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Abstract
Image completion involves filling plausible contents tomissing regions in images. Current image completionmethods produce
only one result for a given masked image, although there may be many reasonable possibilities. In this paper, we present an
approach for pluralistic image completion—the task of generatingmultiple and diverse plausible solutions for free-form image
completion. A major challenge faced by learning-based approaches is that usually only one ground truth training instance per
label for this multi-output problem. To overcome this, we propose a novel and probabilistically principled framework with
two parallel paths. One is a reconstructive path that utilizes the only one ground truth to get prior distribution of missing
patches and rebuild the original image from this distribution. The other is a generative path for which the conditional prior is
coupled to the distribution obtained in the reconstructive path. Both are supported by adversarial learning. We then introduce
a new short+long term patch attention layer that exploits distant relations among decoder and encoder features, to improve
appearance consistency between the original visible and the generated new regions. Experiments show that our method not
only yields better results in various datasets than existing state-of-the-art methods, but also provides multiple and diverse
outputs.

Keywords Image completion · Multi-modal generative models · Image generation · Conditional variational auto-encoders

1 Introduction

Image completion involves the issues of filling alternative
contents for the missing parts in images, which can be
used for restoring the damaged painting, removing unwanted
objects, and generating new contents for incomplete scenes.
Many approaches have been proposed for this non-trivial
task, including diffusion-based methods (Bertalmio et al.
2000; Ballester et al. 2001; Levin et al. 2003; Bertalmio et al.
2003), patch-based methods (Criminisi et al. 2003, 2004; Jia
and Tang 2004; Barnes et al. 2009) and learning-based meth-
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ods (Pathak et al. 2016; Iizuka et al. 2017; Yu et al. 2018; Liu
et al. 2018; Nazeri et al. 2019; Yi et al. 2020). While these
approaches rapidly improve the completion results, they pro-
duce only one “optimal” result for a given masked image and
do not have the capacity to generate a variety of semantically
meaningful results. It remains a challenging problem to pro-
vide multiple and diverse plausible results for this highly
subjective process problem.

Supposing you were shown the images with various miss-
ing regions inFig. 1,whatwouldyou imagine to beoccupying
these holes? Bertalmio et al. (2000) related how expert con-
servators would restore damaged art by: (1) imagining the
semantic content to be filled based on the overall scene;
(2) ensuring structural continuity between the masked and
unmasked regions; and (3) filling in visually realistic content
for missing regions. Nonetheless, each expert will indepen-
dently end up creating substantially different details, such
as various shapes and colors of eyes, even if they may
universally agree on high-level semantics, such as general
placement of eyes and mouth on a damaged portrait.

Based on this observation, ourmain goal in this research is
thus to generate multiple and diverse plausible results when
presented with a masked image. We refer to this task as plu-
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ralistic image completion (depicted in Fig. 1). This is as
opposed to existing works that attempt to generate only a
single “guess” for this ill-posed problem.

To obtain a diverse set of results for a given input,
some methods utilize conditional variational auto-encoders
(CVAE) (Sohn et al. 2015;Walker et al. 2016;Bao et al. 2017;
Eslami et al. 2018), a conditional extension of variational
auto-encoders (VAE) (Kingma and Welling 2013), which
explicitly code a distribution that can be sampled. However,
specifically for an image completion scenario, the standard
single-path formulation usually leads to grossly underesti-
mating variances. This is because when the condition label is
itself—a masked image, the number of ground truth instances
in the training data thatmatch the label is typically only one—
the original complement of the masked image. Hence the
estimated original conditional distributions tend to have very
limited variation since they were trained to reconstruct the
single original image.

An important insight we will use is that partial images
(patches), as a superset of full images, may also be con-
sidered as generated from a latent space with smooth prior
distributions (Shaham et al. 2019). This provides a mecha-
nism for alleviating the problem of having scarce samples
per conditional masked image. To do so, we introduce a Plu-
ralistic Image Completion Network, called PICNet, with two
parallel but linked training pipelines. The first pipeline is a
VAE-based reconstructive path that not only utilizes the full
instance ground truth, but also imposes smooth priors for the
latent space of missing partial image. The second pipeline is
a generative path that learns to predict the latent prior dis-
tribution for the missing regions only based on the visible
pixels, fromwhich can be sampled to generate diverse results.
The training process for the latter path does not attempt to
steer the output towards reconstructing the instance-specific
results at all, instead allowing the reasonableness of results
being driven by an auxiliary discriminator network (Goodfel-
low et al. 2014). This leads to substantially great variability
in generation.

To further utilize the information from the visible partial
images as much as possible (Barnes et al. 2009; Yu et al.
2018), we also introduce an enhanced short+long term patch
attention layer, a generic attention mechanism that allows
information flowing from visible regions to missing holes.
This scheme converges quickly and significantly increases
the quality of our completed results.

We comprehensively evaluate and compare our approach
with existing state-of-the-art methods on a large variety of
scenes (Sect. 4.2), where various masks, including regular
and free-form irregular masks, are used to erode the images.
We additionally present many interesting applications of our
model on free-form image editing (Sect. 4.3), e.g. object
removal, face editing, and scene content-aware-move. The
extensive experimental results demonstrate that our proposed

PICNet not only generates higher-quality completion results,
but also produces multiple diverse solutions for this subjec-
tive processing task.

In summary, in this paper we present:

1. A probabilistically principled framework for free-form
image completion that is able to maintain much higher
sample diversity as compared to existing methods;

2. a PICNet with two parallel training paths, which trades
off between reconstructing the original training data and
maintaining the variance of the conditional distribution;

3. a novel short+long termpatch attention layer that exploits
context information to ensure appearance consistency in
the image domain, in a manner superior to purely using
GANs;

4. we demonstrate that our method is able to complete the
free-form mask with multiple plausible results that have
substantial diversity.

A preliminary version of this manuscript was published
in CVPR’19 (Zheng et al. 2019). In this journal exten-
sion, we improved the proposed image completion method,
conducted a thorough analysis of each component, and pre-
sented many more extensive experiments. In particular, we
restricted the distribution estimation in a separate training
phase, and further extended the Short + Long Term Attention
to patch level. Through these modifications, we successfully
extended the probabilistically principled framework to free-
form image completion, solving for arbitrary inputmasks.We
also provided a thorough ablation study to analyze each pro-
posed component. Moreover, we additionally evaluated our
approach on various free-form masks and conducted many
more experiments, with quantitative comparisons using two
learning-based feature-level metrics and two types of user
studies, and present qualitative results on handing high-
resolution images and various image editing applications.
Many recent works (Deng and Wang 2020; Zhao et al. 2020;
Peng et al. 2021) have also begun to consistently use our
method as a state-of-the-art benchmark for pluralistic image
completion, and our framework has also been extended by
other groups to different tasks (Hara and Harada 2020). Our
code and interactive demo are also publicly available.1

The rest of the paper is structured as follows: We dis-
cuss the related work in Sect. 2. Next, we describe the
proposed probabilistically principled framework in Sect. 3.1,
and the improved attention module in Sect. 3.2 together
with thorough analysis for each proposed component in the
corresponding sections. We then describe and discuss the
experiments in Sect. 4, and conclude in Sect. 5.

1 Code: https://github.com/lyndonzheng/Pluralistic-Inpainting Demo:
http://www.chuanxiaz.com/project/pluralistic.
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Fig. 1 Example completion results of our method on images of a face,
a building, and natural scenery with various masks (masks shown in
white only for visual purpose). For each group, the masked input image

is shown left, followed by sampled results from our model without any
post-processing. The results are diverse and plausible. The red rectan-
gles highlight the diverse contents (Zoom in to see the details)

2 RelatedWork

Existing work on image completion either uses information
fromwithin the image (Bertalmio et al. 2000, 2003), or infor-
mation from a large image dataset (Hays and Efros 2007;
Pathak et al. 2016).Most approaches generate only one result
per masked image, which is precisely the downside we want
to address in this paper.

