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Abstract
The topological perception theory claims that visual perception of a scene begins from topological properties and then exploits
local details. Inspired by this theory, we defined the topological descriptor and topological complexity, and we observed, based
on statistics, that the saliencies of the regions with higher topological complexities are generally higher than those of regions
with lower topological complexities. We then introduced the topological complexity as a saliency prior and proposed a novel
unsupervised topo-prior-guided saliency detection system (TOPS). This system is framed as a topological saliency prior
(topo-prior)-guided two-level local cue processing (i.e., pixel- and regional-level cues) with a multi-scale strategy, which
includes three main modules: (1) a basic computational model of the topological perception theory for extracting topological
features from images, (2) a topo-prior calculation method based on the topological features, and (3) a global–local saliency
combination framework guided by the topo-prior. Extensive experiments on widely used salient object detection (SOD)
datasets demonstrate that our system outperforms the unsupervised state-of-the-art algorithms. In addition, the topo-prior
proposed in this work can be used to boost supervised methods including the deep-learning-based ones for fixation prediction
and SOD tasks.

Keywords Topological perception theory · Topological complexity · Topological saliency prior · Salient object detection ·
Fixation prediction

1 Introduction

The human visual system (HVS) has the astonishing abil-
ity to move its attention to the informative regions of a scene
rapidly and effortlessly. Themechanism underlying this abil-
ity is believed to be useful for human activities as well as
computer vision applications, such as object segmentation
(Rahtu et al. 2010), image retrieval (Gao et al. 2015), image
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compression (Ji et al. 2013), video object tracking (Ma et al.
2017), and scene classification (Borji and Itti 2011).

This fact also raises a fundamental question of “Where
visual processing begins” (Chen 2005) in the field of cogni-
tive neuroscience.To answer this question, the school holding
the viewpoint of early feature-analytic: from local to global
claims that “objects are initially decomposed into separable
properties and components, and only in subsequent process
objects are recognized, on the basis of the extracted features”
(Chen 2005).

This idea seems so natural and reasonable: vision begins
fromsimple components and their local geometric properties,
such as line segments with slopes, since they are physi-
cally simple and computationally easy. This idea of early
feature analysis has gained wide acceptance and has almost
dominated the current studies of visual cognition. As repre-
sentative theories, the Feature Integration Theory proposed
by Treisman and Gelade (Treisman and Gelade 1980) and
the computational approaches to vision by Marr (Marr and
David 1982) still have far-reaching implications on current
research in computer vision.
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On the other side, the viewpoint of early holistic registra-
tion claims that perception processing is from global to local:
“Wholes are coded prior to perceptual analysis of their sep-
arable properties or parts” (Chen 2005). Gestalt psychology
is one of the main schools holding this viewpoint (Koffka
2013).

Compared to Gestalt psychology, Topological Perception
Theory (TPT), another school holding this idea, claims that
the “whole property” is exactly the “topological property”
(Chen 1982, 2005) and that topological pattern recognition
may be a fundamental function of the visual system (Chen
et al. 2003).

As demonstrated in the works on TPT (Chen 1982, 2005;
Chen et al. 2003), the perception of global topology occurs
prior to the perception of other pattern features, where the
“prior” has two strict meanings. “First, it implies that global
spatial and temporal organization, determined by topology,
are the basis that perception of local geometrical properties
depends on; and second, topological perception takes place
earlier than the perception of local geometrical properties”
(Chen 2005). A series of rigorous experiments make TPT
seem more natural (Chen et al. 2003; Zhuo et al. 2003; Chen
2005; Wang et al. 2007; He et al. 2015). More discussions
about the relation between TPT and Gestalt psychology can
be found in (Chen 2005).

The properties preserved under an arbitrary topological
transformation are called topological properties (Chen 1982,
2005). A topological transformation is a one-to-one and
continuous transformation in topology terminology. Topo-
logical properties involve connectivity, the number of holes,
and the inside/outside relation (Chen 2005; He et al. 2015).
Chen (2005) suggested that the organization principle of
surroundedness in figure–ground perception is exactly the
topological properties of holes, which implies that the “hole”
identifies the object and background at a very early stage
in vision. In this work, we only consider the properties
that can be extracted from two-dimensional (2D) digital
images that contain “holes”. There exist very few methods
based on TPT or the topological features aforementioned for
object–background segregation tasks, such as salient object
detection (SOD).

Consequently, the twomain goals of thiswork are to estab-
lish a basic computational model of TPT and apply it to the
saliency detection task. Therefore, we build a system inspired
by TPT to extract and encode the topological properties (in
image processing, these can also be called topological fea-
tures), and explore the relationship between the topological
features and the saliency to accomplish SOD and fixation
prediction tasks with real-world images.

To the best of our knowledge, the proposed system is the
first attempt to explicitly introduce TPT into saliency detec-
tion. Our main contributions include the followings:

1) A computational model is proposed for extracting and
encoding topological features. To our knowledge, this is
the first relatively complete computational TPT model
from the basic conceptions to the feasible topological fea-
ture extraction scheme employed for real-world images.

2) An image topological complexity calculation model is
built to demonstrate that topological features can be used
for saliency detection. We reveal the close relevance
between the topological features and image saliency by
conducting statistical analysis on various datasets. More-
over, this conclusion may provide significant cues and
ideas for researchers to further explore topological per-
ception theory.

3) A topological saliency prior is proposed for saliency
detection, and this prior can be used to boost supervised
methods including the deep-learning-based ones utilized
in fixation prediction and SOD tasks.

4) A topological saliency prior-guided saliency detection
framework (TOPS) is proposed for combining global–
local saliency. This framework follows the core idea of
TPT with a two-pathway structure inspired by Guided
Search Theory (Wolfe 1994; Wolfe et al. 2011), and can
achieve competitive results compared with the unsuper-
vised state-of-the-art methods on SOD tasks.

The rest of this paper is organized as follows. Sect. 2 gives
a brief review of saliency detection. In Sect. 3, we intro-
duce our topological saliency detection system. In Sect. 4, we
conduct experiments on popular datasets and some extended
analyses. Finally, we conclude this work in the last section.
The source code and results are available on our lab’s web-
site1.

2 RelatedWork

The field of computer vision has witnessed tremendous
progress in saliency detection over the past years (Cong et al.
2019; Wang et al. 2019d; Borji 2019; Wang et al. 2019a).
There are two main streams of research: human fixation pre-
diction and salient object detection.

Human fixation prediction aims to estimate the regions of
interest (ROIs) where human fixation locates in the images.
In contrast, SOD tries to detect the attention-grabbing objects
in a scene and segment them. Both tasks can be traced back
to Feature Integration Theory (Treisman and Gelade 1980)
and the concept of Computational Attention Architecture
proposed by Koch and Ullman (Koch and Ullman 1987).
Following Itti’s computational model (Itti et al. 1998; Itti
and Koch 2001), hundreds of methods have been proposed
to detect saliency from images and videos. A more detailed

1 http://www.neuro.uestc.edu.cn/vccl/
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review about eye fixation prediction models can be found in
(Borji and Itti 2012; Borji et al. 2012; Zhao and Koch 2013;
Borji 2019). Meanwhile, a survey on SOD can be found in
(Borji et al. 2014; Cong et al. 2019; Wang et al. 2019a). The
close relation between fixation prediction and SOD has been
discussed in (Yin et al. 2014). In this section, we will give a
brief review of the features adopted by the saliency detection
methods.

Intrinsic feature contrast-based methods: To achieve the
goal of extracting the most conspicuous foreground objects
from a scene, many methods use pixel/regional intrinsic fea-
ture contrast, including the luminance, color, texture, and
depth contrasts. Achanta et al. (Achanta et al. 2009) adopted
a frequency-tuned approach to estimate the saliency map
by computing the color difference between every pixel and
the mean color of an image. Perazzi (Hornung et al. 2012)
demonstrated that a regional contrast could be efficiently
computed using a Gaussian blurring kernel. Cheng (Cheng
et al. 2011) proposed a region-based method by measuring
the global contrast between the foreground targets and other
regions. Meanwhile, Yan (Yan et al. 2013; Shi et al. 2016)
calculated saliency maps by adopting a hierarchical image
framework. Some methods also used other feature contrasts
like the depth (Peng et al. 2014; Fang et al. 2014; Qu et al.
2017; Song et al. 2017) or pseudo depth (Xiao et al. 2018)
and focusness (Jiang et al. 2013b) as a complement to color
features.

