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Abstract
To perceive and create a whole from parts is a prime trait of the human visual system. In this paper, we teach machines to
perform a similar task by recreating a vectorised human sketch from its incomplete parts, dubbed as sketch healing. This is
fundamentally different to prior works on image completion since (i) sketches exhibit a severe lack of visual cues and are of a
sequential nature, and more importantly (ii) we ask for an agent that does not just fill in a missing part, but to recreate a novel
sketch that closely resembles the partial input from scratch. We identify two key facets of sketch healing that are fundamental
for effective learning. The first is encoding the incomplete sketches in a graph model that leverages the sequential nature of
sketches to associate key visual parts centred around stroke junctions. The intuition is then that message passing within the
graph topology will naturally provide the healing power when it comes to missing parts (nodes and edges). Second we show
healing is a trade-off process between global semantic preservation and local structure reconstruction, and that it can only be
effectively solved when both are taken into account and optimised together. Both qualitative and quantitative results suggest
that the proposed method significantly outperforms the state-of-the-art alternatives on sketch healing. Last but not least, we
show that sketch healing can be re-purposed to support the interesting application of sketch-based creativity assistant, which
aims at generating a novel sketch from two partial sketches even without specifically trained so.

Keywords Sketch healing · Graph convolutional networks · Perceptual distance · Sketch generative model · Sketch
representation

1 Introduction

The human visual system is so remarkable in its ability to
reasoning. One of its important tricks is to perceive a whole
by reasoning on parts—the Kanizsa triangle (Tallon et al.,
1995) shown in Fig. 1a being a famous example. This had
partially motivated a recent line of research on image com-
pletion (Pathak et al., 2016; Yang et al., 2017; Song et al.,
2018c; Xiong et al., 2019; Yu et al., 2018; Sagong et al.,
2019; Zheng et al., 2019) which aims at hallucinating miss-
ing pixels given contextual regions. Great strides have been
made to date, with algorithms able to produce highly plausi-
ble filler patches. Such successes are however largely down
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to the data-driven nature of these algorithms, without much
insight given towards reasoning.

Others have fixated on human sketches as a medium to
gain insight into the humanvisual system—to see is to sketch.
That is, the sketching process to a large extent reflects the
visual perception of an object. This has triggered a large
body of research on human sketch understanding, somemore
application oriented (Cao et al., 2010; Eitz et al., 2012;
Berger et al., 2013; Sangkloy et al., 2016; Yu et al., 2017;
Li et al., 2018; Shen et al., 2018; Simo-Serra et al., 2018;
Pang et al., 2019; Bhunia et al., 2020b; Wang et al., 2021),
others starting to tackle insightful problems such as sketch
synthesis (Song et al., 2018a; Ge et al., 2020), sketch abstrac-
tion (Riaz Muhammad et al., 2018; Pang et al., 2018; Bhunia
et al., 2020a) and sketch completion (Liu et al., 2019). Sketch
is commonly perceived to be a more challenging visual
modality compared with photo, because (i) it lacks visual
features, (ii) it is abstract and iconic, and (iii) it is sequential
in nature.

In this paper, we are also interested in studying sketches.
In particular, we would like to use sketches to understand the
visual reasoning problem of devising the whole from parts
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Fig. 1 a Visual completion is different to healing that performs ren-
dering on missing parts only. b Sketch healing aims to recreate a novel
visual imagery from scratch that closely resembles the partial sketch
input, and proceeds in a temporal fashion. SketchRNN fails completely
on sketch healing. cExemplary result onhowpartial human sketches can

be successfully recreated by our proposed SketchHealer acrossmultiple
categories. d One application of SketchHealer is a creativity assistant
that generates a novel sketch with creative visual semantics from two
partial sketch inputs

(albeit only to a superficial level). We differ significantly to
the conventional problem of image completion. First, we do
not treat sketches as pixelated photos, but as a sequence of
strokes (represented in vector format) that reflects the actual
drawing process. Furthermore, we require ourselves to gen-
erate a novel and complete sketch stroke-by-stroke that best
resembles the partial input, other than just filling in the miss-
ing parts. Together, these constraints deviate us from image
completion, and move towards a new problem which we call
sketch healing.

On the outset, sketch healing is akin to the well studied
problem of vector sketch synthesis. The pioneering work of
SketchRNN (Ha & Eck, 2018), for example, already has the
ability to generate realistic human-like sketch drawings at
stroke-level, either from a random vector or conditioned on
a partial sketch encoding. In hindsight though, we are com-
pletely different.We are not sketching towards a recognisable

concept, but a complete sketch that closely resembles the
partial input. For example, conditioned on the encoding of a
partial butterfly sketch, SketchRNN is interested in sketching
a plausible butterfly; we on the other hand are focusing on
reproducing a complete version of the partial sketch, regard-
less of knowing whether it is a butterfly (Fig. 1b). We further
insist on solving for randomdroppings of sketch parts aswell,
where more than one “hole” appear anywhere on a sketch.
This setting is incompatible with the “completion mode” of
SketchRNN, which dictates a strict sequential ordering, i.e.,
the synthesised sketch must be on top of of existing input
strokes.

Solving the sketch healing task is non-trivial. It requires
a sketch-specific representation that not only accommodates
the unique traits of sketches (abstract and sequential), but
also robust enough towards various levels of missing parts.
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This is made evenmore challenging since we are after amore
generic healer that works overmultiple categories, other than
training a single model per category.