Intra-Image Completion Traditional intra-image completion
works [also known as “inpainting” (Bertalmio et al. 2000)]
mainly propagate, copy and realign the background regions
to missing regions, focusing only on the steps 2 and 3 above,
by assuming that the holes should be filled with similar
appearance to that of the visible regions. One category of
intra-image completion methods are diffusion-based image
synthesis (Bertalmio et al. 2000; Ballester et al. 2001; Levin
et al. 2003; Bertalmio et al. 2003). These methods fill the sur-
rounded backgrounds to the missing regions by propagating
the local colors. They onlyworkwell on the small and narrow
holes. Another category of intra-image completion methods
are patch-based approaches (Criminisi et al. 2003, 2004; Jia
and Tang 2004; Barnes et al. 2009). They fill the holes by
copying information from similar visible regions, which pro-
duce high-quality texture-consistent result. However, these
intra-image methods cannot capture global semantics to hal-
lucinate new content for large holes (as in step 1), which is
significant for real image completion.

Inter-Image Completion To hallucinate semantically new
content, inter-image completion borrows information from
a large dataset. Hays and Efros (2007) first present an image
completion method using millions of images. Recently,
learning-based approaches are proposed. Initial works (Köh-
ler et al. 2014; Ren et al. 2015) focus on small and thin holes.
Then, Pathak et al. (2016) proposed the Context Encoders
(CE) to handle 64× 64-sized holes. Iizuka et al. (2017) built
upon (Pathak et al. 2016) by combining global and local
discriminators (GL) as adversarial loss. Wang et al. (2018)

designed aMulti-columnCNNs and a cosine similarity based
loss for high quality image in painting.More recent, Liu et al.
(2018) introduced “partial convolution” for free-form irreg-
ular mask image completion.

Some work has also explored additional information for
semantically image completion. Yeh et al. (2017), the “clos-
est” features in the latent space for the masked image are
searched to generate an image. Li et al. (2017) introduced
additional face parsing loss to ensure the semantic consis-
tency of completed images. Song et al. (2018b) proposed
SPG-Net that simultaneously does semantic map and RGB
appearance completion. Moreover, sketches and color are
used in the latest Faceshape (Portenier et al. 2018), Deep-
Fillv2 (Yu et al. 2019), EdgeConnect (Nazeri et al. 2019)
and SC-FEGAN (Jo and Park 2019). A common drawback
of these methods is that they utilize the visible information
only through local convolutional operations, which creates
distorted structures and blurry textures inconsistent with the
visible regions, especially for large holes.

Combined Intra- and Inter-Image CompletionTomitigate the
blurry problems,Yang et al. (2017) proposedmulti-scale neu-
ral patch synthesis, which generates high-frequency details
by copying patches from mid-layer features. More recently,
several works (Yu et al. 2018; Yan et al. 2018; Song et al.
2018a;Yi et al. 2020) exploit spatial attention (Jaderberg et al.
2015; Zhou et al. 2016) to get high-frequency details. Yu et al.
(2018) proposed a contextual attention layer to produce high-
frequency details by copying similar features from visible
regions to missing regions. Yan et al. (2018) and Song et al.
(2018a) proposed PatchMatch-like ideas on feature domain.
Yi et al. (2020) proposed contextual residual aggregation for
very high resolution (8K) image inpainting. However, these
methods identify similar features by comparing features of
holes and visible regions, which is somewhat contradictory
as feature transfer is unnecessary when two features are very
similar, but when needed the features are too different to be
matched easily. Furthermore, distant information is not used
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Fig. 2 Examples of different degraded images.aGround truth image Ig .
bMasked image Im . c The corresponding complement image Ic to each
top masked image Ig . It is often not reasonable to strongly enforce the
completedmasked regions to be identical to the ground truth, especially
in cases when large variations in the completed content can still be
perfectly consistent to the visible regions, e.g. when the entire mouth
or both eyes are masked

for new content that differs from visible regions. Our model
solves it by extending self-attention to harness abundant con-
text.

Image Generation Image generation has progressed signif-
icantly using methods such as VAE (Kingma and Welling
2013) and GANs (Goodfellow et al. 2014). These have been
applied to conditional image generation tasks, such as image
translation (Isola et al. 2017; Zhu et al. 2017a), synthetic to
realistic (Shrivastava et al. 2017; Zheng et al. 2018), future
prediction (Mathieu et al. 2015), and 3D models (Park et al.
2017). Perhaps most relevant in spirit to us are conditional
VAEs (CVAE) (Sohn et al. 2015; Walker et al. 2016) and
CVAE-GAN (Bao et al. 2017), but these are not specially
targeted for image completion. CVAE-based methods are
most useful when the conditional labels are few and dis-
crete, and there are sufficient training instances per label.
Some recent work utilizing these in image translation can
produce diverse output (Zhu et al. 2017b; Lee et al. 2018),
but in such situations the condition-to-sample mappings are
more local (e.g. pixel-to-pixel), and only change the visual
appearancewithout generatingnewcontent. This is untrue for
image completion, where the conditional label is the masked
image itself, with only one training instance of the original
holes. Chen et al. (2018), different outputs were obtained for
face completion by specifying facial attributes (e.g. smile),
but this method is very domain specific, requiring targeted
attributes. In contrast, our proposed probabilistically princi-

Fig. 3 Completion strategies given masked image. (Deterministic)
structure directly predicts the ground truth instance. [CVAE (Walker
et al. 2016)] adds in random sampling to diversify the output, but is still
trained on the single ground truth. (Instance blind) only matches the
masked instance, but training is unstable. (Ours) uses a generative path
during testing, but is guided by a parallel reconstructive path during
training. Note that, yellow path is only used for training (Color figure
online)

pled framework produces multiple and diverse plausible in
various datasets, which does not need any label information
for training.

3 Approaches

Suppose we have an image, originally ground truth Ig

(Fig. 2a), but degraded by a number of missing pixels to
become Im (Fig. 2b), masked partial image comprising the
visible pixels. We also define Ic (Fig. 2c) as its complement
partial image comprising the missing pixels.

Prior image completion methods (Yu et al. 2018; Pathak
et al. 2016; Iizuka et al. 2017; Nazeri et al. 2019) attempt to
reconstruct the original unmasked image Ig in a determinis-
tic fashion from Im (see Fig. 3 “Deterministic”). However,
this rigid approach has several limitations. First, while it is
fine to rebuild the original image Ig when visible regions
tightly constrain the completed content, e.g. when only the
left half of a face is masked in Fig. 2, it is unnecessarily
limiting when visible regions allow a much greater range of
perceptually consistent completion, e.g. with many differ-
ent mouth expressions or building door appearances equally
acceptable in Fig. 2. Second, deterministic methods can only
generate a single solution and are not able to recover a richer
distribution of reasonable possibilities. Instead, our goal is to
sample from p(Ic|Im) and we reconstruct the original image
only when the corresponding complement partial images Ic

are provided during the training.
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3.1 Pluralistic Image Completion Network

3.1.1 Probabilistic Framework

In order to have a distribution to sample from, an approach
is to employ the CVAE (Sohn et al. 2015) which estimates a
parametric distribution over a latent space, from which sam-
pling is possible. This involves a variational lower bound of
the conditional log-likelihood:

log p(Ic|Im) ≥ −KL(qψ(zc|Ic, Im)||pφ(zc|Im))

+ Eqψ(zc|Ic,Im )[log pθ (Ic|zc, Im)] (1)

where zc is the latent vector ofmissing patches, qψ(zc|Ic, Im)

is the recognition network, pφ(zc|Im) is the conditional prior,
and pθ (Ic|zc, Im) is the likelihood, withψ , φ and θ being the
deep network parameters of their corresponding functions.
This lower bound is maximized w.r.t. all parameters.