Background prior-based methods: Although the meth-
ods based on feature contrast have made great success, they
tend to highlight boundaries and neglect the structure of the
images. Somemethods attempt to introduce some prior infor-
mation to capture the image structures. One of the most
widely used types of prior information is the background
prior. For example, Wei et al. (2012) adopted the geodesic
distance between the image pixels and the image borders to
estimate the background. Zhang and Sclaroff (2013, 2015)
proposed an efficient Boolean map-based method (BMS) to
estimate the foreground saliency via computing theminimum
barrier distance between each pixel and the pixels located on
the image borders. Tu et al. (2016) and Huang and Zhang
(2017, 2018) further improved the performance by introduc-
ing more efficient algorithms.

These kinds of methods sometimes fail when too much
of the target objects touch the borders. To tackle this prob-
lem, some researchers introduced more robust background
estimation algorithms (Zhu et al. 2014; Li et al. 2015a; Gong
et al. 2015) or combined the background prior with the intrin-
sic feature contrast (Qin et al. 2015; Chen et al. 2016; Yuan
et al. 2017).

The background prior can be renamed in most conditions
by the image boundary prior, or, in Gestalt terminology, the
surroundedness. As TPT claims, “the Gelstalt determinant
of surroundedness for figure–ground organization is just, in

mathematical language, the topological properties of holes”
(Chen 2005). Consequently, the widely used boundary prior
is just a special case of topological properties. This con-
cept can also be interpreted by our computational model:
the whole image is treated as a pattern where the regions
touching the boundaries (i.e., the background) are consid-
ered to be the “boundary of a hole,” while the regions that
do not touch the boundaries (i.e., the objects) are consid-
ered to be the “holes.” Furthermore, a hole is more salient
than its boundary when applying the concept of “topological
complexity.” More details can be found in Sect. 3.2.

Other prior-based methods: Many methods adopt top-
down priors other than the background prior to detect
the salient subset in images. Many of them introduced
information-theoretic knowledge. For instance, Hou and
Zhang (2007) developed a spectral residual saliency model
based on the assumption that the similarities imply redun-
dancies. Sparse coding and matrix decomposition are also
widely adopted (Li et al. 2015b; Peng et al. 2016). Some
Bayesian methods follow the guidance of a convex hull of
salient points (Xie et al. 2012) or contour-based spatial prior
(Yang et al. 2016).

Learning-based methods:Recently, a number of learning-
based (LB) models (Scharfenberger et al. 2013; Siva et al.
2013; Jiang et al. 2013a), especially deep learning-based
(DLB) models (Vig et al. 2014; Zhao et al. 2015; Wang et al.
2016; Kummerer et al. 2017; Kruthiventi et al. 2017; Chen
et al. 2017; Wang et al. 2017b; Zhang et al. 2018; Li et al.
2018; Wang et al. 2018; Liu et al. 2018; Zhang et al. 2019;
Wang et al. 2019b; He et al. 2019; Zhao and Wu 2019; Zeng
et al. 2019;Wu et al. 2019;Wang et al. 2019c) have been pro-
posed. They can usually produce much more precise results
than the unsupervised methods on popular datasets. More
reviews on deep learning-based methods can be found in
(Cong et al. 2019; Borji 2019; Wang et al. 2019a).

Due to the high degree of abstraction and computational
complexity of the topological properties, there exist very few
computational models for TPT. As a representative work,
Huang et al. (2009) proposed a computational topological
perceptual organization (CTPO) by establishing topology
space under a discrete dot array using a quotient distance his-
togram. To date, few of the saliency detection methods have
directly used the topological properties. Zhang and Sclaroff
(2013) computed the color contrast of central pixels to image
borders via topological analysis of Boolean maps. In (Gu
et al. 2013), the pulse-coupled neural network (PCNN) was
employed to produce a “hole filter” to extract the connectiv-
ity feature in scenes, which serves as one feature channel. In
addition, one of the topological properties, the closure, has
been used in (Liu et al. 2017) to detect the closed regions. It
has also been regarded as a salient feature and used in (Cheng
et al. 2014b) for object proposal.
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Fig. 1 Basic patterns and their topological transformation. Left: categorization of 2D binary patterns and their relationships. Right: simplification
of the binary patterns via topological transformation

Moreover, Chen et al. (2019) employed the pieces of
saliency results generated from BMS (Zhang and Sclaroff
2015), which were considered as topological features, and a
series of center bias maps. Then all of them are integrated
into a deep neural network to generate the saliency. Zhou
and Gu (2020) proposed to extract topological feature via a
pipeline of appearance contrast and segmentation, this fea-
turewas used to refine the coarse results generated by a neural
network.

Although topological concepts have been adopted in these
saliency detection models, what is topological feature is still
lacking in clarity and these so-called topological features do
not play a major role in their tasks. The relevance between
the topological property and the image saliency has not been
well demonstrated.

Hence, to address these problems, the system proposed
in this work establishes a relatively complete system for
topological feature extraction, topological complexity calcu-
lation, and the topological complexity-guided global–local
saliency combination. The observed positive correlation
between the topological features and saliency is the key foun-
dation to the proposed saliency detection system.

3 The Proposed Topological Saliency
Detection System

We establish in this section a system including the basic com-
putational model for Topological Perception Theory (TPT)
and its application for saliency detection. In Sect. 3.1, we
build amodel to extract topological features from images and
represent themas topological descriptors. Then, inSect. 3.2, a
topological complexity calculationmethod is proposed based
on the topological features of an image to reveal the positive
correlation between image saliency and the topological fea-
tures. Moreover, inspired by Guided Search Theory (Wolfe
1994; Wolfe et al. 2011), a topological complexity-guided
global–local fusion framework is developed to combine the

topological and local contrast saliencymaps; this is presented
in Sect. 3.3.

3.1 Topological Feature Extraction

According to TPT (Chen 1982, 2005), the topological prop-
erty is a global property of the whole pattern, rather than the
separated parts.We only consider patterns similar to the ones
exhibited in Fig. 1 in this work. These patterns must contain
some holes (the enclosed white parts). It is worth clarifying
that this does not mean that a target object must have holes in
the real world, but it can obtain an enclosed contour extracted
by some algorithms. More details about the concept of the
“hole” will be discussed in the next subsection, and how we
remove the restrictions about “holes” when processing real-
word images will be detailed in Sect. 3.1.3.

3.1.1 Categorization and Simplification of Topological
Structures

We classify the aforementioned patterns as unit structure,
nested structure, parallel structure, and composite structure.
These patterns are exhibited in Fig. 1 (left).

The unit structure is a ring-like pattern that is the most
basic structure of our model, and it is used to form the other
structures. A pattern with the nested structure can be seen
as one or more unit structures that are nested together. Simi-
larly, a pattern with the parallel structure can be considered
as the combination of two or more unit structures in paral-
lel. Meanwhile, a composite structure contains an arbitrary
number of units, and nested or parallel structures.

“Properties preserved under an arbitrary topological trans-
formation are called topological properties” (Chen 2005).
An arbitrary topological transformation means a shape can
change significantly to form another shapewhilemaintaining
its topological properties. Intuitively, this kind of transforma-
tion canbe imagined as an arbitrary “rubber-sheet” distortion,
in which there is neither break nor fusion (Chen 2005). Since
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Fig. 2 The representation of hole functions and topological descriptors.
Left: illustration of the hole function H(x) = x + 2x2 + x3 and the
region layer labels of a composite structure. Right: hole functions and
topological descriptors of different simplified topological structures

we attempt to abstract and encode the topological properties,
the local properties, such as scale, orientation, and location,
will be ignored.

