the classifi-
cation score to 1 or -1. Besides treating each class separately
to compute the local loss on sampled classes, MMCL further
computes a global loss to enforce the CNN output a uniform
distribution on positive classes. This constraint involves all
classes in loss computation and leads to a better training
efficiency and model performance. MMCL facilitates the
learning of discriminative features, which in turn provide
high quality sample similarity for label prediction in CMLP.

We test our approach on several large-scale person
ReID datasets, i.e., Market-1501 (Zheng et al., 2015) and
DukeMTMC-reID (Ristani et al., 2016) without leveraging
labeled data. Extensive ablation studies show that multi-class
labels predicted by CMLP present high recall rate and rea-
sonable good precision rate. By iteratively computing CMLP
and MMCL, our training procedure is stable and addresses
themAPdegradation issue in Fig. 2. Besides that, ourmethod
is easy to tune and repeat, e.g., it is not sensitive to the
selection of parameters, and generalizes well on different
datasets. Comparisons with recent works show our method
achieves promising performance. For instance, we achieve
rank-1 accuracy of 90.1% onMarket-1501, significantly out-
performing the recent SSL (Lin et al., 2020) and HCT (Zeng
et al., 2020) by 19.4% and 10.1%, respectively. Our perfor-
mance is also better than the AD-Cluster(Zhai et al., 2020)
and ECN++(Zhong et al., 2020), which use DukeMTMC-
reID (Ristani et al., 2016) for transfer learning.

In summary, our method iteratively runs multi-class label
prediction and computes multi-label classification loss to
seek true labels for multi-label classification and CNN train-
ing. As shown in experiments, our algorithm, although does
not leverage any labeled data, achieves competitive perfor-
mance. The maintained memory bank reinforces both label
prediction and classification. To the best of our knowledge,
this is an original work treating unsupervised person ReID
as a multi-label classification task. Compared with our con-
ference version, this journal version investigates the effect

of precision and recall rates of predicted labels to the ReID
accuracy. This study leads to the updated CMLP andMMCL
for label prediction and loss computation. CMLP produces
multi-class pseudo labels with high recall rate and reason-
ably good precision. MMCL addresses issues in traditional
MCL and integrates local loss and global loss to achieve high
optimization efficiency. Those newalgorithms further exploit
the promising performance of this multi-label classification
framework, e.g., they significantly boost the rank-1 accuracy
on Market-1501 from 80.3 to 90.1%. Our work also shows
that, unsupervised training has the potential to achieve better
flexibility and accuracy than existing transfer learning and
supervised learning strategies for person ReID model train-
ing.

2 RelatedWork

This work is related with unsupervised person ReID, unsu-
pervised feature learning, and noisy label learning. This
section briefly reviews related works in those three cate-
gories, respectively.

Unsupervised Person Re-identification learns ReID mod-
els on unlabeled target domains. Most of related works can
be summarized into two categories, i.e., fully unsupervised
ReID methods, and transfer learning based methods, respec-
tively. The first category only utilizes unlabeled data for
model learning. Traditional fully unsupervised ReID meth-
ods include designing hand-crafted features (Liao et al.,
2015; Zheng et al., 2015), exploiting localized salience statis-
tics (Zhao et al., 2013; Wang et al., 2014) or dictionary
learning based methods (Kodirov et al., 2015), respectively.
These methods stem from the hand-crafted features, which
are not discriminative enough to exploit complex scenarios.
Recently, there appear some CNN-based unsupervised ReID
methods. Lin et al. (Lin et al., 2019) propose a bottom-up
clusteringmethod to firstlymerge similar samples, then learn
discriminative features with deep network. Ding et al. (Ding
et al., 2019) improve previous work by proposing a better
clustering criterion. CNN-based methods have significantly
outperformed traditional hand-crafted feature based meth-
ods.

The secondcategorymakes useof theknowledgeof source
labeleddomain to trainmodel on the target unlabeleddomain,
e.g., (Lin et al., 2018; Wang et al., 2018; Yu et al., 2019; Wei
et al., 2018; Deng et al., 2018; Zhong et al., 2018a, 2019;
Chen et al., 2019; Wu et al., 2019; Li et al., 2019; Qi et al.,
2019; Zhang et al., 2019). Theseworks can be further divided
into two groups: 1) reducing the source-target discrepancy in
a common feature space, and 2) assigning pseudo labels for
the target dataset. Methods of the first group aim to align
the distribution of source and target domains in a common
space. PTGAN (Wei et al., 2018) and SPGAN (Deng et al.,
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2018) minimize the discrepancy by generating images with
source identity and target domain style to train the model.
HHL (Zhong et al., 2018a) minimizes target intra-domain
discrepancy by generating images under different cameras.
ECN (Zhong et al., 2019) utilizes transfer learning and min-
imizes the target invariance. Some other works (Lin et al.,
2018; Wang et al., 2018) minimize the attribute-level dis-
crepancy by utilizing extra attribute annotations. The other
group of methods starts by initializing a ReID model on
the labeled dataset, then adopts different strategies to assign
pseudo labels for the target unlabeled dataset, including clus-
tering (Fu et al., 2019; Zhang et al., 2019; Ge et al., 2020a)
and associating with source labeled dataset (Yu et al., 2019).
To avoid noisy labels in clustering, Ge et al. (Ge et al., 2020a)
propose a mutual mean teacher method to relieve the effect
of noisy labels.

Unsupervised Feature Learning aims to learn from data
without human-provided labels. Recent works on unsuper-
vised feature learning mainly falls into three categories. The
first category utilizes generative models, which aim to recon-
struct the distribution of data. Classical generative models
include Restricted Bolztmann Machines (RBM) (Hinton et
al., 2006; Tang et al., 2012), and auto-encoder (Vincent et
al., 2008; Le, 2013). The latent features of generative models
could be used for downstream tasks such as image classifica-
tion. Recently, there appear some more advanced generative
models, including the Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) and variational auto-
encoder (Kingma & Welling, 2013). They can approximate
the data distribution better and produce more realistic sam-
ples.

The second category exploits data internal structures to
infer supervision cues. Therefore, it is also called as self-
supervised learning. For example,Komodakis et al. (Komodakis
& Gidaris, 2018) predict the rotation of image to learn a
good representation. Li et al. (Li et al., 2018) use motion
and view as supervision to learn an initialization for action
recognition. Wu et al. (Wu et al., 2018) regard each image
as a single class, and propose a non-parametric classifier to
train CNN. He et al. (He et al., 2019) propose momentum
updated encoder and dynamic queue for contrastive learning
and obtain superior performance to supervised initialization.
Self-supervised learning usually learns generalized features
and models, which can be used as an initialization for down-
stream tasks.