For our purposes, the chief difficulty of usingCVAE (Sohn
et al. 2015) directly is that the high DoF of recognition net-
work qψ(zc|Ic, Im) and conditional prior network pφ(zc|Im)

are not easily separable in (1). Besides, since the condi-
tional prior network pφ(zc|Im) is sufficiently unconstrained
in (1), it will lean a narrow delta-like prior distribution of
pφ(zc|Im) → δ(zc − z∗

c ), where z∗
c is the maximum latent

likelihood point of pθ (Ic|zc, Im). In this way, the variance
σ 2 of the learned latent distribution is easily driven towards
zero. Then it is approximately equivalent to maximizing
Epφ(zc|Im )[log pθ (Ic|zc, Im)], the “GSNN” variant in (Sohn
et al. 2015), in which they directly set the recognition net-
work the same as the prior network, i.e., qψ(zc|Ic, Im) =
pφ(zc|Im). While this low variance prior may be useful in
estimating a single solution, sampling from it will lead to
negligible diversity in image completion results. When the
CVAE variant of Walker et al. (2016), which assumes con-
ditional prior pφ(zc|Im) = N (0, I), is used instead, the
network learns to ignore the latent sampling and directly
estimates Ic from Im for a fixed ground truth, also result-
ing in similar solutions. A possible way to diversify the
output is simply to not incentivize the output to reconstruct
the instance-specific Ig during training, only needing it to fit
in with the training set distribution as deemed by a learned
adversarial discriminator (see Fig. 3 “Instance Blind”). How-
ever, this approach is unstable, especially for large and
complex scenes (Song et al. 2018a). A detail analysis is pre-
sented in Sect. 3.1.3.

Latent Priors of Holes In our approach, we require that miss-
ing partial images (patches), as a superset of full images, to
also arise from a latent space distribution, with a smooth
prior of p(zc). The variational lower bound is:

log p(Ic) ≥ −KL(qψ(zc|Ic)||p(zc))

+ Eqψ(zc|Ic)[log pθ (Ic|zc)] (2)

where in Kingma and Welling (2013) the prior is set as
p(zc) = N (0, I). However, we can bemore discerning when
it comes to partial images since they have different numbers
of pixels. In particular, a complement image Ic with more pix-
els (large holes for the masked image Im , as shown in the last
column in Fig. 2) should have greater prior variance than a
complement image Ic with fewer pixels (small holes) and in
fact a masked partial image Im with no pixels missing should
be completely deterministic! Hence we generalize the prior
p(zc) = Nm(0, σ 2(n)I) to adapt to the number of missing
pixels n, where σ 2(n) = n

H×W ∈ (0, 1].
Prior-Conditional Coupling Next, we combine the latent
priors into the conditional lower bound of (1). Since zc rep-
resents the distributions of target missing partial image Ic,
zc can be naturally inferred using the target missing image
Ic, that qψ(zc|Ic, Im) ≈ qψ(zc|Ic) when Ic is available in the
training. Updating (1):

log p(Ic|Im) ≥ −KL(qψ(zc|Ic)||pφ(zc|Im))

+ Eqψ(zc|Ic)[log pθ (Ic|zc, Im)] (3)

However, unlike in (1), notice that qψ(zc|Ic) is no longer
freely learned during training, yet is tied to its presence in
(2). Intuitively, the learning of qψ(zc|Ic) is regularized by the
prior p(zc) in (2), while the learning of the conditional prior
pφ(zc|Im) is in turn regularized by qψ(zc|Ic) in (3).

Reconstruction vs Creative Generation One issue with (3)
is that the sampling is taken from qψ(zc|Ic) during training,
but is not available during testing, whereupon sampling must
come from pφ(zc|Im) which may not be adequately learned
for this role. In order to mitigate this problem, we modify (3)
to have a blend of formulations with and without importance
sampling.

As is typically the case for image completion, there is
only one training instance of Ic for each unique Im . This
means that for function qψ(zc|Ic, Im), Ic can be learned into
the network as a hardcoded dependency of the input Im , so
qψ(zc|Ic, Im) ∼= q̂ψ(zc|Im). Assuming that the network for
pφ(zc|Im) has similar or highermodeling power and there are
no other explicit constraints imposed on it, then in training
pφ(zc|Im) → q̂ψ(zc|Im), and the KL divergence in (1) goes
to zero. Then we get the following function:

log p(Ic|Im) ≥ Epφ(zc|Im )[log pθ (Ic|zc, Im)] (4)

the “GSNN” version in Sohn et al. (2015). However, unlike
Sohn et al. (2015), the variance σ 2 of the learned distribu-
tion pφ(zc|Im) in our method will not be zero as mentioned
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Fig. 4 Overview of our architecture with two parallel pipelines. The
top reconstructive pipeline (yellow line) combines information from Im
and Ic, which is used only for training. The bottom generative pipeline
(blue line) infers the conditional distribution of hidden regions, that can

be sampled during testing. The two representation networks and gener-
ation networks in top and bottom share identical weights (Color figure
online)

above. This zc for missing regions is sampling from the vis-
ible regions Im , we call this without importance sampling,
contrary to the importance sampling qψ(zc|Ic). Finally, we
combine (3) and (4) to obtain the reconstruction and creative
generation function:

log p(Ic|Im) ≥ λ
{
Eqψ [log pr

θ (Ic|zc, Im)] − KL(qψ ||pφ)
}

+ (1 − λ)Epφ [log pg
θ (Ic|zc, Im)] (5)

where λ ∈ [0, 1] is implicitly set by training loss coefficients
in Sect. 3.1.2. When sampling from the importance func-
tion qψ(zc|Ic), the missing instance information is available
and we formulate the likelihood pr

θ (Ic|zc, Im) to be focused
on reconstructing Ic. Conversely, when sampling from the
learned distribution pφ(zc|Im) which does not contain Ic,
we will facilitate creative generation by having the likeli-
hood model pg

θ (Ic|zc, Im) ∼= �
g
θ (zc, Im) be independent of

the original instance of Ic. Instead it only encourages gen-
erated samples to fit in with the overall training distribution.

Joint Unconditional and Conditional Variational Lower
Bounds Our overall training objective may then be expressed
as jointly maximizing the lower bounds in (2) and (5). This
can be done by unifying the likelihood in (2) to that in (5)
as pθ (Ic|zc) ∼= pr

θ (Ic|zc, Im), in which the zc is sampling
from the important sampling qψ(zc|Ic) that can be used for
rebuild the original missing regions Ic. We can then define a
combine function as our maximization goal:

B = β B1 + B2

= − [
βKL(qψ ||pzc) + λKL(qψ ||pφ)

]

+ (β + λ)Eqψ log pr
θ + (1 − λ)Epφ log pg

θ (6)

where B1 is the lower bound related to the unconditional log
likelihood of missing partial image Ic, and B2 relates to the
log likelihood of missing regions Ic conditioned on Im . Note
that this function holds a key different with hybrid objective
function in Sohn et al. (2015) that the conditional prior net-
work pφ(zc|Im)and the recognition network qψ(zc|Ic)are no
longer freely learned, but are constrained by a mask related
prior p(zc) = Nm(0, σ 2(n)I). Furthermore, our without
importance sampling, also the testing sampling, does not
learn to predict a fixed instance during the training, which
encourages larger diversity.

3.1.2 Network Structure and Training Loss

The formula in (6) is implemented as our dual pipeline,
illustrated in Fig. 4. This consists of representation, infer-
ence, generation, and auxiliary discriminator networks in two
paths. The upper pipeline is the reconstruction path used in
training that corresponds to the lower bound B1, in which zc

contains information of missing image Ic. Hence when com-
bined with the conditional feature fm , we can easily train this
path to rebuild the original image Ig . In contrast, the lower
path, used in both training and testing, is responsible for the
lower bound B2, where the missing information is inferred
only from masked image Im , resulting in a less restrictive
prediction.