For easy understanding, we intuitively do a topological
transformation to the patterns, which resembles the image
skeletonization, and finally obtains the shapes on the right
of Fig. 1. As shown in this figure, patterns eventually evolve
to some specific shapes that retain the topological properties
while ignoring local features. We term these kinds of shapes
as simplified structures.

It is worth mentioning that the situations where a shape
has no hole, for example, a solid shape or dot, will be omitted.
Although they are significant formore topological properties,
they do not contribute to our saliency detection system. This
is because this no-hole shape will finally evolve to a mean-
ingless single point when following the rule of simplification
(Fig. 1 (right)). The significance of these no-hole patternswill
be discussed in a more sophisticated computational model of
TPT in another work.

3.1.2 Hole Function and Topological Descriptor

In order to encode the topological features extracted from the
simplified structures in a mathematical way, we write a hole
function as

h(x) =
n∑

i=1

bi x
i (1)

where x is the semantic representation of a hole; the param-
eter i is the layer label of the location of the current hole, n is
the innermost layer label, and the label of the outmost layer
is 1. bi is the number of holes in the i-th layer.

Hole function is the unique form of topological encoding
for a pattern. For example, the hole function of the pattern
shown in Fig. 2 (left) is denoted as h(x) = x + 2x2 + x3.

In other words, given the hole function of a pattern, we
can know its simplified structure, and vice versa. At the same
time,we can also know the labels (i.e., the exponent i ) of each
connected white part (i.e., the hole) in a simplified structure.

Although the hole function can encode the topological
properties ofmost 2Dpatterns following the definition above,
the parameter x is just a semantic representation, unable to
be directly used for computation. To address this problem,
we introduce a topological descriptor derived from the hole
function as a vector

P = [i; bi ] (2)

where i = {1, 2, 3, ..., n} andbi are the sameparameters used
in Eq. 1. The topo-descriptor (topological descriptor) has the
same function as the hole function to encode the topological
property of a pattern. The main difference between these
functions is that the hole function can only demonstrate the
topological property of a pattern intuitively while the topo-
descriptor can be easily used for computation in our system.
An example is illustrated in Fig. 2: the pattern of the left
figure contains bi = {1, 2, 1} different layers according to
the layer label i = {1, 2, 3}. Therefore, the topo-descriptor
of this pattern is represented by P = [1, 2, 3; 1, 2, 1].

Recently, a study on numerosity perception (He et al.
2015) demonstrates that the connected/enclosed items can
lead to robust numerosity underestimation, and the extent of
underestimation increases monotonically with the number
of connected/enclosed items. This conclusion implies that it
is hard to identify the number of inner circles when they are
highly nested. Considering this effect, we limit themaximum
length of each subvector of the topo-descriptors (that is, we
set n ≤ 5). More topo-descriptor examples can be found in
Fig. 2.

Considering the close relation between the hole function
and the topo-descriptor, both of them can describe the topo-
logical properties of connectedness, the number of holes, and
the inside/outside of a pattern. The concept of a hole (i.e., x)
is of concern only if the white region is segregated by a circle
line. The sum of bi (i.e.,

∑n
i=1 bi ) denotes the total number

of holes in a pattern, while the region layer label i indicates
the inside/outside relationship.

3.1.3 Extraction from Real-world Images

It is natural to attempt to extract the topological proper-
ties from real-world scenes using our computational model.
Unfortunately, real-world images are much more complex
than the aforementioned patterns. Many researchers believe
that image contours contain rich information about the scene
context (Zitnick and Dollár 2014; Yang et al. 2016; Liu et al.
2017). Consequently, we use a region-based natural image
segmentation method, the ultrametric contour map (UCM)
(Arbelaez 2006), to extract the contours of an image; these
contours will serve as the simplified structure.

Asdescribed inArbelaez (2006), aUCMis a soft boundary
map associated with a family of closed, nested, and non-
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Fig. 3 Illustration of theUCM-defined contours of various confidences,
and the corresponding weighting maps. From left to right, first row: a
UCMand its binarymaps obtained by different thresholds (Kth ); second
row: layer labels in the topo-descriptor, and three weightingmaps (Wth)
corresponding to the binarymaps in the first row. These weightingmaps
are used to lower the effect of the regions touching the image boundaries
when computing the topo-complexity map with Eq. 4

self-intersecting weighted contours, and thus demonstrates a
hierarchy of regions that can represent the geometric struc-
tures of an image. The different levels of a UCM contain
the contours of different confidences, resulting from over-
segmentation to under- segmentation. Thresholding between
the confidence levels will result in a continuous trade-off
between these extremes (Arbelaez 2006). The first row of
Fig. 3 presents a simple example of a UCM.

It is generally accepted that adopting the widely used
multi-scale strategy to process the coarse-to-fine tasks can
achieve better performance (Adelson et al. 1984; Heeger and
Bergen 1995). Further, the results of perception organization
can be affected by visual acuity, the distance between the
subject and the objects, and so on. Consequently, we treat
the UCM of an image leveled by different thresholds as the
simplified multi-scale structures of this image, which has
been introduced in Sect. 3.1.1. On each simplified structure,
a hole function or a topo-descriptor can be computed using
Eq.1 or Eq.2, and then a weighted averaging is applied to the
multi-scale topo-descriptors. The first figure of the second
row in Fig. 3 illustrates the layer labels of the multi-scale
topo-descriptor.

A “hole” in a real-world image is a region defined by a
closed contour, and the contour map of an object is treated
as the simplified structure. As briefly discussed in Sect. 2,
the “surroundedness” in Gestalt terminology is considered
as the special cases of the perception of “holes,” in other
words, the“surroundedness” is the one-hole situation in our
computational model.

The UCM provides us a feasible approach to extract the
simplified multi-scale structures of a real-world image. Its
properties of closure, nesting, and multi-scale representation
ensure the reliability and robustness of our results, whichwill

not be distorted by small interference, such as edge imper-
fection.

3.2 FromTopological Features to Saliency

TPT suggests that “global topological perception is prior to
the perception of other features” (Chen 2005). One of the
meanings of the “prior” is that “the global spatial and tem-
poral organizations, determined by topology, are the basis
that perception of local geometrical properties depends on”
(Chen 2005). This suggests that topological features can be
used as an important saliency prior to help integrate the local
salient cues (such as the color contrast) to achieve better
saliency results. Based on this idea, we suppose that there
must be an implicit relevance between topological features
and visual saliency. Consequently, in order to describe this
kind of relevance, we introduce a concept of topological
complexity for each region at each scale and an observa-
tion to bridge the gap between the topological features and
the visual saliency. The role of “topological complexity” is to
transform the abstract global topological features to intuitive
regional saliency density. In the next section, we will pro-
pose a topological complexity-guided framework for salient
object detection.

3.2.1 Topological Complexity

The topological complexity function Fc is computed on a
simplified structure described in Sect. 3.1.1. For each region
in the structure, we define its topo-complexity as

Fc =
n∑

j=1

e−2( j−1) (3)

where parameter j is the region’s layer label obtained from
the topo-descriptor P described by Eq. 2. The whole map
of topo-complexity of a single scale structure is denoted as
Fmap. This expression tells us that the topo-complexity of
a region is the cumulative sum of exponential relations on
the layer label. Thus, for a region in the map, a larger label
corresponds to a higher topo-complexity.