We make two key modifications to existing sketch gen-
erative models (Ha & Eck, 2018; Chen et al., 2017; Song
et al., 2018a; Cao et al., 2019; Bhunia et al., 2020a) for
the effective learning of this novel task: (i) As opposed
to the common dichotomy of formulating sketch data into
raster pixels or sequential points, we combine the best of
two worlds by proposing to represent sketches as a graph
structure that encodes both visual and temporal sketch traits.
Specifically, we introduce a sketch graph construction mod-
ule that organises key sketch parts in accordance with the
order of drawing. We select representative stroke points as
graph nodes to capture the most visual information and form
the edge links via an adjacency matrix based on tempo-
ral proximity. Such seemingly simple change to sketch data
organisation, however, proves to be critical: the learned graph
offers part-oriented and structure-aware sketch representa-
tion that is robust to node removal, and at testing, the inherent
node message passing mechanism inside graph model works
naturally to fill in the missing gaps. (ii) Complementary to
the traditional supervision of local per-point reconstruction,
we introduce perceptual loss (Zhang et al., 2018), an easy-
to-compute, label-free metric aiming at characterising visual
appearance similarity from a global semantic perspective.
This is based on a closer inspection of the problem, which
resulted in the insight that generative healing follows a con-
ditional multi-modal modelling process (i.e., one-to-many),
and can not be sufficiently solved by faithful restoration
to one particular ground-truth target (i.e., one-to-one). Per-
ceptual metric then comes to the rescue by endorsing the
validity ofmultiple reasonable targets and consequently loos-
ening the reconstruction constraint and reducing overfitting
on training data. We combine two distance metrics as two
separate loss functions optimised in an end-to-end manner
and show that the best performance is obtained by balanc-
ing the weights between them dynamically according to the
various corruption levels of input sketches.

Overall, our framework, termed as SketchHealer,1 is
a graph-to-sequence network with a graph convolutional
encoder that embeds a partial sketch graph into a latent
vector, appended by a LSTM decoder to output a vec-
torised healed sketch stroke-by-stroke. Experiments show

1 An earlier and preliminary version of this work was published in
(Su et al., 2020). Compared with (Su et al., 2020) apart from more
extensive experiments and analysis, this work differs in proposing a
new healing-specific distance metric from a global perceptual view,
which brings significant improvements in model performance. For ease
of reading, we denote our framework as SketchHealer throughout, and
only distinguish between the two works with a specific version number
(1.0 vs. 2.0) when comparison is under way (mostly in the experiment
section).

that SketchHealer performs reasonably well on the sketch
healing task, in a stark contrast to the complete failure
mode observed in the current representative sketch gener-
ative model, SketchRNN (Fig. 1c).
Our contributions are summarised as follows:

– We propose the problem of sketch healing, as an inter-
esting yet changeling alternative to conventional sketch
synthesis.

– We propose SketchHealer, a novel graph-to-sequence
network that identifies and encapsulates two key aspects
of healing-specific design.

– We evaluate SketchHealer on 17 categories selected from
QuickDraw (Ha & Eck, 2018) dataset and validate its
superiority over three contemporary vector sketch syn-
thesis baselines both qualitatively and quantitatively.

– We showcase one practical application of SketchHealer
as a potential creativity assistant for free-hand drawing
(Fig. 1d).

2 RelatedWork

Vector Sketch Generation Much progress (Chen & Koltun,
2017; Johnson et al., 2016; Zhang et al., 2017a; Karras
et al., 2018, 2019; Miyato et al., 2018; Johnson et al., 2018;
Pumarola et al., 2018; Chan et al., 2019; Zhou et al., 2019)
has been made on image generation tasks both in the super-
vised (Isola et al., 2017) and unsupervised settings (Zhu et al.,
2017a; Kim et al., 2017; Yi et al., 2017). Given a cat image,
we can now translate to other category of animals (Zhu et al.,
2017b), render it in Monet style (Li et al., 2017) or even
make it 3D animated (Shih et al., 2020). This is in stark
contrast with the very few existing works that focus on vec-
tor image generation, where its temporal and spatial nature
bring more challenges. The seminal work of Graves (2013)
proposed a sequence-to-sequencemodel and for the first time
achieved realistic vector handwritten digits generation in a
wide variety of styles. With the availability of large-scale
crowdsourced sketch datasets, this model was then adapted
in Ha and Eck (2018), Chen et al. (2017) and Das et al.
(2020) and achieved both unconditional and conditional vec-
tor sketch-to-sketch synthesis. Vector sketch generation was
also extended beyond a single domain. Song et al. (2018a)
proposed the first deep stroke-level photo-to-sketch synthesis
model. To cope with the intrinsic noisy supervision of photo-
sketch pairs, they addressed the limitations of cross-domain
image translation models based onmulti-task supervised and
unsupervised hybrid learning. In this paper, we study a dif-
ferent problem—sketch healing, that takes a partial sketch
as input and output novel sketch that closely resembles the
input, while others focus on sketch synthesis (i.e., to sketch a
recognisable rendition) (Ha & Eck, 2018; Chen et al., 2017;
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Das et al., 2020), and photo-sketch synthesis (Song et al.,
2018a).

Graphical Sketch Representation Graph convolutional net-
work (GCN) (Gori et al., 2005; Kipf & Welling, 2017) was
proposed to extend deep neural networks to data with graph
structures. By applying GCN-based models, state-of-the-art
performance has been achieved over a range of vision tasks,
such as image classification (Chen et al., 2019), image cap-
tioning (Yao et al., 2018), scene understanding (Yang et al.,
2018) and 3D mesh deformation (Ranjan et al., 2018; Wang
et al., 2018a). The sequential and sparse nature of sketch
makes it an ideal data domain for graphical representation.
But only until very recently, GCN-based sketch visual learn-
ingwere attempted inXu et al. (2019) andYang et al. (2021b)
for the problem of sketch recognition and segmentation
respectively. They both constructed their graph nodes based
on the absolute coordinates of the sampled sketch points and
transformed them via multi-layer perceptrons and appropri-
ate pooling methods. In contrast, our proposed SketchHealer
uniquely embeds the temporal drawing order to build adja-
cency matrices.