We transfer the lower bound terms in (6) as the corre-
sponding loss function. During training, jointly maximizing
the lower bounds is then minimizing a total loss L, which
consists of three groups of component losses:

L = αKL(Lr
KL + Lg

KL) + αapp(Lr
app + Lg

app)

+αad(Lr
ad + Lg

ad) (7)
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where the LKL group regularizes consistency between pairs
of distributions in terms of KL divergences, the Lapp group
encourages appearance matching fidelity, and the Lad group
forces sampled images to fit in with the training set dis-
tribution. Each of the groups has a separate term for the
reconstructive and generative paths, respectively.

Distributive Regularization The typical interpretation of the
KL divergence term in a VAE is that it regularizes the learned
importance sampling function qψ(zc|Ic) to a latent prior
p(zc). Defining both as Gaussians, we get:

Lr ,(i)
KL = KL(qψ(z|I (i)

c )||Nm(0, σ 2,(i)(n)I)) (8)

For the generative path, the appropriate interpretation is
reversed: the learned conditional prior pφ(zc|Im), also a
Gaussian, is regularized to qψ(zc|Ic).

Lg,(i)
KL = KL(qψ(z|I (i)

c ))||pφ(z|I (i)
m ))) (9)

Note that the conditional prior uses Im , while the importance
function has access to the missing regions Ic.

Appearance Matching Loss The likelihood term pr
θ (Ic|zc)

is interpreted as probabilistically encouraging appearance
matching to the missing regions Ic. However, our framework
also auto-encodes the masked image Im (via fm) deter-
ministically, and the loss function needs to cater for this
reconstruction. As such, the per-instance loss here is:

Lr ,(i)
app = ||I (i)

rec − I (i)
g ||1 (10)

where I (i)
rec = G(zc, fm) and I (i)

g are the reconstructed and
original full images respectively. The purpose of this loss is
to bias the representation towards the actual visible informa-
tion. In contrast, for the generative path the latent distribution
Nφ of the missing regions Ic is inferred based only on the
visible Im . This would be significantly less accurate than the
inference in the upper path. Thus, we ignore instance-specific
appearancematching for Ic, and only focus on reconstructing
Im :

Lg,(i)
app = ||M ∗ (I (i)

gen − I (i)
g )||1 (11)

where I (i)
gen=G(z̃c, fm) is the generated image, and M is the

binary mask selecting visible pixels.

Adversarial Loss. The formulation of pr
θ (Ic|zc, Im) and the

instance-blind pg
θ (Ic|Qzc, Im) also incorporates the use of

adversarially learned discriminators D1 and D2 to judge
whether the generated images fit into the training set distri-
bution. Inspired by (Bao et al. 2017), we use a mean feature
match loss in the reconstructive path for the generator,

Lr ,(i)
ad = || fD1(I (i)

rec) − fD1(I (i)
g )||2 (12)

where fD1(·) is the feature output of the final layer of D1.
This encourages the original and reconstructed features in the
discriminator to be close together. Conversely, the adversarial
loss in the generative path for the generator is:

Lg,(i)
ad = [D2(I (i)

gen) − 1]2 (13)

This is based on the generator loss in LSGAN (Mao et al.
2017), which performs better than the original GAN loss
(Goodfellow et al. 2014) in our scenario. The discriminator
loss for both D1 and D2 is also based on LSGAN.

3.1.3 Analysis

Effect of Network StructureWefirst investigated the influence
of using our two-path training structure in comparison to
other variants such as the CVAE of (Walker et al. 2016) and
the “Instance Blind” structures in Fig. 3. We also trained the
state-of-the-art multi-model BicycleGAN (Zhu et al. 2017b)
on Celeba-HQ dataset (Liu et al. 2015; Karras et al. 2017)
by setting A = Im , B = Ic with center mask.

We first computed diversity score using the Learned Per-
ceptual Image Patch Similarity (LPIPS) metric reported in
Zhu et al. (2017b). LPIPS metric (Zhang et al. 2018b) cal-
culates the average distance of samples in a deep feature
domain. For each random pairs, a pre-trained deep network
is used to extract the features of images. Then, the distance
of two vectors is calculated using �1 distance. The larger
distance indicates the results are much more diverse, as the
generated pairs far from each other. For each method, we
sampled 50K pairs of randomly generated images from 1K
center masked images. Iout and Iout(m) are the full output and
the masked-regions’ output, respectively. Furthermore, we
used the popular Fréchet Inception Distance (FID) (Heusel
et al. 2017) to assess the visual quality of completed images
by comparing the distance between distributions of com-
pleted and real images in a deep feature domain. As for the
traditional pixel-level and patch-level image quality metrics,
including the mean �1 loss, structural similarity (SSIM), and
peak signal-to-noise ratio (PSNR), we select the closest gen-
erated image to the ground truth image for calculation, as
these metrics are based on one-to-one pairing.

Table 1 shows diversity and image quality analysis for
different network structures. We note that our method not
only improved the image quality significantly (relative 18%
improvement for FID), but also generated multiple and
diverse completion results. Here, BicycleGAN obtained rel-
atively higher diversity scores than our baseline framework
by using cycle loss instead of reconstruction loss. However,
the completed images are of low quality (as shown in Fig. 5),
which suggests that despite increased diversity, its network
structure is not directly suitable for image completion.
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Table 1 Quantitative
comparisons of different
network structures on
CelebA-HQ testing set (Liu
et al. 2015; Karras et al. 2017)
with center masks

Diversity (LPIPS) Image quality (Iout )

Iout ↑ Iout(m) ↑ �1 loss ↓ SSIM ↑ PSNR ↑ FID ↓
CA (Yu et al. 2018) – – 0.031 0.820 23.57 9.53

EC (Nazeri et al. 2019) – – 0.030 0.819 23.47 8.01

MEDFE (Liu et al. 2020) – – 0.028 0.830 24.38 7.85

CVAE (Sohn et al. 2015) 0.004 0.014 0.023 0.847 24.02 9.96

Instance Blind 0.015 0.049 0.025 0.852 23.77 9.48

BicycleGAN (Zhu et al. 2017b) 0.020 0.060 0.026 0.845 23.71 11.56

PICNet 0.024 0.071 0.021 0.867 24.69 6.43

The best results are highlighted in bold
↓ lower is better, ↑ higher is better. Iout is the completed output image and Iout(m) = (1 − M) × Iout is
extracted for the missing regions. We report the traditional pixel-level and patch-level image quality metrics,
including �1 loss, SSIM and PSNR. We also report the latest learning-based feature-level metrics, i.e. LPIPS
and FID scores

Fig. 5 Qualitative comparison results of different training strategies.
First column: original andmasked image.Others: the completed results
of different methods. Our method provides diverse results, i.e. different
hair styles and mouth expressions, with realistic appearance

Figure 5 shows some sampled examples of each struc-
ture. We observe that CVAE (Walker et al. 2016) obtains
reasonable results, yet with little variation. The framework
has likely learned to ignore the sampling and predicted a
deterministic outcome as it always tries to rebuild the orig-
inal ground truth during the training no matter what masks
are used to degrade the input. As for “Instance Blind”, If we
enforced the generated image back to the original “ground
truth” Ig , the experience will be similar to the CVAE (Walker
et al. 2016). The visual results of BicycleGAN are much
worse than other methods. In their model, the latent code z
to the encoder is replicated from 1 × 1 × Z to H × W × Z ,
where the different spatial position holds the same random

Table 2 Quantitative comparisons of different variances σ 2 on Ima-
geNet (Russakovsky et al. 2015) with free-form masks provided in Liu
et al. (2018)

Dynamic σ 2(n) Fixed σ 2 = 1

LPIPS ↑ FID ↓ LPIPS ↑ FID ↓
[0.01, 0.1] 0.001 9.33 0.001 11.12

(0.1, 0.2] 0.004 15.93 0.005 17.75

(0.2, 0.3] 0.008 22.74 0.012 27.24

(0.3, 0.4] 0.015 36.23 0.021 40.98

(0.4, 0.5] 0.024 53.14 0.033 58.57

(0.5, 0.6] 0.045 78.53 0.059 86.91

The first column denotes the masked ratios. Our dynamic σ 2(n) is
adapted to the number of missing pixels n

value that does not represent any semantic meaning. On the
contrary, our latent code z is inferred from the visible pix-
els during the testing, which includes the predicted semantic
information from the visible pixels.

