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Abstract
Derived from rapid advances in computer vision and machine learning, video analysis tasks have been moving from infer-
ring the present state to predicting the future state. Vision-based action recognition and prediction from videos are such
tasks, where action recognition is to infer human actions (present state) based upon complete action executions, and action
prediction to predict human actions (future state) based upon incomplete action executions. These two tasks have become
particularly prevalent topics recently because of their explosively emerging real-world applications, such as visual surveil-
lance, autonomous driving vehicle, entertainment, and video retrieval, etc. Many attempts have been devoted in the last a few
decades in order to build a robust and effective framework for action recognition and prediction. In this paper, we survey
the complete state-of-the-art techniques in action recognition and prediction. Existing models, popular algorithms, technical
difficulties, popular action databases, evaluation protocols, and promising future directions are also provided with systematic
discussions.
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1 Introduction

Every human action, no matter how trivial, is done for some
purpose. For example, in order to complete a physical exer-
cise, a patient is interacting with and responding to the
environment using his/her hands, arms, legs, torsos, bod-
ies, etc. An action like this denotes everything that can be
observed, either with bare eyes or measured by visual sen-
sors. Through the human vision system, we can understand
the action and the purpose of the actor. We can easily know
that a person is exercising, and we could guess with a certain
confidence that the person’s action complies with the instruc-
tion or not. However, it is way too expensive to use human
labors to monitor human actions in a variety of real-world
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scenarios, such as smart rehabilitation and visual surveil-
lance. Can a machine perform the same as a human?

One of the ultimate goals of artificial intelligence research
is to build a machine that can accurately understand humans’
actions and intentions, so that it can better serve us. Imag-
ine that a patient is undergoing a rehabilitation exercise at
home, and his/her robot assistant is capable of recognizing
the patient’s actions, analyzing the correctness of the exer-
cise, and preventing the patient from further injuries. Such
an intelligent machine would be greatly beneficial as it saves
the trips to visit the therapist, reduces the medical cost, and
makes remote exercise into reality. Other important applica-
tions including visual surveillance, entertainment, and video
retrieval also need to analyze human actions in videos. In the
center of these applications is the computational algorithms
that can understand human actions. Similar to the human
vision system, the algorithms ought to produce a label after
observing the entire or part of a human action execution
(Bobick & Davis, 2001; Ryoo, 2011). Building such algo-
rithms is typically addressed in computer vision research,
which studies how to make computers gain high-level under-
standing from digital images and videos.

The term human action studied in computer vision
research ranges from the simple limb movement to joint
complex movement of multiple limbs and the human body.
This process is dynamic, and thus is usually conveyed in
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Fig. 1 Example frames of action videos used in computer vision research. a single person’s action; b human interaction; c human-object interaction;
d group action; e RGB-D action; f multi-view action

(a) (b)

Fig. 2 aAction recognition task infers an action category from a video
containing complete action execution, while b action prediction task
infers a label from temporally incomplete video. The label could be
an action category (early action classification), or a motion trajectory
(trajectory prediction)

a video lasting a few seconds. Though it might be diffi-
cult to give a formal definition of human action studied in
the computer vision community, we provide some examples
used in the community. Typical example actions are, (1) an
individual action in KTH dataset (Schüldt et al., 2004)
(Fig. 1(a)), which contains simple daily actions such as
“clapping” and “running”; (2) a human interaction in UT-
Interaction dataset (Ryoo & Aggarwal, 2009) (Fig. 1(b)),
which consists of human interactions including “handshake”
and “push”; (3) a human-object interaction in UCF Sports
dataset (Rodriguez et al., 2008) (Fig. 1(c)), which com-
prises of sport actions and human-object interactions; (4)
a group action in Hollywood 2 dataset (Marszałek et al.,
2009) (Fig. 1(d)); (5) an action captured by a RGB-D sen-
sor in UTKinect dataset (Xia et al., 2012) (Fig. 1(e)); and
(6) a multi-view action in Multicamera dataset (Singh et al.,
2010) (Fig. 1(f)) capturing human actions frommultiple cam-
era views. In all these examples, a human action attempts to
achieve a certain goal, inwhich some of them can be achieved
by simply moving arms, and the others need to be accom-
plished in several steps.

Technology advances in computer science and engineer-
ing have been enabling machines to understand human
actions in videos. There are two basic topics in the computer
vision community, vision-based human action recognition
and prediction:

1. Action recognition recognize a human action from a
video containing complete action execution.

2. Action prediction reason a human action from tempo-
rally incomplete video data.

Action recognition is a fundamental task in the computer
vision community that recognizes human actions based on

the complete action execution in a video (see Fig. 2(a))
(Bobick & Davis, 2001; Efros et al., 2003; Weinland et al.,
2006; Laptev, 2005; Liu et al., 2009; Tang et al., 2012a; Tran
et al., 2015). It has been studied for decades and is still a very
popular topic due to broad real-world applications includ-
ing video retrieval (Ciptadi et al., 2014), visual surveillance
(Hu et al., 2007; Singh et al., 2010), etc. Researchers have
made great efforts to create an intelligent system mimick-
ing humans’ capability that can recognize complex human
actions in cluttered environments. However, to a machine,
an action in a video is just an array of pixels. The machine
has no idea about how to convert these pixels into an effec-
tive representation, and how to infer human actions from the
representation. These two problems are considered as action
representation andaction classification in action recognition,
and many attempts (Laptev, 2005; Raptis & Sigal, 2013; Ji et
al., 2013; Carreira & Zisserman, 2017) have been proposed
to address these two problems.

On the contrary, action prediction is a before-the-fact
video understanding task and is focusing on the future state.
In some real-world scenarios (e.g., vehicle accidents and
criminal activities), intelligent machines do not have the lux-
ury of waiting for the entire action execution before having
to react to the action contained in it. For example, being
able to predict a dangerous driving situation before it occurs;
opposed to recognizing it thereafter. This is referred to as the
action prediction task where approaches that can recognize
and infer a label from a temporally incomplete video (see
Fig. 2(b)) (Ryoo, 2011; Kong et al., 2014b, 2017), different
to action recognition approaches that expect to see the entire
set of action dynamics extracted from a full video.

The major difference between action recognition and
action prediction lies in when to make a decision. Human
action recognition is to infer the action label after the entire
action execution has been observed. This task is gener-
ally useful in non-urgent scenarios, such as video retrieval,
entertainment, etc. Nevertheless, action prediction is to infer
before fully observing the entire execution,which is of partic-
ular important in certain scenarios. For example, it would be
very helpful if an intelligent system on a vehicle can predict
a traffic accident before it happens; opposed to recognizing
the dangerous accident event thereafter.
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Fig. 3 Framework of the survey. The picture presents the topics discussed in the survey organized in a hierarchical tree, a list of representative
works are also included for each topic

We will mainly discuss recent advance in action recog-
nition and prediction in this survey. To ease the navigation
of this paper, Fig. 3 illustrates the topics discussed in this
paper and the representative works are also included. Differ-
ent from recent survey papers (Herath et al., 2017; Poppe,
2010), studies in action prediction are also described in this
paper. Human action recognition and prediction are closely
related to other computer vision tasks such as human ges-
ture analysis, gait recognition, and event recognition. In this
survey, we focus on the vision-based recognition and predic-
tion of actions from videos that usually involve one or more
people. The input is a series of video frames and the output
is an action label. We are also interested in learning human
actions fromRGB-Dvideos. Some of existing studies (Yao&
Fei-Fei, 2012b, a) aim at learning actions from static images,
which is not the focus of this paper. This paper will first give
an overview of recent studies in action recognition and pre-
diction, describe popular human actions datasets, and will
then discuss several interesting future directions in details.

1.1 Real-World Applications

Action recognition and prediction algorithms empowermany
real-world applications (examples are shown in Fig. 4). State-
of-the-art algorithms (Wang et al., 2016; Feichtenhofer et al.,

(a) (b) (c)

Fig. 4 Examples of real-world applications using action recognition
techniques

2017; Kong et al., 2018; Ma et al., 2016) remarkably reduce
the human labor in analyzing a large-scale of video data and
provide understanding on the current state and future state of
ongoing video data.

1.1.1 Visual Surveillance

Security issue is becoming more important in our daily life,
and it is one of the most frequently discussed topics nowa-
days. Places under surveillance typically allowcertain human
actions, and other actions are not allowed (Hu et al., 2007).
With the input of a network of cameras (Weinland et al., 2006;
Singh et al., 2010), a visual surveillance system powered
by action recognition (Ji et al., 2013; Simonyan & Zisser-
man, 2014; Karpathy et al., 2014) and prediction (Ryoo,
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2011; Kong et al., 2014b, 2017) algorithms may increase
the chances of capturing a criminal on video, and reduce
the risk caused by criminal actions. For example, in Boston
marathon bombing site, if we had such an intelligent visual
surveillance system that can forewarn the public by looking
at the criminal’s suspicious action, the victims’ lives could be
saved. The cameras also make some people feel more secure,
knowing the criminals are being watched.

1.1.2 Video Retrieval

Nowadays, due to the fast growth of technology, people can
easily upload and share videos on the Internet. However,
managing and retrieving videos according to video content is
becoming a tremendous challenge asmost search engines use
the associated text data to manage video data (Ramezani &
Yaghmaee, 2016). The text data, such as tags, titles, descrip-
tions, and keywords, can be incorrect, obscure, and irrelevant,
making video retrieval unsuccessful (Zhai et al., 2013). An
alternative method is to analyze human actions in videos, as
the majority of these videos contain such a cue. For example,
in Ciptadi et al. (2014), researchers created a video retrieval
framework by computing the similarity between action rep-
resentations, and used the proposed framework to retrieve
videos of children with autism in a classroom setting. Com-
pared to conventional human action recognition task, the
video retrieval task relies on the retrieval ranking instead
of classification (Ramezani & Yaghmaee, 2016).

1.1.3 Entertainment

The gaming industry in recent years has attracted an increas-
ingly large and diverse group of people. A new generation of
games basedon full bodyplay such as dance and sports games
have increased the appeal of gaming to familymembers of all
ages. To enable accurate perception of human actions, these
games use cost-effective RGB-D sensors (e.g., Kinect Shot-
ton et al., 2013) which provide an additional depth channel
data (Xia &Aggarwal, 2013; Yang&Tian, 2014; Hadfield &
Bowden, 2013). This depth data encode rich structural infor-
mation of the entire scene, and facilitate action recognition
task as it simplifies intra-class motion variations and reduces
cluttered background noise (Kong & Fu, 2015, 2017; Jia et
al., 2014; Liu & Shao, 2013).

1.1.4 Human-Robot Interaction

Human-robot interaction is popularly applied in home and
industry environment. Imagine that a person is interacting
with a robot and asking it to perform certain tasks, such as
“passing a cup of water” or “performing an assembling task”.
Such an interaction requires communications between robots

and humans, and visual communication is one of the most
efficient ways (Ryoo et al., 2015; Koppula & Saxena, 2016).

1.1.5 Autonomous Driving Vehicle

Action prediction algorithms (Ryoo & Aggarwal, 2011;
Kong & Fu, 2016) could be one of the potentials and maybe
most important building components in an autonomous driv-
ing vehicle. Action prediction algorithms can predict a
person’s intention (Pei et al., 2011; Li & Fu, 2014; Koppula
& Saxena, 2016) in a short period of time. In an urgent situa-
tion, a vehicle equipped with an action prediction algorithm
can predict a pedestrian’s future action or motion trajectory
in the next few seconds, and this could be critical to avoid
a collision. By analyzing human body motion characteris-
tics at an early stage of an action using so-called interest
points or convolutional neural network (Kong et al., 2017),
action prediction algorithms (Kong et al., 2017; Kong & Fu,
2016) can understand the possible actions by analyzing the
action evolution without the need to observe the entire action
execution.

1.2 Research Challenges

Despite significant progress has been made in human action
recognition and prediction, state-of-the-art algorithms still
misclassify actions due to several major challenges in these
tasks.

1.2.1 Intra- and Inter-Class Variations

As we all know, people behave differently for the same
actions. For a given semanticmeaningful action, for example,
“running”, a person can run fast, slow, or even jump and run.
That is to say, one action category may contain multiple dif-
ferent styles of human movements. In addition, videos in the
same action can be captured from various viewpoints. They
can be taken in front of the human subject, on the side of the
subject, or even on top of the subject, showing appearance
variations in different views (see Fig. 5). Furthermore, differ-
ent people may show different poses in executing the same
action. All these factors will result in large intra-class appear-
ance and pose variations, which confuse a lot of existing
action recognition algorithms. These variations will be even

Fig. 5 Appearance variations in different camera views
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larger on real-world action datasets (Karpathy et al., 2014;
Caba Heilbron et al.., 2015). This triggers the investigation
of more advanced action recognition algorithms that can be
deployed in real-world scenarios. Furthermore, similarities
exist in different action categories. For instance, “run-
ning” and “walking” involve similar human motion patterns.
These similarities would also be challenging to differenti-
ate for intelligent machines, and consequently contribute to
misclassifications.

1.2.2 Cluttered Background and Camera Motion

It is interesting to see that a number of human action
recognition algorithms work very well in indoor controlled
environments but not in outdoor uncontrolled environments.
This is mainly due to the background noise. In fact, most of
the existing activity features such as histograms of oriented
gradient (Laptev et al., 2008a) and interest points (Dollar et
al., 2005) also encode background noise, and thus degrade
the recognition performance. Camera motion is another fac-
tor that should be considered in real-world applications.
Due to significant camera motion, action features cannot
be accurately extracted. In order to better extract action
features, camera motion should be modeled and compen-
sated (Wang & Schmid, 2013). Other environment-related
issues such as illumination conditions, viewpoint changes,
dynamic background will also be the challenges that prohibit
action recognition algorithms from being used in practical
scenarios.

1.2.3 Insufficient Annotated Data

Even though existing action recognition approaches (Klaser
et al., 2008; Liu et al., 2011; Niebles et al., 2010) have shown
impressive performance on small-scale datasets in laboratory
settings, it is really challenging to generalize them to real-
world applications due to their inability of training on large-
scale datasets. Recent deep approaches (Wang et al., 2016;
Feichtenhofer et al., 2017) have shown promising results on
datasets captured in uncontrolled settings, but they normally
require a large amount of annotated training data. Action
datasets such as HMDB51 (Kuehne et al., 2011) and UCF-
101 (Khurram Soomro & Shah, 2012) contain thousands of
videos, but still far from enough for training deep networks
withmillions of parameters. AlthoughYoutube-8M (Abu-El-
Haija et al., 2016) and Sposrts-1M datasets (Karpathy et al.,
2014) providemillions of action videos, their annotations are
generatedbya retrievalmethod, and thusmaynot be accurate.
Training on such datasets would hurt the performance of
action recognition algorithms that do not have a tolerance
to inaccurate labels. However, it is possible that some of
the data annotations are available, which would result in a
training setting with a mixture of labeled data and unlabeled

data. Therefore, it is imperative to design action recognition
algorithms that can learn actions from both labeled data and
unlabeled data.

1.2.4 Action Vocabulary

Actions could be categorized into different levels, move-
ments, atomic actions, composite actions, events, etc. This
defines an action hierarchy, and complex actions at high lev-
els of the hierarchy can be decomposed into a combination
of actions at a lower level. How to define and analyze these
different kinds of actions is very important.