Image Completion Image completion or also known as
inpainting is to synthesise visual contents conforming to a
plausible hypothesis in a missing or damaged region. There
are two broad lines of work aiming to tackle this task:
exemplary-based methods (Efros & Leung, 1999; Barnes
et al., 2009; Wilczkowiak et al., 2005) searched and pasted
visual patches from other known regions in the gallery. These
algorithms worked well for stationary images (e.g., textures)
but could lead to complete failure on non-stationary natu-
ral images. Deep generative CNN-based methods (Pathak
et al., 2016; Song et al., 2018c; Xiong et al., 2019; Yu et al.,
2018; Sagong et al., 2019; Lahiri et al., 2020) directly gener-
ated pixels inside the missing patch based on the semantics
learned from large-scale dataset in an end-to-end fashion.
This usually involved an encoder-decoder paradigmwith var-

ious key modifications devised—including partial (Liu et al.,
2018) and gated (Yu et al., 2019) convolutions, use of contex-
tual attention modules (Song et al., 2018b) and adversarial
discriminators (Iizuka et al., 2017). User guidance was also
explored to improve inpainting results including edge lines
(Sangkloy et al., 2017), semantic label maps (Wang et al.,
2018b) and colour palettes (Zhang et al., 2017b). To our best
knowledge, the only inpainting work on sketches was (Liu
et al., 2019), which devised a cascade network to refine the
completions in an iterative manner. SketchHealer is funda-
mentally different in that we not only tackle vector sketches,
but also in the very nature of the problem itself—rather than
just filling the holes, it heals a corrupted incomplete sketch
by generating a novel full counterpart.

3 Methodology

Our goal is to recreate a vector sketch S from its par-
tial version Ŝ. A sketch S is a set of points denoted
as (s1, s2, . . . , sn), where each segment si is constructed
between two consecutive points as a 5 dimensional vector
(�x,�y, ps1, ps2, ps3). (�x,�y) is the offset distance in
the x and y directions of the pen from the previous point.
(ps1, ps2, ps3) is a one-hot vector describing current pen
states, where (1, 0, 0), (0, 1, 0), (0, 0, 1) denote touching,
lifting and the end of sketch drawing respectively. Ŝ is then
obtained from S by randomly removing a proportion of
n points. Under these notations, our proposed framework,
SketchHealer, is formulated as a graph-to-sequence network
with a GCN-based encoder mapping Ŝ of its graphical form
G = (V , E) to a latent vector z ∈ Rdmodel . z is then leveraged
as input to sequentially sample an output sketch S∗ aiming to
best resemble the original full sketch S in a LSTM decoder
with output space parameterised as aGaussianmixturemodel
(GMM). A schematic illustration is shown in Fig. 2.

Fig. 2 A schematic illustration of SketchHealer. a A full sketch S in its
graph form. For each graph node vi , a visual patch is cropped out as pi .
b A corrupted partial sketch Ŝ in its graph form by masking out a frac-
tional of nodes from S. The associated edge links are removed as well.

c Model input: graph G and the visual patches P for Ŝ. d GCN-based
encoder. A graph node (green) will attend to its nearest neighbourhood
(blue) and the second nearest (yellow) through graph propagation. e
LSTM decoder. More details in text (Color figure online)
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3.1 Sketch as Graph Representation

Graph Nodes V We consider two types of points as repre-
sentative graph nodes: (i) the starting point of each stroke,
which determines the main structural layout; (ii) internal
points sparsely sampled within each single stroke in order
to capture a rough path trace. We sample one graph node
in every four points in a stroke throughout this paper. Con-
sequently, a set of graph nodes V = (v1, v2, . . . , vm) is a
subset of S. While being more compact, V still preserve the
key geometric landmarks of an input sketch.

Graph Edges E Temporal-based nearest neighbour strategy
is used to construct the edge links between nodes. That is, for
each node vi , we will connect it with the graph nodes nearby
in accordance to their drawing orders in the original sequence
of stroke points. We link vi with its four nearest graph nodes,
two prior to its rendering as parent nodes, and two after its
presence as child nodes. An adjacency matrix A ∈ Rm×m

can then be formed, where each entry ai j represents the link
strength between nodes vi and v j . We empirically found
ai j = 0.3 for edge link between two nearest nodes and
ai j = 0.2 for its linkage to a second nearest node to work
well. ai j is zero-valued to indicate no inter-node connections
and for self-connection aii , we simply take its value to 0.5
for regularisation purpose.

Visual Patch P To assign each graph node vi in V =
(v1, v2, . . . , vm) with its associated visual cue, a local image
patch centred around each node is acquired. Specifically,
we first render out a raster sketch image of size 640 × 640
from its vector format and crop a square visual patch pi
of size 128 × 128 based on the normalised coordinate of
vi . The relatively large patch size is to make sure enough
informative visual cues are still captured given the sparse
nature of human sketches. A set of node-driven patches
P = (p1, p2, . . . , pm) is thus obtained.

FromFull S to Partial Ŝ To form a graph for partial sketch as
final input, we randomly remove a fraction of graph nodes by
a probability of pmask and cut the connections in the resulting
edge links. The corresponding image patch pi in P will also
become void.

