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Abstract
Recovering shape and albedo for the immense number of existing cultural heritage artifacts is challenging. Accurate 3D
reconstruction systems are typically expensive and thus inaccessible to many and cheaper off-the-shelf 3D sensors often
generate results of unsatisfactory quality. This paper presents a high-fidelity shape and albedo recovery method that only
requires a stereo camera and a flashlight, a typical camera setup equipped in many off-the-shelf smartphones. The stereo
camera allows us to infer rough shape from a pair of no-flash images, and a flash image is further captured for shape
refinement based on our flash/no-flash image formation model. We verify the effectiveness of our method on real-world
artifacts in indoor and outdoor conditions using smartphones with different camera/flashlight configurations. Comparison
results demonstrate that our stereoscopic flash and no-flash photography benefits the high-fidelity shape and albedo recovery
on a smartphone. Using our method, people can immediately turn their phones into high-fidelity 3D scanners, facilitating the
digitization of cultural heritage artifacts.

Keywords 3D reconstruction · Stereo camera · Flash photography · Albedo · E-heritage

1 Introduction

Recording 3D shape and surface reflectance are both invalu-
able for digitally archiving and analyzing cultural heritage
artifacts.While the importance of digitally archiving artifacts
is generally recognized, it is still not widely spread in many
museums and libraries, mostly due to the complexity of the
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digitization process that comes with expensive specialized
setups. To enable everybody to participate in digital archiv-
ing, a method that is simple to operate and only requires a
commodity device is very much wanted.

With this goal in mind, this paper presents a high-fidelity
shape and albedo recovery method using a simple imaging
setup that is already available in widespread devices. Our
method only requires a stereo camera and a flashlight as
shown in Fig. 1, and takes three images in two shots from
a fixed viewpoint as input: Two images in one shot by a
stereo camera, and another image by one camerawith a flash-
light. By harnessing both geometric and photometric cues
from the input images, our method recovers a fine 3D shape
and a surface albedo map. Specifically, our method uses the
rough shape inferred from the stereo image pair to estimate
the no-flash environmental lighting. Using our flash/no-flash
image formation model, the high-frequency details of the
target scene are then recovered.

Unlike previous methods that rely on complex imaging
setups (Zhang et al. 2012;Choe et al. 2014), our setup ismini-
mal to introduce geometric and photometric cues. Other than
an ordinary monocular camera, our method only requires
one additional viewpoint (i.e., a stereo camera) and lighting
condition (i.e., a flashlight). As will be shown later, further
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Fig. 1 Our setup uses a stereo camera and aflashlight,which is common
in modern smartphones, e.g., the iPhone X from 2017. We capture a
stereo image pair to infer a rough depth map and a flash/no-flash image
pair to recover shape details and surface albedo

reducing any input significantly downgrades recovery. For-
tunately, many commodity smartphones today are equipped
with this imaging setup, and we will demonstrate later in this
paper that our method is naturally applicable to such smart-
phones.With this setup, recording can be conducted outside a
darkroom (e.g., in an office room) and completed in amoment
as it only takes two shots without any camera movement.
These properties make the digitization process easy.

The key contributions of our work are as follows:

– A high-fidelity shape and albedo recovery method work-
ing with a simple, compact, and wide-spread imaging
setup;

– A flash/no-flash image formation model for Lambertian
surfaces with non-uniform albedos under natural light-
ing;

– A robust shape and albedo recovery method that har-
nesses both geometric and photometric cues.

This paper extends the preliminary version of our work
(Cao et al. 2020) in three important aspects: First, we gen-
eralize the image formation model to flash/no-flash image
pairs captured with different camera exposure settings. This
generalization is crucial for the successful application using
off-the-shelf devices (see Sect. 3.1). Second, we verify the
effectiveness of our imaging setup and recovery method
using off-the-shelf smartphones (in Sect. 4.2). Finally, we
show more examples of reconstruction including outdoor
objects.

2 RelatedWork

Our reconstruction method is related to shading-based shape
recovery and flash photography.

Shading-based shape recovery: Geometric shape recov-
ery approaches such as stereo are useful for recovering a
coarse shape but have fundamental limitations in recovering
high-frequency details (Klowsky et al. 2012). In contrast,
photometric approaches can recover per-pixel surface nor-
mals using shading cues in the images. In the past, various
approaches have been proposed for high-quality shape recov-
ery by combining the strengths of both geometric and
photometric approaches. For example, (Ikeuchi 1987) recov-
ers the depth map from a stereo pair of normal maps, which
are estimated by photometric stereo with three lights.