Effect of Dynamic σ 2(n) We compare the proposed dynamic
variance σ 2(n) to the previous fixed variance σ 2 = 1 used
in VAE (Kingma and Welling 2013) and CVAE (Sohn et al.
2015). As shown in Table 2, the diversity is naturally related
to the masked ratio in the first column, where larger masked
regions resulted in higher diversity. We noted that the fixed
version achieved higher diversity because those sampling
vectors came from N (0, I) with a large range of variation,
but it had much lower FID scores (on average 4.45 lower
than ours). In contrast, our dynamic σ 2(n) restrains the range
of sampling vectors, which generates higher quality results
with some diversity. The recent work (Peng et al. 2021) fur-
ther aims to simultaneously improve the diversity and image
quality.
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Fig. 6 Our short + long term patch attention layer. The attention map
is directly computed on the decoder features to estimate the content
similarity in the same domain. After obtaining the self-attention scores,
we use these to compute self-attention on decoder features, as well as
contextual flow on encoder features

3.2 Short+ Long Term Patch Attention

A weakness of purely convolutional operations is that they
have limited spatial ranges, and cannot efficiently exploit
distant correlation. Extending beyond the Self-Attention in
SAGAN (Zhang et al. 2018a), we propose a novel short +
long term patch attention layer that not only to use the self-

attention within a decoder layer to harness distant spatial
context, but also to further capture feature-feature context
between encoder and decoder layers. Our key novel insight
is: doing so would allow the network a choice of attending to
the finer-grained visible features in the encoder or the more
semantically generative features in the decoder, depending
on circumstances. Our proposed structure is shown in Fig. 6.

3.2.1 Self-Patch-Attention Map

Feature attention has been widely used in image completion
task (Yu et al. 2018; Yan et al. 2018; Song et al. 2018a; Yi
et al. 2020). They calculate the attention map by comparing
low-frequency decoder features of holes and high-frequency
encoder feature of visible regions. Then, the high-frequency
feature are copied from visible regions to the missing holes
based on the similarity score. However, this is a little contra-
dictory as feature transfer is unnecessary when two features
are very similar, but when needed the features are too difficult
to be matched easily.

To address this, we calculate the content similarity in itself
feature domain, the decoder feature. Our attention map cal-

Fig. 7 Texture flow (white arrow) for diversely generated contents with
the same mask. aMasked input image. b*Multiple and diverse results
as well as one query point (red dot). c* The corresponding attention
maps (upsampled to original image size for visualization) for the query

points in the output. The high-quality textures are copied from different
visible regions (blue rectangles) to the generated regions (white rectan-
gles), depending onwhat content has been generated.Here,we highlight
some points with the highest attention scores (Color figure online)

Fig. 8 Texture flow (white arrow) for different masked regions. aOrig-
inal image. b*Masked input images with different degraded regions. c*
The completed results as well as query points (denoted by color dots).

d* The corresponding attention maps for the query points in the output.
The results attend to different visible regions (blue rectangles) based on
the different visible content (Color figure online)
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culates the response at a position in a sequence by paying
attention to other position in the same sequence. Given the
features fd from the previous decoder layer, we first calcu-
lates the point attention score of:

A j,i = exp(si, j )
∑N

i=1 exp(si, j )
, where si, j = θ( fdi )


θ( fd j ),(14)

whereA j,i represents the similarity of i th location to the j th
location. N = H × W is the number of pixels, while θ is a
1x1 convolution filter for refining the feature.

Inspired by PatchMatch (Barnes et al. 2009), we further
ensure the consistency of attention maps by fusing the simi-
larity score in a square patch:

Â j,i =
∑

j ′∈U j ,i ′∈Ui

A j ′,i ′ (15)

where U j and Ui are the neighborhood patch sets at j th and
i th locations separately. We fixed the square size as 3 × 3
throughout this paper.

3.2.2 Short-Term Attention from Decoder Full Regions

After we obtain the attention map, the non-local information
is fused in the decoder features. This leads to the short-term
intra-layer attention feature (Short-Term Attention in Fig. 6)
and the output yd :

cd j =
N∑

i=1

Â j,i fdi , yd = γdcd + fd (16)

where, we use a scale parameter γd to balance the weights
between attention feature cd and decoder feature fd . The ini-
tial value of γd is set to zero.

3.2.3 Long-Term Attention from Encoder Visible Regions

In addition, specifically for image completion task, we not
only need the high quality results for missing holes, but also
need to ensure the appearance consistency of the generated
patches of missing parts and the original patches of visible
parts. Then, we introduce a long-term inter-layer attention
feature (Long-Term Attention in Fig. 6), inwhich the response
attends to visible encoded features fe. Therefore, the output
ye is given by:

cej =
N∑

i=1

Â j,i fei , ye = γe(1 − M)ce + Mfe (17)

As before, a scale parameter γe is used to combine the
encoder feature fe and the attention feature ce. However,

unlike the decoder feature fd which has information for gen-
erating a full image, the encoder feature fe only represents
visible parts Im . Hence, a binary mask M (1 denotes visible
regions, and 0 represents the holes) is used. In this way, the
high-quality visible features are flowed to the holes based on
the content similarity. Finally, both the short- and long-term
attention features are aggregated and fed into further decoder
layers.

3.2.4 Analysis

Readers may wonder why the proposed short-long term
attention layer would achieve better performance than exist-
ing contextual attention layers (Yu et al. 2018; Yi et al.
2020). Here, we show that the proposed module is able to
exploit non-local information from both visible and gen-
erated regions for the holes, instead of purely copying
high-frequency information from visible regions.

In Figs. 7 and 8, completed results, alongwith correspond-
ing attention maps for query points, are presented. Here,
only points with the highest attention scores are highlighted.
We use white arrows to explicitly show the texture flow, or
how the attention layer copies information from high-quality
visible features (blue rectangles) to the originally masked
regions (white rectangles). In Fig. 7, we find that the pro-
posed attention layer attends to different visible regions for
differently generated content, as sampled from our model. In
this way, the model ensures appearance consistency between
the diversely generated appearance and the visible pixels.
Figure 8 shows other examples of texture flow from visible
regions to masked regions. When we mask different regions
of the window, the proposed attention layer learns to copy
high-quality pixels from corresponding visible regions (blue
rectangles) to the missing holes (white rectangles).