3.2 SketchHealer: A Graph-to-Sequence Network

GCN-based Encoder Our proposed SketchHealer encoder
consists of six convolutional layers with kernel size 2×2 fol-
lowed by max pooling and batch normalisation. By feeding
each image patch pi into the encoder, we produce a visual
feature vector fvi ∈ Rd for each node vi . Then feature propa-
gation is executed to form an updated node feature uvi ∈ Rd ,
where a node vi attends to all its linked neighbours defined in
the adjacency matrix A. Such a spatial-dependent approach

is natural to provide a healing effect for the absence of certain
parts and enables more robust representation. Formally, we
formulate this as follows:

uvi =
m∑

j=1

ai j fv j (1)

We then integrate all node features into a single vector h ∈
Rdmodel for representing the partial sketch Ŝ:

h = W � G

W = (w1, w2, . . . , wm)

G = [g(uv1), g(uv2), . . . , g(uvm )]
(2)

where� denotes dot product,m is set as the maximum num-
ber of nodes among all training sketches (m = 25 in our
case), g : Rd → Rdmodel is a multilayer perceptron (MLP)
unit, W is a learnable weight vector to linearly combine
the MLP-produced node vectors G. To introduce genera-
tive components, h is further projected into two vectors,
μ ∈ Rdmodel and σ ∈ Rdmodel , along with a vector of IID
Gaussian variables N (0, 1) of size dmodel , to construct the
final latent vector z:

z = μ + σ � N (0, 1)

μ = Wμh, σ = exp

(
Wσ h

2

)
(3)

LSTMDecoder Taking latent vector z as condition, a LSTM
decoder is used to sequentially sample the point offset
between the current and the last output sketch strokes. Con-
cretely, the previous stroke ending point si−1 together with
the latent vector z are formed as input at each time step, i.e.,
xi = [si−1; z], with the next hidden state given by:

[hi ; ci ] = LST M f orward(xi , [hi−1; ci−1]) (4)

We then define the per-step output as yi = wyhi + by ∈
R
6M+3, which can be unpacked into a set of parameters:

yi =[(�,μx , μy, δx , δy, ρxy)1, . . . ,

(�,μx , μy, δx , δy, ρxy)M , (q1, q2, q3)] (5)

The first M sets of parameters are used to form a Gaus-
sian mixture model (GMM) with M Gaussian components
for planar coordinate modelling. μx , μy, δx , δy, ρxy are the
respective means, deviations and covariance coefficients that
uniquely determines a bivariate normal distribution. We can
now finally represent the per-step point offset (�x,�y) as:
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Fig. 3 Comparison of two distance metrics Lrecon and L percep . Given
two similar sketches S and S∗

i , Lrecon fails to reflect the visual semantic
similarity that deems sensible in the human eyes. Contrarily, L percep
originated from a global perspective has robustly and successfully

detected such visual signal, as manifested in the consistent measure-
ments of close distance among multiple perceptually-aligned sketch
pairs (S, S∗

i ). We argue and verify that L percep is critical for sketch
healing of a multi-modal nature

p(�x,�y) =
M∑

j=1

� jN (�x,�y|� j )

� j = (
μx, j , μy, j , δx, j , δy, j , ρxy, j

)
,

M∑

j=1

� j = 1 (6)

The last three parameters (q1, q2, q3) in Eq. (5) follow a cat-
egorical distribution, which is used to estimate the ternary
pen state (ps1, ps2, ps3) defined earlier.

psk = exp(qk)∑3
j=1 exp(q j )

, k = 1, 2, 3 (7)

Please refer to Ha and Eck (2018) for more details.

3.3 Learning Objective: A Local and Global Tradeoff

Healing is Multi-Modal It is intuitive that given Ŝ and
the generative output S∗ produced by the SketchHealer in
Sect. 3.2, the goal of optimisation is to ensure S∗ as close
as possible to its original uncorrupted sketch S. This cor-
responds to the per-point reconstruction loss as enjoyed by

most existing sketch generative works2 (Ha & Eck, 2018;
Chen et al., 2017; Song et al., 2018a; Cao et al., 2019; Bhu-
nia et al., 2020a):

Lrecon = −Eqφ(z|Ŝ)
[log pθ (S|z)] (8)

where qφ(z|Ŝ) is the posterior probability of the gener-
ated data points, and pθ (S|z) the target data distribution.
Such practice of regression to one specific target on every
local front, however, is intrinsically flawed for sufficient
modelling of sketch healing in hindsight: healing is multi-
modal in nature. A partial sketch input can correspond to
many possible synthetic results that all have been reason-
ably healed—complete, smooth visual imagery with easily
recognisable links to the partial input. Putting formally,
this suggests a comparative metric M that supports mul-
tiple S∗s to be simultaneously close to S, i.e., M(S∗

1 ) ≈
M(S),M(S∗

2 ) ≈ M(S),M(S∗
3 ) ≈ M(S), ..., other than

only one S∗ that exactly reconstructs S as prescribed in
Eq. 8. The effect of an expectedM (also the one we adopted
throughout the paper) is exemplified in Fig. 3.We can see that

2 We follow Chen et al. (2017) to remove the KL-divergence term
between qφ(z|Ŝ) and p(z) commonly observed in the formulation of a
VAE-like model (Kingma &Welling, 2013), which is shown to benefit
multi-class generations.
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compared with the metric of self-reconstruction,M does not
struggle with local line deformations and offsets (if not too
much) and is acting globally with emphasis on perceptual
visual similarity. And it’s exactly this globally perceptual
view that makes possible of relieving the once one-to-one
generation constraint in Eq. 8 to a one-to-many counterpart
that comes in great fit for the healing task. We detail our
choice of M as follows.

Perceptual metricM The ability to compare visual items is
perhaps the most fundamental problem in computer vision.
Recent literature (Zhang et al., 2018; Blau&Michaeli, 2019;
Tariq et al., 2020; Amir &Weiss, 2021) has consistently cor-
roborated the finding of the unreasonable effectiveness of
deep features as a good perceptual metric on visual simi-
larity. We follow these advances to define a perceptual loss
that measures the visual similarity between sketch pairs. As
illustrated in Fig. 4, we first pre-train a SqueezeNet (Iandola
et al., 2017) on Berkeley-Adobe Perceptual Patch Similar-
ity (BAPPS) dataset (Zhang et al., 2018) as our fixed deep
perceptual feature extractor p f (·). Since SqueezeNet only
admits raster pixel input, we introduce a rasterisation mod-
ule that renders S∗, S into their corresponding binary raster
images S∗

I , SI with nearest neighbour spatial interpolation.
By feeding both S∗

I and SI into p f (·), we then extract their
deep representations from L different layers and denote them
as {p f l(S∗

I ) :⇔ p f l∗, p f l(SI ) :⇔ p f l} ∈ R
Hl ,Wl ,Cl . The

perceptual loss is finally computed as the mean element-
wise l2 distance between the feature maps of the healed and
ground-truth sketches:

L percep =
L∑

l=1

1

HlWl

∑

h,w

||wl � (p f l∗hw − p f lhw)||22 (9)

where wl ∈ R
Cl is adopted to scale the feature activations

channel-wise (Zhang et al., 2018).