1.2.5 Uneven Predictability

Not all frames are equally discriminative. As shown in Raptis
and Sigal ( 2013), Vahdat et al. (2011), a video can be effec-
tively represented by a small set of key frames. This indicates
that lots of frames are redundant, and discriminative frames
may appear anywhere in the video. However, action predic-
tion methods (Ryoo, 2011; Kong et al., 2014b; Ma et al.,
2016; Lan et al., 2014) require the beginning portions of the
video to be discriminative in order to maximize predictabil-
ity. To solve this problem, context information is transferred
to the beginning portions of the videos (Kong et al., 2017),
but the performance is still limited due to the insufficient
discriminative information.

In addition, actions differ in their predictabilities (Li &
Fu, 2014; Kong et al., 2017). As shown in Kong et al. (2017),
some actions are instantly predictable while the other ones
need more frames to be observed. However, in practical
scenarios, it is necessary to predict any actions as early as
possible. This requires us to create general action prediction
algorithms that can make accurate and early predictions for
most of or all actions.

2 Human Perception of Actions

Human actions, particularly those involving whole-body and
limb (e.g., arms and legs) movements, and interactions with
their environment contain rich information about the per-
former’s intention, goal, mental status, etc. Understanding
the actions and intentions of other people is one of the most
important social skills we have, and the human vision system
provides a particularly rich source of information in support
of this skill (Blake & Shiffrar, 2007). Compared to static
images, human actions in videos provide even more reli-
able and more expressive information, and thus speak louder
than images when it comes to understanding what others are
doing (Darwin, 1872). There are a number of information
we can tell from human actions, including the action cat-
egories (Mass et al., 1971), emotional implication (Clarke
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et al., 2005), identity (Cutting & Kozlowski, 1977; Troje et
al., 2005), gender (Sumi, 2000; Troje, 2002), etc. The human
visual system is finely optimized for the perception of human
movements (Decety & Grezes, 1999).

Action understanding by humans is a complex cognitive
capability performed by a complex cognitive mechanism.
Such amechanism can be decomposed into threemajor com-
ponents, including action recognition, intention understand-
ing, and narrative understanding (Keestra, 2015). Ricoeur
(1992) suggested that actions can be approached with a set
of interrelated questions including, who, what, why, how,
where, andwhen. Three questions are prioritized,which offer
different perspectives on the action: what is the action, why
is the action being done, and who is the agent. Computa-
tionalmodels for thefirst twoquestions havebeen extensively
investigated in action recognition (Blank et al., 2005; Patron-
Perez et al., 2010; Choi et al., 2009; Marszałek et al., 2009;
Kuehne et al., 2011; Ji et al., 2013; Tran et al., 2015) and pre-
diction (Ryoo, 2011; Kong et al., 2014b;Ma et al., 2016; Cao
et al., 2013) research in the computer vision community. The
last question “who is the agent” refers to the agent’s identity,
or social role, which provides a more thoroughgoing under-
standing of the “who” behind it, and thus is referred to as
narrative understanding (Ricoeur, 1992). Few work in the
computer vision community studies this question (Lan et al.,
2012; Ramanathan et al., 2013).

Some of the human actions are goal-oriented, i.e., a goal
is completed by performing one or a series of actions. Under-
standing such actions is crucial for predicting the effects or
outcomes of the actions. As humans, we make inferences
about the action goals of an individual by evaluating the end
state that would be caused by their actions, given particu-
lar situational or environmental constraints. The inference
is possibly made by a direct matching process of a mir-
ror neuron system, which maps the observed action onto
our own motor representation of that action (Rizzolatti &
Craighero, 2004; Rizzolatti & Sinigaglia, 2010). According
to the direct matching hypothesis, the prediction of one’s
action goal is heavily relying on the observer’s action vocabu-
lary or knowledge. Another cue for making action prediction
is from emotional or attentional information, such as the
facial expression and gaze or the other individuals. Such ref-
erential information makes the observer pay attention to the
specific objects because of the particular relations that link
these cues to their referents. These psychological and cogni-
tive findings would be helpful for designing action prediction
approaches.

3 Action Recognition

A typical action recognition flowchart generally contains two
major components (Schüldt et al., 2004; Wang et al., 2013;

Poppe, 2010), action representation and action classification.
The action representation component basically converts an
action video into a feature vector (Laptev, 2005; Dollar et al.,
2005; Wang et al., 2015; Scovanner et al., 2007) or a series
of vectors (Niebles et al., 2010; Kong et al., 2017; Morency
et al., 2007), and the action classification component infers
an action label from the vector (Liu et al., 2011; Sminchis-
escu et al., 2005; Shi et al., 2011). Recently, deep networks
(Ji et al., 2013; Tran et al., 2015; Feichtenhofer et al., 2017)
merge these two components into a unified end-to-end train-
able framework, which further enhance the classification
performance in general. In this section we will discuss recent
work in action representation, action classification, and deep
networks.

3.1 Shallow Approaches

3.1.1 Action Representation

The first and the foremost important problem in action recog-
nition is how to represent an action in a video. Human actions
appearing in videos differ in their motion speed, camera
view, appearance and pose variations, etc, making action
representation a really challenging problem. A successful
action representation method should be efficient to com-
pute, effective to characterize actions, and can maximize the
discrepancy between actions, in order to minimize the clas-
sification error.

One of the major challenges in action recognition is
large appearance and pose variations in one action category,
making the recognition task difficult. The goal of action
representation is to convert an action video into a feature
vector, extract representative and discriminative informa-
tion of human actions, and minimize the variations, thereby
improving the recognition performance. Action represen-
tation approaches can be roughly categorized into holistic
features and local features, which will be discussed next.

Many attempts have been made in action recognition to
convert action videos into discriminative and representa-
tive features, in order to minimize with-in class variations
and maximize between class variations. Here, we focus on
hand-crafted action representation methods, which means
the parameters in these methods are pre-defined by experts.
This differs from deep networks, which can automatically
learn parameters from data.

Holistic Representations Human action in a video generates
a space-time shape in the 3D volume. This space-time shape
encodes both spatial information of the humanpose at various
times, and dynamic information of the human body. Holis-
tic representation methods capture the motion information
of the entire human subject, providing rich and expressive
motion information for action recognition. However, holis-
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Fig. 6 Examples of an input video frame, the corresponding motion
energy image andmotion history image computed by Bobick and Davis
(2001)

tic representations tend to be sensitive to noise. It captures
the information in a certain rectangle region, and thus may
introduce irrelevant information and noise from the human
subject and cluttered background.

One pioneering work in Bobick and Davis (2001) pre-
sented Motion Energy Image (MEI) and Motion History
Image (MHI) to encode dynamic human motion into a single
image. As shown in Fig. 6, the two methods work on the
silhouettes. The MEI method shows “where” the motion is
occurring: the spatial distribution of motion is represented
and the highlighted region suggests both the action occur-
ring and the viewing condition. In addition to MEI, the MHI
method shows both “where” and “how” the motion is occur-
ring. Pixel intensity on a MHI is a function of the motion
history at that location, where brighter values correspond to
more recent motion.

Although MEI and MHI showed promising results in
action recognition, they are sensitive to viewpoint changes.
To address this problem, Weinland et al. (2006) generalized
(Bobick&Davis, 2001) to 3Dmotion history volume (MHV)
to remove the viewpoint dependency in the final action rep-
resentation. MHV relies on the 3D voxels obtained from
multiple camera views, and shows the 3D occupancy in the
resulting volume. Fourier transform is then used to create
features invariant to locations and rotations.

To capture space-time information in human actions,
Gorelick et al. (2007), Blank et al. (2005) utilized the Pois-
son equation to extract various shape properties for action
representation and classification. Theirmethod takes a space-
time volume as input. Then the method discovers space-time
saliency of moving body parts, and locally computes the ori-
entation using the Poisson equation. These local properties
are finally converted into a global feature byweighted averag-
ing each point inside the volume. Anothermethod to describe
shape and motion was presented in Yilmaz and Shah (2005).
In this method, a spatio-temporal volume is first generated by
computing correspondences between frames. Then, spatio-
temporal features by analyzing differential geometric surface
properties from the volume.

Instead of computing silhouette or shape for action rep-
resentation, motion information can also be computed from
videos. One typical motion information is computed by the
so-called optical flow algorithms (Lucas & Kanade, 1981;
Horn & Schunck, 1981; Sun et al., 2010), which indicate

Fig. 7 Examples of the original frame, optical flow, and the flow field
in four channels computed by Efros et al. (2003)

the pattern of apparent motion of objects on two consecutive
frames. Under the assumption that illumination conditions
do not change on the frames, optical flow computes the
motion in the horizontal and vertical axis. An early work by
Efros et al. (2003) split the flow field into four channels (see
Fig. 7) capturing the horizontal and vertical motion in suc-
cessive frames. Thismethodwas then used inWang andMori
(2010) to describe the features of both the human body and
the body parts.

Local Representations Local representations only identify
local regions having salient motion information, and thus
inherently overcome the problem in holistic representations.
Successful methods such as space-time interest points (Dol-
lar et al., 2005; Laptev & Lindeberg, 2003; Klaser et al.,
2008; Bregonzio et al., 2009) and motion trajectory (Wang
et al., 2011, 2013) have shown their robustness to trans-
lation, appearance variation, etc. Different from holistic
features, local features describe the local motion of a person
in space-time regions. These regions are detected since the
motion information within the regions is more informative
and salient than the surrounding areas. After detection, the
regions are described by extracting features in the regions.

Space-time interest points (STIPs) (Laptev & Linde-
berg, 2003; Laptev, 2005)-based approaches is one of the
most important local representations. Laptev’s seminal work
(Laptev & Lindeberg, 2003; Laptev, 2005) extended the
Harris corner detector (Harris & Stephens, 1988) to space-
time domain. A spatio-temporal separable Gaussian kernel is
applied on a video to obtain its response function for finding
large motion changes in both spatial and temporal dimen-
sions (see Fig. 8). An alternative method was proposed in
Dollar et al. (2005), which detects dense interest points. 2D
Gaussian smoothing kernel is applied only along the spa-
tial dimension, and the 1D Gabor filter is applied to the
temporal dimension. Around each interest point, raw pixel
values, gradient, and optical flow features are extracted and
concatenated into a long vector. The principal component
analysis is applied on the vector to reduce the dimension-
ality, and a k-means clustering algorithm is then employed
to create the codebook of these feature vectors and generate
one vector representation for a video (Schüldt et al., 2004).
Bregonzio et al. (2009) detected spatial-temporal interest
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Fig. 8 Illustration of interest points detected on human body. Revised
based on the original figure in Herath et al. (2017)

points using Gabor filters. Spatiotemporal interest points can
also be detected by using the spatiotemporal Hessian matrix
(Willems et al., 2008). Other detection algorithms detect
spatiotemporal interest points by extending their counter-
parts of 2D detectors to spatiotemporal domains, such as
3D SIFT (Scovanner et al., 2007), HOG3D (Klaser et al.,
2008), local trinary patterns (Yeffet &Wolf, 2009), etc. Sev-
eral descriptors have been proposed to describe the motion
and appearance information within the small region of the
detected interest points such as optical flow and gradient.
Optical flow feature computed in a local neighborhood is fur-
ther aggregated in histograms, called histograms of optical
flow (HOF) (Laptev et al., 2008a), and combined with HOG
features (Dalal & Triggs, 2005; Klaser et al., 2008) to rep-
resent complex human activities (Klaser et al., 2008; Laptev
et al., 2008a; Wang et al., 2009). Gradients over optical flow
fields are computed to build the so-called motion boundary
histograms (MBH) for describing trajectories (Wang et al.,
2009).

However, spatiotemporal interest points only capture
information within a short temporal duration and cannot
capture long-term duration information. It would be better
to track these interest points and describe their changes of
motion properties. Feature trajectory is a straightforwardway
of capturing such long-duration information (Wang et al.,
2009, 2011; Raptis & Soatto, 2010). To obtain features for
trajectories, in Messing et al. (2009), interest points are first
detected and tracked using Harris3D interest points with a
KLT tracker (Lucas & Kanade, 1981). The method in Sun
et al. (2009) finds trajectories by matching corresponding
SIFT points over consecutive frames. Hierarchical context
information is captured in this method to generate more
accurate and robust trajectory representation. Trajectories are
described by a concatenation of HOG, HOF and MBH fea-
tures (Wang et al., 2011, 2013; Jain et al., 2013) (see Fig. 9),
intra- and inter-trajectory descriptors (Sun et al., 2009), or

Fig. 9 Tracked point trajectories over frames, and are described by
HOG, HOF and MBH features. Revised based on the original figure in
Wang et al. (2013)

Fig. 10 A typical flowchart of the so-called bag-of-words methods.
Local features detected on the input video are shown in yellow circles
(Color figure online)

HOG/HOFandaverageddescriptors (Raptis&Soatto, 2010).
In order to reduce the side effect of camera motion, Wang
and Schmid (2013), Wang et al. (2015) find correspondences
between two frames first and then use RANSAC to estimate
the homography.

3.1.2 Action Classifiers

After action representations have been computed, action clas-
sifiers should be learned from training samples that determine
the class boundaries for various action classes. Action clas-
sifiers can be roughly divided into the following categories:

Direct Classification This type of approaches summarize an
action video into a feature vector, and then directly classify
the vector into action categories using off-the-shelf classi-
fiers such as support vector machine (Schüldt et al., 2004;
Laptev et al., 2008a;Marszałek et al., 2009), k-nearest neigh-
bor (k-NN) (Blank et al., 2005; Laptev & Perez, 2007; Tran
& Sorokin, 2008), etc. In these methods, action dynamics
are characterized in a holistic way using action shape (Gore-
lick et al., 2007; Blank et al., 2005), or using the so-called
bag-of-words model, which captures local motion patterns
using a histogram of visual words (Blank et al., 2005; Laptev
& Perez, 2007; Schüldt et al., 2004; Laptev et al., 2008a;
Marszałek et al., 2009).

In fact, bag-of-words approaches received lots of attention
in the last few years. As shown in Fig. 10, these approaches
first detect local salient regions using the spatiotemporal
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interest point detectors (Dollar et al., 2005; Schüldt et al.,
2004; Laptev, 2005; Klaser et al., 2008). Features such as
gradient and optical flow are extracted around each 3D
interest point. The principal component analysis is adopted
to reduce the dimensionality of the features. Then the so-
called visual words can be computed by k-means clustering
(Schüldt et al., 2004), or Fisher vector (Perronnin & Dance,
2006). Finally, an action can be represented by a histogram
of visual words, and can be recognized by a classifier such
as the support vector machine. The bag-of-words model
has been shown to be insensitive to appearance and pose
variations (Wang et al., 2009). However, it does not con-
sider the temporal characteristics of human actions, as well
as their structural information, which can be addressed by
sequential approaches (Shi et al., 2011; Raptis & Sigal,
2013) and space-time approaches (Ryoo&Aggarwal, 2009),
respectively.

Sequential Approaches This line of work captures tempo-
ral evolution of appearance or pose using sequential state
models such as hidden Markov models (HMMs) (Duong et
al., 2005; Rajko et al., 2007; Ikizler & Forsyth, 2007), con-
ditional random fields (CRFs) (Sminchisescu et al., 2005;
Wang et al., 2006;Wang&Suter, 2007;Morency et al., 2007)
and structured support vector machine (SSVM) (Niebles
et al., 2010; Wang et al., 2012; Tang et al., 2012a; Shi et
al., 2011). These approaches treat a video as a composi-
tion of temporal segments or frames. The work in Duong
et al. (2005) considers human routine trajectory in a room,
and use a two-layer HMMs to model the trajectory. Recent
work in Raptis and Sigal (2013) shows that representative
key poses can be learned to better represent human actions.
This method discards a number of non-informative poses in a
temporal sequence, and builds amore compact pose sequence
for classification. Nevertheless, these sequential approaches
mainly use holistic features from frames, which are sensitive
to background noise and generally do not perform well on
challenging datasets.