To compute the topo-complexity of each region at each
scale of a real-world image, we adopt the UCM used in Sect.
3.1.3. The regions touching the image borders are sometimes
considered as the image background (Zhu et al. 2014; Zhang
and Sclaroff 2015) or the boundary of holes in our compu-
tational model. Generally, the saliency of the background
should be lower than that of object regions. Hence, we lower
the weight of topo-complexity of the regions touching image
borders. The weighting factorWth is empirically set to a pos-
itive value between [0, 1].
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Fig. 4 Flowchart of the hierarchical topo-complexity map calculation

Consequently, we calculate a full topo-complexity map
Stc normalized to [0, 1] for each real-world image by

Stc = MN (
1

Ns

Ns∑

ns=1

W (ns )
th · F (ns)

map) (4)

where MN (·) is min–max normalization, the weighting fac-
tor W (ns )

th is a mask at the ns-th scale, and the weights of the
regions touching the boundaries are 20% of their calculated
topo-complexity values. Ns is the total number of scales cre-
ated byproper thresholds.Considering that a higher threshold
leads to an under-segmentation and we will obtain an incor-
rect topo- complexity map, we empirically set Ns = 4 with
4 thresholds {0.1, 0.3, 0.5, 0.7} to balance the computational
load and the performance in this work. See the examples of
Wth(Kth > 0.8) in Fig. 3.

A simple example with three thresholds {0, 0.4, 0.8} is
shown in Fig. 3. Here we used these thresholds to get
three scales; the last three figures in the second row are
the corresponding weighting maps Wth . The computation
of topo-complexity map in real-world images is summarized
in Fig. 4.

3.2.2 An Observation

We observed that, generally, the saliency of a region with
higher topological complexity is higher than that of the
regions with lower topological complexities.

This observation was obtained as follows. We conducted
a statistical analysis on the PASCAL-S dataset (Yin et al.
2014). This dataset provides source images, full segmen-
tation of the images, eye fixation data, and human-labeled
salient object ground truths. Li’s work on PASCAL-S (Yin
et al. 2014) discussed the strong relevance between the tasks
of SODand eye fixation prediction. Similar to Li’swork, here
we try to reveal the relevance between the topo-complexity
and visual saliency of an object in an image.

The analysis is demonstrated in Fig. 5, and is similar to
the operations used in the SBSO dataset’s construction (Yang
et al. 2015). The core idea of this process is to compare the
similarity of the results of three different saliency density data
(i.e., our topo-complexity maps, human fixation maps, and

Fig. 5 Illustration of the saliency mapping for analyzing the relation-
ship between the topo-complexity and the visual saliency. The second
column presents three different saliency data (from top down, our topo-
complexity, the human eye fixation, and the human-labeled ground
truths) are mapped on the full segmentation data to generate new maps.
The new maps are presented in the right column, respectively

human-labeled saliency maps). Therefore, corresponding to
these different saliency data, three new region-based saliency
maps are generated (see the right column in Fig. 5).

Then, we compared every region of saliency density
between the newly generated topo-complexity maps with the
other two kinds of maps. The results are sketched in Fig.
6, in which the first and second rows show compare topo-
complexity with eye fixation and human-labeled saliency,
respectively. Let us take one image as an example. The first
column is the comparison on the image shown in Fig. 5. In
this graph, each region of the full segmentation is denoted as a
red point in the graph. The coordinates of red dots are the val-
ues of topo-complexity and saliencydata (i.e., the eyefixation
data and human-labeled saliency data), respectively. Each red
dot in Fig. 6 denotes a region. In the full segmentation map
in Fig. 5, there are 5 regions with different colors (3 objects
and 2 background regions). A fitted line of these points for
each image is plotted as a colored line in the graph. A fitted
line with a positive slope indicates that the regional topo-
complexity has a positive correlation with the density of eye
fixation data or the human-labeled saliency. This positive cor-
relation between the topo-complexity and the visual saliency
is not by coincidence. We also analyzed such correlations
for all 850 of the images in PASCAL-S. These correlations
are depicted in the middle columns of Fig. 6. Each fitted line
corresponding to one image is drawn in this panel. The right
column of this figure shows the statistics of all of the slopes
in the form of a histogram. It is clear that the slopes of most
fitted lines are positive values (the blue bars) and only a few
are negative (the magenta bars).

Weobtained similar observations onother saliencydatasets,
i.e., ImgSal (Li et al. 2013) and Judd (Judd et al. 2009).
All these statistics-based observations validate the assump-
tion underlying our model that there is a positive correlation
between the topo-complexity and the visual saliency formost
scenes.
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Fig. 6 The observed relationship between the topo-complexity and
visual saliency. From top to bottom: Topo-complexity with eye fixa-
tion and human-labeled saliency. From left to right: the results for one
image shown in Fig. 5, results for all 850 of the images fromPASCAL-S
((Yin et al. 2014)), the histogram of the slope values of all fitted lines.
In the first column, each red dot denotes the regional correspondence
of the saliency mapping between topo-complexity and eye fixation or
human-labeled saliency ground truth, and the solid lines represent the
linear fittings of these dots. In the middle column, only the fitted lines
are drawn, each of which corresponds to one image. Please see the text
for details

3.2.3 Fixation Prediction

According to the observation described above, we suppose
that the extracted topo-complexitymap can be used to predict
the fixation. To reduce the effect of regional hierarchy and
smooth the topo-complexity map, we use a Gaussian filter
with specific σ (standard deviation).

Since our Stc only uses the topo-feature, it is natural to
extend it into other fixation prediction methods to promote
their performances. We proposed a simple extended strategy
for methods such as GBVS (Harel et al. 2007):

SGBV S∗ = MN (exp(Stc_50) + SGBV S + exp(SGBV S)) (5)

where Stc_50 is the Gaussian-blurred topo-complexity map
with σ = 50.

The results in Table 3 show that this strategy is simple and
effective. More details about the experiment and the quanti-
tative results are described in Sect. 4.5.

3.3 Topological Saliency Prior-guided Framework

3.3.1 Two-pathway Combination

The strictmeaning of “prior” iswritten as “global topological
perception is prior to the perception of other pattern features”
(Chen 2005). Which describes the spatial relations, temporal
relations, and causality between the topological properties
and the local geometrical properties. We have discussed in
the previous section the possibility of treating the topological
property as saliency prior to integrating local salient cues.

Several attempts have been made to integrate multiple low-
level cues to produce better saliency detection results (Xie
et al. 2012; Yang et al. 2016; Lin et al. 2019).

Another famous visual theory, Guided Search Theory
(GST) (Wolfe 1994; Wolfe et al. 2011), claims that informa-
tion processing of the visual search goes along two parallel
pathways: a non-selective pathway and a selective pathway.
This strategy allows the HVS to rapidly extract global spatial
information via the non-selective pathway, which then acts
as top-downmodulation to guide the processing of local cues
in the selective pathway.

Hence, in this section, and inspired by these theories
and strategies, a two-pathway SOD framework is proposed
and summarized in Fig. 7. In the so-called topological
prior-guided saliency detection (TOPS) framework, the topo-
logical complexity map is treated as top-down information
that can be rapidly obtained, and the local cues are processed
in the selective pathway. Extensive analyses in the next sec-
tionwill confirm that our topo-prior guidance performs better
than some popular priors such as the CBSP (Yang et al. 2016)
and RBD (Zhu et al. 2014).

Electro-physiological evidences of Livingstone (Living-
stone and Hubel 1987) and DeYoe (DeYoe and Van Essen
1988) show that the local cues (e.g., color) are coded hierar-
chically in the visual cortices V1 and V2, and then integrated
into higher-level cortices V3 and V4. This tells us that there
are many complicated processes in the processing of local
features in the brain. Therefore, we design the selective path-
way in our framework to mimic the processing of these local
cues.

The saliency map with only topo-complexity, Sots , along
the non-selective pathway, is generated by

Sots = f (Stc · Sbias) (6)

The refinement function f (x) is defined as

f (x) = 1

1 + e−γ ·(x−τ)
(7)

where γ and τ are empirically set to 10 and 0.5, respectively.
The Sbias = e−‖xk−xcen‖22/(H/W ·σ)2 is a center bias with a
large σ for an image of size W × H (as used in many previ-
ous methods (Itti et al. 1998; Yang et al. 2016)). Since Eq.6
demonstrates a topological saliency prior map, we also call
Sots the topo-prior.