Fig. 4 Schematic illustration of the proposed perceptual loss between
the generated sketch S∗ and its reference sketch S. Given their original
vector format, S and S∗ are first rasterised as SI and S∗

I , respectively.
Next, a pre-trained CNN p f (·) optimised to perform image perceptual
similarity is applied to obtain their feature maps, which are used to
calculate the perceptual similarity. More details in text

Formulation Our final formulation is an adaptively
weighted combination of two losses, Lrecon and L percep. The
idea is that when the input sketch corruption level is low, the
self-reconstruction loss plays a bigger role for more accurate
local renderings. On the contrary, the perceptual loss should
provide a stronger supervision signal of global control to
better bridge the healing gap under insufficient visual cues.
Denoting the input corruption level as pmask , we define our
optimisation objective as:

Ltotal = (1 − pmask)Lrecon + pmask L percep (10)

3.4 Model Deployment

Once trained, it is straightforward to apply the SketchHealer.
Given a latent vector z encoded froma corrupted sketch input,
we feed it together with a manually-defined starting point
(�x = 0,�y = 0, ps1 = 1, ps2 = 0, ps3 = 0) into the
LSTM decoder. The generated data point will be fed again
with z to produce the next data point in a recurrent man-
ner, until the stop signal is reached, i.e., (ps1 = 0, ps2 =
0, ps3 = 1).

4 Experiment

4.1 Experimental Setting

Dataset We evaluate our proposed model on QuickDraw
(Ha&Eck, 2018), which is the largest human sketch drawing
dataset to date. It provides over 50 million vector sketches
across 345 object categories, where we select a subset for
our experiments. In particular, the 17 categories3 we choose
generally respect the following rules: (i) both complex and
simple drawings are included, e.g., angel and belt; (ii)
instances inside categories exhibit similar global appearances
but only differ in very local subtle details, e.g., cat and
pig; (iii) common life object category contains diverse sub-
category variations, e.g., bus, umbrella and clock. For
each class, 70,000 sketches are used for training and 2, 500
are randomly selected for testing.

Competitors To date, there are six conditional vector sketch
generation frameworks publicly available, including
SketchRNN (Ha & Eck, 2018), SketchPix2seq (Chen et al.,
2017),MGT (Xu et al., 2019), SketchLattice (Qi et al., 2021),
SketchAA (Yang et al., 2021a) and RPCL-pix2seq (Zang
et al., 2021). We evaluate them all for baseline comparisons.

3 airplane, alarm_clock, angel, apple, belt,
bus, butterfly, cake, cat, clock, eye, fish,
pig, sheep, spider, umbrella, The Great Wall.
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– SketchRNN (Ha&Eck, 2018) is a sequence-to-sequence
model that takes in the offset distance between consec-
utive points as temporal input. For fair comparison, we
retrain the model without KL-divergence term, which is
shown to be beneficial for multi-class scenario.

– SketchPix2seq (Chen et al., 2017) differs itself from
SketchRNN in the proposed convolutional encoder,
which scraps the vector representation of sketches and
accepts raster sketch image input instead, with the hope
of better visual learning via CNNs.

– Built upon Transformer (Vaswani et al., 2017), MGT
(Xu et al., 2019) additionally injects graph learning into
the framework to explicitly capture the stroke structural
geometry.

– Similarly to SketchPix2eq, SketchLattice (Qi et al., 2021)
takes raster sketch image as input for vectorised sketch
generation. It, however, enables the preservation of struc-
tural cues unique in vector sketch representation by
sampling a set of points from the pixelative format of
the sketch using a lattice graph.

– SketchAA(Yang et al., 2021a) advocates granularity con-
trollable sketch representation by organising visual learn-
ing in a coarse-to-fine hierarchy. Originally designed for
sketch classification, the network can be further adapted
with a LSTM decoder for sketch healing task.

– RPCL-pix2seq (Zang et al., 2021) is a GMM-based
sketchgenerativemodel,which leveragesRival Penalised
Competitive Learning (RPCL) to discover an optimal
number of instance-specific Gaussian components, thus
achieving higher generation quality.

We note that these competitorswere not specifically designed
for sketch healing, yet they still represent the closest alterna-
tives and are procedural-wise compatible once re-purposed.4

To comply with the different sketch data format required
by different competitors, we also process corrupted sketches
into both point sequence and raster image forms. Specifi-
cally, given a list of strokes to be masked, we simply discard
them from the point sequence and do not proceed with
extra padding operation. We then render an image version
from the resulting sequence of the corrupted sketches for
methods working with raster pixels. We also compare with
SketchHealer-1.0, which is the earlier version (Su et al.,
2020) of this work, which removes L percep with only Lrecons

included in optimisation.

Evaluation protocol Apart from qualitative comparisons,
we design two metrics to allow quantitative evaluations.
Our measures specifically answer two questions: (i) How
recognisable are the vector sketches generated by different

4 Suggested optimal parameter settings in the original papers are
adopted for all competitors.

competitors? (ii) What are the human preferences among
the healed sketches generated by different competitors? A
good score for the former requires the sketches healed from
their partial parts to be realistic and diverse, while the lat-
ter directly involves human as judge and also as a way
to confirm any conclusions obtained from the former—
generative models are notoriously hard to be fairly evaluated
by heuristically-designed discriminative approaches (Theis
et al., 2016). More specifically, we formulate two metrics:
(i) sketch recognition accuracy: we train a multi-category
classifier by AlexNet using the all the training split of 345
categories inQuickDraw dataset. The classifier is thenused to
assign a class label to measure how recognisable a generated
sketch is. 2500 testing sketches from each of 17 categories
are used for this purpose. (ii) human preference percentage:
We recruit a total of 10 human participants, each of whom is
asked to complete 50 independent trials. In each trial, a partial
sketch and different generated healed versions in randomised
orders are then presented. The participant is expected tomake
a single choice of selecting the best healed sketch based on
two criteria: input resemblance and overall visual aesthetics.