Space-time Approaches Although direct approaches have
shown promising results on some action datasets (Schüldt et
al., 2004; Laptev et al., 2008a; Marszałek et al., 2009), they
do not consider the spatiotemporal correlations between local
features, and do not take the potentially valuable informa-
tion about the global spatio-temporal distribution of interest
points into account. This problem was addressed in Wu et
al. (2011), which learns a global Gaussian mixture model
(GMM) using the relative coordinates features, and usesmul-
tiple GMMs to describe the distribution of interest points
over local regions at multiple scales. A global feature on
top of interest points was proposed in Yuan et al. (2013)
to capture the detailed geometrical distribution of interest
points. The feature is computed by extended 3D discrete
Radon transform. Such a feature captures the geometrical

Fig. 11 Example of body parts detected by the constellation model
in Niebles and Fei-Fei (2007). Revised based on the original figure in
Niebles and Fei-Fei (2007)

information of the interest points, and is robust to geometri-
cal transformation and noise. The spatiotemporal distribution
of interest points is described by a Directional Pyramid Co-
occurrence Matrix in (DPCM) (Yuan et al., 2014). DPCM
characterizes the co-occurrence statistics of local features as
well as the spatio-temporal positional relationships among
the concurrent features. Graph is a powerful tool for model-
ing structured objects, and it was used in Wu et al. (2014) to
capture the spatial and temporal relationships among local
features. Local features are used as the vertices of the two-
graphmodel and the relationships among local features in the
intra-frames and inter-frames are characterized by the edges.
A novel family of context-dependent graph kernels (CGKs)
was proposed in Wu et al. (2014) to measure the similarity
between the two-graph models. Although the above methods
have achieved promising results, they are limited to small
datasets as the correlations between interest points in their
methods which are explosive on large datasets.

Part-basedApproachesHuman bodies are structured objects,
and thus it is straightforward to model human actions using
motion information from body parts. Part-based approaches
consider motion information from both the entire human
body as well as body parts. The benefit of this line of
approaches is it inherently captures the geometric relation-
ships between body parts, which is an important cue for
distinguishing human actions. A constellation model was
proposed in Fanti et al. (2005), which models the position,
appearance and velocity of body parts. Inspired by Fanti et
al. (2005), a part-based hierarchical model was presented in
Niebles and Fei-Fei (2007), in which a part is generated by
the model hypothesis and local visual words are generated
from a body part (see Fig. 11).

The method in Wong et al. (2007) considers local visual
words as parts, andmodels the structure information between
parts. Thisworkwas further extended inNiebles et al. (2008),
where the authors assume an action is generated fromamulti-
nomial distribution, and then each visual word is generated
from distribution conditioned on the action. These part-based
generated models were further improved by discriminative
models for better classification performance (Wang & Mori,
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Fig. 12 Interaction recognition by learning semantic descriptions from
videos. Revised based on the original figure in Kong et al. (2014a)

2008, 2010). InWangandMori (2008; 2010), a part is consid-
ered as a hidden variable in their models. It is corresponding
to a salient region with the most positive energy.

Manifold Learning Approaches Human action videos can
be described by temporally variational human silhouettes.
However, the representation of these silhouettes is usually
high-dimensional andprevents us fromefficient action recog-
nition. To solve this problem, manifold learning approaches
were proposed in Wang and Suter (2007), Jia and Yeung
(2008) to reduce the dimensionality of silhouette representa-
tion and embed them on nonlinear low-dimensional dynamic
shape manifolds. The method in Wang and Suter (2007)
adopts kernel PCA to perform dimensionality reduction, and
discover the nonlinear structure of actions in the manifold.
Then, a two-chain factorized CRF model is used to clas-
sify silhouette features in the low-dimensional space into
human actions. A novel manifold embedding method was
presented in Jia and Yeung (2008), which finds the opti-
mal embedding that maximizes the principal angles between
temporal subspaces associated with silhouettes of different
classes. Although these methods tend to achieve very high
performance in action recognition, they heavily rely on clean
human silhouettes which could be difficult to obtain in real-
world scenarios.

Mid-Level Feature Approaches Bag-of-words models have
shown to be robust to background noise but may not be
expressive enough to describe actions in the presence of
large appearance and pose variations. In addition, they may
not well represent actions due to the large semantic gap
between low-level features and high-level actions. To address
these two problems, hierarchical approaches (Wang &Mori,
2010; Choi et al., 2011; Liu et al., 2011; Kong et al., 2014a)
are proposed to learn an additional layer of representa-
tions, and expect to better abstract the low-level features for
classification.

Hierarchical approaches learn mid-level features from
low-level features, which are then used in the recognition
task. The learned mid-level features can be considered as
knowledge discovered from the same database used for
training or being specified by experts. Recently, semantic
descriptions or attributes (see Fig.12) are popularly investi-

gated in action recognition. These semantics are defined and
further introduced into the activity classifiers in order to char-
acterize complex human actions (Kong et al., 2012, 2014a;
Liu et al., 2011). Other hierarchical approaches such as
Raptis and Sigal (2013), Vahdat et al. (2011) select key poses
from observed frames, which also learn better action rep-
resentations during model learning. These approaches have
shown superior results due to the use of human knowledge,
but require extra annotations which is labor-intensive.

Feature Fusion Approaches Fusingmultiple types of features
from videos is a popular and effectiveway for action recogni-
tion. Since these features are generated from the same visual
inputs, they are inter-related. However, the inter-relationship
is complicated and is usually ignored in the existing fusion
approaches. This problemwas addressed in Luo et al. (2014),
in which the maximum margin distance learning method is
used to combine global temporal dynamics and local visual
spatio-temporal appearance features for human action recog-
nition. A Multi-Task Sparse Learning (MTSL) model was
presented in Yuan et al. (2013) to fuse multiple features
for action recognition. They assume multiple learning tasks
share priors, one for each type of features, and exploit the
correlations between tasks to better fuse multiple features.
A multi-feature max-margin hierarchical Bayesian model
(M3HBM)was proposed inYang et al. (2015) to learn a high-
level representation by combining a hierarchical generative
model (HGM) and discriminative max-margin classifiers in
a unified Bayesian framework. HGM represents actions by
distributions over latent spatial temporal patterns (STPs)
learned from multiple feature modalities. This work was
further extended in Yuan et al. (2016) to combine spatial
interest points with context-aware kernels for action recog-
nition. Specifically, a video set is modeled as an optimized
probabilistic hypergraph, and a robust context-aware kernel
is used to measure high order relationships among videos.

3.1.3 Classifiers for Human Interactions

Human interaction is typical in daily life.Recognizinghuman
interactions focuses on the actions performed by multiple
people, such as “handshake”, “talking”, etc. Even though
some of the early work such as Laptev et al. (2008a),
Ryoo and Aggarwal (2009), Yu et al. (2010), Marszałek
et al. (2009), Liu et al. (2009) used action videos contain-
ing human interactions, they recognize actions in the same
way as single-person action recognition. Specifically, inter-
actions are treated as a whole and are represented as a motion
descriptor including all the people in a video. Then an action
classifier such as a linear support vector machine is adopted
to classify interactions. Despite reasonable performance has
been achieved, these approaches do not explicitly consider
the intrinsic methods of interactions, and fail to consider the
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co-occurrence information between interacting people. Fur-
thermore, they do not extract the motion of each person from
the group, and thus their methods can not infer the action
label of each interacting person.

Action co-occurrence of individual person is a piece of
valuable information in human interaction recognition. In
Oliver et al. (2000), action co-occurrence is captured by cou-
pling motion state of one person with the other interaction
person. Human interactions such as “hug”, “push”, and “hi-
five” usually involve frequent close physical contact, and
thus some body parts may be occluded. To robustly find
body parts, Ryoo and Aggarwal (2006) utilized body part
tracker to extract each individual in videos and then applied
context-free grammar to model spatial and temporal rela-
tionships between people. A human detector is adopted in
Patron-Perez et al. (2012) to localize each individual. Spa-
tial relationships between individuals are captured using the
structured learning technique (Felzenszwalb et al., 2008).
Spatiotemporal context of a group of people including human
pose, velocity and spatiotemporal distribution of individuals
is captured in Choi et al. (2011) to recognize human inter-
actions. Their method shows promising results on collective
actions without close physical contact such as “crossing the
road”, “talking”, or “waiting”. They further extended their
work that can simultaneously track and recognize human
interactions (Choi & Savarese, 2012). A hierarchical repre-
sentation of interactions is proposed in Choi and Savarese
(2012) that models atomic action, interaction, and collec-
tive action. The method in Lan et al. (2012) also utilizes the
idea of hierarchical representation, and studies the collective
activity recognition problem using crowd context. Different
from these methods, the work in Vahdat et al. (2011) rep-
resents individuals in interactions as a set of key poses, and
models spatial and temporal relationships of the key poses
for interaction recognition. In our earlier work (Kong et al.,
2014a, 2012), a semantic description-based approach is pro-
posed to represent complex human interactions by learned
motion relationships (see Fig. 12). Instead of directly mod-
eling action co-occurrence, we propose to learn phrases that
describe the motion relationships between body parts. This
will describe complex interactions in more details, and intro-
duce human knowledge into the model. All these methods
may not performwell in interactions with close physical con-
tact due to the ambiguities in feature-to-person assignments.
To address this problem, a patch-aware model was proposed
in Kong and Fu (2014) to learn discriminative patches for
interaction recognition, and determine the assignments at a
patch level.

3.1.4 Classifiers for RGB-D Videos

Action recognition from RGB-D videos has been receiving a
lot of attentions (Wang et al., 2012a, b; Hadfield & Bowden,

2013; Xia & Aggarwal, 2013; Liu & Shao, 2013; Oreifej
& Liu, 2013) due to the advent of the cost-effective Kinect
sensor (Shotton et al., 2013). RGB-D videos provide an
additional depth channel compared with conventional RGB
videos, allowing us to capture 3D structural information that
is very useful in reducing background noise and simplifying
intra-class motion variations (Ni et al., 2011; Wang et al.,
2012; Oreifej & Liu, 2013; Hadfield & Bowden, 2013; Ofli
et al., 2013).

Effective features have been proposed for the recognition
task using depth data, such as histogram of oriented 4D nor-
mals (Oreifej & Liu, 2013; Yang & Tian, 2014) and depth
spatiotemporal interest points (Xia & Aggarwal, 2013; Had-
field & Bowden, 2013). Features from depth sequences can
be encoded by Luo et al. (2013), or be used to build action-
lets (Wang et al., 2012) for recognition. An efficient binary
range-sample feature for depth data was proposed in Lu et al.
(2014). This binary depth feature is fast, and has shown to be
invariant to changes in scale, viewpoint, and background. The
work in Sung et al. (2012), Koppula and Saxena (2013b) built
layered action graph structures to model actions and subac-
tions in a RGB-D video. Recent work (Liu & Shao, 2013)
also showed that features ofRGB-Ddata can be learned using
deep learning techniques.

The methods in Li et al. (2010, Oreifej and Liu (2013),
Yang and Tian (2014), Hadfield and Bowden (2013), Wang
et al. (2012a), Luo et al. (2013) only use depth data, and
thus would fail if depth data were missing. Joint use of both
RGB and depth data for action recognition is investigated
in Hu et al. (2015), Jia et al. (2014), Lin et al. (2014), Liu
and Shao (2013), Wang et al. (2012), Kong and Fu (2015).
However, they only learn features shared between the two
modalities and do not learn modality-specific or private fea-
tures. To address this problem, shared features and privates
features are jointly learned in Kong and Fu (2017), which
learns extra discriminative information for classification, and
demonstrate superior performance than Hu et al. (2015), Jia
et al. (2014), Lin et al. (2014), Liu and Shao (2013), Wang
et al. (2012), Kong and Fu (2015). The methods in Kong and
Fu (2015; 2017) also show that they can achieve high recog-
nition performance even though one modality is missing in
training or testing.

Auxiliary information has also shown to be useful inRGB-
D action recognition. Skeleton data provided by a Kinect
sensor was used in Hu et al. (2015), Wang et al. (2012),
Kong and Fu (2017), and has shown to be very effective in
action recognition. The method in Hu et al. (2015) learns a
shared feature space for various types of features including
skeleton features and local HOG features, and project these
features onto the shared space for action recognition. Differ-
ent from this work, the method in Kong and Fu (2017) jointly
learns RGB-D and skeleton features and action classifiers.
The projection matrices in Kong and Fu (2017) are learned

123



International Journal of Computer Vision (2022) 130:1366–1401 1377

(a) (b)

Fig. 13 Illustration of a 2D convolution and b 3D convolution

by minimizing the noise after projection and classification
error using the projected features. Using auxiliary databases
to improve the recognition performance was studied in Jia et
al. (2014), Lin et al. (2014), in which actions are assumed to
be reconstructed by entries in the auxiliary databases.

3.2 Deep Architectures

Although great success has been made by global and local
features, these hand-crafted features require heavy human
labor and domain expert knowledge to develop effective fea-
ture extraction methods. In addition, they normally do not
generalize verywell on large datasets. In recent years, feature
learning using deep learning techniques has been receiving
increasing attention due to their capability of learning pow-
erful features that can be generalized very well (Ji et al.,
2013; Tran et al., 2015; Donahue et al., 2015; Simonyan &
Zisserman, 2014). The success of deep networks in action
recognition can also be attributed to scaling up the net-
works to tens of millions of parameters and massive labeled
datasets. Recent deep networks (Varol et al., 2017; Tran
et al., 2015; Feichtenhofer et al., 2017; Kar et al., 2017)
have achieved surprisingly high recognition performance on
a variety of action datasets.

Action features learned by deep learning techniques has
been popularly investigated (Yang & Shah, 2012; Wang et
al., 2014a; Taylor et al., 2010; Sun et al., 2014; Plotz et al.,
2011; Le et al., 2011; Karpathy et al., 2014; Ji et al., 2013,
2010; Hasan & Roy-Chowdhury, 2014; Bengio et al., 2013;
Simonyan&Zisserman, 2014) in recent years. The twomajor
variables in developing deep networks for action recognition
are the convolutionoperation and temporalmodeling, leading
to a few lines of networks.

The convolution operation is one of the fundamental
components in deep networks for action recognition, which
aggregates pixel values in a small spatial (or spatiotemporal)
neighborhood using a kernel matrix. 2D vs 3D Convolu-
tion 2D convolution over images (Fig. 13(a)) is one of the
basic operation in deep networks, and thus it is straightfor-
ward to use 2D convolution on video frames. The work in
Karpathy et al. (2014) presented a single-frame architecture
based on a 2D CNNmodel, and extracted a feature vector for
each frame. Such a 2D convolution network (2D ConvNet)

also enjoys the benefit of using the networks pre-trained on
large-scale image datasets such as ImageNet. However, 2D
ConvNets do not inherently model temporal information,
and requires an additional aggregation or modeling of such
information.