We also compare the proposed attention layer to previ-
ous methods, including contextual attention (CA) (Yu et al.
2018) and self-attention (SA) (Zhang et al. 2018a) for image
completion. As shown in Fig. 9, our proposed attention layer
borrows features fromdifferent positions, rather than directly
copying similar features from one visible position like CA.
In the building scene, CA’s result is of similar high quality
to our method, due to the presence of repeated structures.
However, in the case of faces, if the mask regions are large,
both CA and SA are unable to generate high-quality results.
It is worth mentioning that CA can copy high-quality pixels
for skin (purple rectangle) from the visible skin, yet obtain-
ing unrealistic eyes (blue rectangle). This is because when
two eyes are masked, they cannot copy non-local similar
patches from other visible parts. Conversely, SA only copies
features in the decoder network, ignoring high-quality vis-
ible features. While it generates plausible appearances for
skin and eyes, the generated skin is inconsistent to the visi-
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Fig. 9 Comparison of various attention modules. a Original image. b
Masked input image. c Results of contextual attention (Yu et al. 2018).
d Results of self-attention (Zhang et al. 2018a). e Multiple results of
our method with short-long term patch attention. f The corresponding
attention maps for the query points, e.g. hair (red), skin (green), eye

(yellow) and teeth (blue) on the face. As can be seen, the hair point
focuses more on the original visible regions (top-left attention map),
while the left eye attends to the generated right eye (bottom-left atten-
tion map); the skin and teeth copy information from both visible and
generated regions (right attention maps) (Color figure online)

ble skin. Our attention module is able to utilize both decoder
features (which do not have masked parts) and encoder fea-
tures appropriately. In completing the left eye, information is
distantly shared from the decoded right eye. When it comes
to completing a point in a masked hair region, it will focus
on encoded features from visible hairs.

4 Experimental Results

4.1 Experimental Details

Datasets We evaluated the proposed PICNet with arbitrary
mask types on various datasets, including Paris (Doersch
et al. 2012), CelebA-HQ (Liu et al. 2015; Karras et al. 2017),
ImageNet (Russakovsky et al. 2015) and Places2 (Zhou et al.
2018).Here,weonly train onemodel to evaluate both the gen-
eral free-form irregular masks and the center regular mask.

Metrics Quantitative evaluation is tricky for the pluralistic
image completion task, as our goal is to get diverse but
reasonable solutions for a given masked image. The orig-
inal image is only one solution of many, and comparisons
should not be made only based on this image. Therefore,
we first used the Fréchet Inception Distance (FID) (Heusel
et al. 2017) and Inception Score (IS) (Salimans et al. 2016)
to assess the quality of completed image, as they are mea-
sured on learned features over the whole test set. Following
Liu et al. (2018) and Nazeri et al. (2019), we then reported
the traditional pixel- and patch-level image quality metrics,
including �1 loss, structure similarity index (SSIM) and peak
signal-to-noise ratio (PSNR). We additionally compared the

visual realism of all results using human judgment, as previ-
ously proposed (Zhang et al. 2016) and widely adopted for
image generation (Isola et al. 2017; Zhu et al. 2017a, b; Park
et al. 2019; Nazeri et al. 2019).

Training PICNet is implemented in Pytorch v1.4. The miss-
ing regions take value 0 in the input.We highlight themissing
regions as white in the figures only for visual purposes. Each
mini-batch has 16 images per NVIDIA V100 GPU and each
input has 1 reconstructive and 1 generative output. For the
binary masks, we used randomly regular and irregular holes.
However, allowing unrestricted mask sizes is more difficult
than keeping to center masks as in our prior work (Zheng
et al. 2019). In order to train the networks to convergence, two
training steps were used: first, the completion network was
trained using only the losses for the top reconstructive path,
which has full information from both visible and missing
regions. To do this, we estimated the missing regions’ distri-
butions that relate to different mask sizes. After we obtained
the distribution of missing regions through the reconstruc-
tive path, the bottom generative path was trained to infer the
distribution of missing holes based on the visible parts, from
whichwe can generatemultiple results. During optimization,
the weights of different losses were set to αKL=10, αrec=10,
αad=1.

InferenceAt test time, only the bottomgeneration pathwill be
applied to generate multiple and diverse results based on the
visible information. We sampled 50 images for each masked
input image Im. Note that the distribution we sampled from
is also learned from the visible regions, rather than a fixed
distribution used in previous works (Sohn et al. 2015;Walker
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Fig. 10 Qualitative results on Paris validation set (Doersch et al. 2012)
for center region completion. Here, we compare with PM (Barnes et al.
2009),CE (Pathak et al. 2016), Shift-Net (Yan et al. 2018) andEC (Naz-

eri et al. 2019). Note that, our PICNet generates different numbers of
windows and varying door size with realistic appearance

et al. 2016). The visual results were automatically selected
based on the higher discriminator scores.

4.2 Comparison with ExistingWork

We mainly compare our method with 6 methods:

– PM: PatchMatch (Barnes et al. 2009), the state-of-the-art
non-learning based approach.

– CE2: context Encoder (Pathak et al. 2016), the first
learning-based method for large holes.

– GL3: globally and Locally (Iizuka et al. 2017), the first
learning-based method for arbitrary regions.

– CA4: contextual attention (Yuet al. 2018), thefirstmethod
combining learning- and patch-based methods.

– PConv5: partial convolution (Liu et al. 2018), the first
learning-based method for free-form irregular holes.

– EC6 and GC7: EdgeConnect (Nazeri et al. 2019) and
Gated Convolution (Yu et al. 2019), the latest completion
networks that use auxiliary edge information.

Compared to these approaches, our PICNet is the first
work considering multiple solutions on various datasets for
this ill-posed problem. For fair comparison among learning-
based methods, we mainly reported the results with each
model trained on the corresponding dataset. We consider
the released models on the respective authors’ websites to be
their best performing models.

2 https://github.com/pathak22/context-encoder.
3 https://github.com/satoshiiizuka/siggraph2017_inpainting.
4 https://github.com/JiahuiYu/generative_inpainting.
5 https://github.com/NVIDIA/partialconv.
6 https://github.com/knazeri/edge-connect.
7 https://github.com/JiahuiYu/generative_inpainting.

4.2.1 Center Region Completion

Qualitative Results In Fig. 10, we first show the visual results
on the Paris dataset (Doersch et al. 2012). PM works by cop-
ing similar patches from visible regions and obtains good
results on this dataset with repetitive structures.CE generates
reasonable structureswith blurry textures.Shift-Net produces
better results by copying feature fromvisible regions to holes,
which is similar to CA (CA did not release model for Paris).
EC provides single reasonable solution. Compared to these,
our PICNet model not only generates more natural images
with high-quality, but also provides multiple results, e.g. dif-
ferent numbers of windows and varying door sizes.

Next, we report the performance on the more challeng-
ing ImageNet dataset (Russakovsky et al. 2015). For a fair
comparison, we also used a subset of 100K training images
of ImageNet to train our model as previous works (Iizuka
et al. 2017). Visual results on a variety of objects from
the validation set are shown in Fig. 11. These visual test
images are those chosen in Iizuka et al. (2017). We note that,
while learning-based methods CE, GL and CA provide cor-
rectly semantic results, our model is able to infer the content
quite effectively. We observe that our model tries to gener-
ate full body for the first dog, and the mouth for the second
dog. Meanwhile, our PICNet provides multiple and diverse
results, from which we can choose different realistic results.

4.2.2 Free-form Region Completion

We further evaluate our model on various datasets with irreg-
ular holes proposedbyLiu et al. (2018). In this testing dataset,
they generate 6 categories of free-form masks with differ-
ent hole-to-image area ratios: [0.01, 0.1], (0.1, 0.2], (0.2,
0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6]. Each has 2,000 irregular
masks. Results are compared against the current state-of-the-
art approaches both qualitatively and quantitatively. Results
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Fig. 11 Qualitative results and comparisons with the PM (Barnes et al.
2009), CE (Pathak et al. 2016), GL (Iizuka et al. 2017) and CA (Yu
et al. 2018) on the ImageNet validation set (Russakovsky et al. 2015) .