3.3.2 Extraction of Pixel-level Cues

There exist two main processing flows along the selective
pathway in Fig. 7, one for pixel-level cues and another for
regional-level cues. To compute the pixel-level saliency fea-
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Fig. 7 The proposed framework of topo-prior guided saliency detec-
tion (TOPS). This two-pathway-based framework contains the selective
and non-selective pathways, which serve to extract the local cues and
global prior, respectively. As a kind of global information, our topo-

complexity prior (Sots ) acts as a global signal to guide the extraction
and combination of the local regional and pixel level features along the
selective pathway

tures, the color contrast map Sc is first calculated by

Sc(sk) =
∑

∀si∈I D(sk, si )

N
(8)

where D(sk, si ) is the Euclidean color distance metric
between the superpixels sk and si in CIELab color space.
All superpixels I = {s1, s2, ..., sN } are obtained using the
toolbox from (Achanta et al. 2012). N is the total number of
superpixels.

However, there still exist two main problems for Eq.8. (1)
spatial distances between sk and other superpixels si (i =
1, 2, 3, . . . , N ) are different, but share the same weights. (2)
color contrast between super-pixels share the same weights
wherever they are located in background or object areas.
To address these problems, the distance and topological
structure-weighted map Sd combines a weighting item with
two parts for every superpixel according to their location and
topo-prior, which is evaluated by

Sd(sk) =
∑

∀si∈I W (sk, si ) · D(sk, si )

N
(9)

where

W (sk, si ) = (1 − Sots(si )) · e− |xi−xk |22
2σ2 (10)

We set σ = 100 here. xi and xk are the center coordi-
nates of the corresponding superpixels si and sk . The first
part of Eq. 10 uses the reverse of the topo-saliency prior to
reduce the saliency of background regions and enhance the
saliency of object area. We believe that the contrasts from
pixels in background can enhance the saliency of pixels in

the foreground while the contrasts from pixels in foreground
can reduce the saliency of pixels in the background. At the
same time, the second part emphasizes the spatial distance
influence between superpixels by assigning larger weights
for the superpixels near sk while smaller weights for the
superpixels far away from sk . Therefore, Sd computed by
Eq. 9 represents a color contrast map modulated by spatial
and topological information.

We then multiply Sots and Sd to get Std to simulate the
contribution of the topo-complexity in guiding the selective
pathway.

Std(sk) = Sots(sk) · Sd(sk) (11)

Next, we multiply Sd by Sc to get Sdc to mimic the inner
interaction of local cue processing in the visual cortices.

Sdc(sk) = Sd(sk) · Sc(sk) (12)

After processing Eq.9, Eq.11, and Eq.12, the influence
from topo-complexity guidance is penetrated into both Std
and Sdc, and the degree of the influence is Sdc < Std <

Sots . Then, the outputs of these two pathways are linearly
combined into a pixel-level saliency map Sps as

Sps(sk) = MN (Std(sk) + Sdc(sk)) (13)

where MN (·) is the min–max normalization.

3.3.3 Extraction of Regional-level Cues

In addition to the low-level pixel cues, mid-level regional
cues have also been reported as useful for SOD (Liu et al.
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2017; Lin et al. 2019). For example, the regions touching
image boarders are likely to be the background (Wei et al.
2012; Zhang and Sclaroff 2015). Furthermore, the boundary
connectivity of regions have a close relation to saliency and
has been proved to be a useful saliency prior in (Zhu et al.
2014). Therefore, themethod for calculating the dissimilarity
map Sbd between regions and image boarders is adapted from
(Wei et al. 2012), and themethod for calculating the boundary
connectivity map Sbc is adapted from (Zhu et al. 2014). We
guided the extraction of these two regional features with our
topo-prior to compute the regional-level saliency as

Srs(sk) = MN (exp(Sots(sk) + Sbc(sk) + Sbd(sk))) (14)

In this way, the topo-complexity guidance is also penetrated
into the regional-level saliency.

3.3.4 Saliency Fusion and Optimization

The multi-scale strategy is widely used in image processing,
and herewe adopt it to promote performance.We use 3 scales
(scl = {1, 0.75, 0.5}) of the original image size, and then
normalize and combine them.

Finally, an optimization operation is applied after the
fusion of pixel-level and regional-level saliency, as shown
in Fig. 7, to obtain a more sophisticated saliency map (the
topo-saliency map) Stops (Zhu et al. 2014; Liu et al. 2017):

Stops = f [opt(S)] (15)

where

S = MN (
∑

scl

scl · [S(scl)
ps + S(scl)

rs + S(scl)
ots ]) (16)

The optimizationmethod opt(·) is adapted from(Zhu et al.
2014). Let the saliency values of N superpixels be denoted
as {si }Ni=1, and the cost function is

N∑

i=1

w
(bg)
i s2i +

N∑

i=1

w
( f g)
i (si − 1)2 +

N∑

i, j

wi j (si − s j )
2 (17)

We set w( f g) and w(bg) as S and 1− S, respectively, and the
other parameters are set as (Zhu et al. 2014) suggested.

The refinement function f (x) in Eq.15 is defined by Eq.7,
for which we set λ = 20 and τ to 1.2 times an adaptive
threshold computed using Otsu’s binary threshold method
(Otsu 1979) to control the overall sharpness.

Table 1 Parameter Sensitivity Analysis (Color table online)

Param. ECSSD PASCAL-S

γ τ σ MAE ↓a Sm. ↑ MAE Sm.

10 1.2 100 0.143 0.767 0.187 0.693

20 1.1 100 0.131 0.762 0.177 0.687

20 1.3 100 0.126b 0.762 0.173 0.684

20 1.2 50 0.131 0.761 0.177 0.684

20 1.2 100 0.127 0.763 0.174 0.685

20 1.2 150 0.131 0.759 0.177 0.683

30 1.2 100 0.125 0.76 0.172 0.682

a . The ↑ and ↓ denote “higher is better” and “lower is better,” respec-
tively.
b. Red, green, and blue indicate the top three performances, respec-
tively

4 Experiments

We conducted experiments on six popular and challenging
datasets that covering various scenarios, compared with the
state-of-the-art (SOTA) methods. Then, we evaluated the
ability for fixation prediction of our topo-complexity prior
compared with some leading methods. We also conducted
parameter, mechanism, runtime, and ablation analyses to
thoroughly evaluate the proposed system. Failure cases are
also listed to exhibit the limitations and directions for further
improvements.

4.1 Parameter Setting

There are some hyper-parameters in this work, which we
set either by referring to the literature or setting empirically.
For example, n ≤ 5 in Eq.1 was inspired by the conclusion
of (He et al. 2015); the scale values slc = {1, 0.75, 0.5} in
Eq.16 were adopted from (Liu et al. 2017); the parameters
in the optimization of Eq.17 were adopted from (Zhu et al.
2014). The scales {0.1, 0.3, 0.5, 0.7} generating topological
features in Eq.4, γ and τ in Eq.7, Eq. 15 and so on, were
set empirically. It should be noted that when setting param-
eters manually, we tried to balance accuracy and efficiency
as much as possible.

Table 1 shows a series of results when changing some of
the important parameters, such as the γ and τ in Eq. 15 and
σ in Eq. 10. The results show that, roughly, τ and σ have
slight influence to the performance, and the value of γ is
inversely proportional to the both values of mean absolute
error (MAE) and Structure-measure (Sm.). In other words,
larger γ values produce better MAE but worse Sm. Overall
speaking, it is appropriate to choose 20, 1.2, and 100 for γ ,
τ and σ , respectively.
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4.2 Datasets and ComparedMethods for SOD

The proposed methods (the OTS described by Eq.6 and
the TOPS described by Eq.15) were compared with 15
recently proposed unsupervised state-of-the-art methods on
six datasets: MSRA10k (Cheng et al. 2014a), Pascal-S (Yin
et al. 2014), HKU-IS (Li and Yu 2015), ECSSD (Shi et al.
2016), DUT-OMRON (Yang et al. 2013), and DUTS-test
(Wang et al. 2017b). Unsupervised methods for SOD were
compared, including FT (Achanta et al. 2009), GS (Wei et al.
2012),MR(Yanget al. 2013),HCandRC(Cheng et al. 2011),
BMS (Zhang and Sclaroff 2015), HS (Shi et al. 2016), RBD
(Zhu et al. 2014), RCRR (Li et al. 2015a), CGVS (Yang et al.
2016), SMD (Peng et al. 2016), PDP (Xiao et al. 2018), MST
(Tu et al. 2016), WFD (Huang and Zhang 2018), and HCCH
(Liu et al. 2017).