Implementation details Our model is implemented on
PyTorch (Paszke et al., 2017) with a single Nvidia Tesla
T4 GPU. The Adam optimiser is used with the parameters
β1 = 0.9, β2 = 0.999 and ε = 10−8. The learning rate is
set to 10−3 with a decay rate of 0.999 every iteration. The
proportion of stroke points tomask out duringmodel training
is set to be random value in range of pmask ∈ [10%, 30%].
We test for different levels of sketch corruption, i.e., pmask

can be 50%.

4.2 Comparison with Baselines

Qualitative results We illustrate some examples produced
by our method (SketchHealer-2.0) under different values
of pmask in Fig. 5. Follow observations can be made: (i)
SketchHealer-2.0 is not only able to render a novel sketch just
like humans do, but can also faithfully recreate the essential
subtle visual elements even when the majority part of spe-
cific visual cues are missing in the partial input. For example
candle over the cake keeps presented up to pmask = 70%,
despite the input sometimes only shows very weak evi-
dence of candle visual signals. (ii) Given one human sketch
and different random removals of visual elements on differ-
ent levels, SketchHealer-2.0 delivers consistent generation
results - albeit subtle details are uniquely rendered, global
appearances and structures are unanimously kept. (iii) The
sensitiveness of our proposed model to different corruption
levels of inputs vary across object categories. But overall,
the model performs reasonably well when pmask ≤ 50%.
We further qualitatively compare with generative healing
results between six competitors in Fig. 6. Even under a cor-
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Fig. 5 Exemplary results of our approach (SketchHealer-2.0) under different corruption values of pmask . We intentionally select categories that
encapsulates diverse visual semantics ranging from simple to complex

Fig. 6 Qualitative comparisons between the proposed SketchHealer-2.0 and three other contemporary competitors. For all sketch partial inputs,
corruption level of pmask = 10% is applied throughout

ruption level of 10%, SketchRNN and SketchPix2seq fails
to recreate a desired vector sketch in most cases. The healed
sketches obtained by MGT, SketchLattice, SketchAA and
RPCL-pix2seq are clearly more reasonable but somehow
struggle to produce clean structures, i.e., many noisy strokes
can be observed and these methods are generally inferior in
preserving local appearances of the input partial sketches—
see how the wings and body of healed angels are mismatched
with the corrupted input. And while the earlier version of
this work, SketchHealer-1.0, performs considerably better,

its gap with SketchHealer-2.0 is significant: See how the but-
terflywings and umbrella panel get consistently healed under
multiple generative renderings andmore closely resemble the
partial input.

Quantitative Results We compare the performance of all
different competitors under the two metrics (see Sect. 4.1) in
Table 1: (i) Under the recognition metric, SketchHealer-2.0
beats all the competitors over all corruption levels. Interest-
ingly, when the uncorrupted full sketches (pmask = −) are
fed as input, SketchRNN can achieve better results except
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Table 1 Quantitative comparisons between competitors on sketch healing

pmask Metric SketchRNN SketchPix2seq MGT SketchLattice SketchAA RPCL-pix2seq SH-1.0 SH-2.0

– Recognition Top 1 57.98% 22.14% 23.53% 32.91% 21.41% 37.29% 50.64% 67.98%

Top 5 81.92% 34.36% 38.18% 46.04% 33.41% 59.35% 70.61% 79.09%

Top 10 88.02% 40.56% 44.35% 51.68% 38.11% 67.82% 76.71% 81.87%

Human N/A 5.24% 12.24% 6.00% 12.94% 19.94% 5.12% 8.47% 36.18%

10% Recognition Top 1 24.41% 21.88% 19.47% 30.83% 23.18% 32.53% 49.77% 71.32%

Top 5 46.23% 31.92% 30.01% 43.59% 32.76% 53.53% 69.92% 80.01%

Top 10 56.28% 36.91% 35.47% 49.53% 37.76% 60.41% 80.01% 81.63%

Human N/A 7.71% 9.06% 7.23% 10.76% 13.23% 5.25% 6.29% 40.35%

30% Recognition Top 1 3.14% 9.51% 11.17% 29.34% 22.18% 18.65% 41.59% 65.27%

Top 5 10.25% 16.06% 18.41% 41.36% 33.00% 34.18% 62.76% 77.38%

Top 10 15.91% 20.26% 23.29% 47.42% 38.53% 40.41% 68.12% 80.27%

Human N/A 12.59% 6.29% 5.82% 7.47% 12.17% 4.00% 5.53% 46.11%

50% Recognition Top 1 – – 6.17% 26.42% 20.35% 10.00% 26.32% 40.62%

Top 5 – – 11.88% 38.01% 29.06% 18.88% 48.94% 61.98%

Top 10 – – 15.18% 43.83% 34.41% 24.29% 57.89% 63.92%

Human N/A – – – – – – – –

Best performance are highlighted in bold
Recognition results are obtained by classifying generated healed sketches with a pre-trained multi-category sketch classifier. Human represents
human’s preference of choice among the synthetic outputs by different competitors. We omitted the numbers for SketchRNN and SketchPix2seq
at pmask = 50% as they are around the accuracy of random chances (≈ 0.3%). Human preference between SketchHealer-1.0 (SH-1.0) and
SketchHealer-2.0 (SH-2.0) at pmask = 50% can be found in Table 3