While photometric approaches commonly assume con-
trolled lighting conditions without ambient lighting, when
they are combined with geometric approaches this assump-
tion is likely violated and they facemore challenging lighting
conditions. Basri and Jacobs (2003) verified that for a
Lambertian surface its reflectance can be modeled as a
low-dimensional linear combination of spherical harmon-
ics. Photometric stereo under natural illumination has been
shown to be feasible after this theoretical verification (Basri
et al. 2007; Johnson and Adelson 2011). Such approaches
have been incorporated into geometric approaches. An algo-
rithmic structure of such combinations is to estimate a coarse
depth map, then estimating illumination and albedo from the
coarse depth map, followed by an optimization including
but not limited to depth, shading, and smoothness con-
straints (Quéau et al. 2017; Wu et al. 2011b; Yan et al. 2018;
Yu et al. 2013). Estimating global spherical harmonics coef-
ficients usually fails in local areas where cast shadows or
specularities dominate the intensity. To alleviate this prob-
lem, (Han et al. 2013) split illumination into a global and
a local part, (Or-El et al. 2015) handled local illumina-
tion based on first-order spherical harmonics, and (Maier
et al. 2017) proposed spatially-varying spherical harmonics.
Besides a single color image, photometric cues fromdifferent
types of input have been used to improve the reconstruction
quality, for example, from infrared images (Choe et al. 2014;
Haque et al. 2014), from RGB-D streams (Wu et al. 2011a,
2014), or from multiple view images (Gallardo et al. 2017;
Maurer et al. 2018).

Our work uses a simpler setup consisting of a stereo cam-
era and a flashlight. With two shots, our method recovers fine
geometry for Lambertian objects under natural lighting.

Flash photography: Images taken with a flashlight have
been used for various computer vision tasks. Using the light
falloff property, a flash and no-flash image pair has been
used for image matting (Sun et al. 2006), foreground extrac-
tion (Sun et al. 2007), and saliency detection (He and Lau
2014). Under low-light conditions, a flash image captures
high-frequency details but changes the overall appearance
of the scene, while the no-flash image captures the overall
environmental ambiance but is noisy. This complementary
property has been used in photography enhancement under
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Fig. 2 Pipeline of our method. Given a an initial rough shape from
a stereo camera, we first estimate b a coarse normal map. With c the
flash and d the no-flash image, we optimize for e a fine normal map.

Finally, we compute f the albedo map and perform depth normal fusion
to obtain g the fine shape. Section 3.2 details each step

dark illumination (Eisemann and Durand 2004), denoising,
detail transfer, or white balancing (Petschnigg et al. 2004).

Further, photometric cues introduced by a flashlight are
useful in stereo matching. Feris et al. (2005) demonstrated
that the shadows cast by a flashlight along depth discontinu-
ities help to detect half-occlusion points in stereo matching.
Zhou et al. (2012) showed the ratio of a flash/no-flash pair can
make stereomatching robust against depth discontinuities. In
addition, flash images are used for recovering spatially vary-
ing BRDFs (SVBRDFs). A single image captured from a
flash-enabled camera, or a flash/no-flash pair (Aittala et al.
2015) is used for SVBRDF and shape recovery of near-planar
objects (Aittala et al. 2016; Deschaintre et al. 2018; Li et al.
2018a) or those with complex geometry (Li et al. 2018b).

Our work differs from the previous works in that we
explicitly parameterize the image observation lit by a flash-
light, and use the flash/no-flash image pair to derive an
albedo-free image formationmodel for geometry refinement.

3 ProposedMethod

Figure 2 illustrates ourmethod for shape and albedo recovery.
The input to our method are (a) a rough depth map inferred
from a stereo image pair taken by a stereo camera and (c)+(d)
a flash/no-flash image pair taken by the stereo camera’s refer-
ence camera. First, we compute a coarse surface normal map
from the depth map as shown in (b). We then estimate the
environmental lighting and refine the normal map based on
our flash/no-flash image formation model as in (e). Finally,
we fuse the fine normal map (e) and the coarse depth map (a)
to obtain the fine shape (f) and compute the albedo map (g).

In the following, Sect. 3.1 describes our image formation
model for the flash/no-flash image pair and Sect. 3.2 details
the design choices of each step in our method.