As multiple frames are presenting in videos, 3D con-
volution (Fig. 13(b)) is more intuitive to capture temporal
dynamics in a short period of time.Using 3D convolution, 3D
convolutional networks (3DConvNets) directly create hierar-
chical representations of spatio-temporal data (Ji et al., 2010,
2013; Taylor et al., 2010; Tran et al., 2015). However, the
issue is they have many more parameters than 2D ConvNets,
making them hard to train. In addition, they are prevented
from enjoying the benefits of ImageNet pre-training.

Another key variable in designing deep networks is
Temporal Modeling.Generally, there are roughly threemeth-
ods in temporal modeling. One straightforward way is to
directly apply 3D convolution to several consecutive frames
(Ji et al., 2010, 2013; Taylor et al., 2010; Tran et al., 2015;
Carreira & Zisserman, 2017). As a result, the temporal
dimension in the 3D convolution kernel will capture the tem-
poral dynamics in these frames. One of the limitations of
these approaches is they may not be able to reuse the 2D
ConvNets pre-trained on large-scale image datasets. Another
line of approaches model temporal dynamics by using multi-
ple streams (Simonyan & Zisserman, 2014; Feichtenhofer
et al., 2016; Carreira & Zisserman, 2017; Girdhar et al.,
2017; Kar et al., 2017). A stream named flow net in the net-
works trains on optical flow frames,which essentially capture
motion information in the adjacent two frames. However,
these approaches largely disregard the long-term temporal
structure of videos. 2D convolution is usually used in these
approaches, and thus they can easily exploit the new ultra-
deep architectures and models pre-trained for still images.
The third category of approaches uses temporal pooling (Kar
et al., 2017; Girdhar et al., 2017) or aggregation to capture
temporal information in a video. The aggregation can be per-
formed by using a LSTM model on top of 2D ConvNets
(Donahue et al., 2015; Ng et al., 2015).

3.2.1 Space-Time Networks

Space-time networks are straightforward extensions of 2D
ConvNets as they capture temporal information using 3D
convolutions.

The method in Ji et al. (2010) was one of the pioneer-
ing works in using convolution neural networks (CNN) for
action recognition. They perform 3D convolutions over adja-
cent frames, and thus extract features from both spatial and
temporal dimensions. Their 3D CNN network architecture
starts with 5 hardwired kernels including gray, gradient-x,
gradient-y, optflow-x, and optflow-y, resulting in 33 fea-
ture maps. Then the network repeats 3D convolution and
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Fig. 14 Feature embedding by Imagenet and C3D. C3D features
show better class separation than Imagenet, indicating its capability in
learning better features for videos.Originally shown inTran et al. (2015)

subsampling, and uses a fully-connected layer to generate
a 128-dimensional feature vector for action classification.
In a later extension (Ji et al., 2013), the authors regularized the
network to encode long-term action information by encour-
aging the network to learn feature vector close to high-level
motion features such as the bag-of-words representation of
SIFT features.

The 3DConvNet (Ji et al., 2010, 2013) was later extended
to a modern deep architecture called C3D (Tran et al., 2015)
that learns on large-scale datasets. TheC3Dnetwork contains
5 convolution layers, 5max-pooling layers, 2 fully-connected
layers, and a softmax loss layer, subject to the machine
memory limit and computation affordability. Their work
demonstrated that C3D learns a better feature embedding for
videos (see Fig. 14). Results showed that the C3D method
with a linear classifier can outperform or approach the state-
of-the-art methods on a variety of video analysis benchmarks
including action recognition and object recognition.

Still, 3D ConvNets (Ji et al., 2010, 2013; Tran et al.,
2015) for action recognition are relatively shallow with up
to 8 layers. To further improve the generalization power of
3D ConvNets, Carreira and Zisserman (2017) inflated very
deep networks for image classification into spatio-temporal
feature extractors by repeating 2D filters along the time
dimension, allowing the network to reuse 2D filters pre-
trained on ImageNet. This work also shows that pre-training
on the Kinetics dataset achieves better recognition accuracy
on UCF-101 and HMDB51 datasets. Another solution to
build a deep 3D ConvNet was proposed in Qiu et al. (2017),
which uses a combination of one 1 × 3 × 3 convolutional
layer and one 3 × 1 × 1 convolutions to take the place of a
standard 3D convolution.

One limitation of 3D ConvNets is that they typically con-
sider very short temporal intervals, such as 16 frames in Tran
et al. (2015), thereby failing to capture long-term tempo-
ral information. To address this problem, Varol et al. (2017)
increases the temporal extent in the 3D convolutions, and

Fig. 15 Two-stream network proposed in Simonyan and Zisserman
(2014) contains a spatial network and a temporal network, which are
used formodeling static information in still frames andmotion informa-
tion in optical flow images, respectively. Revised based on the original
figure in Simonyan and Zisserman (2014)

empirically shows that they can significantly improve the
recognition performance.

3.2.2 Multi-Stream Networks

Multi-stream networks utilize multiple convolutional net-
works to model both appearance and motion information
in action videos. Even though the network in Karpathy et
al. (2014) achieved great success, its results were signif-
icantly worse than those of the best hand-crafted shallow
representations (Wang et al., 2015, 2013). To address this
problem, a successful work by Simonyan and Zisserman
(2014) explored a new architecture related to the two-stream
hypothesis (Goodale & Milner, 1992). Their architecture
contains two separate streams, a spatial ConvNet and a tem-
poral ConvNet (see Fig. 15). The former one learns actions
from still images, and the latter one performs recognition
based on the optical flow field.

The two-stream network (Simonyan & Zisserman, 2014)
directly fuses the outputs of the two streams generated by
their respective softmax function, which may not be appro-
priate for gathering information over a long period of time.
An improvement was proposed in Wang et al. (2015), which
used the two-stream network to obtain multi-scale convolu-
tional feature maps, and pooled the feature maps together
with the detected trajectories to compute ConvNet responses
centered at the trajectories. Such a scheme encodes deep
features into effective descriptors constrained by sampled
trajectories. Temporal feature pooling in the two-stream net-
workwas investigated in Ng et al. (2015), which is capable of
making video-level predictions after the pooling layer. The
work in Girdhar et al. (2017) also presented a novel pool-
ing layer named ActionVLAD that aggregates convolutional
feature descriptors in different image portions and temporal
spans. They also used ActionVLAD to combine appearance
and motion streams together. The network named tempo-
ral linear encoding (Diba et al., 2017) aggregates temporal
features sampled from a video, and then projects onto a low-
dimensional feature space. By doing so, long-range temporal
structure in different frames can be captured and be encoded
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into a compact representation. AdaScan proposed in Kar et
al. (2017) evaluated the importance of the next frame, so that
only informative frames will be pooled, and non-informative
frames will be disregarded in the video-level representa-
tion. Their AdaScan method uses a multilayer perceptron
to compute the importance for the next frame given tempo-
rally pooled features up to the current frame. The importance
score will then be used as a weight for the feature pooling
operation for aggregating the next frame. Despite effective,
most of the feature encoding methods lack of considering
spatio-temporal information. To address this problem, the
work in Duta et al. (2017) proposed a new feature encoding
method for deep features. More specifically, they proposed
locally max-pooling that groups features according to their
similarity and then performs max-pooling. In addition, they
performed max-pooling and sum-pooling over the positions
of features to achieve spatio-temporal encoding.

Temporal sampling in the two-stream network was pro-
posed in Temporal Segment Networks (TSN) (Wang et al.,
2016). In TSN long-range dynamics are gathered by ana-
lyzing short video snippets formed from randomly sampled
frames from segments of the full video. The idea here is that
directly analyzing densely sampled video sequence makes
no sense since the consecutive frames in the video contain a
lot of redundancy. Moreover, some actions reveal them-self
at different temporal scales, such as sprinting, which requires
multiple actions over a long span of time, compared to just
crouching. The original TSN network (Wang et al., 2016),
was based on two-stream architecture from Simonyan and
Zisserman (2014). The prediction from temporal segments
was summaries by applying consensus function to frame
features extracted with pre-trained Deep CNN classification
network. As for consensus function was used a simple pool-
ing operation. The advantage of this network is that it can
enjoy the benefits of using big pre-trained classification net-
works for feature extraction. To improve the performance
of temporal sampling in Zhou et al. (2018) was suggested
to perform sampling at different temporal scales, and substi-
tute pooling operation with a fully connected network, which
should encode the temporal ordering of frames. The TSN can
be also incorporated into another action recognition frame-
works as illustrated in Qiu et al. (2019). Recently, Liu et al.
(2021) attempted to use all video frames for classification
by clustering the activations along the temporal dimension
based on the assumption that similar frames should have sim-
ilar activation values. However, this method is limited in its
ability of dynamically selecting the number of clusters.Wang
et al. (2021) proposed Temporal Difference Network (TDN)
which aims to recognize actions from the entire video. TDN
contains short-term temporal difference modules to encode
local motion information and long-term temporal difference
modules to capture motion across segments.

Fig. 16 Network architecture of LRCN (Donahue et al., 2015) with a
hybrid of ConvNets and LSTMs. Revised based on the original figure
in Donahue et al. (2015)

One of the major problems in the two-stream networks
(Simonyan & Zisserman, 2014; Wang et al., 2015; Ng et
al., 2015) is that they do not allow interactions between the
two streams. However, such an interaction is really impor-
tant for learning spatiotemporal features. To address this
problem, Feichtenhofer et al. (2016) proposed a series of
spatial fusion functions that make channel responses at the
same pixel position be in the same correspondence. These
fusion layers are placed in the middle of the two-streams
allowing interactions between them. They further injected
residual connections between the two streams (Feichtenhofer
et al.., 2016; Feichtenhofer et al., 2017), and allow a stream
to be multiplicatively scaled by the opposing stream’s input
(Feichtenhofer et al., 2017). Such a strategy bridges the gap
between the two streams, and allows information transfer in
learning spatiotemporal features.

3.2.3 Hybrid Networks

Another solution to aggregate temporal information is to add
a recurrent layer on top of the CNNs, such as LSTMs, to
build hybrid networks (Donahue et al., 2015; Ng et al., 2015).
Such hybrid networks take the advantages of both CNNs and
LSTMs, and thus have shown promising results in capturing
spatial motion patterns, temporal orderings and long-range
dependencies (Wang et al., 2015; Diba et al., 2017; Kar et
al., 2017).

Donahue et al. (2015) explored the use of LSTM inmodel-
ing time series of frame features generated by 2D ConvNets.
As shown in Fig. 16, the recurrence nature of LSTMs allows
their network to generate textual descriptions of variable
lengths, and recognize human actions in the videos. Ng et al.
(2015) compared temporal pooling andusingLSTMon topof
CNNs.Theydiscussed six types of temporal poolingmethods
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including slow pooling and Conv pooling, and empirically
showed that adding a LSTM layer generally outperforms
temporal pooling by a small margin because it capture the
temporal orderings of the frames. A hybrid network using
CNNs and LSTMs was proposed in Wu et al. (2015). They
used two-stream CNN (Simonyan & Zisserman, 2014) to
extract motion features from video frames, and then fed into
a bi-directional LSTM to model long-term temporal depen-
dencies. A regularized fusion scheme was proposed in order
to capture the correlations between appearance and motion
features.

Hybrid networks have also been applied to skeleton-based
action recognition. Skeleton data can be easily obtained by
depth sensors such as Kinect or pose estimation algorithms.
In these methods, hybrid deep neural networks (Shahroudy
et al., 2016a; Zhu et al., 2016; Liu et al., 2016; Ke et al., 2017;
Yan et al., 2018) are developed to model the structure infor-
mation of various body joints aswell as temporal information
of body movement. Recurrent neural networks are widely
used to capture the features consisting of ordered joints
(Shahroudy et al., 2016a; Zhu et al., 2016; Liu et al., 2016).
Temporal CNN (Ke et al., 2017) is also applied to capture the
features of structured body joints. Recently, graph convolu-
tion networks have shown superior performance over RNNs
and Temporal CNNs, and become the backbone for captur-
ing the structural information of joints. Yan et al. (2018)
proposed a spatio-temporal graph convolution to learn the
structural and temporal information at the same time. Si et
al. (2019) applied GCN-LSTM tomodel the temporal depen-
dencies of skeleton and proposed an attention model to learn
the importance of each joint.

3.3 Learning with Limited Data/Label

Due to the necessity of training deep neural networks, recent
video are becoming extremely large. For example, Youtube-
8M dataset (Abu-El-Haija et al., 2016) consists of over 8
million videos. For such large-scale datasets, it is expensive
and almost impossible to annotate all the video data. Even
though search engines were given action labels and were
used to retrieve videos, they also make mistakes and thus the
compiled video data could be noisy. One solution is to learn
action models in a weakly-supervised fashion or an unsu-
pervised fashion. Therefore, the models do not necessarily
require fully-annotated video data and can learn under very
limited or no supervisory signals. Few-shot learningwas also
recently introduced to learn in the low-sample regime.

3.3.1 Weakly-Supervised Action Learning

Weakly-supervised learning methods (Laptev et al., 2008b;
Bojanowski et al., 2014; Ghadiyaram et al., 2019) are devel-
oped to deal with the scenarios where each of the videos is

not fully annotated. One promising application scenario is to
understand human actions in untrimmed videos, in which the
temporal boundaries of various actions in the videos are not
annotated. Such a learning capability enhances most of the
existing action recognition methods (Tran et al., 2015; Kong
et al., 2018; Simonyan&Zisserman, 2014;Wang et al., 2015;
Ng et al., 2015), as require all the action videos to be trimmed
which is expensive and time-consuming to achieve.

Movie with script data is a typical scenario to evalu-
ate weakly-supervised action learning methods. Pioneering
work made by Laptev et al. (2008b) presented a novel realis-
tic action dataset frommovies. Annotations weremade using
movie scripts. Duchenne et al. (2009) followed this work
and addressed the problem of weakly-supervised learning of
action models and localizing action instances in videos given
the corresponding movie scripts.

Another type of work is weak-supervised action under-
standing given a temporally ordered list of action classes
that will appear in the video. For example, Bojanowski et
al. (2014) formulated the problem as a weakly supervised
temporal assignment and proposed a clustering method that
assigns the action labels to the temporal segments in videos.
Huang et al. (2016) adapted the Connectionist Temporal
classification model from speech recognition to perform
weakly-supervised action labeling.

Recent works have extended weakly-supervised action
representation learning to untrimmed videos with unordered
action lists. Wang et al. (2017) proposed the Untrimmed-
Net for untrimmed video understanding by learning action
models and reasoning temporal duration of action instances
in an end-to-end framework. Ghadiyaram et al. (2019) took
advantage of large-scale noisy labeled web videos to learn a
pre-trained model for video action recognition.

3.3.2 Unsupervised and Self-Supervised Action Learning

Unsupervised or self-supervised representation learning is
becoming popular in recent years as it allows deep neural
networks to be pre-trained utilizing the supervisory signals
within the training data, rather than given by humans. Such
pre-trained models can be beneficial for downstream tasks,
such as action recognition and localization. Many attempts
have leveraged the temporal coherence, motion consistency
and temporal continuity as supervision, which will be dis-
cussed below.

The chronological order of frames is a typical free super-
vision signal for videos. Action models learn to tell whether
the frame sequence is ordered or not, given either shuffled
or unshuffled videos (Misra et al., 2016; Fernando et al.,
2017). Another related task is training the model to tell
the actual order of the shuffled video frames (Lee et al.,
2017a). Xu et al. (2019) extended the order prediction tasks
from frames to clips. This helps to train a 3D CNN frame-
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Table 1 Pros and cons of action recognition approaches

Approaches Pros Cons

Shallow Direct (Schüldt et al., 2004; Wang & Schmid, 2013) Easy and quick to use. Performance is limited.