the Top 1 recognition accuracy. It, however, collapses dra-
matically even when only 10% of stroke points are masked
out and a complete failure when the proportion rises to
30%. (ii) It draws attention that our model achieves slightly
better Top 1 recognition accuracy conditioned on mild cor-
rupted inputs (71.32% when pmask = 10%) compared with
that in full uncorrected inputs (67.98%). This is expected,
since SketchHealer-2.0 is trained using corrupted sketch
inputs only (pmask ranges from 10% to 30%), it naturally
generalises better to corrupted sketch input (in-distribution)
than that from uncorrupted source (out-of-distribution). We
argue that the slightly worse healing performance on unseen
uncorrupted sketch data, on the contrary, confirms the versa-
tility of SketchHealer-2.0. (iii) Under the human metric, our
model still outperforms all competitors as indicated by the
percentage of human preference of choices. While human
subjectivity on interpreting healing quality may vary, there
is strong consensus reached over all corruption levels that the
competitors are less qualified for sketch healing (< 14% out
of total trials are deemed as better than ours on average). (iv)
The clear improvement over SketchHealer-1.0 under both
metrics confirms the role of the newly introduced percep-
tual metric in SketchHealer-2.0. The correlation between the
efficacy of perceptual metric and corruption level is also
observed, where the former tends to play a greater role as
the latter becomes more severe.

4.3 Ablation Study

Impact of graph representation To verify the importance
of encoding sketch as a graph in sketch healing, we strip
off the generative part to maximally disentangle its impact
and ask the question: how recognisable are the latent vec-
tors of corrupted partial sketches (z) encoded by different
type of encoders? A better representation is expected to be
more category discriminative and robust to corruption level
changes.We realise such goal with a quantitativemetric from
the sketch-to-sketch retrieval task—by examining the perfor-
mance of retrieving sketches of the same label given a partial
sketch query.We formour query setwith 500 testing sketches
from each of the selected 17 categories under our experimen-
tal setting and the rest as gallery.

The results are shown in Table 2. We can find that com-
pared with point (SketchRNN) and pixel (SketchPix2seq,
RPCL-pix2seq) based sketch representation, graph-based
representation (MGT, SketchLattice and Ours) performs
significantly better. Our model achieves the best among
all graph-based alternatives and exhibits surprisingly sta-
ble behaviours when the corrupted level of sketch input
increases.

We also visualise some sketch-to-sketch retrieval results
in Fig. 7. Even under mild condition of pmask = 10%,
all the compared methods have clearly many more false
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Table 2 Sketch-to-sketch retrieval result (%) obtained on encoded z to verify the efficacy of different types of sketch representation

Competitor pmask (%) Retrieval (%) pmask (%) Retrieval (%)

Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10

SketchRNN 10 50.65 69.76 77.60 86.21 30 43.48 63.67 72.03 82.39

SketchPix2seq 10 45.20 68.34 77.54 87.09 30 27.66 51.82 63.52 78.99

MGT 10 62.35 79.71 83.24 86.76 30 50.00 72.06 77.35 83.82

SketchAA 10 42.89 68.02 76.77 86.98 30 37.29 62.06 73.51 85.00

RPCL-pix2seq 10 53.24 71.76 76.76 83.23 30 40.29 66.47 75.29 82.35

SketchLattice 10 63.03 79.15 84.83 90.60 30 58.73 77.56 83.97 90.34

SketchHealer-2.0 10 85.23 93.23 95.27 97.53 30 83.48 91.47 93.29 95.97

Best performance are highlighted in bold

Fig. 7 Qualitative comparisons for sketch-to-sketch retrieval result.
Top 5 is returned. Instances surrounded by red cross indicate false posi-
tive fromwrong category. Our model can still achieve promising results

under more challenging scenario (pmask = 30%), while other competi-
tors have many false positives even under mild corruption (Color figure
online)
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Table 3 Quantitative comparisons between different ablated versions of SketchHealer on sketch healing

pmask Metric SketchHealer-1.0 (%) SketchHealer-Percep (%) SketchHealer-Static (%) SketchHealer-2.0 (%)

10% Recognition Top 1 49.77 58.62 54.64 71.32

Top 5 69.92 73.88 75.60 80.01

Top 10 71.32 76.29 80.01 81.63

Human N/A 8.88 27.81 31.99 31.32

30% Recognition Top 1 41.59 49.08 51.23 65.27

Top 5 62.76 72.09 72.92 77.38

Top 10 68.12 78.32 78.92 80.27

Human N/A 9.92 9.99 26.70 53.39

50% Recognition Top 1 26.32 39.02 37.12 41.13

Top 5 48.94 61.23 61.32 62.12

Top 10 57.89 64.82 64.21 64.00

Human N/A 14.14 18.76 22.02 45.08

Best performance are highlighted in bold
Without duplication, definition of Recognition and Human results (%) can be found in Table 1 caption

positives. In contrast, our graph-based representation is not
only category-discriminative in the more challenging set-
ting (pmask = 30%), but also learns to respect finer-grained
details (e.g., the dense side-by-side windows of the bus).

Impact of perceptual metric The comparison between
SketchHealer-1.0 and SketchHealer-2.0 in Table 1 has con-
firmed the significance of the perceptual metric. In this sec-
tion, we provide further evidence to unveil its inner workings
with more ablated analysis. Specifically, we introduce two
more competitors, SketchHealer-Percep and SketchHealer-
Static, which differ from SketchHealer-1.0 (Lrecons) and
SketchHealer-2.0 (Ltotal ) in training the graph-to-sequence
network with loss function L percep and Lrecons + L percep

respectively. Results in Table 3 suggest that among all cor-
ruption levels:

(i) Barely depending on per-point reconstruction loss
offers the worst performance for sketch healing. While this
may not be surprising to many due to the arguments we
have elaborated in Sect. 3.3 on the natural mismatch of
Lrecon for this task, it does draw attention that perceptual
loss alone (SketchHealer-Percep) is bringing superior per-
formance, sometimes even better than SketchHealer-Static,
a naive equal combination of both type of losses.