3.1 Image FormationModel

AssumingLambertian reflectance, the radiance r ∈ R+ emit-
ted from a tiny surface patch can be modeled as

r = ρ s(n), (1)

where a shading function s : S2 → R depends on the
environmental lighting and is scaled by the surface albedo
ρ ∈ R+. The shading function s is applied to the unit surface
normal n ∈ S2 ⊂ R

3.
Letm ∈ R+ be the recorded brightness of the radiance by

a digital camera. Assume the camera has a linear radiometric
response, say 1 for simplicity, to the radiance. The intensity
m is then the scene radiance r scaled by the camera exposure
c ∈ R+ as

m = cr . (2)

The camera exposure c accounts lens-aperture, ISO, and
exposure time.

Now consider that a flash/no-flash image pair is taken for
an object by the same camera. Assume that the viewpoint
is fixed, the object is static, and the environmental lighting
stays the sameduring the capture.Apixel at a fixed location in
the flash/no-flash image pair then records the radiance from
the same surface patch, scaled by possibly different camera
exposures. We use the subscript “nf” and “f” to indicate the
no-flash and flash images, respectively. Using Eqs. (1) and
(2), we can model the intensity recorded at the same pixel
location in the flash/no-flash pair as

{
mnf = cnfρsnf ,

mf = cfρ(snf + sfo).
(3)
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Fig. 3 Subtracting the γ -scaled no-flash image from the flash image
yields a virtual flash-only image. The ratio image is obtained by dividing
the gray-scale no-flash image by the gray-scale flash-only image (Color
figure online)

The additional shading sfo is introduced by the flashlight (the
subscript “fo” represents flash-only), which is identical to
the shading if the flashlight were the only light source in the
scene. Let γ = cf

cnf
be the ratio of the flash image’s exposure

to the no-flash image’s exposure. By modifying Eq. (3), we
obtain{
mnf = cnfρsnf ,

mf − γmnf = cfρsfo.
(4)

The second equation implies a virtual flash-only image: The
computed intensity mf − γmnf is the flash-only shading
scaled by the albedo and the flash image’s exposure. Fig-
ure 3 exemplifies a virtual flash-only image. Notice that the
shadows caused by natural lighting disappear in the flash-
only image, verifying the correctness of the subtraction.

Further taking the ratio of the two equations in Eq. (4)
yields

γmnf

mf − γmnf
= snf

sfo
. (5)

The division cancels out the unknown albedo ρ; therefore,
our method can naturally handle spatially-varying albedos
unlike previous methods that assume piece-wise uniform
albedos (Häfner et al. 2018, 2019). This albedo-free image
formation model directly relates the shading to the measured
intensity. The effect of this albedo canceling is illustrated in
Fig. 3. While surface albedo of the mat has a complex spatial
variation, only the shading information remains in the ratio
image.

Explicitly modeling the camera exposure in the image
formation model of Eq. (5) has practical merit. Using the
identical exposure (γ = 1) in (Cao et al. 2020) is a special
case of the image formation model of Eq. (5); however, in
practice it causes overexposure in the flash image or under-
exposure in the no-flash image. Equation (5) allows us to
properly expose each image in the flash/no-flash pair.

Shading model: We now discuss how we model the no-
flash shading snf and the flash-only shading sfo. Suppose a

light ray in direction l ∈ S2 ⊂ R
3 with intensity e : S2 → R

hits a surface patch. According to the Lambert’s law, the
reflected light or shading, is given by

s(n) = e(l)max(n�l, 0). (6)

Under natural lighting, light rays reach the surface patch from
infinitely many directions. The shading then becomes the
integral over all possible incident directions

s(n) =
∫
S2

e(l)max(n�l, 0)dl. (7)

As studied in Ramamoorthi and Hanrahan (2001); Basri and
Jacobs (2003), a Lambertian surface acts as a low-pass filter,
and its shading under natural lighting is well characterized
by the second-order spherical harmonics, i.e., the integral in
Eq. (7) can be approximated by a linear combination of the
second-order spherical harmonics. Denoting the unit surface
normal n = [n1, n2, n3]�, the spherical harmonics up to the
second order can be stacked into a vector h(n) as

h(n) = [1, n1, n2, n3, n1n2, n2n3, n3n1, n21−n22, 3n
2
3−1]�.

The shading under no-flash illumination snf is then a linear
combination of these spherical harmonics. Stacking the 9
coefficients into a vector lnf ∈ R

9 yields

snf = h(n)�lnf . (8)

Note that l and lnf are different; l is a light ray direction, and
lnf is a stack of spherical harmonic coefficients.