Sequential (Morency et al., 2007; Shi et al., 2011) Models temporal evolution. Sensitive to noise.

Space-time (Wu et al., 2014, 2011) Captures spatiotemporal structures. Limited to small datasets.

Part-based (Wang & Mori, 2010; Niebles et al., 2010) Models body parts at a finer level. Limited to small datasets.

Manifold (Wang & Suter, 2007; Jia & Yeung, 2008) Tend to achieve high performance. Rely on human silhouettes.

Mid-level feature (Choi et al., 2011; Liu et al., 2011) Introduce knowledge to models. Require extra annotations.

Feature fusion (Yuan et al., 2013, 2016) Tend to achieve high performance. Slow in feature extraction.

Deep Space-time (Ji et al., 2013; Tran et al., 2015) Natural extension of 2D convolution. Short temporal interval.

Multi-stream (Simonyan & Zisserman, 2014;
Feichtenhofer et al., 2017)

Able to use pre-trained 2D ConvNets. Int. b/w networks is difficult.

Hybrid (Donahue et al., 2015; Ng et al., 2015) Easy to build using existing networks. Difficult to fine-tune.

work using chronological order supervision. Buchler et al.
(2018) applied deep reinforcement learning to sample new
permutations according to their expected utility to adapts to
the state of the network.

The motion of objects in videos can also be used as super-
vision. Wang and Gupta (2015) found the corresponding
pairs using visual tracking, based on Siamese-Triplet net-
work. Purushwalkam and Gupta (2016) utilized pose as free
supervision since similar pose should have similar motion.
Wang et al. (2017) explored different self-supervised meth-
ods to learn the representations invariant to the variations
between the object patches, which is extracted by motion
cues. Gan et al. (2018) used geometry cues flow field and
disparity maps to learn the video representations.

3.3.3 Few-Shot Learning

Few-shot learning aims at learning reliablemodels frommin-
imalist data sets. In extreme cases, there could be no training
sample for some categories which is called the zero-shot
learning. Majority of few-shot works target at recognising
images, while only a few address the video action recogni-
tion challenge. Zhu and Yang (2018) proposed a compound
memory network (CMN) which predicts the unseen video
by retrieving a similar video stored in the memory of the
CMN architecture. ProtoGAN (Dwivedi et al., 2019) learns
the class-prototype vectors through a feature aggregator net-
work calledClass Prototype Transfer Network (CPTN), then
generates additional video features for the recognition clas-
sifier. Neural Graph Matching (NGM) network (Guo et al.,
2018) is a graph-based approach that generates graph rep-
resentations for 3D action videos and match unseen videos
and seen videos by the similarity of their graph representa-
tions.Mishra et al. (2018) proposes a framework for zero-shot
action recognitionwhichmodels each action class as a proba-
bility distribution and the distribution parameters are a linear

combination of the attributes of the action class. The weights
of the attributes are learnt from the labeled samples. One
challenge in few-shot action recognition is the variation
of temporal lengths. Temporal Attentive Relation Network
(TARN) (Bishay et al., 2019) uses attention modules to align
video segments and learns a distance measure between the
aligned representations for few-shot and zero-shot learn-
ing. Action Relation Network (ARN) (Zhang et al., 2020)
encodes the video clips features of the query set and support
set into a Power Normalized Autocorrelation Matrix (AM)
from which a relation network learns to captures the rela-
tions. Similar toARN,Ordered Temporal AlignmentModule
(OTAM) (Cao et al., 2020) extracts per-frame feature through
an embedding network, then computes an alignment score of
the distance matrix. Temporal-Relational CrossTransform-
ers (TRX) (Perrett et al., 2021) classifies the query video
by matching each sub-sequence to all sub-sequences in the
support set using CrossTransformer attention modules.

3.4 Summary

Deep networks are dominant in action recognition research
but shallow methods are still useful. Compared with deep
networks, shallow methods are easy to train, and generally
performwell on small datasets. Recent shallowmethods such
as improved dense trajectory with linear SVM (Wang &
Schmid, 2013) have also shown promising results on large
datasets, and thus they are still popularly used recently in
the comparison with deep networks (Tran et al., 2015; Varol
et al., 2017; Feichtenhofer et al., 2017). It would be helpful
to use shallow approaches first if the datasets are small, or
each video exhibits complex structures that need to be mod-
eled. However, there are lots of pre-trained deep networks
on the Internet such as C3D (Tran et al., 2015) and TSN
(Wang et al., 2016) that can be easily employed. It would be
also helpful to try these methods and fine-tune the models to
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Table 2 Results of action detection methods on THUMOS’14 (Jiang et al., 2014). The mAP@α denotes the mean Average Precision at different
threshold, α. “-” indicates the result is not reported

mAP@0.5 mAP@0.4 mAP@0.3

End-to-End (Yeung et al., 2016) 17.1 26.4 36.0

Multi-stage (Shou et al., 2016) 19.0 28.7 36.3

TURN (Gao et al., 2017) 24.5 35.3 46.3

Temporal Context Network (Dai et al., 2017) 25.6 33.3 –

Single-stream R-C3D (Xu et al., 2017) 28.9 35.6 44.8

SSN (Zhao et al., 2017) 29.8 41.0 51.9

Single-stream R-C3D+OHEM (Xu et al., 2019) 35.8 43.1 51.1

Two-stream R-C3D (Xu et al., 2019) 36.1 43.0 51.2

BSN (Lin et al., 2018) 36.9 45.0 53.5

MGG UNet (Liu et al., 2019) 37.4 46.8 53.9

BMN (Lin et al., 2019) 38.8 47.4 56.0

particular datasets. Table 1 summarizes the pros and cons of
action recognition approaches.

4 Action Localization and Detection

In order to recognize and predict an action, themachine needs
to know where is the action in a video. This is achieved
by action localization and detection, which find out the
spatiotemporal regions containing certain human actions in
videos. Both of the two tasks have attracted a large amount of
research in recent years. As an analogy to object localization
and detection in the image domain, action detection is addi-
tionally required to identify the action type of each action that
occurs in the video compared to the action localization.Based
on the feature learning paradigms, related work can be cat-
egorized into shallow and deep learning methods, for which
wewillmake a comprehensive literature review. Table 2 sum-
marizes some recent detection methods and compares results
on thresholds of 0.3, 0.4, and 0.5. The mAP@α denotes the
mean Average Precision at different IOU threshold which
measures the average prevision on each action category.

4.1 Shallow Approaches

Early work (Karaman et al., 2014; Wang et al., 2014b) for-
mulated action detection as a classification task by firstly
using temporal segmentation or sliding window methods. In
these work, the untrimmed video is segmented into short
video clips and the multiple features are extracted for clas-
sifiers such as support vector machine (SVM) to recognize
the action types. Eventually, the actions that appear in the
video as well as their temporal locations are determined. Jain
et al. (2014) proposed to generate a set of bounding boxes
from the video which are called tubelets for action localiza-

tion. However, these methods suffer from handcraft feature
engineering and multi-stage model tuning, leading to quite
inaccurate detection results.

4.2 Deep Architectures

Recent approaches to action localization and detection make
full use of deep neural networks for learning better video
feature representation. To this end, Shou et al. (2016) pro-
posed to first generate action proposals from the long videos.
Then, a localization network is introduced to fine-tune the
trained action classification network to recognize the action
labels. The idea of their action proposals inspired many later
research (Escorci et al., 2016; Shou et al., 2017; Wang et al.,
2017;Zhao et al., 2017;Xu et al., 2017;Gao et al., 2017;Chao
et al., 2018). For these methods, Escorci et al. (2016) pro-
posed a deep action proposals (DAP)method which achieves
high efficiency and demonstrates to have good generalization
capability. To detect human actions in frame-level granu-
larity, Shou et al. (2017) proposed an end-to-end learning
framework in which a CDC convolutional filter is designed
on top of 3D ConvNet. To model the temporal structure of
each action instance, Zhao et al. (2017) proposed a struc-
tured segment network (SSN) with a temporal pyramid and
a dubbed temporal actionness grouping (TAG) model for
action proposals generation. As the action detection is sim-
ilar to the object detection, Chao et al. (2018) revisited the
most widely-used object detection method Faster R-CNN
and propose a temporal action localization network (TAL-
Net) to address the unsolved challenges, including the large
variation of action durations, temporal contextmodeling, and
multi-stream feature fusion. Song et al. (2019b) noted that
the ambiguous transition states of an action and long-term
temporal context are critical for accurate action detection.
Thus, they propose a transition-aware context network and it
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is demonstrated to be significantly effective for untrimmed
video dataset. To modeling the relations among action pro-
posals, Zeng et al. (2019) recently proposed to introduce
the graph convolutional neural networks (GCN) for tempo-
ral action localization. Song et al. (2019a) introduced the
action pattern tree (AP-Tree) in which the temporal infor-
mation can be utilized. Inspired by the conventional idea of
coarse-to-fine detection,Yang et al. (2019) proposed a spatio-
temporal progressively learning method for video action
detection, achieving remarkable performance on existing
benchmarks. Recently, Xu et al. (2019) raised the importance
of online action detection and propose a temporal recurrent
network (TRN) by simultaneously performing online action
detection and anticipation, significantly outperforming the
state-of-the-art. Chen et al. (2021) unified the tasks of actor
localization and action classification into the same backbone,
which reduces model complexity and improves efficiency
compared to SOTA methods. Li and Yao (2021) designed
two auxiliary pretext tasks to recycle the limited labeled data
and benefit both features extraction as well as prediction.

Different from previous full-supervised methods that
require large-scale frame-level annotations of action
instances, weakly-supervised methods need only the video-
or clip-level action annotations so that they are more promis-
ing in practice. Wang et al. (2017) proposed a weakly-
supervised action detection model that is directly learned on
the untrimmed video data, achieving performance on-par-
with those of the full-supervised action detection methods.
Recently, Yu et al. (2019) introduced the temporal struc-
turemining (TSM) approach to theweakly-supervised action
detection problem. In theirmethod, an action instance ismod-
eled as a multi-phase process so that the phase filters can
be utilized to compute the confidence score, indicating the
action occurrence probability. For weakly-supervised action
localization problem, it also attracts much attention in recent
years. Gao et al. (2021) proposed aweakly supervised frame-
work that consists of two modules, one module generates the
pseudo ground truth of action boundaries which are used to
supervise the action recognition module. Yang et al. (2021)
proposed to incorporate the uncertainty for reducing the noise
in the generated pseudo labels. To handle the challenge of
limited temporal annotations, Yang et al. (2018) used an
one-shot learning technique of matching network for tem-
poral action localization. Narayan et al. (2019) introduced a
novel loss function comprising the action classification loss,
multi-label center loss, and the counting loss, setting the new
state-of-the-art on weakly-supervised action localization.

In addition to using visual data, other data modalities such
as skeleton and RGB-D data can also be utilized for tempo-
ral action localization and detection. To learn the features
of discriminative skeleton joints, Song et al. (2018) intro-
duced a spatio-temporal attention LSTM model for action
recognition and detection. To handle the modality discrep-

ancy in a multi-modal setting, Luo et al. (2018) proposed
a graph distillation method that privileged information is
learned from a large-scale multi-modal dataset in the source
domain and their model can be effectively deployed to the
modality-scarce target domain. For the continuous action
stream scenario, Dawar and Kehtarnavaz (2018) designed a
multimodal fusion system to incorporate depth camera data
and wearable inertial sensor signals for action detection.

5 Action Prediction

After-the-fact action recognition has been extensively stud-
ied in the last few decades, and fruitful results have been
achieved. State-of-the-art methods (Donahue et al., 2015;
Girdhar et al., 2017; Wang et al., 2016) are capable of accu-
rately giving action labels after observing the entire action
executions. However, in many real-world scenarios (e.g.,
vehicle accident and criminal activity), intelligent systems
do not have the luxury of waiting for the entire video before
having to react to the action contained in it. For example,
being able to predict a dangerous driving situation before it
occurs; opposed to recognizing it thereafter. In addition, it
would be great if an autonomous driving vehicle could pre-
dict the motion trajectory of a pedestrian on the street and
avoid the crash, rather than identify the trajectory after the
crash into the pedestrian. Unfortunately, most of the existing
action recognition approaches are unsuitable for such early
classification tasks as they expect to see the entire set of action
dynamics from a full video, and then make decisions.

Different from action recognition approaches, action or
motion prediction1 approaches reason about the future and
infer labels before action executions end. These labels could
be the discrete action categories, or continuous positions on a
motion trajectory. The capability ofmaking a prompt reaction
makes action/motion prediction approaches more appealing
in time-sensitive tasks. However, action/motion prediction
is really challenging because accurate decisions have to be
made on partial action videos.

5.1 Action Prediction

Action prediction tasks can be roughly categorized into
two types, short-term prediction and long-term prediction.
The former one, short-term prediction focuses on short-
duration action videos, which generally last for several
seconds, such as action videos in UCF-101 and Sports-1M
datasets. The goal of this task is to infer action labels based

1 In this paper, action prediction refers to the task of predicting action
category, and motion prediction refers to the task of predicting motion
trajectory. Video prediction is not discussed in this paper as it focuses
on motion in videos rather than motion of human.
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Fig. 17 Early action classification methods predicts action label given
a partially observed video. Revised based on the original figure in Kong
et al. (2014b)

upon temporally incomplete action videos. Formally, given
an incomplete action video x1:t containing t frames, i.e.,
x1:t = { f1, f2, · · · , ft }, the goal is to infer the action label y:
x1:t → y. Here, the incomplete action video x1:t contains the
beginning portion of a complete action execution x1:T , which
only contains one single action. The latter one, long-term
prediction or intention prediction, infers the future actions
based on current observed human actions. It is intended for
modeling action transition, and thus focuses on long-duration
videos that last for several minutes. In other words, this task
predicts the action that is going to happen in the future. More
formally, given an action video xa , where xa could be a com-
plete or an incomplete action execution, the goal is to infer
the next action xb. Here, xa and xb are two independent,
semantically meaningful, and temporally correlated actions.

5.1.1 Early Action Classification

This task aims at recognizing a human action at an early stage,
i.e., based on a temporally incomplete video (see Fig. 17).

The goal is to achieve high recognition accuracy when only
the beginning portion of a video is observed. The observed
video contains an unfinished action, and thus making the
prediction task challenging.Although this taskmay be solved
by action recognition methods (Raptis & Sigal, 2013; Vahdat
et al., 2011; Yao & Fei-Fei, 2012b, a), they were devel-
oped for recognizing complete action executions, and were
not optimized for partial action observations, making action
recognition approaches unsuitable for predicting actions at
an early stage. Table 3 provides some results of early action
classification on four datasets.

Most of the short-term action prediction approaches fol-
low the problem setup described inKong et al. (2014b) shown
in Fig. 18. Tomimic sequential data arrival, a complete video
x with T frames is segmented into K = 10 segments. Con-
sequently, each segment contains T

K frames. Video lengths
T may vary for different videos, thereby causing different
lengths in their segments. For a video of length T , its k-th
segment (k ∈ {1, · · · , K }) contains frames starting from the
[(k−1) · T

K +1]-th frame to the ( kTK )-th frame. A temporally
partial video or partial observation x(k) is defined as a tem-
poral subsequence that consists of the beginning k segments
of the video. The progress level g of the partial video x(k)

is defined by the number of the segments contained in the
partial video x(k): g = k. The observation ratio r of a partial
video x(k) is k

K : r = k
K .