The third category aims to learn discrimintive features
directly for classification or retrieval tasks, thus can relieve
the requirement on labeled data. Iscen et al. (Iscen et al.,
2018) utilize manifold learning to seek positive and nega-
tive samples to compute the triplet loss. Ye et al. (Ye et al.,
2019) learn instance-aware features in a mini-batch using the
newly-updated features. Our work shares certain similarity
with (Wu et al., 2018; Ye et al., 2019), in that we also treat

each image as a single class. However, we consider multi-
label classification, which is important in identifying images
of the same identity as well as differentiating different iden-
tities.

Learning with Noisy Label has been exploited by deep
learning community in image classification, object detection
and tracking. A line of methods aims to design robust loss
functions against label noises. Ghosh et al. (Ghosh et al.,
2017) design a Mean Absolute Error (MAE) loss to train
model with noisy labels. Zhang et al. (Zhang & Sabuncu,
2018) analyze the drawbacks of MAE and cross-entropy loss
in noisy label learning and further propose a Generalized
Cross Entropy (GCE) loss. Label Smoothing Regularization
(LSR) (Szegedy et al., 2016) is also a way to address noisy
labels. Li et al. (Li et al., 2020) propose a cleanliness score
based on classification and regression outputs to serve as the
soft label and reweighting factor for object detector training.
Thismethod avoids noisy assignment in traditional IoUbased
metrics. Wu et al. (Wu et al., 2021) propose a noise-robust
loss to deal with unsupervised tracking learning.

Another kind of methods focuses on refining the training
strategies for noisy label learning. Co-teaching
(Han et al., 2018) and co-training (Ma et al., 2017) train two
collaborative models and each model chooses high confi-
dence training samples for the other. These training strategies
can avoid noise accumulation. Probabilistic modeling in
uncertainty learning is also a way to deal with label noises.
Danelljan et al. (Danelljan et al., 2020) model the label noise
and ambiguities through a probabilistic distribution and pro-
pose a novel model to estimate an interpretational score for
tracking. Neverova et al. (Neverova et al., 2019) explicitly
use a higher-order uncertainty model to model the aleatoric
uncertainty in annotations and use two models for densepose
estimation.

Our approach uses unlabeled data for learning, thus
belongs to the fully unsupervised ReID. It differs with pre-
vious methods in that, we formulate unsupervised ReID as
a multi-label classification task. Multi-label classification is
designed to cope with multi-class labels (Zhang & Zhou,
2013; Durand et al., 2019; Wang et al., 2018; Lin et al.,
2018). Durand et al. (Durand et al., 2019) deal with multi-
label learning based on partial labels and utilize graph neural
network to predict missing labels. Wang et al. (Wang et al.,
2018; Lin et al., 2018) use multi-label classification to learn
attribute features. This paper utilizes multi-label classifica-
tion to predict multi-class labels for learning person identity
features. To the best of our knowledge, this is an original
work introducingmulti-label classification into unsupervised
person ReID. It potentials have been demonstrated by the
promising performance of this work.
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3 Formulation

Given a person image dataset X = {x1, x2, ..., xn} without
ID annotation, our goal is to train a person ReID model on
X . For any query person image q, the person ReID model
is expected to produce a feature vector to retrieve image g
containing the same person from a gallery set G. In other
words, the ReID model should guarantee q share more sim-
ilar feature with g than with other images in G. We could
conceptually denote the goal of person ReID as,

g∗ = argmin
g∈G dist( fg, fq), (1)

where f ∈ R
d is a d-dimensional L2-normalized feature

vector extracted by the person ReID model. dist(·) is the
distance metric, e.g., the L2 distance.

To make training on X possible, we start by treating each
image as an individual class and assign xi with a label yi .
This pseudo label turns X into a labeled dataset, and allows
for the ReID model training. yi is initialized to a two-valued
vector, where only the value at index i is set to 1 and the
others are set to −1, i.e.,

yi [ j] =
{

1 j = i
−1 j �= i

(2)

Since each person may has multiple images in X , the ini-
tial label vector is not valid in representing person identity
cues. Multi-class label prediction is required to assign multi-
class labels to each image, which can be used for ReIDmodel
trainingwith amulti-label classification loss. Labels of xi can
be predicted by matching its feature fi to features of other
images, and finding consistent feature groups. With multi-
class labels, we can compute the loss by comparing predicted
labels and classifier outputs.Due to the hugenumber of image
classes inX , it is hard to trainmulti-label classifiers. One effi-
cient solution is to use the fi as the classifier for the i-th class.
This computes the classification score for any image x j as,

c j [i] = f �
i × f j , (3)

where c j denotes the multi-label classification score for x j .
It is easy to infer that, both label prediction and multi-

label classification require features of images in X . We
hence introduce a n × d sized memory bank M to store
those features, where M[i] = fi . With M, we propose the
Clustering-guided Multi-class Label Prediction (CMLP) for
label prediction and Memory-based Multi-label Classifica-
tion Loss (MMCL) for ReID model training, respectively.

CMLP takes a single-class label as input and outputs the
updatedmulti-label prediction ȳi based onmemory bankM,

i.e.,

ȳi = CMLP(yi ,M), (4)

where ȳ is the multi-class label.
MMCL takes the image feature f , predicted multi-class

label ȳ, and the memory bank M as inputs. The computed
loss L can be represented as,

L =
n∑

i=1

MMCL(M, fi , ȳi ), (5)

where fi , ȳi denote the image feature and pseudomulti-class
label of image xi .

M is updated after each training iteration as,

M[i]t = α · M[i]t−1 + (1 − α) · fi , (6)

where the superscript t denotes the t-th training epoch,
α is the updating rate. M[i]t is then L2-normalized by
M[i]t ← ||M[i]t ||2. Both label prediction and loss com-
putation require robust features in M to seek reliable labels
and classification scores, respectively. We use many data
argumentation techniques to reinforce M. In other words,
each M[i] combines features of different augmented sam-
ples form xi , it hence presents better robustness.More details
are given in Sect. 5.2.