For the flashlight, we assume it is a point light located
at the optical center of the camera. The incident light direc-
tion l is thus the same as the camera’s viewing direction v
for each surface patch. We further assume that the flashlight
emits light uniformly in all directions and the light fall-off
effect is negligible. As the flashlight is the only light source
contributing to the shading sfo, Eq. (6) can be applied. Let ef
be the flashlight intensity. Equation (6) then reads

sfo= ef max(n�l, 0)= ef max(n�v, 0)= efn�v. (9)

Wecandrop themax(·, 0) termbecausen�v is always greater
than 0 if the surface patch is visible to the camera. Inserting
Eqs. (8) and (9) into Eq. (5) yields

γmnf

mf − γmnf
= h(n)�l′

n�v
, (10)

where l′ = lnf/ef is the spherical harmonics coefficient vec-
tor scaled by the flashlight intensity, and we will call l′ global
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lighting vector. This final image formationmodel nowexplic-
itly relates surface normal and environmental lighting to the
measured intensity.

3.2 Shape and Albedo Recovery

This section details the design choice for each step in our
shape and albedo recovery method shown in Fig. 2.

Obtaining coarse surface normalsWe compute the initial
normal map from the depth map using PlanePCA (Hoppe
et al. 1992). Given the camera intrinsics, we convert the
depth map into a point cloud in camera coordinates and
then find each point’s surface normal by fitting a plane
to its nearest neighbors. Formally, given a set of points
P = {p1,p2, ...,pn | pi ∈ R

3}, we find the coarse surface
normal vector n̂i at pi by minimizing

n̂i = argmin
n̂i

∑
p j∈N (pi )

(p j − p̄i )�n̂i , (11)

whereN (pi ) is the set ofpi ’s neighbors, and p̄i is themean of
all p j ∈ N (pi ). We search for pi ’s neighbors by performing
a ball query as

N (pi ) = {p j | ‖p j − pi‖2 < r , ∀p j ∈ P}, (12)

where r is an empirically chosenball search radius. PlanePCA
robustly estimates a coarse, smooth normal map that
expresses low-frequency shapewhichweuse in the following
lighting estimation step.

Computing the global lighting vector Our goal now is,
given the flash/no-flash image pair and a coarse normal map,
to estimate the low-dimensional global lighting vector l′ in
Eq. (10). Note that solving lnf and ef separately is unnec-
essary for shape recovery; unknown ef barely scales the
recovered albedo map.

Suppose there are p pixels in the region of interest, i.e.,
the region of the foreground object. We stack the row vectors
h(n̂)�/n̂�v for each pixel vertically into a matrixN ∈ R

p×9

and stack the measured γmnf/(mf − γmnf) into a vector
m ∈ R

p. l′ can be obtained by solving the following over-
determined system

Nl′ = m. (13)

Although the coarse normal map only expresses a low-
frequency shape, we will show in the experiment that the
estimated lighting is still as accurate as if it is estimated from
a ground truth normal map.

Refining the normal mapWe formulate the surface normal
refinement as per-pixel optimization. The energy function
consists of a shading constraint, a surface normal constraint,

and a unit-length constraint as

min
n

Es(n) + λ1En(n) + λ2Eu(n), (14)

whereλ1 andλ2 areweighting factors. The shading constraint
Es measures the squared difference between the ratio image
and the estimated ratio image in Eq. (10)

Es(n) =
(
h(n)�l′ − n�v γmnf

mf − γmnf

)2
. (15)

Wemultiply both sides of Eq. (10)withn�v to avoid possible
numerical issues.

The surface normal constraint En forces the refined sur-
face normal to be close to the coarse surface normal n̂, i.e.,
their dot-product should be close to 1

En(n) = (1 − n�n̂)2. (16)

Finally, Eu enforces unit length of the surface normal

Eu(n) = (1 − n�n)2. (17)

The energy function Eq. (14) is non-convex due to the non-
convex domain S2. We solve it with BFGS (Liu and Nocedal
1989).

After optimizing the normal map we can compute the
albedo map: According to Eqs. (3) and (8),

ρ = mnf

cnfh(n)�lnf
= efmnf

cnfh(n)�l′
. (18)

A global scalar ambiguity remains in the albedo due to the
camera exposure cnf and flashlight intensity ef .