Action prediction approaches aim at recognizing unfin-
ished action videos. Ryoo (2011) proposed the integral
bag-of-words (IBoW) and dynamic bag-of-words (DBoW)
approaches for action prediction. The action model of each

Table 3 Results of early action classification methods on various datasets. X@Y denotes the prediction results at Y dataset when observation ratio
is set to X. “-” indicates the result is not reported

Methods Year 0.1@BIT 0.5@BIT 0.1@UTI-1 0.5@UTI-1 0.1@UCF-101 0.5@UCF-101 0.1@Sports-1M 0.5@Sports-1M

Integral BoW (Ryoo,
2011)

2011 22.66% 48.44% 18.00% 48.00% 36.29% 74.39% 43.47% 55.99%

MSSC (Cao et al.,
2013)

2013 21.09% 48.44% 28.00% 70.00% 34.05% 61.79% 46.70% 57.16%

Poselet (Raptis &
Sigal, 2013)

2013 – – – 73.33% –

HM (Lan et al.,
2014)

2014 – – 38.33% 83.10% – –

MTSSVM (Kong et
al., 2014b)

2014 28.12% 60.00% 36.67% 78.33% 40.05% 82.39% 49.92% 66.90%

MMAPM (Kong &
Fu, 2016)

2016 32.81% 67.97% 46.67% 78.33% – – –

DeepSCN (Kong et
al., 2017)

2017 37.50% 78.13% – – 45.02% 85.75% 55.02% 70.23%

GLTSD (Lai et al.,
2018)

2018 26.60% 79.40% – – – – –

Mem-LSTM (Kong
et al., 2018)

2018 – – – – 51.02% 88.37% 57.60% 71.63%
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Fig. 18 Example of a temporally partial video, and graphical illus-
tration of progress level and observation ratio. Revised based on the
original figure in Kong et al. (2017)

progress level is computed by averaging features of a particu-
lar progress level in the same category. However, the learned
model may not be representative if the action videos of the
sameclass have large appearancevariations, and it is sensitive
to outliers. Toovercome these twoproblems,Cao et al. (2013)
built action models by learning feature bases using sparse
coding and used the reconstruction error in the likelihood
computation. Li et al. (2012) explored long-duration action
prediction problem. However, their work detects segments
by motion velocity peaks, which may not be applicable to
complex outdoor datasets. Compared with Cao et al. (2013),
Li et al. (2012), Ryoo (2011), Kong et al. (2014b) incorpo-
rates an important prior knowledge that informative action
information is increasing when new observations are avail-
able. In addition, the method in Kong et al. (2014b) models
label consistency of segments, which is not presented in their
methods. From a perspective of interfering social interaction,
Lan et al. (2014) developed “hierarchical movements” for
action prediction, which is able to capture the typical struc-
ture of human movements before an action is executed. An
early event detector (Hoai & la Torre, 2012) was proposed
to localize the starting and ending frames of an incomplete
event. Their method first introduces amonotonically increas-
ing scoring function in the model constraint, which has been
popularly used in a variety of action prediction methods
(Kong et al., 2014b; Kong & Fu, 2016; Ma et al., 2016). Dif-
ferent from the aforementioned methods, Ryoo et al. (2015)
studied the action prediction problem in a first-person sce-
nario, which allows a robot to predict a person’s action during
human-computer interactions.

Deep learning methods have also shown in action pre-
diction. The work in Ma et al. (2016) proposed a new
monotonically decreasing loss function in learning LSTMs
for action prediction. Inspired by that, the work in Kong et
al. (2017) adopted an autoencoder to model sequential con-
text information for action prediction. This method learns
such information from fully-observed videos, and transfer it
to partially observed videos. We enforced that the amount
of the transferred information is temporally ordered for the
purpose of modeling the temporal orderings of inhomoge-
neous action segments. We demonstrated that actions differ

Fig. 19 Top 10 instantly, early, and late predictable actions in UCF101
dataset.Actionnames are colored and sorted according to the percentage
of their testing samples falling in the category of instant predictable,
early predictable, or late predictable. Originally shown in Kong et al.
(2017)

in their predictability, and show the top 10 instantly, early,
and late predictable actions in Fig. 19. We also studied the
action prediction problem following the popular two-stream
framework (Simonyan & Zisserman, 2014). In Kong et al.
(2018), we proposed to use memory to store hard-to-predict
training samples in order to improve the prediction perfor-
mance at the early stage. The memory module used in Kong
et al. (2018)measures the predictability of each training sam-
ple, and will store those challenging ones. Such a memory
retains a large pool of samples, and allows us to create com-
plex classification boundaries, which are particularly useful
for discriminating partial videos at the beginn ing stage.

5.1.2 Action Anticipation

Action anticipation aims to anticipate future actions from a
history of actions (Gao et al., 2017). This task is fundamental
to many real world applications. For example, surveillance
cameras can raise an alarm before a road accident happens,
robots can make better plans and decisions by anticipating
human actions (Koppula & Saxena, 2013a). Action anticipa-
tion is a challenging task because the models not only need
to detect the actions, but also infer future actions from the
seen actions. RED (Gao et al., 2017) uses an encoder-decoder
LSTM structure to predict the future video representations
from the extracted representations of the historical video
frames. Similarly, two LSTMs were used in Furnari and
Farinella (2020) to summarize the past and infer the future
for egocentric videos. The work in Vondrick et al. (2016)
trains a CNN to regress the future representations from the
past ones in an unsupervised way. Three similarity metrics
between the past and future video representations were pre-
sented in Fernando andHerath (2021), namely Jaccard vector
similarity, Jaccard cross-correlation, and Jaccard Frobenius
inner product over covariances for early action anticipation.
Future actions are predicted in Mehrasa et al. (2019) by
learning a distribution of future actions using Variational
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Auto-Encoder. The work in Ke et al. (2019) predicts actions
at different future timestamps in one-shot by incorporating a
temporal parameter and skip connections. Hyperbolic space
is used inSurís et al. (2021) to predict future actions because it
can represent actions through a compact hierarchy. InKe et al.
(2021), the authors proposed amodel that consists of a condi-
tional VAE formodeling the uncertainty of the action starting
time and a MLP to predict whether the action will happen.
Recently, Rohit and Kristen (2021) presents a new model
called Anticipative Video Transformer and a self-supervised
future prediction loss for action anticipation.

5.1.3 Intention Prediction

In practice, there are certain types of actions that contain sev-
eral primitive action patterns and exhibit complex temporal
arrangements, such as “make a dish”. Typically, the length
of these complex actions is longer than that of short-term
actions. Prediction of these long-term actions is receiving a
surge of interest as it allows us to understand “what is going
to happen”, including the final goal of complex human action
and the person’s plausible intended action in the near future.

However, long-term action prediction is extremely chal-
lenging due to the large uncertainty in human future actions.
Cognitive science shows that context information is critical
to action understanding, as they typically occur with cer-
tain object interactions under particular scenes. Therefore, it
would be helpful to consider the interacting objects together
with the human actions, in order to achieve accurate long-
term action prediction. Such knowledge can provide valuable
clues for two questions “what is happening now?” and “what
is going to happen next?”. It also limits the search space for
potential actions using the interacting object. For example, if
an action “a person grabbing a cup” is observed, most likely
the person is going to “drink a beverage”, rather than going to
“answering a phone”. Therefore, a prediction method con-
sidering such context is expected to provide opportunities
to benefit from contextual constraints between actions and
objects.

Pei et al. (2011) addressed the problem of goal inference
and intent prediction using an And-Or-Graph method, in
which the Stochastic Context Sensitive Grammar is embod-
ied. They modeled agent-object interactions, and generated
all possible parse graphs of a single event. Combining all the
possibilities generates the interpretation of the input video
and achieves the globalmaximumposterior probability. They
also show that ambiguities in the recognition of atomic
actions can be reduced largely using hierarchical event con-
texts. Li et al. (2012) proposed a long-term action prediction
method usingProbabilistic SuffixTree (PST),which captures
variable Markov dependencies between action primitives
in complex action. For example, as shown in Fig. 20, a
wedding ceremony can be decomposed into primitives of

Fig. 20 A complex action can be decomposed into a series of action
primitives. Revised based on the original figure in Li and Fu (2014)

“hold-hands”, “kneel”, “kiss”, and “put-ring-on”. In their
extension (Li & Fu, 2014), object context is added to the pre-
diction model, which enables the prediction of human-object
interactions occurring in actions such as “making a dish”.
Their work first introduced a concept “predictability”, and
used the Predictive Accumulative Function (PAF) to show
that some actions can be early predictable while others can-
not be early predicted. Prediction of human action and object
affordance was investigated in Koppula and Saxena (2016).
They proposed an anticipatory temporal conditional random
field (ATCRF) to model three types of context information,
including the hierarchical structure of action primitives, the
rich spatial-temporal correlations between objects and their
affordances, and motion anticipation of objects and humans.
In order to find the most likely motion, ATCRFs are consid-
ered as particles, which are propagated over time to represent
the distribution of possible actions in the future. The work
in Girase et al. (2021) introduces a new dataset called LOKI
(LOng term and Key Intentions) for autonomous driving.
The authors also proposed a long-term goal proposal net-
work and a scene graph refinement and trajectory decoder
module for jointly predicting the future trajectory and inten-
tion of pedestrians. InBhattacharyya et al. (2021), the authors
provided a new dataset for pedestrian trajectory prediction in
dense urban scenarios. A Joint-β-cVAE is further designed
to effectively model the interaction between pedestrians and
vehicles, the model is trained by optimizing the ELBO The
authors in Rasouli et al. (2021) proposed a multi-task learn-
ing frameworkwhich predicts both trajectories and actions of
pedestrians conditioned onmulti-modal data. They proposed
a bi-fold feature fusion to effectively fuse multiple modali-
ties, also a semantic map as an additional input to the model
for categorical interaction modeling during training.

5.2 Summary

The availability of big data and recent advance in computer
vision and machine learning enable the reasoning about the
future. The key in this research is how to discover tempo-
ral correlations in large-scale data and how to model such
correlations. Results shown in Table 19 demonstrate the
predictability of actions that can be used as a prior and
inspiring more powerful action prediction methods. There
are still some unexplored opportunities in this research, such
as interpretability of temporal extent, how to model long-
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Fig. 21 Motion trajectory prediction is essential for practical applica-
tions such as visual surveillance and self-driving cars

term temporal correlations, and how to utilize multi-modal
data to enrich the prediction model, which will be discussed
in Sect. 9.

6 Motion Trajectory Prediction

Besides predicting human actions, the other key aspect in
human-centered prediction is motion trajectory prediction,
which aims at predicting a pedestrian’s moving path. Motion
trajectory prediction, an inherent capability of us, reasons
the possible destination and motion trajectory of the target
person. We can predict with high confidence that a person is
going to walk on sidewalks than streets, and will avoid any
obstacles during walking. Therefore, it is interesting to study
how to make machines do the same job. Table 4 shows the
ADE and FDE results on ETH/UCF dataset. ADE and FDE
are standard metrics on motion trajectory prediction. Some
works do not report the FDE result.

Vision-based motion trajectory prediction is essential for
practical applications such as visual surveillance and self-
driving cars (see Fig. 21), in which reasons about the future
motion patterns of a pedestrian is critical. A large body of
work learns motion patterns by clustering trajectories (Zhou
et al., 2011; Morrisand & Trivedi, 2011; Kim et al., 2011;
Hu et al., 2007). However, forecasting future motion trajec-
tory of a person is really challenging as the prediction cannot
be predicted in isolation. In a crowded environment, humans
adapt their motion according to the behaviors of neighboring
people. They may stop, or alter their paths to accommodate
other people or the environment in the vicinity. Jointlymodel-
ing such complex dependencies is really difficult in dynamic
environments. In addition, the predicted trajectories should
not only be physically acceptable, but also socially accept-
able (Gupta et al., 2018). Pedestrians always respect personal
spacewhilewalking, and thus yield the right-of-way.Human-
human andhuman-object interactions are typically subtle and
complex in crowded environments, making the problem even
more challenging. Furthermore, there aremultiple future pre-
dictions in a crowded environment, which are all socially
acceptable. Thus uncertainty estimation for the multimodal
predictions is desired.

Forecasting trajectory and destination by understanding
the physical scene was investigated in Kitani et al. (2012),
which was one of the pioneering work in trajectory predic-
tion in the computer vision community. The proposedmethod
models the effect of the physical environment on the choice of
human actions. The authors integrate state-of-the-art seman-
tic scene understanding with the ideas from inverse optimal
control (IOC) or inverse reinforcement learning (Abbeel &
Ng, 2004; Ziebart et al., 2008). In this work, human motion
is modeled as a sequence of decision-making process, and
a prediction is made by maximizing the reward. Lee and
Kitani (2016) extends (Kitani et al., 2012) to a dynamic envi-
ronment. The state reward function is extended to a linear
combination of static and dynamic state functions to update
the forecasting distribution in a dynamic environment. How-
ever, IOC is limited to controlled settings as the goal state
of the pedestrian’s destination requires a priori. To relax this
assumption, the concept of goal set was introduced in Main-
price et al. (2016), Dragan et al. (2011), which defines a target
task space. The work in Alahi and Fei-Fei (2014) introduced
a large-scale dataset of 42 million trajectories and studied
the problem of trajectory prediction by modeling the social
interactions of pedestrians. They captured the spatial posi-
tions of the neighboring trajectories of a person by a so-called
social affinity map. The trajectory prediction task is formu-
lated as a maximum a-posterior estimation problem, and the
origin and destination prior knowledge is introduced to the
model. Themethod in Ballan et al. (2016) takes a step further
and generalizes trajectory prediction by considering human-
scene interactions. Instead of just using semantic labels of the
scene (e.g., grass, street, etc), functional properties of a scene
map (Turek et al., 2010) are learned in Ballan et al. (2016),
which allows the prediction model to understand how agents
of the same class move from one patch to another. This pro-
vides us with rich navigation patterns to the final destination.
Scene semantics was also used to predict the dynamics of
multiple objects (Fouhey & Zitnick, 2014; Huang & Kitani,
2008; Kooij et al., 2014; Kretzschmar et al., 2014). Kooij et
al. (2014) focused on predicting pedestrians’ path intention
of crossing the street from the viewpoint of an approaching
vehicle. Their method is built upon the dynamic Bayesian
network (DBN), which considers the pedestrian’s decision
to stop by three cues, including the existence of an approach-
ing vehicle, the pedestrian’s awareness, and the spatial layout
of the scene. Walker et al.in Walker et al. (2014) predicted
the behavior of agents (e.g., a car) in a visual scene. Ziebart et
al. (2009) presented a planning-based approach for trajectory
prediction.