With M, CMLP uses both clustering and cycle con-
sistency to predict ȳi , making it more accurate than the
classification score. This ensures the loss computed by
MMCL valid in boosting the ReIDmodel, which in-turn pro-
duces positive feedbacks to M[i] and label prediction. This
M-CMLP-MMCL loop makes it possible to train discrimi-
native ReID models on unlabeled dataset. Implementations
to CMLP and MMCL can be found in the following parts.

4 ProposedMethods

4.1 Clustering-guidedMulti-class Label Prediction

The accuracy of predicted positive classes in ȳi byEq. (4) can
be measured with the precision and recall rates, i.e., finding
more true positive classes leads to a high recall, and eliminat-
ing false positive classes improves the precision. It is hard to
guarantee 100% precision and recall rates in ȳi .We thus need
to study a proper optimization objective for label prediction,
e.g., emphasizing on the promotion of recall, precision, or
both. This part first investigates a reasonable optimization
objective for label prediction, hence presents details of our
Clustering-guided Multi-class Label Prediction (CMLP).

Analysis of existing methods: Most of label prediction
algorithms share similar spirit, i.e., assigning similar images
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Table 1 Illustration to the effect of precision and recall rates of
positive classes to ReID mAP. +/-x% denotes the operation of increas-
ing/decreasing the percentage of predicted positive classes.

Method Operation Avg. P Avg. R Avg. mAP

KNN - 66.16 27.03 41.8

+20% 55.19 32.61 40.30

-20% 76.57 16.77 30.5

SS - 80.61 31.94 44.4

+20% 68.42 39.84 45.9

-20% 89.48 9.81 27.0

Clustering - 70.36 54.14 57.0

+20% 62.89 57.28 57.9

-20% 74.24 42.84 53.4

P and R denote precision and recall rate, respectively. Experiments are
conducted on Market-1501

with similar labels. One challenge in multi-class label pre-
diction is confirming the number of similar images.KNN and
SS select positive classes according to a fixed threshold, i.e.,
the nearest neighbour number and a similarity, respectively.
Clustering adaptively selects positive classes according to the
cluster size. Figure 2 indicates that, the promotion of recall
rate ismore beneficial to boost theReIDmAP than improving
precision rate. We conduct another experiment in Table 1 to
further verify this observation. Table 1 increases/decreases
the number of positive classes of existing label prediction
algorithms. Intuitively, introducing more positive classes
degrades the precision, but improves the recall and consis-
tently boosts the mAP. Similar conclusion can be observed
for different label prediction algorithms.

It is not hard to explain the above observations. Increas-
ing the recall rate assigns more diverse samples with the
same label, which in-turn boosts the power of ReID model
in identifying visually different samples as the same person.
Simply increasing the recall rate may lead to very low pre-
cision and substantial performance degradation, especially
for large training epoch as illustrated in Fig. 2. This phe-
nomenon can be explained by the “memorization” effect of
deep networks (Arpit et al., 2017). Namely, when trained
with noisy labels, deep networks will learn easy patterns in
initial epochs (Arpit et al., 2017; Zhang et al., 2016), resulting
in a steady performance promotion. As the the training goes
on, deep networks will tend to overfit to noisy labels by the
hard constraint of training loss, which causes performance
degradation.

CMLP is thus proposed to predict positive classes with
high recall and reasonably good precision rates. This is
achieved by adaptively confirming the number of positive
classes by clustering image features and using the cluster size
as a reference number of positive classes. The multi-class
label of each image is hence predicted based on an image

Fig. 3 Precision and recall curves of predicted positive classes by dif-
ferent algorithms on Market-1501. Tested label prediction algorithms
includeKNN (Zhong et al., 2019), SS (Fan et al., 2018D),Clustering (Fu
et al., 2019; Zhang et al., 2019; Ge et al., 2020a), the MPLP (Wang &
Zhang, 2020) in our conference version, and our CMLP

rank list. The following part presents the computations of
the reference number and positive classes, respectively.

Reference number computation Given all image fea-
tures stored in thememory bankM, we compute the distance
matrix D using Euclidean distance, i.e., the distance Di, j of
images xi and x j is computed as

Di, j = ||M[i] − M[ j]||2. (7)

With D, we further consider Rerank to refine the fea-
ture distance. Specifically,Rerank refines the distancematrix
using k-reciprocal encoding (Zhong et al., 2017),

D′
i, j = 1 −

∑n
m=1 min(MK(i,m),MK( j,m))∑n
m=1 max(MK(i,m),MK( j,m))

, (8)

where MK(i,m) is an indicator function, showing whether
images xi and xm are mutual k-nearest neighbors.

The updated distancematrix D′ can be adopted to generate
image clusters. We choose the widely used DBSCAN (Ester
et al., 1996) as the clustering algorithm. For an image xi ∈
Ck , whereCk is a cluster, we can obtain the reference number
of its positive classes ni as the size of Ck , i.e., ni = |Ck |.

Multi-class label prediction For an image xi , CMLP
computes an image rank list Ri by sorting the distance stored
in D′

i,[1:n]. Top ranked indexes in Ri can be selected as can-
didate positive classes of xi . To boost the recall rate, CMLP
tends to select more candidate positive classes from Ri . This
can be simply achieved by increasing the reference positive
class number as n′

i = ni + e, where e is a parameter related
to the recall rate. Based on n′

i and Ri , we select the initial
positive classes for image xi as Pi = Ri [1 : n′

i ].
To ensure a reasonably good precision rate, CMLP adopts

a filtering strategy to spot and delete false positive classes
from Pi . Inspired by k-reciprocal nearest neighbor(Jegou et
al., 2007; Zhong et al., 2017), we assume that, if two images
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Fig. 4 Visualization of predicted positive and negative classes by
CMLP on Market-1501. True positive and true negative are annotated
by green and red bounding boxes, respectively (Color figure online)

belong to the same class, their neighboring image sets should
also be similar. In other words, two images should be mutual
neighbor for each other if they can be assigned with similar
labels. With this intuition, we filter hard negative classes in
Pi by referring to the cycle consistency.