Handling cast shadows (optional) The spherical harm-
onics-based image formation model of Eq. (6) can handle
attached shadows but not cast shadows (Basri and Jacobs
2003). Our method is thus likely to break down and pro-
duce artifacts in regions dominated by cast shadows. In such
regions, instead of refining normals using our shading con-
straints, the initial normal vector estimated from the depth
map is more reliable. To this end, we heuristically introduce
a confidence term ω into the energy function’s shading con-
straint as

min
n

ωEs(n) + λ1En(n) + λ2Eu(n), (19)

where ω is defined as

ω = exp
(

− (r − μ)2

2σ 2

)
. (20)

r is the ratio of the flash to no-flash intensities, and μ and
σ are the mean and the standard deviation of the ratio in
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(a) (b) (c)

Fig. 4 The relation between the ratio of flash to no-flash images and
cast shadows. Large ratios (bright pixels in a) are likely caused by cast
shadows under environmental lighting b; tiny ratios (dark pixels in a)
are caused by cast shadows under flashlight c

the object region. This definition is based on the observa-
tion that cast shadows strongly deviates the ratio r from the
mean ratio. From Eq. (5), once the pixel intensity is distorted
by cast shadow under environmental light or flashlight, the
numerator or denominator becomes close to zero, yielding
too small or too large ratio values. This phenomenon is shown
in Fig. 4.When environmental light causes shadows, the ratio
of flash to no-flash becomes high (bright pixels in Fig. 4a);
when flashlight causes shadows, the ratio becomes low (dark
pixels in Fig. 4a).1

The above observation leads to the choice ofω in Eq. (20).
For pixels where the ratio deviates too much from the mean
ratio, the shading constraint in Eq. (19) is unlikely reliable.
Theweightω should be small according toEq. (20) so that the
shading constraint contributes less to the normal refinement.
As a result, the normal vector stays close to the initial one.

Fusing the normal and the depth map Finally, we fuse
the fine normal map with the coarse shape to obtain the fine
shape. To this end, we minimize the weighted sum of normal
integration and depth terms.

For the normal integration term, we follow the inverse
plane fitting method (Cao et al. 2021) to minimize the sum
of plane fitting residuals as

En(z,d) =
∑
i

∑
j∈N (i)

(z jn�
i K

−1ũ j + di )
2, (21)

where z and d are the vectorized depth map and plane dis-
tances to the coordinate origin, respectively. N (i) is the
pixel i and its four neighborhoods; z j , ni , u j , and di are the
j-th entry in z, the normal vector at pixel i , the homogeneous
coordinates of pixel j , and the i-th entry in d, respectively.
K ∈ R

3×3 is the perspective camera intrinsic matrix. The
inner term of Eq. (21) measures the distance of the 3D point
z jK−1ũ j to the plane, which is parameterized by its normal

1 The flashlight can cause shadows because in practice its location is
non-identical to the camera’s optic center.

direction ni and its distance di to the coordinate origin. For
the depth term, we force the estimated depth z to be close to
the initial depth ẑ

Ed(z) = ‖z − ẑ‖22. (22)

The whole objective now reads

min
z,d

En(z,d) + λd Ed(z), (23)

where λd is a weighting factor to be tuned. Equation (23) can
be formed as a sparse linear system, and we use a multigrid
method (Brandt 1977) to find its solution.

4 Experiments

This section evaluates our shape and albedo recovery results
quantitatively on synthetic images and qualitatively using
real-world images captured with iPhones.

4.1 Experiments Using Synthetic Images

Data generation We rendered two publicly available 3D
mesh models, the Stanford Bunny and a Statue2 with the
physically-based renderer Mitsuba.3 For the no-flash image,
we put each object under an environment map lighting.4 We
then simulate the flashlight by placing an additional direc-
tional light source in the same scene. We obtain the objects’
ground truth shape, depth maps, and normal maps from the
3D models. To simulate the coarse shape from a stereo cam-
era, we apply the quantization on the ground truth depthmap.
For the ground truth albedo, we use a texture image. To visu-
alize the refinement of the estimated albedo map, we also
compute the initial albedo according to Eq. (18) using the
coarse normal map.

Baselines Although our setup combining a depth mea-
surement with flash/no-flash image pairs is new and has no
direct comparison methods, we assess our shape reconstruc-
tion results with the recent depth refinement methods by Han
et al. (2013) and Yan et al. (2018). Unlike ours, both baseline
methods refine the initial shape using a single color image
(i.e., without flash/no-flash image pairs). We therefore aim
to verify the effectiveness of our use of flash/no-flash pairs
via this comparison.