In addition, leading supervisedmethodsDRFI (Wang et al.
2017a) and HDCT (Kim et al. 2015), the weakly super-
vised deep-learning-based (DLB) method WSS (Wang et al.
2017b), and fully supervised DLB methods (RFCN (Wang
et al. 2016), PiCANet (Liu et al. 2018), PAGRN (Zhang et al.
2018), RAS (Chen et al. 2018), PFA (Zhao and Wu 2019),
PAGE (Wang et al. 2019e), ETF (Zhou andGu 2020), RASv2
(Chen et al. 2020), and CPD (Wu et al. 2019)) were also com-
pared.

The MSRA10k dataset contains 10k images with rela-
tively simple scenes containing single objects (Cheng et al.
2014a). HKU-IS is also a large-scale image dataset that con-
tains 4447more challenging and unbiased images (Li and Yu
2015). ECSSD includes 1000 semantically meaningful but
structurally complex images (Shi et al. 2016). Meanwhile,
PASCAL-S is a very challenging baseline in saliency detec-
tion since it usually involves several different objects against
a cluttered background (Yin et al. 2014). DUT-OMRON con-
tains 5168high-quality imageswith a single object but amore
challenging background (Yang et al. 2013). DUTS-Test is
the part of DUTS (Wang et al. 2017b) that is used for testing
while DUTS-Training is used for training. Both HKU-IS and
DUTS are the current most widely used baselines.

4.3 EvaluationMetrics on SOD

For a more comprehensive evaluation, we adopted five met-
rics: precision–recall (PR) curves, F-measure curves, the
weighted F-score, the mean absolute error (MAE), and the
structure measure (Sm.). Precision and recall were computed
by thresholding the saliency map and comparing the binary
map with the ground truth. This metric represents the mean
precision and recall of all of the saliency maps at different
thresholds between [0, 255]. Usually, neither the values of
precision nor recall can comprehensively demonstrate the
performance of saliency detection algorithms. Hence, the
weighted F-score is adopted for a more effective evaluation,

which is defined as

F∗
β = (1 + β2) · Precision · Recall

β2 · Precision + Recall
(18)

considering that the precision is more important than recall
(Liu et al. 2010), we set β2 to 0.3 as (Achanta et al. 2009;
Cheng et al. 2014a) suggested. The overlap-based metrics
introduced above ignore the situation of the correct assign-
ment of non-salient pixels; therefore, the mean absolute error
(MAE) score is adopted to address this problem for a more
comprehensive comparison (Perazzi et al. 2012). The MAE
between the saliencymap S(x, y)with a size ofW×H pixels
and the binary ground truth G(x, y) is defined as

MAE = 1

W × H
·

W∑

x=1

H∑

y=1

|S(x, y) − G(x, y)| (19)

In addition, we introduced another recently proposed metric:
the structure-measure, Sm., to measure the structure simi-
larity between saliency maps and ground-truth (Fan et al.
2017).

4.4 Comparisons with State-of-the-Art Methods on
SOD

To qualitatively validate the performance of our methods,
our topo-prior OTS and TOPS were compared with current
SOTA methods. Visual comparisons are shown in Fig. 8,
which illustrates that our TOPS achievesmore precise results
than the others in some complex and structural scenes. For
example, image (a) contains a cluttered background, images
(b) and (c) contain complex objects, images (d) and (e) con-
tain objects with low contrast, and the last four images are
relatively simple; our TOPS obtains the best results on all of
these kinds of images.

The quantitative evaluations are summarized in Fig. 9 and
Table 2. The top two rows in Fig. 9 show that our TOPS
obtains the best precision–recall results on almost all of the
datasets. The F-score curves in the bottom two rows show
that our TOPS obtains very high and stable results on most
datasets. Table 2 compares another three important metrics,
i.e., the MAE, weighted F-measure, and structure-measure.
Our TOPS also obtains the best performance on almost all
datasets for all of the metrics with a large margin. Further,
our method with a single scale (TOPS_sc) obtains the second
best performance (Table 2).

It is worth mentioning that when we do not combine
the regional and local features, our topo-saliency prior map
(OTS) can still achieve acceptable performance for all of the
metrics on all of the datasets; this is indicated by the dashed
red lines in Fig. 9 and the values in Table 2. The reason why
the proposed OTS is effective is that our topo-complexity
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Fig. 8 Visual comparison of the existing salient object detection methods and our methods (OTS and TOPS) in various scenarios and on different
datasets

map captures the spatial and structural prior. The proposed
TOPS inherits this advantage from OTS, and at the same
time combines the local cues under the guidance of OTS to
overcome the limitation of the proposed framework. We also
obtain similar performance on DUT-OMRON (Yang et al.
2013) and DUTS-test (Wang et al. 2017b) datasets.

Figure 10 shows that our TOPS obtains similar PR curves
to DRFI (Wang et al. 2017a) and better results than HDCT
(Kim et al. 2015); meanwhile, TOPS obtains far betterMAEs
and weighted F-scores on almost all of the datasets (Table 2).
However, all of our TOPS and DRFI, HDCT are far worse
than the deep learning-based methods. It is worth mention-
ing that DRFI and HDCT are two top non-DLB supervised
methods, and usually serve as comparison baselines for DLB
methods. The fully supervised DLB methods are much bet-
ter than the weakly supervisedWSS (Wang et al. 2017b), the
non-DLB methods, and the unsupervised methods.

Unlike the DLB methods, our method is unsupervised,
which means that we do not need a training process nor
expend effort on labeling. To summarize, according to the
analyses above, our TOPS achieves SOTA performance
among the unsupervised methods.

4.5 Fixation Prediction via Topo-Prior

To quantitatively evaluate the performance of our topolog-
ical prior on fixation prediction, we adopted four widely
used metrics: AUC_Judd (Judd et al. 2009), AUC_Borji
(Borji et al. 2012), shuffled AUC (sAUC) (Zhang et al.
2008), and normalized scanpath saliency (NSS) (Peters et al.
2005). Experiments were conducted on three popular fixa-
tion datasets: ImgSal (Li et al. 2013), MIT (Judd et al. 2009),

and Toronto (Bruce and Tsotsos 2009). We compared our
method with some classical SOTA methods (Itti (Itti et al.
1998), GBVS (Harel et al. 2007), AIM (Bruce and Tsot-
sos 2009), AWS (Garcia-Diaz et al. 2012), SIG (Hou et al.
2011), and BMS (Zhang and Sclaroff 2015)), some LBmeth-
ods (Judd (Judd et al. 2009) and eDN (Vig et al. 2014)), and
several DLBmethods (MLNet (Cornia et al. 2016), Mr-CNN
(Liu et al. 2015), and DVA (Wang and Shen 2018)).

In this experiment, the results of GBVS, BMS, Itti, AIM,
AWS, SIG, and Judd are adopted from the website2 of
BMS (Zhang and Sclaroff 2015); other results are from their
authors’ websites or are calculated by their released code
with default configurations. The evaluation codes are from
the MIT saliency website3.