Specifically, for an image x j with j ∈ Pi , CMLP com-
putes its top-n′

i nearest neighbors according D′. If xi is one
of the top-n′

i nearest neighbors of x j , j is considered as a
reliable positive class for xi . Otherwise, it is treated as a
hard negative class. We filter out these hard negative classes
and obtain the final positive class set P∗

i . As P∗
i contains l

classes, xi would be assigned with a multi-class label ȳi with
l positive classes, i.e.,

ȳi [ j] =
{

1 j ∈ P∗
i−1 j /∈ P∗
i

(9)

Figure 3 compares the precision-recall patterns of dif-
ferent label prediction algorithms. It is clear that, CMLP
achieves the highest recall rate, meanwhile it maintains a
reasonable precision rate larger than 0.7. Compared with
Clustering, CMLP gets more accurate predictions, i.e., bet-
ter recall and similar precision. Visualization of predicted
positive and negative classes are illustrated in Fig. 4. More
experimental evaluations will be presented in Sect. 5.

4.2 Memory-basedMulti-label Classification Loss

The predicted multi-class labels can be used for training
the ReID model with a multi-label classification loss. This
part first discusses issues in traditional multi-label classifi-
cation loss, then proceeds to introduce our Memory-based
Multi-label Classification Loss (MMCL). Different from our

conference version (Wang & Zhang, 2020), the improved
MMCL involves a local and global loss to enhance the effi-
ciency of optimization. As shown in our experiments, the
updated MMCL brings substantial performance gains. More
details can be found in Sect. 5.4

Traditional multi-label classification loss In traditional
multi-label classification methods, sigmoid and logistic
regression loss is a common option (Zhang & Zhou, 2013;
Durand et al., 2019;Wang et al., 2018; Lin et al., 2018). For a
task with n classes, it adopts n independent binary classifiers
for classification. The loss of classifying image xi to class j
can be computed as,

�( j |xi ) = log(1 + exp(−ȳi [ j] × si [ j])), (10)

where si [ j] = M[ j]�× fi computes the classification score
of image xi for the class j . ȳi [ j] is the label of image xi for
class j . With the loss at a single class, we can obtain the
Multi-Label Classification (MCL) loss, i.e., LMCL ,

LMCL =
n∑

i=1

n∑
j=1

�( j |xi ), (11)

where n is the number of images in the dataset X , which
equals to the class number in our setting.

Because the M[ j]� and fi are L2 normalized, the clas-
sification score is restricted between [−1, 1]. This limits
the range of sigmoid function in Eq. (11), making the loss
non-zero even for correct classifications. This issue can be
addressed by introducing a scalar τ on the classification
score. This updates Eq. (11) as,

�τ ( j |xi ) = log(1 + exp(−ȳi [ j] × si [ j]/τ)). (12)

We denote the corresponding MCL loss as LMCL−τ . The
gradient of LMCL−τ can be computed as,

∂LMCL−τ

∂ fi
= − exp(−ȳi [ j]si [ j]/τ)

1 + exp(−ȳi [ j]si [ j]/τ)

ȳi [ j]M[ j]
τ

. (13)

With Eq. (13), we illustrate the gradient of LMCL−τ with
different values of τ when ȳi [ j] = 1 in Fig. 5. It is clear that,
the updatedMCL loss still suffers from substantial vanishing
gradient issue as the classification score larger than 0.25 or
smaller than -0.25. Another issue is that, our task involves
a large number of classes, making the positive and negative
classes unbalanced. Treating those negative classes equally
in Eq. (11) may cause the issue of model collapse.

Memory-basedMulti-label Classification LossMMCL
is proposed to ensure an efficient optimization to the ReID
model and the enhanced robustness to noisy labels. The two
issues in traditional MCL are addressed by computing the
local loss on positive classes and hard negative classes. To
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Fig. 5 Gradient Analysis forLMCL−τ andLlocal . It is clear that,Llocal
does not suffer from the vanishing gradient issue

further enhance the efficiency of optimization, MMCL con-
siders a global loss computed on all classes. As illustrated in
Fig. 6, the above intuitions lead to a local loss and a global
loss, respectively. We hence could denote the MMCL as,

LMMCL = λLlocal + (1 − λ)Lglobal , (14)

where the λ is weighting parameter to balance the two losses.
Local Loss Llocal is proposed to address two issues in

traditionalMCL.For thefirst issue, since the score is bounded
by [−1, 1], we can abandon the sigmoid function and directly
compute the loss by regressing the classification score to 1
and -1. This simplifies the loss computation and improves the
training efficiency. The loss of classifying image xi to class
j can be updated as,

�∗( j |xi ) = ||si [ j] − ȳi [ j]||2, (15)

where si [ j] = M[ j]� × fi is the classification score.
The second issue is the imbalance between positive and

negative classes.Llocal introduces hard negative classmining
to solve it. This is inspired by the samplemining in deepmet-
ric learning (Wu et al., 2017), where hard negative samples
aremore informative for training. Similarly in ourmulti-label
classification, hard negative classes aremoremeaningful than
easy negative ones.

For xi , its negative classes can be denoted as Ri\P∗
i . We

rank them by their classification scores and select the top
r% classes as the hard negative classes. The collection of
hard negative classes for xi can be denoted as Ni , |Ni | =
(n − |P∗

i |) · r%.
The Llocal is computed on positive classes and sampled

hard negative classes as follows,

Llocal =
n∑

i=1

δ

|P∗
i |

∑
j∈P∗

i

�∗( j |xi ) + 1

|Ni |
∑
j∈Ni

�∗( j |xi ), (16)

Fig. 6 Illustration of Llocal and Lglobal for feature distance learning.
Llocal focuses on hard negative classes.Lglobal takes all negative classes
into consideration

where δ is a coefficient measuring the importance of positive
class loss and negative class loss, which will be tested in
experiments.

We also illustrate the gradients of Llocal when ȳi [ j] = 1
in Fig. 5, where the gradient of Llocal can be computed as,

∂Llocal/∂ fi = 2δ × (M[ j]� × fi − ȳi [ j]) × M[ j]. (17)

Global Loss As Llocal focuses on sampled classes and
considers loss on each class separately, Lglobal is computed
on all classes to improve the efficiency of CNN training. For
an image xi , given its classification score si = M� × fi and
multi-class label ȳi , we first compute a probability vector vi
by applying the softmax operation on si ,

vi [ j] = exp(si [ j]/τ)∑n
k=1 exp(si [k]/τ)

, (18)

where τ is a temperature scalar, which is set to 0.05 according
to (Zhong et al., 2019).