2 “The Getty Caligula” by CosmoWenman / CC BY 4.0. https://sketch
fab.com/3d-models/the-getty-caligula-6bd927a5779d479e83303635c
79f81ac, last accessed on April 1, 2021
3 Mitsuba Renderer. https://www.mitsuba-renderer.org/index_old.
html, last accessed on April 1, 2021
4 High-Resolution Light Probe Image Gallery. http://vgl.ict.usc.edu/
Data/HighResProbes/, last accessed on April 1, 2021
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Table 1 MAbsE of the depth maps recovered by different methods

Env. map Method Bunny Statue

Pisa Han et al. (2013) 3.56e-3 3.59e-3

Yan et al. (2018) 4.02 1.26

Ours 3.43e-3 2.42e-3

Ours w/ conf. 3.39e-3 2.48e-3

Doge Han et al. (2013) 3.66e-3 3.68e-3

Yan et al. (2018) 4.02 1.26

Ours 3.54e-3 3.09e-3

Ours w/ conf. 3.44e-3 2.98e-3

Glacier Han et al. (2013) 3.65e-3 3.64e-3

Yan et al. (2018) 4.02 1.26

Ours 3.45e-3 3.69e-3

Ours w/ conf. 3.41e-3 3.64e-3

Twoobjects,Bunny andStatue, are rendered under three environmen-
tal lighting maps. “w/ conf.” means using Eq. (19) for optimization.
Bold numbers indicate the smallest MAbsE among compared methods

We implemented (Han et al. 2013) as their source code
is not publicly available. For Yan et al.’s method (Yan et
al. 2018), we used a trained convolutional neural network
provided by the authors.5 For a fair comparison, we use the
uniform albedo maps for all objects, since the baseline meth-
ods assume the uniformness while our method is capable of
spatially-varying albedos. We also use the same initial nor-
mal map and shape for all three methods. We measured the
mean absolute error (MAbsE) between the estimated and the
ground truth shape.

Results Table 1 summarizes the results of the quantitative
comparison with the two baseline methods (Han et al. 2013
andYan et al. (2018)).Ourmethod using flash/no-flash image
pairs achieves the lowest MAbsE among all methods. Fur-
ther, the confidence term ω in the energy function improves
the results by our method in most cases, which verifies the
effectiveness of our strategy for handling cast shadows.

Figure 5 shows shape and albedo recovery results by our
method along with their coarse initializations and the ground
truth. We also show the mean angular error (MAngE) of
normal maps and MAbsE of shape and albedo maps. While
the coarse normal maps contain only low-frequency content,
our method recovers high-frequency details and yields lower
errors than the initializations. This verifies the effectiveness
of the optimizationEq. (14) based onour flash/no-flash image
formation model Eq. (10). After the depth normal fusion, the
shape also reflects the recovered details. The albedomap still
appears to have shading components left due to the approxi-
mation error of the second-order spherical harmonics and the
estimation error introduced by cast shadow in practice. But

5 https://github.com/neycyanshi/DDRNet, last accessed on April 1,
2021

the error of the estimated albedo is smaller than that of the
initial albedo. This quantitative evaluation justifies our shape
and albedo recovery pipeline.

Figure 6 shows lighting estimation results on synthetic
data. We render the flash/no-flash images of the Stanford
Bunnywith uniform albedo. To verify that estimating spher-
ical harmonic coefficients lnf from coarse normals is reliable,
we compare the relighting images using coefficients esti-
mated from ground truth and coarse normals. We estimate
the flashlight intensity scaled coefficients l′ by Eq. (13), use
the coefficients to compute the relighting images by Eq. (8),
and compute the absolute error maps between the relighting
and no-flash images. For both relighting images, we compute
the spherical harmonic bases h(n) from ground truth nor-
mals. We cancel the scale ambiguity between l′ and lnf using
the rendered no-flash image when visualizing the relight-
ing images and computing the absolute error maps. As the
spherical harmonics approximates the shading and assumes
no cast shadow, the absolute errormap shows that the approx-
imation error is inevitable and mainly exists in cast shadow
regions. The comparable relighting results verify that using
initial coarse geometry for spherical harmonics estimation is
reliable.

4.2 Experiments Using Smartphones

The camera system we require has become standard in
modern smartphones. For example, iPhone models support
stereo-based depth capture since the iPhone X released in
2017. This section describes shape and albedo recovery
results from images captured by iPhones. To verify our
method in practical scenarios, we captured small statues
indoors as well as outdoor stone statues in an old shrine.
Figure 7 shows the scenes of our image capture in indoor
and outdoor environments using an iPhone X. Our method
is handy to use as the recording only requires mounting a
smartphone on a tripod.