One of the most widely used metrics for fixation predic-
tion is the area under the ROC curve (AUC), which use the
human fixationmap as ground truth to calculate the false pos-
itive rate and true positive rate. The AUC score is calculated
as the area under the ROC drawn by the false positive and
true positive rate. AUC_Judd (Judd et al. 2009) is the clas-
sical version of AUC, while AUC_Borji (Borji et al. 2012)
and sAUC (Zhang et al. 2008) are extensions to tackle the
influence of center bias. In contrast, NSS (Peters et al. 2005)
measures the correspondence between the saliency map and
the scanpath. The Imgsal (Li et al. 2013) dataset consists
of 235 images collected from 21 observers, with 6 differ-
ent categories of object size. MIT1003 (Judd et al. 2009) is
a large-scale fixation dataset with images collected from 15
observers; it contains 1003 pictures of natural indoor and out-

2 http://www.cs.bu.edu/groups/ivc/software/BMS/
3 https://saliency.tuebingen.ai/
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Fig. 9 Comparison of PR curves and F-measure curves on the MRSA10k (Cheng et al. 2014a), DUT-OMRON (Yang et al. 2013), ECSSD (Shi
et al. 2016), PASCAL-S (Yin et al. 2014), HKU-IS (Li and Yu 2015), and DUTS-Test (Wang et al. 2017b) datasets for the task of salient object
detection (SOD)

Table 2 Quantitative comparisons on six salient object detection
datasets in terms of MAE, weighted F-measure, and structure-measure.
(From the TOPS to the method FT are unsupervised methods; From

DRFI to HDCT are the supervised methods with handcrafted features,
while fromRASv2 to RFCN are the DLBmethods) (Color table online)

Datasets MSRA10k HKU-IS ECSSD PASCAL-S

Methods MAE ↓a F∗
β ↑ Sm. ↑ MAE F∗

β Sm. MAE F∗
β Sm. MAE F∗

β Sm.

TOPS 0.0666b 0.8191 0.8665 0.1115 0.6606 0.7628 0.1274 0.6727 0.7628 0.1742 0.5759 0.6853

TOPS_sc c 0.0678 0.8177 0.8611 0.1129 0.6579 0.7585 0.1289 0.6703 0.7526 0.1774 0.5706 0.6773

OTS 0.1280 0.6517 0.7733 0.1532 0.5434 0.7076 0.1846 0.5325 0.6882 0.2022 0.4931 0.6351
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Table 2 continued

Datasets MSRA10k HKU-IS ECSSD PASCAL-S

(12)d (10) (12) (7) (6) (8) (10) (9) (11) (6) (5) (6)

HCCH ( Liu et al. (2017)) 0.0968 0.7287 0.8099 0.1162 0.6028 0.7339 0.1502 0.5840 0.7087 0.1864 0.4888 0.5982

WFD ( Huang and Zhang (2018)) 0.0906 0.7056 0.8292 0.1221 0.6019 0.7467 0.1513 0.5933 0.7280 0.1895 0.4990 0.6252

MST ( Tu et al. (2016)) 0.0974 0.7385 0.8098 0.1390 0.5865 0.7145 0.1554 0.6052 0.7122 0.1946 0.5273 0.6354

PDP ( Xiao et al. (2018)) 0.1144 0.6807 0.8423 0.1722 0.5022 0.7246 0.1841 0.5352 0.7382 0.2237 0.4694 0.6609

SMD ( Peng et al. (2016)) 0.1040 0.7036 0.8392 0.1559 0.5110 0.7245 0.1739 0.5443 0.7360 0.2095 0.4575 0.6342

CGVS ( Yang et al. (2016)) 0.1224 ‘0.6829 0.7680 0.1924 0.4965 0.6463 0.1923 0.5426 0.6804 0.2230 0.4647 0.6136

RCRR ( Li et al. (2015a)) 0.1222 0.6471 0.7902 0.1711 0.4586 0.6768 0.1840 0.4985 0.6941 0.2292 0.4189 0.5992

RBD ( Zhu et al. (2014)) 0.1080 0.6854 0.8074 0.1424 0.5153 0.7062 0.1714 0.5128 0.6884 0.2028 0.4534 0.6134

HS ( Shi et al. (2016)) 0.1486 0.6043 0.7866 0.2150 0.4223 0.6742 0.2275 0.4544 0.6851 0.2642 0.4054 0.6165

BMS ( Zhang and Sclaroff (2015)) 0.1508 0.5664 0.7461 0.1797 0.4410 0.6708 0.1739 0.4346 0.6289 0.2293 0.3688 0.6485

RC ( Cheng et al. (2011)) 0.1372 0.6080 0.7893 0.1841 0.2915 0.5976 0.1860 0.5091 0.7054 0.3140 0.3134 0.5605

HC ( Cheng et al. (2011)) 0.2149 0.4814 0.6687 0.2822 0.3047 0.5433 0.3299 0.3085 0.5027 0.3422 0.2951 0.4665

MR ( Yang et al. (2013)) 0.1255 0.6424 0.7852 0.1782 0.4503 0.6687 0.1862 0.4961 0.6924 0.2240 0.4211 0.6036

GS ( Wei et al. (2012)) 0.1385 0.6061 0.7751 0.1681 0.4663 0.6908 0.2058 0.4501 0.6608 0.2247 0.4197 0.6039

FT ( Achanta et al. (2009)) 0.2349 0.3344 0.5673 0.2487 0.2347 0.5044 0.2698 0.1950 0.4481 0.2877 0.1871 0.3973

DRFI ( Wang et al. (2017a)) 0.1182 0.6537 0.8390 0.1445 0.5063 0.7400 0.1703 0.5191 0.7320 0.2112 0.4344 0.6534

HDCT ( Kim et al. (2015)) 0.1442 0.5796 0.7962 0.1645 0.4531 0.7089 0.1976 0.4523 0.6858 0.2303 0.3787 0.6136

RASv2 ( Chen et al. (2020)) – – – 0.0301 0.8938 0.9146 0.0337 0.9132 0.9248 0.0673 0.8199 0.8549

CPD ( Wu et al. (2019)) – – – 0.0342 0.8747 0.9055 0.0371 0.8980 0.9181 0.0737 0.7998 0.8444

ETF ( Zhou and Gu (2020)) – – – 0.0676 0.7366 0.7346 0.0824 0.7689 0.7646 0.1159 0.6735 0.6992

PAGE ( Wang et al. (2019e)) – – – 0.0313 0.0889 0.9034 0.0371 0.9045 0.9120 0.0758 0.8035 0.8378

PFA ( Zhao and Wu (2019)) – – – 0.0327 0.8754 0.9135 0.0449 0.8708 0.9045 0.0648 0.8035 0.8629

RAS ( Chen et al. (2018)) – – – – – – 0.0564 0.8569 0.8928 0.1059 0.7350 0.7926

PAGRN ( Zhang et al. (2018)) - – – 0.0475 0.8195 0.8873 0.0610 0.8335 0.8883 0.0950 0.7339 0.8141

PiCANet ( Liu et al. (2018)) – – – 0.0308 0.8903 0.9049 0.0345 0.9082 0.9129 0.0667 0.8175 0.8483

WSS ( Wang et al. (2017b)) – – – 0.0796 0.7079 0.8183 0.1039 0.7092 0.8087 0.1420 0.6092 0.7373

RFCN ( Wang et al. (2016)) – — – 0.0889 0.6803 0.8557 0.1070 0.6984 0.8518 0.1337 0.6339 0.7980

a . The ↑ and ↓ denote “higher is better” and “lower is better,” respectively.
b. Red, green, and blue indicate the top three performances among the unsupervised methods, respectively.
c. Our method TOPS with a single scale is denoted as TOPS_sc.
d . The rank of our method OTS (topo-prior) among the unsupervised methods

Fig. 10 Comparisons with the supervised methods. Our TOPS obtains
competitive performance comparedwith the supervisedmethodsHDCT
(Kim et al. 2015) and DRFI (Wang et al. 2017a), but is worse than all
of the DLB methods

door scenes. Toronto (Bruce and Tsotsos 2009) contains 120
images and does not contain particular regions of interest.

The comparisons for fixation prediction are exhibited in
Table 3. We can see that, although the results of our Stc
(i.e., topo-complexity) are unsatisfactory, the versions of Stc
smoothed by Gaussian filters (i.e., Stc_20 and Stc_50) achieve
better performance on these datasets, especially Stc_20. The
reason why the blurred maps perform better than the origi-
nals is that although Stc can indicate the saliency of images,
it is hierarchical and sharply regional, which dramatically
increases the false positive rate when calculating the AUC;
the blurred maps suffer less from this.