Traditional cross entropy loss enforces the probability on
positive classes to 1. This conflicts with the training objec-
tive in multi-label classification, i.e., the ideal probability
vi should exhibit uniform distribution over positive classes.
Inspired by (Arazo et al., 2019; Tanaka et al., 2018),we aim to
push the probability on each positive label to 1/|P∗

i |, where
|P∗

i | is the number of positive classes of xi . Lglobal is hence
computed by modifying the cross entropy loss as,

Lglobal = −
n∑

i=1

1

|P∗
i |

∑
j∈P∗

i

log(
vi [ j]

max(1/|P∗
i |, vi [ j]) ), (19)

where max(1/|P∗
i |, vi [ j]) supervises the model to learn the

uniform distribution. For instance, if the classification prob-
ability on a positive class j is less than 1/|P∗

i |, the loss will
refine themodel to output probability approaching to 1/|P∗

i |.
Benefited from the probability representation in Eq. (18),
Lglobal can be efficiently computed since Eq. (19) is only
computed on positive classes.
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Algorithm 1 The pipeline of our framework.
Input: Unlabeled dataset X = {x1, x2, ..., xn}. ReID model Φ(·).
Memory bank M. Total training epoch num_epochs.
Output: Updated ReID model Φ(·).

1: Initialize Φ(·) with ImageNet-pretrained weights.
2: Initialize M to all zero;
3: for epoch_id in 1...num_epochs do
4: Compute distance matrix D

′
based on M use Eq. (8);

5: Cluter on D
′
to obtain the reference number ni for each image

xi ;
6: for xi in X do
7: Extract image feature by ReID model fi = Φ(xi );
8: Initialize the single-class label yi by Eq. (2);

/* CMLP computation */
9: Compute image rank list Ri based on D

′
;

10: Expand ni and select initial positive classes Pi = Ri [1 : n′
i ];

11: Use cycle consistency to filtr out hard negative classes to
obtain P∗

i ;
12: Construct predicted multi-class label by Eq. (9);

/* MMCL computation */
13: Compute local loss on sampled classes by Eq. (16);
14: Compute global loss on all classes by Eq. (19);
15: Compute final loss L by Eq. (14);
16: Update ReID model Φ(·) based on loss L and SGD.
17: Update Memory bank with feature fi by Eq. (6);
18: end for
19: end for
20: return Final ReID model Φ(·).

DiscussionsComparison between theLMCL−τ andLlocal

in Fig. 5 clearly shows that, the vanishing gradient issue
is effectively addressed by Llocal . Because of vanishing
gradient, LMCL−τ won’t enforce the classifier to output
positive scores larger than 0.25. Note that, our framework
uses feature similarity computed by Eq. (3) as classifi-
cation scores. Low positive classification score indicates
small feature similarity with positive classes, which is
harmful for decreasing the intra-class variance. Compared
with LMCL−τ , Llocal is more effective than LMCL−τ in
optimizing the ReID model. Figure 5 also shows that, δ

controls the magnitude of the gradient of Llocal . As dis-
cussed in (Zhang & Sabuncu, 2018), mean square loss is
inferior to log-based loss (e.g. cross entropy) when classi-
fication score is near the decision boundary. This issue is
addressed by introducing δ to scale the gradient magnitude of
Llocal .

The global loss Lglobal improves the local loss by consid-
ering all labels into loss computation. As shown in Fig. 6,
Llocal only focuses on sampled labels, thus is not effective in
optimizing the feature distance. Lglobal involves all labels in
to computation and can effectively improve the performance
of learned ReID feature. We will test the effects of Llocal

and Lglobal in Sect. 5. Algorithm 1 summarizes the whole
pipeline of the proposed method.

5 Experiment

5.1 Datasets and EvaluationMetrics

We evaluate the proposed approach on two large scale public
person ReID datasets:Market-1501 (Zheng et al., 2015) and
DukeMTMC-reID (Ristani et al., 2016).

Market-1501 Zheng et al. (2015) is made up of 32,368
pedestrian images taken by sixmanually configured cameras.
It contains 1,501 person IDs.On average, there are 3.6 images
for each person under each camera. BecauseMarket1501 has
provided the training set and testing set, we use images in the
training set for unsupervised learning and report the ReID
performance on the testing set.

DukeMTMC-reID Ristani et al. (2016) is composed of
1,812 pedestrians and 36,411 bounding boxes, with 1,404
pedestrians appear in more than one camera. This dataset is
captured by 8 cameras. 16,522 bounding boxes of 702 pedes-
trians are used for training. The other identities are included
in the testing set.

Evaluation Metrics. We follow the standard settings in
(Zheng et al., 2015; Ristani et al., 2016) to conduct experi-
ments. Performance is evaluated by theCumulativeMatching
Characteristic (CMC) and mAP.

5.2 Implementation Details

All experiments are implemented using PyTorch framework.
We use ResNet-50 (He et al., 2016) as backbone to extract the
feature and initialize it with parameters pre-trained on Ima-
geNet (Deng et al., 2009). After pooling-5 layer, we remove
subsequent layers and add a batch normalization layer (Ioffe
& Szegedy, 2015), which produces a 2048-dim feature. Dur-
ing testing, we also extract the pooling-5 feature to calculate
the distance. For multi-label classification, we allocate a
memory bank to store L2 normalized image features. The
memory bank is initialized to all zeros. As mentioned in
Sect. 3, we leverage CamStyle (Zhong et al., 2018b) as a data
augmentation strategy for unlabeled images. Strategies like
random crop, random rotation, color jitter, and random eras-
ing are also used to improve the feature robustness. To further
ensure the quality of predicted multi-class labels, we incor-
porate temporal information (Li & Zhang, 2020) to refine the
distance in Eq. 8.

The input image is resized to 256×128. We use SGD to
optimize the model, the learning rates for ResNet-50 base
layers are 0.01, and others are 0.1. Thememory updating rate
α starts from 0 and grows linearly to 0.6. We train the model
for 40 epochs, and the learning rate is divided by 10 after
every 30 epochs. The batch size for model training is 64. We
do clustering and predict multi-class label every epoch. For
multi-label classification loss, we set the weight δ to 5, hard
negative mining ratio r% to 0.1% and loss weight λ = 0.3
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Fig. 7 Evaluation of e for positive class selection

Table 2 Evaluation of parameter δ in Eq. (16)

δ Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

1 88.1 71.8 75.7 57.3

2 89.7 74.2 77.0 59.4

3 89.0 74.1 76.3 59.0

4 89.9 74.7 77.2 58.9

5 90.1 75.2 77.2 59.6

6 89.5 75.1 76.1 58.5

Bold indicates the best performance in the table

for balancing local and global loss in MMCL through the
parameter analysis in Sect. 5.3.