Image capturing and preprocessing: We implemented a
custom iOS application to control the image capture pipeline.
Instead of capturing a stereo image pair and performing
stereo matching by ourselves, we directly acquire the depth
map via Apple’s API.6 Due to API limitations, when the
stereo camera is used for depth map capture, raw image
delivery is unsupported. We instead take a no-flash image
one more time to acquire a raw image. In summary, one
scene capture using an iPhone required three shots

– A depth map associated with the intrinsic parameters
from the stereo camera,

– A raw flash image from the reference camera, and

6 AVDetphData. https://developer.apple.com/documentation/avfound
ation/avdepthdata, last accessed on April 1, 2021.
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Fig. 5 Shape and albedo recovery results on the synthetic Bunny and
Statue datasets. The first column shows the rendered flash/no-flash
pair. The even rows display the error map. The numbers above the error

maps are the mean angular error (MAngE) of normal maps and the
mean absolute error (MAbsE) of shape and albedo maps. Our method
recovers high-frequency shape details

– A raw no-flash image from the reference camera.

The flash/no-flash images are taken in auto-exposure mode,
and the exposure ratio γ is computed from the EXIF tags.

The dimensions of acquired depthmaps and flash/no-flash
images are 768×576 and 4032×3024, respectively. To close
the resolution gap, we unify their dimensions to 1008× 756
by rescaling. Specifically, we upsample the depth map with
bi-cubic interpolation and downsampled the flash/no-flash
images with inter-area interpolation. The intrinsic camera
parameters (focal length and principal point coordinates) are
scaled accordingly. As an implementation detail, we found
that the depth map from the stereo camera and the color
images from the reference camera are misaligned. Fortu-
nately, we empirically found the misalignment was a simple
fixed offset, therefore shifted the pixels in the flash/no-flash
image pairs to align with the depth map.

Baselines: In addition to the quantitative comparisons by
the synthetic dataset, we also compare our results visually
with two shape and reflectance estimationmethods byHäfner

et al. (2018) andBoss et al. (2020). Ourmethod takes as input
flash/no-flash images and a depth map, while the baseline
methods do not use all the cues. We simulate Haefner et al.’s
setup (Häfner et al. 2018), which uses a color image and a
depth map, by removing the no-flash image from our input.
Boss et al. (2020) setup, which uses a flash/no-flash image
pair, was simulated by removing the depth map from our
input.

We used the implementations released by the authors.7

For Haefner et al.’s method (Häfner et al. 2018), we followed
their default parameter settings and used a 1008× 756 flash
image and a 768×576 depthmap as input. Since theirmethod
does not directly output a normal map, we computed normal
maps (Quéau et al. 2018) from the estimated depth maps.
For Boss et al.’s method (Boss et al. 2020), we used their
trained neural network. To fit the 256 × 256 input image

7 DepthSRfromShading. https://github.com/BjoernHaefner/DepthSR
fromShading;
Two-shot-BRDF-shape. https://github.com/NVlabs/two-shot-brdf-sha
pe, last accessed on April 1, 2021.

123

https://github.com/BjoernHaefner/DepthSRfromShading
https://github.com/BjoernHaefner/DepthSRfromShading
https://github.com/NVlabs/two-shot-brdf-shape,
https://github.com/NVlabs/two-shot-brdf-shape,


International Journal of Computer Vision (2022) 130:1403–1415 1411

Fig. 6 Lighting estimation from synthetic flash/no-flash images. Both
relighting images are computed using GT normals and spherical har-
monic coefficients, estimated from (the first row) GT normals or (the
second row) coarse normals. The major approximation error exists in
the cast shadow. Estimating spherical harmonic coefficients from coarse
normals achieves a comparable relighting result, verifying the correct-
ness of our lighting estimation using coarse normals

Fig. 7 Indoor and outdoor image capturing with phones

dimension, we cropped and downsampled our flash/no-flash
images.AsBoss et al. (2020) estimatesCook-Torrancemodel
parameters (Cook and Torrance 1982) as diffuse, roughness,
and specular, we show the estimated diffuse maps and treat
them as albedo maps for notational simplicity.