Thanks to the recent advance in deep networks,motion tra-
jectory prediction problem can be solved using RNN/LSTM
networks (Alahi et al., 2016; Lee et al., 2017b; Su et al., 2017;
Gupta et al., 2018), which have the capability of generating
long sequences.More specifically, a single LSTMmodel was
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Table 4 Results of motion trajectory prediction on ETH/UCF datasets. ADE is the minimum average displacement error, and FDE denotes the
final displacement error. “–” indicates the result is not reported

ADE FDE

Social GAN (Gupta et al., 2018) 0.58 –

Sophie (Sadeghian et al., 2019) 0.54 –

CGNS (Li et al., 2019) 0.49 –

Social BiGAT (Kosaraju et al., 2019) 0.48 –

Next (Liang et al., 2019) 0.46 –

Social-STCNN (Mohamed et al., 2020) 0.44 –

MANTRA (Marchetti et al., 2020) 0.32 0.65

Transformer TF (Giuliari et al., 2021) 0.31 –

PECNet (Mangalam et al., 2020) 0.29 0.48

Social-NCE (Liu et al., 2020) 0.19 0.40

SGNet (Wang et al., 2021) 0.18 0.35

AgentFormer (Yuan et al., 2021) 0.18 0.29

Y-Net (Mangalam et al., 2020) 0.18 0.27

used to account for one single person’s trajectory, and a social
pooling layer in LSTMs was proposed to model dependen-
cies between LSTMs, and preserve the spatial information
(Alahi et al., 2016). Compared to previous work (Kitani et
al., 2012; Lee & Kitani, 2016; Alahi & Fei-Fei, 2014; Ballan
et al., 2016; Kooij et al., 2014), the method in Alahi et al.
(2016) is end-to-end trainable, and generalizes well in com-
plex scenes. An encoder-decoder framework was proposed
in Lee et al. (2017b) for path prediction in more natural sce-
narios where agents interact with each other and dynamically
adapt their future behaviors. Past trajectories are encoded in
a RNN and then future trajectory hypotheses are generated
using another decoder implemented by a separate RNN. This
method also extends inverse optimal control (IOC) (Lee &
Kitani, 2016; Kitani et al., 2012) to a deep model, which has
shown promising results in robot control (Finn et al., 2016)
and driving (Wulfmeier et al., 2016) tasks. The proposed
Deep IOC is used to rank all the possible hypotheses. The
scene context is captured using a CNN model, which is part
of the input to the RNN encoder. A Social-GAN network in
Gupta et al. (2018) was proposed to address the limitation of
L2 loss in Lee et al. (2017b). Using an adversarial loss, Gupta
et al. (2018) can potentially learn the distribution of multi-
ple socially acceptable trajectories, rather than learning the
average trajectories in the training data. The work in Dendor-
fer et al. (2021) proposes a Multi-Generator Model (MGM)
to address the problem of out-of-distribution samples gener-
ated using a single generator. A categorical distribution over
different trajectory types is first predicted by a Path Mod-
ule Network, from which the generator is chosen to sample
the future trajectories. Thus, the model can select scene-
specific generators and deactivate unsuitable ones. A divide
and conquermethodwas proposed inNarayanan et al. (2021)

which prevents mode collapse problems in trajectory predic-
tion under the winner-takes-all objective. The work in Zhao
andWildes (2021) proposes amodel for goal-conditioned tra-
jectory prediction which exploits nearest examples for goal
position query and considers multi-modality and physical
constraints.

7 Datasets

This section discusses some of the popular action video
datasets, including actions captured in a controlled and
uncontrolled environment. A detailed list is shown in Table 5.
These datasets differ in the number of human subjects,
background noise, appearance and pose variations, camera
motion, etc., and have been widely used for the comparison
of various algorithms.

7.1 Controlled ActionVideo Datasets

We first describe individual action datasets captured in con-
trolled settings, and then list datasetswith two ormore people
involved in actions. We also discuss some of the RGB-D
action datasets captured using a cost-effective Kinect sensor.

7.1.1 Individual Action Datasets

Weizmann Dataset (Blank et al., 2005) is a popular video
dataset for human action recognition. The dataset contains
10 action classes such as “walking”, “jogging”, “waving”
performed by 9 different subjects, to provide a total of 90
video sequences. The videos are taken with a static camera
under a simple background.
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Table 5 A list of popular action video datasets used in action recognition research

Datasets Year #Videos #Views #Actions #Subjects #Modality Env.

KTH (Schüldt et al., 2004) 2004 600 1 6 25 RGB Controlled

Weizmann (Blank et al., 2005) 2005 90 1 10 9 RGB Controlled

INRIA XMAS (Weinland et al., 2006) 2006 390 5 13 10(3 times) RGB Controlled

IXMAS (Yuan et al., 2009) 2006 1,148 5 11 – RGB Controlled

UCF Sports (Rodriguez et al., 2008) 2008 150 – 10 – RGB Uncontrolled

Hollywood (Laptev et al., 2008a) 2008 – – 8 – RGB Uncontrolled

Hollywood2 (Marszałek et al., 2009) 2009 3,669 – 12 10 RGB Uncontrolled

UCF 11 (Jingen Liu & Shah, 2009) 2009 1,100+ – 11 – RGB Uncontrolled

CA (Choi et al., 2009) 2009 44 – 5 – RGB Uncontrolled

MSR-I (Yuan et al., 2009) 2009 63 – 3 10 RGB Controlled

MSR-II (Yuan et al., 2010) 2010 54 – 3 – RGB Crowded

MHAV (Singh & Ragheb, 2010) 2010 238 8 17 14 RGB Controlled

UT-I (Ryoo & Aggarwal, 2010) 2010 60 2 6 10 RGB Uncontrolled

TV-I (Patron-Perez et al., 2010) 2010 300 – 4 – RGB Uncontrolled

MSR-A (Li et al., 2010) 2010 567 – 20 1 RGB-D Controlled

Olympic (Niebles et al., 2010) 2010 783 – 16 – RGB Uncontrolled

HMDB51 (Kuehne et al., 2011) 2011 6849 – 51 – RGB Uncontrolled

CAD-60 (Sung et al., 2011) 2011 60 – 12 4 RGB-D Controlled

BIT-I (Kong et al., 2012) 2012 400 – 8 50 RGB Controlled

LIRIS (Wolf et al., 2014) 2012 828 1 10 – RGB Controlled

MSRDA (Wang et al., 2012b) 2012 320 – 16 10 RGB-D Controlled

UCF50 (Reddy & Shah, 2012) 2012 50 – 50 – RGB Uncontrolled

UCF101 (Khurram Soomro & Shah, 2012) 2012 13,320 – 101 – RGB Uncontrolled

MSR-G (Kurakin et al., 2012) 2012 336 – 12 1 RGB-D Controlled

UTKinect-A (Xia et al., 2012) 2012 200 – 10 – RGB-D Controlled

ASLAN (Kliper-Gross et al., 2012) 2012 3,698 – 432 – RGB Uncontrolled

MSRAP (Oreifej & Liu, 2013) 2013 360 – 6 pairs 10 RGB-D Controlled

CAD-120 (Koppula et al., 2013) 2013 120 – 12 4 RGB-D Controlled

THUMOS’14 (Jiang et al., 2014) 2014 413 1 20 – RGB Uncontrolled

Sports-1M (Karpathy et al., 2014) 2014 1,133,158 - 487 – RGB Uncontrolled

3D Online (Yu et al., 2014) 2014 567 – 20 – RGB-D Uncontrolled

FCVID (Jiang et al., 2018) 2015 91,233 – 239 – RGB Uncontrolled

ActivityNet (Caba Heilbron et al.., 2015) 2015 28,000 – 203 – RGB Uncontrolled

YouTube-8M (Abu-El-Haija et al., 2016) 2016 8,000,000 – 4,716 – RGB Uncontrolled

Charades (Shahroudy et al., 2016b) 2016 9,848 2 157 – RGB Controlled

NTU-RGB+D (Shahroudy et al., 2016a) 2016 56,680 – 120 106 RGB+D+IR+Skeleton Controlled

PKU-MMD (Phase 1) (Chunhui et al., 2017) 2017 1076 3 51 66 RGB+D+IR+Skeleton Uncontrolled

PKU-MMD (Phase 2) (Chunhui et al., 2017) 2017 2000 3 49 13 RGB+D+IR+Skeleton Uncontrolled

NEU-UB 2017 600 – 6 20 RGB-D Controlled

Kinetics (Kay et al., 2017) 2017 500,000 – 600 – RGB Uncontrolled

AVA (Gu et al., 2017) 2017 57,600 – 80 – RGB Uncontrolled

20BN-Something-Something (Goyal et al., 2017) 2017 108,499 - 174 - RGB Uncontrolled

SLAC (Zhao et al., 2017) 2017 520,000 – 200 – RGB Uncontrolled

Moments in Time (Monfort et al., 2019) 2017 1,000,000 - 339 – RGB Uncontrolled

EPIC-Kitchens (Damen et al., 2018) 2018 90,000+ – 397 32 RGB Uncontrolled

COIN (Tang et al., 2019) 2019 11,827 1 180 – RGB Uncontrolled
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Table 5 continued

Datasets Year #Videos #Views #Actions #Subjects #Modality Env.

HACS Segments (Zhao et al., 2019) 2019 50,000+ 1 200 – RGB Uncontrolled

HAA00 (Chung et al., 2021) 2021 10,000 - 500 – RGB Uncontrolled

MultiSports (Li et al., 2021) 2021 3200 – 4 – RGB Uncontrolled

KTHDataset (Schüldt et al., 2004) consists of 6 types of
human actions (boxing, hand clapping, hand waving, jog-
ging, running and walking) repeated several times by 25
different subjects in 4 scenarios (outdoors, outdoors with
scale variation, outdoors with different clothes and indoors).
There are 600 action videos in the dataset.

INRIA XMAS Multiview Dataset (Weinland et al.,
2006) was complied for multi-view action recognition. It
contains videos captured from 5 views including a top-view
camera. This dataset consists of 13 actions, each of which is
repeated 3 times by 10 actors.

7.1.2 Group Action Datasets

UT-Interaction Dataset (Ryoo & Aggarwal, 2010) is com-
prised of 2 sets of 10 videos with different background and
camera settings. The videos contain 6 classes of human-
human interactions: handshake, hug, kick, point, punch, and
push.

BIT-Interaction Dataset (Kong et al., 2012) consists of
8 classes of human interactions (bow, boxing, handshake,
high-five, hug, kick, pat, and push), with 50 videos per class.
Videos are captured in realistic scenes with cluttered back-
grounds, partially occluded body parts, moving objects, and
variations in subject appearance, scale, illumination condi-
tion, and viewpoint.

TV-Interaction Dataset (Patron-Perez et al., 2010) con-
tains 300 videos clips with human interactions. These videos
are categorized into 4 interaction categories: handshake, high
five, hug, and kiss, and annotated with the upper body of peo-
ple, discrete head orientation and interaction.

MultiSports Dataset (Li et al., 2021) is a multi-person
dataset that contains 3200 video clips of 4 sport classes. The
dataset contains 37701 action instanceswith 902, 000 bound-
ing boxes, which helps formore fine-grained spatio-temporal
action detection and localization.

7.2 Unconstrained Datasets

Although the aforementioned datasets lay a solid foundation
for action recognition research, they were captured in con-
trolled settings, and may not be able to train approaches that
can be used in real-world scenarios. To address this prob-
lem, researchers collected action videos from the Internet,

and compiled large-scale action datasets, which will be dis-
cussed in the following.

UCF101 Dataset (Khurram Soomro & Shah, 2012) has
been widely used in action recognition research. It comprises
of realistic videos collected from Youtube. It contains 101
action categories, with 13320 videos in total. UCF101 gives
the largest diversity in terms of actions and with the presence
of large variations in camera motion, object appearance and
pose, object scale, viewpoint, cluttered background, illumi-
nation conditions, etc. Thedataset canbe roughlydivided into
5 categories: (1) Human-Object Interaction (2) Body-Motion
Only (3) Human-Human Interaction (4) Playing Musical
Instruments (5) Sports. It should be noted that many clips
are collected from the same video. Consequently, different
clips may have the same person or the same scenario, or the
same lighting, etc. This seems different from practical sce-
narios, and thus its difficulty is limited.

HMDB51 Dataset (Kuehne et al., 2011) contains a total
of about 6849 video clips distributed in a large set of 51
action categories. Each category contains a minimum of 101
video clips. In addition to the label of the action category,
each clip is annotated with an action label as well as a meta-
label describing the property of the clip, such as visible body
parts, camera motion, camera viewpoint, number of peo-
ple involved in the action, and video quality. The actions
can be grouped into five categories, including general facial
actions (e.g.smile, chew, talk), Facial actions with object
manipulation (e.g.smoke, eat, drink), General body move-
ments (e.g.cartwheel, clap hands, climb), Body movements
with object interaction (e.g.brush hair, catch, draw sword),
Body movements for human interaction (e.g.fencing, hug,
kick someone). The dataset also has two distinct categories
namely “no motion” and “camera motion”. The dataset is
extremely challengingmainly due to the presence of a signif-
icant camera/backgroundmotion. To remove cameramotion,
standard image stitching techniques to can be used to align
frames of a clip.

Kinetics (Carreira & Zisserman, 2017) dataset com-
prises of 700 human action classes and approximately
650, 000 video clips, including human-object interactions
and human-human interactions. The videos were compiled
fromYouTube bymatching its title and the prepared Kinetics
actions list. After that, the videos were segmented by track-
ing actions on Google Image Search, and then labeled by
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Amazon’s Mechanical Turk(AMT). In the end, this dataset
is cleaned and de-noised using machine learning techniques.
Different from previous datasets, one clip in this dataset may
contain several different actions in sequence, but it is only
classified into one action category. This means these clips
don’t have complete action labels. As described in theirwork,
the top-5 measure is supposed to be used because of the
incomplete labels. Within the same action category, clips are
captured fromdifferent videos, includingTVandfilmvideos.
Consequently, there is a large appearance variation, for exam-
ple, people in clips may have different age, height, clothes,
etc., and there are various types of camera motion/shake,
background clutter. Besides, each clip lasts around 10s and
has a variable resolution.

Sports-1M Dataset (Karpathy et al., 2014) contains
1, 133, 158 video URLs, which have been annotated auto-
matically with 487 labels. It is one of the largest video
datasets. Very diverse sports videos are included in this
dataset, such as Shaolin Kung Fu, Wing Chun, etc. The
dataset is extremely challenging due to very large appear-
ance and pose variations, significant camera motion, noisy
background motion, etc.

THUMOS’14 Dataset (Jiang et al., 2014) contains more
than 20 hours of sport videos. Though the training sets are
trimmed videos labeled with 20 action classes, the valida-
tion and testing sets include 200 and 213 untrimmed videos,
respectively. This dataset has been the most widely used
dataset for action detection and localization.

ActivityNet Dataset (Heilbron et al., 2015) has two
versions for action detection and localization. The first is
Activity v1.2, which covers 100 activity classes and con-
tains 4,819 training videos and 2,383 videos for validation.
The other version is Activity v1.3, which consists of 10,024
videos for training and 4,926 videos for validation with 200
activity classes.

PKU-MMD Dataset (Chunhui et al., 2017) is a large-
scale multi-modal datasets focusing on long continuous
sequences action detection and multi-modality action analy-
sis. The first phase contains 51 action categories, performed
by 66 distinct subjects in 3 camera views. Each video lasts
about 3 ∼ 4 minutes and contains approximately 20 action
instances. The second phase contains 2,000 short video
sequences in 49 action categories, performed by 13 subjects
in 3 camera views. Each video lasts about 1 ∼ 2 minutes and
contains approximately 7 action instances.

AVADataset (Guet al., 2018) provides audio-visual anno-
tations for about 15 minute long movie clips. For the AVA
Action subsets, it contains 430 videos split into 235 for train-
ing, 64 for validation, and 131 for test. Each video has 15
minutes annotated in 1-second intervals.