5.3 Parameter Analysis

This section investigates hyper-parameters introduced by
our method, including the e for positive class selection,
coefficient δ, hard negative mining ratio r% and weighting
parameter λ. Each experiment varies one hyper-parameter
while keeping others fixed. All experiments are conducted
with unsupervised ReID setting on both Market-1501 and
DukeMTMC-reID.

e for positive class selection Larger e selects more candi-
date positive classes, thus boosts the recall rate. Figure 7
reports the performance of different e in CMLP. We can
observe that increasing e improves the performance. For
example, e = 1 performs better than e = 0 in terms of both
mAP and rank-1 accuracy. However, too large e is harmful
for model learning. According to Fig. 7, we set e = 1, which
corresponds to good performance on both datasets.

Coefficient δ Table 2 reports the analysis on coefficient δ
of MMCL. As discussed in Sect. 4.2, δ plays a role to scale
the gradient of Llocal . δ = 1 does not scale the gradient. In
this case, the Llocal cannot produce large gradients to pull
positive samples together, leading to bad performance. For
example, the rank-1 accuracy is dropped to 88.1%onMarket-
1501 and 75.7% on DukeMTMC-reID. As δ becomes larger,
Llocal effectively improves the similarity of positive sam-
ples, leading to better performance. However, too large δ

Fig. 8 Evaluation of hard negative mining ratio r

Fig. 9 Evaluation of weighting parameter λ in Eq. (14)

may make the training unstable. According to Table 2, we
set δ = 5, which performs best on different datasets.

Hard negative mining ratio r% Fig. 8 shows effects of
hard negative mining ratio r% in Llocal . r=100 means using
all negative classes for loss computation, which is harmful
for both accuracy and efficiency. This implies that, not all of
the negative classes are helpful for unsupervised ReID train-
ing, if they are treated independently with equal weight. As
r becomes smaller, hard negative mining would be activated
and it boosts the accuracy. Too small r selects too few neg-
ative classes, hence is also harmful for the performance. We
finally set r = 0.1 a reasonable tradeoff between accuracy
and efficiency.

Lossweighting parameter λ Fig. 9 investigates the effect
of λ, which weights the local and global loss in Eq. (14).
We vary λ from 0.0 to 1.0. By setting λ to 1.0, only local
loss is taken into consideration. As discussed in Sect. 4.2,
global loss could effectively enlarge inter-class variation and
improve the ReID performance. Those figures clearly show
that, setting smallerλboosts the performance. Properweights
hence should be set to balance the loss on local loss and
global loss. According to this experiments, we set λ = 0.3,
a reasonable tradeoff between local and global losses.

The above experiments on two datasets also indicate that,
our parameters are easy to tune, i.e., selected parameters
on one dataset show consistent performance on different
datasets. We hence set e = 1, δ = 5, r = 0.1, and λ = 0.3
for following experiments.

5.4 Ablation Study

Baselines To conduct ablation studies, we first implement
two baselines in Table 3 for comparison. The first baseline
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Table 3 Test of validity of proposed CMLP and MMCL.

Method Market-1501 DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

Supervised 87.1 94.8 96.9 68.3 75.9 86.9 90.5 57.9

Pre-trained 8.1 17.5 23.6 2.2 5.6 11.5 14.9 1.6

CMLP Single-class Label 32.2 52.8 62.1 10.5 29.0 44.7 51.7 10.6

Clustering 88.6 95.2 96.8 72.2 77.0 87.5 90.1 57.6

CMLP 90.1 95.6 97.2 75.2 77.2 87.6 90.6 59.6

MMCL Llocal 87.6 92.9 95.6 67.1 73.4 85.5 87.9 53.3

Lglobal 89.7 95.4 96.9 74.5 76.7 86.8 90.5 58.8

Llocal&Lglobal 90.1 95.6 97.2 75.2 77.2 87.6 90.6 59.6

“Supervised” denotes baseline trained with annotated labels and Cross Entropy loss. “Pre-trained” denotes baseline pre-trained on ImageNet
Bold indicates the best performance in the table

Fig. 10 Evaluation of proposed positive label expansion and refinement
strategy in CMLP for different multi-class label prediction strategies

trains the ReID model in supervised learning, we denote
it as “Superivsed”. This supervised learning achieves high
accuracy on two datasets, e.g., 87.1% and 75.9% rank-1
accuracy on Market-1501 and DukeMTMC-reID, respec-
tively. The secondbaseline is denoted as “Pre-trained”,which
directly uses parameters pre-trained on ImageNet for testing.
As shown in Table 3, the bad performance of Pre-trained is
mainly caused by the domain gap between ImageNet and
ReID datasets. Those two baselines can be viewed as the
upper bound and lower bound of unsupervised person ReID.

Validity of CMLP We first analyze the effectiveness of
our label prediction algorithm. As shown in Table 3, we
first show the result achieved without any label prediction,
which is denote as “Single-class Label”. It improves the
lower bound baseline on both datasets. Specifically, the rank-
1 accuracy improves from 8.1 to 32.2% and 5.6% to 29.0%
when tested onMarket-1501 and DukeMTMC-reID, respec-
tively. This demonstrates that treating each image as a single

class is a feasible way to improve the baseline performance.
Further applying label prediction substantially boosts the per-
formance. For example, when adoptingCMLPw/o refine,we
obtain 88.6% rank-1 accuracy and 72.2% mAP on Market-
1501, which outperform Single-class Label by 56.4% and
61.7%, respectively. This verifies our motivation that multi-
class label is better than single-class label in unsupervised
ReID. Further incorporating the positive label expansion
and label refinement strategies, CMLP boosts the ReID per-
formance to 90.1% rank-1 accuracy and 75.2% mAP on
Market-1501. This shows the effectiveness of each compo-
nent in CMLP.

Our positive label expansion and refinement strategy pro-
posed in Sect. 4.1 is effective as shown in above experiments.
Figure 10 further tests it with other label prediction meth-
ods, e.g., KNN (Zhong et al., 2019), SS (Fan et al., 2018D),
and Clustering (Fu et al., 2019; Zhang et al., 2019; Ge et
al., 2020a), respectively. From Fig. 10, we can observe that
this strategy brings consistent performance gains for different
label prediction algorithms. For example, it brings about 4%
gains in mAP for KNN onMarket-1501. A similar result can
be observed onDukeMTMC-reID. We hence could conclude
that, our method is simple and works well.