ResultsFigure 8 shows a visual comparison using the input
from an iPhone X. Overall, our setup combining flash/no-
flash imaging and a rough depth map yields the high-fidelity
shape and albedo recovery. Haefner et al.’s method (Häfner
et al. 2018) assumes the piece-wise constant albedo. We
thus observe noises on the estimated shape when the surface
albedo has a complex spatial variation (see the stone cow
in Fig. 8). Boss et al.’s method (Boss et al. 2020) explores
shading information from only two images, which is inher-
ently ill-posed. As a consequence, the estimated shapes are
distorted; for example, concave surfaces can be wrongly esti-
mated as convex, which can be seen in the stone cow’s ear.

Figure 9 displays visual results by our method for cultural
heritage artifacts. The first three objects are about 10 cm high
and were captured in an office room (Fig. 7, left). Although
there is no access to the ground truth, our method qualita-
tively recovers the fine details that are absent in the initial
shape derived from the stereo camera despite of the complex
albedo. The last three rows of Fig. 9 show stone statues in an

Fig. 8 Visual comparison on an iPhone’s input. We use all three input
images: Flash/no-flash images and a depth map. Removing the no-flash
image leads toHaefner et al.’s setup (Häfner et al. 2018), which assumes
piece-wise constant albedo and is not suitable for surfaces with com-
plex albedo variation. Removing the depth map leads to Boss et al.’s
setup (Boss et al. 2020), which is ill-posed and results in distorted shape
estimation. Stereoscopic flash and no-flash photography is key for high-
fidelity shape and albedo recovery via a smartphone

old shrine, which are fixed in place outdoors and impossible
to move. With our stereoscopic flash/no-flash photography,
we can recover fine shapes of such outdoor objects with a
commodity smartphone without requiring special lighting
equipment or a darkroom.

To verify that our method is suitable for different camera
andflashlight configurations,we captured images of the same
object using an iPhone X, 11, and 12 Pro. From the results in
Fig. 10, we can see that our method produces stable results
on devices with different camera systems, implying that our
method is applicable on a fairly large number of smartphones.
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Fig. 9 Shape and albedo recovery results from an iPhone X; see Fig.
10 for its camera system. The objects in the first three rows are about 10
cm in height and placed in an office room. The last three rows display

outdoor stone statues in an old shrine. Our method is able to recover
shape details and surface albedo for both indoor and outdoor objects

Regarding runtime, each object took about 30s on a
2.3GHz Intel i9 CPU. The computational bottlenecks are the
fine normal optimization of Eq. (14) and the depth normal
fusion of Eq. (23).

5 Conclusions

We presented a simple imaging setup for high-fidelity shape
and albedo recovery using a stereo camera and flashlight.
This setup can be naturally applied to two-shot images from
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Fig. 10 Reconstruction of the same object using smartphone models
with different camera/flashlight configurations. The first column depicts
the camera systems of the iPhone X, 11, and 12 Pro. “UW”,“W”,“T”,
and “F” are short for ultra-wide, wide angle, telephoto camera, and

flashlight, respectively. The reference camera in the stereo camera is
colored red. Our method generates stable results across different cam-
era/flashlight configurations

smartphones with a stereo camera, which has become com-
mon today. Quantitative evaluation using synthetic images
justifies our high-fidelity shape and albedo recovery pipeline.
Qualitative results using images captured by a smartphone
demonstrate our method’s effectiveness in real scenarios.
The comparison with related methods shows that our setup is
the minimal setup to recover high-fidelity shape and surface
albedo via a smartphone.

Practical implications We have verified our method for
digitizing cultural heritage artifacts using images captured
by off-the-shelf smartphones. This implies that people can
immediately turn their smartphones into high-fidelity 3D
scanners using our setup and method. We believe that our

method is useful in a scenario of crowd-sourced digital
archiving, which accelerates the digitization of the world’s
cultural heritages.

Limitation Our method breaks down if the object is
directly lit by strong environmental lighting, such as sun-
light; see Fig. 11 for an example. In this scenario, compared
with the sunlight the flashlight is too weak to provide addi-
tional photometric cues. This problem might be alleviated
if smartphones adopt flashlights of stronger intensity in the
future. For now, we recommend capturing outdoor objects on
cloudy days or around sunrise or sunset. Further, we require
the object to be close to the camera due to flashlight falloff
in practice.
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Fig. 11 Our method breaks down under direct sunlight due to the relatively weak flashlight. The virtual flash-only image (enhanced for visibility)
obtained via Eq. (4) hardly provides additional photometric cues, leading to unsatisfactory recovery

Future work Our shape and albedo recovery method is
based on images shot from a single viewpoint. A practical
extension would be to use multi-view images for recovering
complete objects.
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