Our PICNet tries to generate some semantic result for the animals, even
when the significant semantic information is missing

Table 3 Quantitative comparisons on ImageNet (Russakovsky et al.
2015) with free-form masks provided in Liu et al. (2018)

Size GL CA PConv EC PICNet

FID† [0.01, 0.1] 10.40 12.63 11.59 8.78 9.33

(0.1, 0.2] 26.42 24.63 26.46 16.75 15.93

(0.2, 0.3] 50.37 39.87 47.32 28.37 22.74

(0.3, 0.4] 79.01 57.44 77.16 43.74 36.23

(0.4, 0.5] 108.37 76.10 91.29 63.15 53.14

(0.5, 0.6] 125.41 93.55 113.62 93.43 78.53

IScore� [0.01, 0.1] 34.66 37.33 38.62 38.57 38.18

(0.1, 0.2] 31.94 34.95 31.97 35.59 35.36

(0.2, 0.3] 24.26 28.79 25.53 31.06 32.95

(0.3, 0.4] 17.00 22.52 18.43 26.27 28.73

(0.4, 0.5] 12.13 18.35 12.43 18.94 21.20

(0.5, 0.6] 8.12 13.37 10.2 12.84 16.99

The best results are highlighted in bold
†Lower is better
�Higher is better. Here, we used the top 10 samples (ranked by the
discriminator score) in our models for the latest learning-based feature-
level image quality evaluation

ofGL andCA are obtained from their releasedmodels, which
were trained only on regular randommasks.Results ofEC are
also generated from their released model, which was trained
on the same images and masks as ours. As PConv only pro-
vides the partial convolutional operation, we reproduced the
model with the same masks.

Quantitative Results In Table 3, we first report the FID and IS
results on the ImageNet test set (Russakovsky et al. 2015). In
this setting, we used our top 10 samples of the 50 generated

images for the evaluation (automatically voted using the dis-
criminator score). As can be seen, while our multiple results
are slight worse than EC on small mask sizes, we improve
FID and IS significantly on large mask ratios, e.g. “78.53” vs
“93.43” (16% relative improvement) FID for mask ratio (0.5,
0.6]. This suggests that when the mask ratios are small, it is
sufficient to predict a single best result based on the neigh-
boring visible pixels, yet it is not reasonable when the mask
ratios are large. The latter requires our approach of gener-
ating multiple and diverse results that match the testing set
distribution.

Traditional pixel- and patch-level comparison results are
reported on the Places2 test set (Zhou et al. 2018) in Table
4. As these metrics require one-to-one matched images for
the evaluation, we selected one sample from our multiple
results, with the best balance of quantitative measures for
comparison. Without bells and whistles, all instantiations of
our model outperform the existing state-of-the-art models,
indicating that our randomsamples include the close example
to the original image. While the prior works (Iizuka et al.
2017; Yu et al. 2018; Liu et al. 2018; Nazeri et al. 2019;
Yu et al. 2019) strongly enforce the generated images to be
the same as the original images via a reconstruction loss, the
testing images are not in the training set.

Qualitative Results Qualitative comparison results are visu-
alized in Figs. 12, 13 and 14. Our PICNet is able to achieve
good results for multiple solutions even under challenging
conditions.

In Fig. 12, we show some results on Paris dataset. We can
see that PM and PConv fail to synthesize semantic structure
for large holes. The EC works well on the obvious structure
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Fig. 12 Comparison of qualitative results on Paris validation set (Doer-
sch et al. 2012) with free-form masks from PConv (Liu et al. 2018). (a)
Original image. (b) Masked input. (c) Results of PM (Barnes et al.

2009). (d) Results of PConv (Liu et al. 2018). (e) Results of EC (Nazeri
et al. 2019). (f) Our multiple and diverse results

Fig. 13 Qualitative results on CelebA-HQ testing set (Liu et al. 2015;
Karras et al. 2017) with free-form masks from PConv (Liu et al. 2018).
aOriginal image. bMasked input. cResults of PM (Barnes et al. 2009).

d Results of CA (Yu et al. 2018). e Results of EC (Nazeri et al. 2019).
f Results of GC (Yu et al. 2019). g Our multiple and diverse results

Fig. 14 Qualitative results on Place2 testing set (Zhou et al. 2018) with various masks. a Masked input. b Results of PM (Barnes et al. 2009). c
Results of CA (Yu et al. 2018). d Results of PConv (Liu et al. 2018). e Results of EC (Nazeri et al. 2019). f Results of GC (Yu et al. 2019). g Our
multiple and diverse results
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Table 4 Quantitative
comparisons over Places2 (Zhou
et al. 2018) on free-form masks
provided in Liu et al. (2018)

Size GL CA PConv EC GC PICNet

�1(%)† [0.01, 0.1] 0.023 0.024 0.021 0.020 0.021 0.010

(0.1, 0.2] 0.035 0.034 0.030 0.025 0.027 0.016

(0.2, 0.3] 0.050 0.047 0.042 0.033 0.034 0.025

(0.3, 0.4] 0.066 0.061 0.057 0.042 0.043 0.035

(0.4, 0.5] 0.081 0.075 0.073 0.051 0.053 0.046

(0.5, 0.6] 0.095 0.093 0.099 0.068 0.073 0.064

SSIM� [0.01, 0.1] 0.915 0.908 0.917 0.923 0.926 0.963

(0.1, 0.2] 0.853 0.845 0.859 0.878 0.886 0.914

(0.2, 0.3] 0.767 0.765 0.782 0.820 0.832 0.852

(0.3, 0.4] 0.682 0.691 0.704 0.760 0.771 0.785

(0.4, 0.5] 0.600 0.613 0.622 0.693 0.707 0.712

(0.5, 0.6] 0.529 0.532 0.513 0.599 0.603 0.618

PSNR� [0.01, 0.1] 28.42 26.85 28.79 29.47 28.81 32.26

(0.1, 0.2] 24.41 23.18 24.67 26.25 25.98 27.33

(0.2, 0.3] 21.33 20.44 21.63 23.82 23.58 24.44

(0.3, 0.4] 19.11 18.63 19.39 21.95 21.50 22.32

(0.4, 0.5] 17.56 17.30 17.75 20.44 19.94 20.71

(0.5, 0.6] 16.48 16.08 15.68 18.53 17.64 18.72

The best results are highlighted in bold
†Lower is better
�Higher is better. Here, the closest to the original ground truth samples in our method are selected for the
traditional pixel- and patch-level image quality evaluation

by utilizing auxiliary edge.Ourmethodwas explicitly trained
to copy information fromvisible parts, leading to better visual
results on repetitive structures, e.g. the window in first row.
Furthermore, ourmodel providesmultiple and diverse results
for one given masked image.

Figure 13 shows some results on the Celeba-HQ dataset.
We can see that the non-learning-basedmethod PM is unable
to generate reasonable semantic content in the images.While
the CA is able to generate novel content on the face, it is not
as suitable for large holes. GC further improves the results by
using the learned gated convolution. EC results in reasonable
semantic structure but blurry and inconsistent images. Our
approach was explicitly trained for variable results, rather
than strongly enforcing the completed image to be close to the
original. Hence, our PICNet can provide multiple plausible
results with different expressions. The online demo is also
provided on our project page.8

In Fig. 14,we further show results on themore challenging
Places2 dataset. The non-learning-based PM fills in reason-
able pixels for natural scenes by copying similar patches from
visible parts to missing holes. The CA only works well on
regular masks as their released model was only trained on
random regular masks. EC and GC generate content that
is semantically reasonable but not realistic due to missing
details. Instead, we can select plausible images from PIC-

8 http://www.chuanxiaz.com/project/pluralistic/.

Net’s multiple sampled results. Furthermore, it is hard to
identify the filled-in areas in our completed images, as our
short-long term patch attention copies non-local information
from visible regions based on correctly predicted content.