(ii) Dynamics between L percep and Lrecons matters. Our
full model, SketchHealer-2.0, that integrates two losses in an
adaptive fashion, advances SketchHealer-Static with notice-
able margins. With Top 1 recognition accuracy improving
from 54.64% to 71.32% at pmask = 10%, 51.23% to 65.27%
at pmask = 30% and 37.12% to 41.13% at pmask = 50%.

(iii) With the increasing of corruption levels, the recon-
struction loss tends to bring fewer benefits as an optimisation

Fig. 8 Importance of the involvement of perceptual metric on model
generalisability. Y-axis: loss produced by Ltotal . X-axis: training
iterations

objective. At pmask = 50%, only marginal improvement
of recognition accuracy under Top 1 (41.13% vs. 39.02%)
is observed between SketchHealer-2.0 and SketchHealer-
Percep, and even slightly worse under Top 10 (64.00% vs.
64.82%). This aligns with our intuition that given a highly
corrupted sketch with visual cues largely missing, recon-
structing to a single pre-specified target is too strong a
constraint that leans model to severe overfitting. Perceptual
loss greatly alleviates this issue by encouraging multi-modal
generations and in turn more generalisable healing capabil-
ities. To see it even clearer, we demonstrate the loss curves
on both training and testing data during the learning process
in Fig. 8—the optimisation landscape of SketchHealer-2.0
progressively fitting on the training data generalises to test-
ing data as well, as opposed to the severe train-test mismatch
phenomenon in the lack of perceptual metric. Visualising
model’s generalisability along their training iterations also
allows us to peek into the dynamics between the global and
local metric, L percep and Lrecons . We showcase two exem-
plary train-test loss curves for partial sketches at corruption
level 10% and 50% in Fig. 9 and observe that the success
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Fig. 9 SketchHealer-2.0 leads to better model generalisability. Com-
pared with the models trained by reconstruction and perceptual met-
ric separately (SketchHealer-1.0 (Lrecons ) and SketchHealer-Percep

(L percep)), SketchHealer-2.0 can greatly reduce train-test discrepancy
under both metrics. X-axis: training iterations

of SketchHealer-2.0 relies critically on (i) an integration of
both local and global healing perspective that combines the
best of two worlds: SketchHealer-2.0 is able to achieve much
smaller generalisation error on both reconstruction and per-
ceptual metric when compared with SketchHealer-1.0 and
SketchHealer-percep, two separate models optimised by sin-
gle metric of Lrecons and L percep respectively (Fig. 9b,d,f,h
vs. a,c,e,g). (ii) the flexibility to adapt between local and
global mode: when corruption level is small (pmask = 10%),
SketchHealer-2.0 is mainly working with local reconstruc-
tion objective so to achieve the best possible healing results
and leave perceptual metric nearly un-optimised on test set
(Fig. 9b vs. f). In fact, we believe these two insights derived
from SketchHealer-2.0 are not surprising. Both of them only
further echo the conclusions we’ve been drawing throughout
the paper.

4.4 Application: Sketch-Based Creativity Assistant

We have demonstrated the superior healing capability of
SketchHealer-2.0 for partial incomplete single sketch input.
This section explores the possibility of whether
SketchHealer-2.0 can copewith two similar or distinct partial
sketch inputs andwhat visual output it can render.A desirable

result would be a realistic and creative visual primitive with
complete and smooth structures and novel but meaningful
semantics that combines the key traits from the two. Upon
success, this supports a unique and useful application of a
sketch-based creativity assistant. Feeding any two sketches
(likely corrupted due to the “can’t or lazy to sketch” reality)
as input, a novel and even imaginative visual object can be
automatically rendered and provided as a creative assistant.
Specifically, we portray such creative visual manipulation
as a latent vector arithmetic problem. Given z encoded from
two (partial) sketches, we calculate their sumbefore forward-
ing to a generative decoder. Figures 1d and 10 illustrate some
typical examples. We can find that SketchHealer-2.0 can rea-
sonably cater to our goal of a creativity assistant by extracting
key visual semantics from two partial sketches, and combin-
ing them to recreate a novel and interesting sketch primitive.
SketchHealer-2.0 also works robustly regardless of the cat-
egory and the corruption level conformity between the two
inputs. See how a corrupted pig sketch plus a partial sheep,
or a spider plus a bus transform into a bizarre and surreal
rendering with visual traits from both, or the perceptually
meaningful within-category fine-grained visual manipula-
tion (e.g., the pig nose).
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Fig. 10 SketchHealer-2.0 for
creative visual manipulation.
Given two partial sketches of
either same or different
corruption level (pmask value)
and category, SketchHealer-2.0
is able to recreate a novel sketch
by grasping and combining key
visual traits from both inputs.
This makes SketchHealer-2.0 a
potentially effective
sketch-based creativity assistant.
Subscript under each category
name is the input corruption
level (pmask value)

5 Conclusion

We introduced the problem of sketch healing that asks a
new question: given a partial sketch, can we synthesise a
complete and novel sketch that best resembles the partial
input. We achieved this by introducing two healing-specific
designs that importantly gives us both feature robustness and
flexibility in handling missing information. On sketch rep-
resentation, we uniquely encapsulated two unique traits of
sketches (temporal and abstract) into a graph-to-sequence
model. On learning objective, wewent beyond the traditional
single per-point local reconstruction loss and complemented
it with a global perceptual loss critical for promising per-
formance. By experiments, we showed that our approach
was able to produce visually complete sketches that closely
resemble the partial input, whereas alternatives re-purposed
for the problem worked less well. We also presented the pos-
sibility of our framework as a key enabler for creative visual
application.

Funding Funding was provided by the National Natural Science Foun-
dation of China (Grant No. 61601042).
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