Validity of MMCL This part evaluates the proposed
MMCL by first testing Llocal and Lglobal separately. As
reported in Table 3, both Llocal and Lglobal achieve good
performance on two dataset, e.g., on Market-1501, Llocal

obtains 67.1% mAP while Lglobal obtains 74.5%. Combin-
ing those two losses leads to substantial performance gains,
i.e., 75.2% mAP on Market-1501. A similar results can be
observed on DukeMTMC-reID, i.e., combining two losses
achieves 59.6% mAP. This implies that, those two losses
are complementary to each other. Trained with CMLP and
MMCL, our ReID model even gets better performance than
the “Supervised” model, i.e., the performance upper bound
of Cross Entropy (CE) loss. This is mainly because MMCL
is superior to CE loss, as shown in Table 4. It indicatesing
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Fig. 11 The mAP curves achieved by different label prediction algo-
rithms with MMCL on two datasets

that, the proposed multi-label classification framework iss an
effectivemethod in to learning discriminative person features
in under the unsupervised setting.

Figure 11 further tests MMCLwith different label predic-
tion algorithms. Compared with mAP curves in Fig. 2, which
are computed with traditional multi-label classification loss,
the ones in Fig. 11 exhibit better stability and performance.
Combined with the CMLP, the mAP degradation issue in
Fig. 11 is effectively addressed. This demonstrates our
MMCL is more robust to noisy labels. It is also clear that,
our CMLP gets the best performance compared with other
label prediction algorithms.

To further show the potential of MMCL, we compare it
with Cross Entropy (CE) loss with different labels includ-
ing single-class label and ground truth label. Experimental
results are summarized in Table 4. Trained with single-class
labels, MMCL gets 32.2% rank-1 accuracy and 10.5% mAP
on Market-1501, slightly better than those of CE. We further
test them using ground truth labels. MMCL still performs
better than CE on both datasets. This indicates that MMCL
is superior to CE. We can also observe that the proposed
CMLP+MMCL achieves similar performance to its upper
bound using ground truth labels. CMLP+MMCL obtains
75.2% and 59.6% mAP on Market-1501 and DukeMTMC-
reID, which is only lower than its upper bound by 1.0% and
0.2%. It is also interesting to observe is that, MMCL+CMLP
performs better than MMCL + Ground Truth in Rank-1
on Market-1501, e.g., 90.1 v.s. 89.9. This can be partially
explained by the label noises in ground truth annotation,
which can be relieved to some extent by unsupervised learn-
ing.

Ablation study on different memory bank updating
strategies we further evaluate different updating methods
of the memory bank, as discussed in Sect.3. We test two
updating methods. One increases the memory updating rate
linearly during training. The other uses constant updating

Table 4 Test of MMCL and Cross Entropy (CE) loss with different
labels on Market-1501 and DukeMTMC-reID, respectively

Loss Label Type Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

CE Single-class 31.4 9.9 31.5 11.8

CE Ground Truth 87.1 68.3 75.9 57.9

MMCL Single-class 32.2 10.5 29.0 10.6

MMCL Ground Truth 89.9 76.2 79.0 59.8

Fig. 12 Comparison of different memory updating methods subject
to varied maximum updating rate α in Eq. (6) on Market-1501 and
DukeMTMC-reID, respectively

rate. For both methods, we vary the maximum updating rate
from 0.1 to 1.0 and summarize the results in Fig. 12. Our
results show that, linear increasing is better than the other.
This indicates that an adaptive updating rate is a more rea-
sonable choice for our task. We also observe that, linear
increasing is not sensitive to themaximumupdating rate, e.g.,
too large updating rate significantly degrades its competitor,
but does not degrade the performance of linear increasing.
This property makes our method easier to tune.

5.5 Comparison with the State of the Art

We compare our method against state-of-the-art unsuper-
vised learning and transfer learning approaches on Market-
1501 (Zheng et al., 2015) and DukeMTMC-reID (Ristani et
al., 2016). Table 5 summarize the comparison.

We compare two types of methods, including unsu-
pervised learning methods: LOMO (Liao et al., 2015),
BOW(Zhenget al., 2015),BUC(Lin et al., 2019),DBC(Ding
et al., 2019), MMCL (Wang& Zhang, 2020), SSL (Lin et al.,
2020), HCT (Zeng et al., 2020) and SpCL (Ge et al., 2020b),
etc, and transfer learning based approaches: PUL (Fan et
al., 2018D), PTGAN (Wei et al., 2018), SPGAN (Deng
et al., 2018), CAMEL (Yu et al., 2017), MMFA (Lin et
al., 2018), TJ-AIDL (Wang et al., 2018), HHL (Zhong
et al., 2018a), ECN (Zhong et al., 2019), MAR (Yu et
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Table 5 Unsupervised person ReID performance comparison with state-of-the-art methods on Market-1501 and DukeMTMC-reID

Method Reference Market-1501 DukeMTMC-reID

Source R-1 R-5 R-10 mAP Source R-1 R-5 R-10 mAP

PUL(Fan et al., 2018D) TOMM18 Duke 45.5 60.7 66.7 20.5 Market 30.0 43.4 48.5 16.4

PTGAN(Wei et al., 2018) CVPR18 Duke 38.6 - 66.1 - Market 27.4 - 50.7 -

SPGAN(Deng et al., 2018) CVPR18 Duke 51.5 70.1 76.8 22.8 Market 41.1 56.6 63.0 22.3

CAMEL(Yu et al., 2017) ICCV17 Multi 54.5 - - 26.3 - - - - -

MMFA(Lin et al., 2018) BMVC19 Duke 56.7 75.0 81.8 27.4 Market 45.3 59.8 66.3 24.7

TJ-AIDL(Wang et al., 2018) CVPR18 Duke 58.2 74.8 81.1 26.5 Market 44.3 59.6 65.0 23.0

HHL(Zhong et al., 2018a) ECCV18 Duke 62.2 78.8 84.0 31.4 Market 46.9 61.0 66.7 27.2

DECAMEL(Yu et al., 2018) TPAMI19 Multi 60.2 76.0 - 32.4 - - - - -

ECN(Zhong et al., 2019) CVPR19 Duke 75.1 87.6 91.6 43.0 Market 63.3 75.8 80.4 40.4