4.2.3 Visual Turing Tests

We additionally compared the perceived visual fidelity of
our model against existing approaches using human per-
ceptual metrics, as proposed in Zhang et al. (2016). We
conducted two types of user surveys: 2 alternative forced
choice (2AFCs) and visual fidelity and perceived quality
(VFPQ). In particular, for 2AFCs, we randomly presented
a generated image from an undisclosed method to the partic-
ipants, and asked them to decidewhether the presented image
was real or fake. For quality control, we also inserted a num-
ber of real images to avoid negative testing. For VFPQ, we
gave the participants a masked input and the corresponding
results from all methods (blinded), and asked the participants
to choose the image that was the most visually realistic. The
participants were allowed to vote for multiple images simul-
taneously, if they felt the images were equally realistic. For
each participant, we randomly presented 100 questions, con-
sisting of 60 2AFCs examples and 40 VFPQ questions. We
collected 47 valid surveys with 4700 answers.

We first show the 2FACs evaluation results in Table 5.
Most participants correctly identified the real image dur-
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Fig. 15 Additional results of our PICNet on the CelebA-HQ test set
(Liu et al. 2015; Karras et al. 2017) for free-form image editing. aOrigi-
nal image.bMasked input image. cOutput of ourPICNet. In thefirst two
columns, we erased eyeglasses. Wrinkles and facial hair were removed

in the next two columns. Finally, we freely changed mouth expressions.
Note that due to the provision of multiple and diverse results, the users
can easily select their favorite result. We refer readers to our online
demo for testing

Table 5
2-alternative-forced-choice
(2AFCs) score on CelebA-HQ
(Liu et al. 2015; Karras et al.
2017) testing set

GL CA EC PICNet Real

2AFC (%) 15.1 ± 1.8 17.8 ± 2.0 44.2 ± 3.7 57.0 ± 4.5 90.44 ± 1.5

All testing images were degraded by center masks. Here, the participants were required to judge whether a
randomly displayed image was real or fake. The reported values are the percentages of images generated by
each method that were judged “real”

Table 6 Visual fidelity and perceived quality (VFPQ) score on Places2
(Zhou et al. 2018) test set

VFPQ(%)

[0.01, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4]

GL 23.3 ± 4.3 9.8 ± 1.6 6.4 ± 1.0 4.1 ± 0.4

CA 11.4 ± 2.1 9.7 ± 1.3 7.6 ± 0.9 8.6 ± 0.9

PConv 27.8 ± 4.0 13.5 ± 1.6 11.0 ± 1.4 5.3 ± 0.7

EC 42.3 ± 6.0 38.8 ± 4.9 33.6 ± 3.2 26.7 ± 3.3

PICNet 57.5 ± 3.6 63.0 ± 4.0 69.9 ± 3.8 71.4 ± 3.4

All testing imageswere degradedby free-formmasks provided inPConv
(Liu et al. 2018). Participants selected the most realistic image from
among blindedmethods for the samemasked input, withmultiple selec-
tions allowed. Headers are ranges of mask sizes (as fraction of image).
For each method, we report the percentage of trials for which it was
selected, and the 95% margin of error

ing the evaluation, showing that they made conscientious
discerning judgement. Our model achieved better realism
scores than existing state-of-the-art methods. Table 6 shows
the VFPQ evaluation results. We found that the participants

strongly favored our completed results for all mask ratios,
and especially so on the challenging large mask ratios. This
suggests that once the visible regions do not impose strong
constraints, our multiple and diverse results were naturally
varied but mostly realistic and reasonable.

4.3 Additional Results

We show additional results of our proposed PICNet in
Figs. 15, 16 and 17. Our approach is suitable for a wide
applications, e.g. face editing, scene recomposition, object
removal and outpainting.

Face Editing We first show free-form image editing on face
images in Fig. 15. Our model works well for conventional
object removal, e.g. removing eyeglasses in the first two
columns. Next, we smoothed faces by removing wrinkles
and facial hair. Finally, we changed mouth expressions by
selecting an example among our multiple and diverse com-
pleted results.

High Resolution Natural Image Editing The original PIC-
Net did not handle high resolution (HR) image completion,
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Fig. 16 Additional results of PICNet on the Places2 test set (Zhou et al.
2018) for free-form image editing. a Original image. b Input masked
image. c Multiple and diverse outputs of our PICNet. Here, we show

examples of reshaping the mountain ridge and subject removal, but,
unlike conventional inpainting, we can provide multiple and diverse
choices and on high resolution images

Fig. 17 Outpainting examples of our models. aOriginal image. bMasked input. cMultiple and diverse results of our PICNet. Note that, it provides
different hair styles for the users

because the generation from a random vector z only works
for a fixed feature size (Karras et al. 2020). However, follow-
ing the two-stage image completion approaches (Yang et al.
2017; Yu et al. 2018; Song et al. 2018a; Yu et al. 2019; Naz-
eri et al. 2019; Yi et al. 2020; Zeng et al. 2020), we trained
another encoder-decoder framework to refine the fixed reso-
lution output of our PICNet. Since this work does not focus
on HR images, we used a simple design for the refinement
network by directly reapplying the PICNet framework in the
second refinement stage, but without the sampling process.
Note that the multiple and diverse solutions were seeded by
the first content generation stage.

As can be seen in Fig. 16, our approach produces diverse
results as well as visually realistic appearance for HR natural
image editing, e.g. reshaping the mountain ridge and gener-
ating various mountain streams. This demonstrates that our
model works well for HR images.

Outpainting In our dual pipeline framework, the masked
image Im and its corresponding complement image Ic can be
easily swapped. Therefore, we randomly reversed the input
mask during training on Celeba-HQ. Figure 17 shows exam-
ples where information is missing from the image border
regions. This “outpainting” is a challenging task as these
regions have much larger uncertainty (Iizuka et al. 2017).
Note that the subject’s hair can be significantly varied dur-
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Fig. 18 Failure cases of our PICNet. aOriginal image. bMasked input.
c Failure results of our PICNet, where the semantic information is heav-
ily masked, e.g. only four legs are visible of the dogs

ing completion, suggesting that our model is applicable to
style editing. Our structure has been extended to other related
tasks, such as spherical image generation (Hara and Harada
2020).

4.4 Limitations

Although our model achieved better results than existing
methods on various datasets by selecting images from the
number of diverse sampling results, the model does not cope
well with heavily structured objects with important infor-
mation missing, as shown in Fig. 18. As semantic image
completion is as yet an immature task that builds upon con-
ventional image inpainting, a full understanding of semantic
image content remains a challenge. In Fig. 18 top, we can see
that although the four legs of dog are visible, the model can-
not generate a complete dog even after multiple sampling.
In the bottom image, if the content is not correctly gener-
ated, our attention model fails to provide high-quality visual
results.

5 Conclusion

In this paper we have presented a novel solution to the image
completion task.Unlike existingmethods (Pathak et al. 2016;
Iizuka et al. 2017; Yu et al. 2018, 2019; Nazeri et al. 2019; Yi
et al. 2020), our probabilistically principled framework can
generate multiple and diverse solutions with plausible con-
tent for a given masked image. The resulting PICNet shows
that prior-conditional lower bound coupling is significant for
conditional image generation, leading to a more reasonable
two-branch training than the current deterministic structure.
We also introduce an enhanced short+long term patch atten-
tion layerwhich improves realismby automatically attending
to both high quality visible features and semantically correct
generated features.

Experiments on a variety of datasets demonstrated that
the multiple solutions were diverse and of high quality. On
the latest learning based feature-level metrics and traditional
pixel- and patch-level metrics, we demonstrated that PICNet
outperformed the single-solution approaches (Iizuka et al.
2017; Yu et al. 2018; Liu et al. 2018; Nazeri et al. 2019),
especially for large mask ratios with large uncertainty. We
further showed in studies that users strongly favored our
completed results when compared to the results in existing
approaches. We additionally demonstrated that our PICNet
is suitable for many interesting free-form image editing, e.g.
object removal, expression changing, and scene recomposi-
tion. These multiple and diverse results can also be easily
extended to HR image editing.
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