COIN Dataset (Tang et al., 2019) is a recently released
large-scale dataset to address instruction video analysis prob-
lems. It contains 11,827 daily activity videos of 180 different

classes. Different from other action datasets, human actions
in COIN dataset are hierarchically structured with practical
semantics.

HACS Dataset (Zhao et al., 2019) is also a recently
released large-scale dataset for action localization and recog-
nition. For the HACS Segments subset, it contains 139K
action segments densely annotated in 50K untrimmed videos
spanning 200 action categories.

20BN-SOMETHING-SOMETHING dataset (Goyal et
al., 2017) is a dataset shows human interaction with everyday
objects. In the dataset, human performs pre-defined action
with a daily object. It contains 108, 499 video clips across
174 classes. The dataset enables the learning of visual repre-
sentations for the physical properties of the objects and the
world.

Moments-in-Time Dataset (Monfort et al., 2019) is a
large-scale video dataset for action understanding. It contains
over 1, 000, 000 3-second labeled video clips distributed in
339 categories. The visual elements of the videos include
people, animals, objects or natural phenomena. The dataset
is dedicated to buildingmodels that are capable of abstracting
and reasoning complex human actions.

EPIC-Kitchens dataset (Damen et al., 2018) is one of
the largest first-person vision dataset. It consists of 55 hours
videos and 125 verb classes and 300 noun classes recorded
by head-mounted camera. These videos are shot at different
cities and different styles kitchens and divided to 39, 600
action segments with object bounding boxes. Besides, these
videos contain human doing different kitchen tasks at the
same time. To better annotate these actions, voice notes for
the actions are collected in the dataset.

HAA500 dataset (Chung et al., 2021) is a human-centric
atomic action dataset. It consists of 500 atomic classes,where
212 are sport/athletics, 51 are playing musical instruments,
82 are games and hobbies, and 155 are daily actions.

7.3 RGB-D ActionVideo Datasets

All the datasets described abovewere captured byRGBvideo
cameras. Recently, there is an increasing interest in using
cost-effective Kinect sensors to capture human actions due
to the extra depth data channel. Compared to RGB data chan-
nels, the extra depth data channel elegantly provides scene
structure, which can be used to simplify intra-class motion
variations and reduce cluttered background noise (Kong &
Fu, 2017). Popular RGB-D action datasets are listed in the
following.

MSR Daily Activity Dataset (Wang et al., 2012b): there
are 16 categories of actions: drink, eat, read book, call cell-
phone, write on a paper, use laptop, use vacuum cleaner,
cheer up, sit still, toss paper, play game, lie down on sofa,
walk, play guitar, stand up, sit down. All these actions are
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performed by 10 subjects. There are 320 RGB samples and
320 depth samples available.

3DOnlineActionDataset (Yu et al., 2014) was compiled
for three evaluation tasks: same-environment action recog-
nition, cross-environment action recognition and continu-
ous action recognition. The dataset contains human action
or human-object interaction videos captured from RGB-D
sensors. It contains 7 action categories, such as drinking,
eating, and reading cellphone.

CAD-120 Dataset (Koppula et al., 2013) comprises of
120 RGB-D action videos of long daily activities. It is also
captured using the Kinect sensor. Action videos are per-
formed by 4 subjects. The dataset consists of 12 action types,
such as rinsing mouth, talking on the phone, cooking, writ-
ing on whiteboard, etc. Tracked skeletons, RGB images, and
depth images are provided in the dataset.

UTKinect-ActionDataset (Xia et al., 2012)was captured
by a Kinect device. There are 10 high-level action categories
contained in the dataset such as walk, sit down, etc. The
dataset comprises 200 action vidos and three channels were
recorded: RGB, depth and skeleton joint locations.

NTU-RGB+D (Shahroudy et al., 2016b; Liu et al., 2020)
dataset contains 60 action classes and 56, 880 video sam-
ples. Recently, it has been extended to 120 action classes and
another 114, 480 video samples in Liu et al. (2020). All the
samples were collected from 106 distinct subjects by Kinect
sensors. RGBvideos, depthmap sequences, 3D skeletal data,
and infrared (IR) videos are provided for each sample. There
is higher variation of environmental conditions compared
with previous datasets, including 96 different backgrounds
with illumination variations.

8 Evaluation Protocols for Action
Recognition and Prediction

Due to different application purposes, action recognition and
prediction techniques are evaluated in different ways.

Shallow action recognition methods such as Schüldt et
al. (2004), Niebles and Fei-Fei (2007), Wu et al. (2011)
were usually evaluated on small-scale datasets, for exam-
ple, Weizmann dataset (Blank et al., 2005), KTH dataset
(Schüldt et al., 2004), UCF Sports dataset (Rodriguez et al.,
2008). The leave-one-out training scheme is popularly used
on these datasets, and the confusionmatrix is usually adopted
to show the recognition accuracy of each action category. For
sequential approaches such as Wang and Mori (2008; 2010),
per-frame recognition accuracy is often used. InMarszałek et
al. (2009), Tang et al. (2012a), average precision that approxi-
mates the area under the precision-recall curve is also adopted
for each individual action class. Deep networks (Carreira &
Zisserman, 2017; Tran et al., 2015; Varol et al., 2017) are
generally evaluated on large-scale datasets such as UCF-101

(Khurram Soomro & Shah, 2012) and HMDB51 (Kuehne et
al., 2011) and thus can only report overall recognition per-
formance on each dataset. Please refer to Herath et al. (2017)
for a list of performance of recent action recognitionmethods
on various datasets.

Most of action predictionmethods (Ryoo, 2011;Cao et al.,
2013; Kong et al., 2014b, 2017) were evaluated on existing
action datasets. Different from the evaluation method used in
action recognition, recognition accuracy at each observation
ratio (ranging from 10% to 100%) is reported for action pre-
diction methods. As described in Kong et al. (2017), the goal
of these methods is to achieve high recognition accuracy at
the beginning stage of action videos, in order to accurately
recognize actions as early as possible. Table 3 summarizes
the performance of action prediction methods on various
datasets.

There are several popular metrics for evaluating motion
trajectory prediction methods, including Average Displace-
ment Error (ADE), Final Displacement Error (FDE), and
Average Non-linear Displacement Error (ANDE). ADE is
the mean square error computed over all estimated points
of a trajectory and the ground-truth points. FDE is defined
as the distance between the predicted final destination and
the ground-true final destination. ANDE is the MSE at the
non-linear turning regions of a trajectory arising fromhuman-
human interactions.

Vairous metrics exist to evaluate action detection and
localization methods. Recall that Recall (R) measures the
number of true positives over the total number of true posi-
tives and false negatives. Average Recall (AR) is the average
of recalls over multiple Intersection over Union (IoU) values.
Area under the AR vs. AN curve (AUC) measures how well
the detection method is able to distinguish between positive
and negative proposals. Another metric called mean Aver-
age Precision (mAP) @ α where α denotes different IoU
threshold which measures the Average Prevision (AP) on
each action category.

9 Future Directions

In this section, we discuss some future directions in action
recognition and prediction research that might be interesting
to explore.

Dataset Significant efforts have been made to collect dif-
ferent types of action video datasets in recent years in order
to advance the research of action recognition and predic-
tion. Nevertheless, existing action recognition and prediction
models trained on these datasets are still difficult to be
generalized to real-world scenarios, possibly because the
incapability of these datasets in covering all the aspects that
may happen in practical scenarios. First of all, majority of
the video datasets were collected under good lighting and
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weather conditions. However, this assumption may not hold
in practice. A visual surveillance system may need to run 24
hours a day whatever the weather is. Unfortunately, existing
methods are still difficult to be generalized to poor lighting
conditions or extreme weather. Second of all, some datasets
are restricted to certain scenarios, for example, UCF101 con-
tains sports videos and EPIC-Kitchens dataset captured in
kitchens.Although onewell-trainedmodelmay performwell
in one scenario, itmay performpoorly in a new scenario. This
could be attributed to the new environment, camera motion,
appearance changes, etc.that have not been seen in the previ-
ous scenario. Last but not least, existing deep neural networks
based methods require a significant amount of data for train-
ing. However, video data could be limited in some research
areas, such as biomedical research or human rehabilitation
research. Is it possible to create and render virtual train-
ing video data using game engines such as UnReal (Unreal
engine, UnrealCV) based on existing small-scale data? This
could serve as an alternative solution to directly generalizing
deep neural networks to small-scale data. All of these chal-
lenges bring new problems to action recognition research and
prompt us to collect new datasets to advance the research.

Benefitting from image models. Deep architectures are
dominating the action recognition research lately like the
trend of other developments in the computer vision commu-
nity. However, training deep networks on videos is difficult,
and thus benefiting from deep models pre-trained on images
or other sourceswould be a better solution to explore. In addi-
tion, image models have done a good job of capturing spatial
relationships of objects, which could also be exploited in
action understanding. It is interesting to explore how to trans-
fer knowledge from image models to video models using the
idea of inflation (Carreira & Zisserman, 2017) or domain
adaptation (Tang et al., 2012b).

Interpretability on temporal extent. Interpretability of
image models has been discussed but it has not been exten-
sively discussed in video models. As shown in Satkin and
Hebert (2010), Raptis and Sigal (2013), not all frames are
equally important for action recognition; only few of them
are critical. Therefore, there are a few things that require a
deep understanding of the temporal interpretability of video
models. First of all, actions, especially long-duration actions
can be considered as a sequence of primitives. It would be
interesting to have interpretability of these primitives, such as
how are these primitives organized in the temporal domain in
actions, how do they contribute to the classification task, can
we only use few of them without sacrificing recognition per-
formance inorder to achieve fast training? In addition, actions
differ in their temporal characteristics. Some actions can be
understood at their early stage and some actions requiremore
frames to be observed. It would be interesting to ask why
these actions can be early predicted, and what are the salient
signals that are captured by the machine. Such an under-

standing would be useful in developing more efficient action
prediction models.

Learning from multi-modal data. Humans are observ-
ing multi-modal data everyday, including visual, audio, text,
etc. These multi-modal data help the understanding of each
type of data. For example, reading a book helps us to recon-
struct the corresponding part of the visual scene. However,
littlework is paying attention to action recognition/prediction
using multi-modal data. It is beneficial to use multi-modal
data to help visual understanding of complex actions because
the multi-modal data such as text data contain rich seman-
tic knowledge given by humans. In addition to action labels,
which can be considered as verbs, textual data may include
other entities such as nouns (objects), prepositions (spatial
structure of the scene), adjectives and adverbs, etc. Although
learning from nouns and prepositions have been explored in
action recognition and human-object interaction, few studies
have been devoted to learning from adjectives and adverbs.
Such learning tasks provide more descriptive information
about human actions such as motion strength, thereby mak-
ing fine-grained action understanding into reality.

Learning long-term temporal correlations. Multi-
modal data also enable the learning of long-term tempo-
ral correlations between visual entities from the data, which
might be difficult to directly learn from visual data. Long-
term temporal correlations characterize the sequential order
of actions occurring in a long sequence, which is similar to
what our brain stores. When we want to recall something,
one pattern evokes the next pattern, suggesting the associ-
ations spanning in long-term videos. Interactions between
visual entities are also critical to understanding long-term
correlations. Typically, certain actions occur with certain
object interactions under particular scene settings. Therefore,
it needs to involve not only actions, but also an interpreta-
tion of objects, scenes and their temporal arrangements with
actions, since this knowledge can provide a valuable clue
for “what’s happening now” and “what’s going to happen
next”. This learning task also allows us to predict actions in
a long-duration sequence.

Physical aspect of actions. Action recognition and pre-
diction are tasks fairly targeting at high-level aspects of
videos, and not focusing on finding action primitives that
encode basic physical properties. Recently, there has been
an increasing interest in learning the physical aspects of
the world, which studies fine-grained actions. One exam-
ple is the something-something dataset introduced in Goyal
et al. (2017) that studies human-object interactions. Inter-
estingly, this dataset provides labels or textual description
templates such as “Dropping [something] into [something]”,
to describe the interaction between humans and objects, and
an object and an object. This allows us to learn models
that can understand physical aspects of the world including
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human actions, object-object interactions, spatial relation-
ships, etc.

Even though we can infer a large amount of information
from action videos, there are still some physical aspects that
are challenging to be inferred. We are wondering that can
we make a step further, saying understanding more phys-
ical aspects, such as the motion style, force, acceleration,
etc, from videos? Physics-101 (Wu et al., 2015) studied this
problem in objects, but can we extend it to actions? A new
action dataset containing such fine-grained information is
needed. To achieve this goal, our ongoing work is providing
a dataset containing human actions with EMG signals, which
we hope to benefit fine-grained action recognition.

Learning actions without annotations. For increasingly
large action datasets such as Something-Something (Goyal
et al., 2017) and Sports-1M (Karpathy et al., 2014), man-
ual labeling becomes prohibitive. Automatic labeling using
search engines (Karpathy et al., 2014; Abu-El-Haija et al.,
2016), video subtitles and movie scripts (Marszałek et al.,
2009; Laptev et al., 2008a) is possible in some domains,
but still requires manual verification. Crowdsourcing (Goyal
et al., 2017) would be a better option but still suffers from
labeling diversity problem, andmay generate incorrect action
labels. In addition, videos in almost all the action datasets are
temporally segmented, with only one action in each of the
videos. However, this assumption does not hold as videos
may be streaming and it is difficult to know the exact start-
ing and ending frames of an action execution in streaming
videos. This prompts us to develop more robust and efficient
action recognition/prediction approaches that can automati-
cally learn from unlabeled videos or untrimmed videos.

Actions in open-world.Humanaction recognition in real-
world is essentially an open set problem, which requires the
model to simultaneously recognize the known action classes
and reject the unknown actions (Geng et al., 2020; Bao et
al., 2021). However, existing open set recognition (OSR)
research works mainly focus on image modality (Scheirer
et al., 2012, 2014; Zhang & Patel, 2016; Bendale & Boult,
2016; Oza & Patel, 2019; Perera et al., 2020; Chen et al.,
2020), except for a few works on videos (Shu et al., 2018;
Roitberg et al., 2020) and othermodalities (Yang et al., 2019).
These works typically do not work well on video data due to
the following challenges. First, the temporal nature of videos
leads to high diversity of human actions, which is challeng-
ing for an OSR model to be aware of what it does not know
when given human actions with unknown temporal dynam-
ics. Besides, the static bias (i.e., appearance of the video
background and foreground actor) in video data could be
easily over-fitted by deep learning models. The model finally
could hardly identify unknown actions in an unbiased open
vision world. These challenges motivate recent work (Bao et
al., 2021) to build an uncertainty-aware and unbiased model
for open set action recognition (OSAR). Since open-world

actions can be regarded as out-of-distribution (OOD) data,
developing more advanced OOD detection methods to tackle
the distributional shift of human actions under OSAR setting
is promising in the future.

10 Conclusion

The availability of big data and powerful models diverts the
research focus on human actions from understanding the
present to reasoning the future.Wehave presented a complete
survey of state-of-the-art techniques for action recognition
and prediction from videos. These techniques became par-
ticularly interesting in recent decades due to their promising
and practical applications in several emerging fields focus-
ing on human movements. We investigate several aspects of
the existing attempts including hand-crafted feature design,
models and algorithms, deep architectures, datasets, and
system performance evaluation protocols. Future research
directions are also discussed in this survey.
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