MAR(Yu et al., 2019) CVPR19 MSMT 67.7 81.9 - 40.0 MSMT 67.1 79.8 - 48.0

PAUL(Yang et al., 2019) CVPR19 MSMT 68.5 82.4 87.4 40.1 MSMT 72.0 82.7 86.0 53.2

SSG(Fu et al., 2019) ICCV19 Duke 80.0 90.0 92.4 58.3 Market 73.0 80.6 83.2 53.4

CR-GAN(Chen et al., 2019) ICCV19 Duke 77.7 89.7 92.7 54.0 Market 68.9 80.2 84.7 48.6

CASCL(Wu et al., 2019) ICCV19 MSMT 65.4 80.6 86.2 35.5 MSMT 59.3 73.2 77.5 37.8

PDA-Net(Li et al., 2019) ICCV19 Duke 75.2 86.3 90.2 47.6 Market 63.2 77.0 82.5 45.1

UCDA(Qi et al., 2019) ICCV19 Duke 64.3 - - 34.5 Market 55.4 - - 36.7

PAST(Zhang et al., 2019) ICCV19 Duke 78.38 - - 54.62 Market 72.35 - - 54.26

MMCL(Wang & Zhang, 2020) CVPR20 Duke 84.4 92.8 95.0 60.4 Market 72.4 82.9 85.0 51.4

pMR-SADA(Wang et al., 2020) CVPR20 Duke 83.0 91.8 94.1 59.8 Market 74.5 85.3 88.7 55.8

AD-Cluster(Zhai et al., 2020) CVPR20 Duke 86.7 94.4 96.5 68.4 Market 72.6 82.5 85.5 54.1

ECN++(Zhong et al., 2020) TPAMI20 Duke 84.1 92.8 95.4 63.8 Market 74.0 83.7 87.4 54.4

GCL(Chen et al., 2021) CVPR21 Duke 89.1 95.0 96.6 73.4 Market 77.2 86.2 88.4 60.4

LOMO(Liao et al., 2015) CVPR15 None 27.2 41.6 49.1 8.0 None 12.3 21.3 26.6 4.8

BOW(Zheng et al., 2015) ICCV15 None 35.8 52.4 60.3 14.8 None 17.1 28.8 34.9 8.3

BUC(Lin et al., 2019) AAAI19 None 66.2 79.6 84.5 38.3 None 47.4 62.6 68.4 27.5

DBC(Ding et al., 2019) BMVC19 None 69.2 83.0 87.8 41.3 None 51.5 64.6 70.1 30.0

SSL(Lin et al., 2020) CVPR20 None 71.7 83.8 87.4 37.8 None 52.5 63.5 68.9 28.6

MMCL(Wang & Zhang, 2020) CVPR20 None 80.3 89.4 92.3 45.5 None 65.2 75.9 80.0 40.2

HCT(Zeng et al., 2020) CVPR20 None 80.0 91.6 95.2 56.4 None 69.6 83.4 87.4 50.7

JVTC+(Li & Zhang, 2020) ECCV20 None 79.5 89.2 91.9 47.5 None 74.6 82.9 85.3 50.7

SpCL(Ge et al., 2020b) NeurIPS20 None 88.1 95.1 97.0 73.1 - - - - -

GCL(Chen et al., 2021) CVPR21 None 83.7 91.6 94.3 63.4 None 72.4 82.0 84.9 53.3

MetaCam(Yang et al., 2021) CVPR21 None 83.9 92.3 - 61.7 None 73.8 84.2 - 53.8

Ours - None 90.1 95.6 97.2 75.2 None 77.2 87.6 90.6 59.6

Bold indicates the best performance in the table

al., 2019), PAUL (Yang et al., 2019), SSG (Fu et al.,
2019), CR-GAN (Chen et al., 2019), CASCL (Wu et al.,
2019), PDA-Net (Li et al., 2019), UCDA (Qi et al., 2019),
PAST (Zhang et al., 2019), MMCL (Wang & Zhang, 2020)
and ECN++ (Zhong et al., 2020), etc.

We first compare with unsupervised learning methods.
LOMO (Liao et al., 2015) and BOW (Zheng et al., 2015)
utilize hand-crafted features, and show the worst perfor-
mance. BUC (Lin et al., 2019) and DBC (Ding et al., 2019)
treat each image as a single cluster then merge clusters, thus

share certain similarity with our work. However, our method
outperforms them by large margins. The reasons could be
because: 1) their bottom-up clustering strategy accumulates
the quantization error in partitioning the feature space, and
2) BUC tries to keep different clusters with similar size,
hence suffers from the issue of imbalanced number of posi-
tive classes. HCT (Zeng et al., 2020) addresses the first issue
by re-clustering at each epoch, thus gets better performance.
However, as its authors state, HCT is prone to overfitting,
and needs the early stopping to avoid performance degra-
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(a)

(b)

Fig. 13 Illustration of unsupervised person ReID results on Market-
1501 and DukeMTMC-reID. Each example shows top-5 retrieved
images by ReID model trained with Single-class Label, our conference

version (Wang & Zhang, 2020), and the method in this paper, respec-
tively. True positive is annotated by the green bounding box. False
positive is annotated by the red bounding box (Color figure online)

dation. Benefited from the CMLP and MMCL, our method
obtains 90.1% rank-1 accuracy and 75.2% mAP onMarket-
1501, as well as 77.2% rank-1 accuracy and 59.6% mAP
on DukeMTMC-reID, which outperform all of those com-
petitors in Table 5. For instance, our method outperforms
the recent SpCL (Ge et al., 2020b) by 2.0% in rank-1 accu-
racy and 2.1% in mAP on Market-1501, respectively. Our
method also performs substantially better than our confer-
ence version (Wang & Zhang, 2020), e.g., outperforms the
conference version by 9.8% in rank-1 accuracy on Market-
1501. Sample ReID results by our method are illustrated in
Fig. 13.

6 Conclusion

This paper proposes a multi-label classification method to
address unsupervised person ReID. Different from previous
works, our method works without requiring any labeled data
or a good pre-trained model. Good performance is achieved
by iteratively predicting multi-class labels and updating the
network with a multi-label classification loss. CMLP is pro-
posed for multi-class label prediction by considering both
clustering and cycle consistency. MMCL is introduced to
compute the multi-label classification loss and it addresses

the issues of vanishing gradient, as well as the unbalanced
positive-negative class ratio. Experiments on several large-
scale datasets demonstrate the promising performance of the
proposed methods in unsupervised person ReID.
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