After we combined this topological saliency prior with
other methods using Eq.5, significant improvements were
obtained. Using a blurred maps with std = 50 for pro-
motion (rather than using the std = 20 in Eq.5) enables
us to enhance the performance while preserving the advan-
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Table 3 Quantitative comparisons on three fixation prediction datasets
in terms of AUC_Judd, AUC_Borji, sAUC, and NSS. (From Stc to
method SIG are unsupervised method; the Judd and eDN are the con-

ventional supervised methods; and the last three methods are fully
supervised DLB methods

Dataset ImgSal MIT1003 Toronto

Methods AUC_J.↑ a AUC_B.↑ sAUC↑ NSS↑ AUC_J. AUC_B. sAUC NSS AUC_J. AUC_B. sAUC NSS

Stc 0.7202 0.7158 0.6770 1.1909 0.7621 0.7423 0.6558 1.0995 0.7447 0.7240 0.6101 1.0895

Stc_20 0.8061 0.7809 0.7326 1.4491 0.8041 0.7896 0.6878 1.2684 0.7965 0.7773 0.6334 1.2507

Stc_50 0.8040 0.7889 0.7349 1.3729 0.8056 0.7936 0.6891 1.2708 0.7978 0.7828 0.6258 1.2259

GBVS ( Harel et al. (2007)) 0.8346 0.8182 0.7527 1.5645 0.8233 0.8134 0.6917 1.3658 0.8316 0.8188 0.6396 1.5194

GBVS*d 0.8388b 0.8125 0.7573 1.6810 0.8363 0.8223 0.7090 1.5085 0.8348 0.8156 0.6455 1.5907

BMS ( Zhang and Sclaroff (2015)) 0.7984 0.7783 0.7428 1.5449 0.7846 0.7677 0.7073 1.2287 0.7995 0.7807 0.7095 1.5191

BMS* 0.8245c 0.8011 0.7564 1.6621 0.8265 0.8134 0.7197 1.4640 0.8280 0.8078 0.6792 1.5682

Itti ( Itti et al. (1998)) 0.8018 0.7879 0.7302 1.3770 0.7694 0.7611 0.6769 1.0928 0.8015 0.7907 0.6566 1.2970

Itti* 0.8253 0.8026 0.7499 1.5746 0.8185 0.8067 0.7064 1.3732 0.8241 0.8078 0.6565 1.4627

AIM ( Bruce and Tsotsos (2009)) 0.7882 0.7713 0.7063 0.8296 0.7792 0.7662 0.6794 0.8125 0.7566 0.7423 0.6689 0.8359

AWS ( Garcia-Diaz et al. (2012)) 0.7676 0.7548 0.7312 1.3981 0.7533 0.7429 0.7046 1.1250 0.7600 0.7481 0.7043 1.2087

SIG ( Hou et al. (2011)) 0.7795 0.7648 0.7188 1.3576 0.7590 0.7463 0.6842 1.0859 0.7938 0.7765 0.6959 1.3787

Judd ( Judd et al. (2009)) 0.7729 0.7613 0.7214 1.2587 0.7525 0.7442 0.6817 1.0056 0.7767 0.7635 0.6745 1.1507

Judd* 0.8157 0.7983 0.7502 1.5586 0.8165 0.8065 0.7105 1.3762 0.8176 0.8029 0.6668 1.4129

eDN ( Vig et al. (2014)) – – – – 0.8525 0.8453 0.7181 1.2880 0.8451 0.8353 0.6279 1.2475

eDN* – – – – 0.8508 0.8457 0.7242 1.5170 0.8398 0.8313 0.6359 1.4723

Mr-CNN ( Liu et al. (2015)) – – – – 0.7911 0.7767 0.7294 1.3360 0.7985 0.7761 0.7088 1.4155

Mr-CNN* – – – – 0.8365 0.8227 0.7463 1.6219 0.8287 0.8051 0.6962 1.5826

MLNet ( Cornia et al. (2016)) 0.8261 0.7298 0.7034 1.8406 0.8533 0.7723 0.7343 2.2167 0.8492 0.7576 0.6868 1.9967

MLNet* 0.8339 0.7811 0.7425 1.8427 0.8601 0.8272 0.7541 2.0814 0.8434 0.7995 0.6802 1.8335

DVA ( Wang and Shen (2018)) – – – – 0.8702 0.8066 0.7561 2.3145 0.8621 0.7806 0.6943 2.1237

DVA* – – – – 0.8658 0.8358 0.7604 2.1723 0.8502 0.8071 0.6853 1.9707

a . “AUC_J.” and “AUC_B.” mean “AUC_Judd” and “AUC_Borji,” respectively; ↑ means “higher is better.”
b. Values in bold mean the extended methods are better than the original methods.
c. The best performance among the unsupervised methods (excluding our topo-complexity method’s results) is denoted by an underline.
d . The methods marked with asterisks * are the extended methods incorporated with our topo-prior

tages of the original methods. The results in Table 3 show
that the extended methods, including the unsupervised meth-
ods (GBVS*, BMS*, and Itti*) and supervised methods
(Judd*, eDN*,Mr-CNN*,MLNet*, andDVA*), achieve bet-
ter results than the original ones for most metrics.

To summarize, although the proposed topo-complexity in
Section 3.2.1 is not suitable for predicting fixation directly
due to the hierarchical effect, the extended methods adopt-
ing Gaussian blurred topo-complexity maps with a proper
σ obtained using our strategy have improved performances.
This fact further validates the observation demonstrated
in Section 3.2.2, and reveals the implicitly close relation
between the topological features and the visual saliency.

4.6 SystemMechanism

The mechanism of our system can be visualized in Fig. 11.
As the figure shows, different components in the framework
contribute differently. Similar to most early unsupervised

methods, our TOPS system also adopts the assumption that
the regions near the image borders tend to be the background
in topo-prior computation and regional-level cue extraction.
Therefore, although our topo-prior (Sots) performs well on
images (a), (b), and (c) with cluttered backgrounds, it fails on
the images with the objects touching borders, such as images
(d) and (e).

However, with the help of the pixel-level processing, the
color contrast map (Sc) and spatial-color contrast map (Sd )
are less disturbed by this assumption (see images (d) and
(e) in Fig. 11). Along the regional-level processing flow,
the regional saliency map (Srs) is obtained by exploiting the
relation between the regions in an image and the boundary
regions, which has the ability to reduce the image border
effect. Therefore, combining these results through Eq.16 can
reduce this kind of risk. The results presented in Figs. 11(d)
and (e) illustrate this mechanism. It should be noted that
although the strategy is adopted to reduce the image bor-
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Fig. 11 System mechanism. (a) Example with a big target; (b) and (c)
images with cluttered backgrounds; (d) and (e) images with objects
touching the image borders. The results show that our saliency detec-

tion system can deal with these situations appropriately. The patches in
the red rectangles indicate the effectiveness of the weighting of Eq.10,
whichmake the saliency values of objectsmore consistent and enhanced

der effect, such an effect cannot be totally eliminated in our
framework. This is one direction of our future work.

Red boxes in Fig. 11 show the effectiveness of the weight-
ing items used in Sd as computed by Eq. 9. When the
topo-prior (Sots) successfully detects the objects, appearance
contrast can be optimized in the object areas by these two
weights of Eq. 10. When topo-prior fails, the problem (2) of
Sc still remains. However, this problem can be solved to a
certain extent in the next steps of our model, as shown in Fig.
11, which exhibits the robustness of our model.

4.7 Ablation Analysis

4.7.1 Effectiveness of Various Components

We conducted experiments to evaluate the effectiveness of
each component in our framework. In this experiment, we
removed each component from the framework successively
while keeping the others, and then we compared the final
results. To prove the effectiveness of the multi-scale strategy,
we also compared the results of the single-scale framework.
Figure 12 shows that without topo-prior, the performance
degrades dramatically. This indicates that our topo-prior
plays a principal role in our method. As shown in Fig. 12, our
TOPS performs better than all of the other situations, which
demonstrates the effectiveness of our framework.

4.7.2 Replacing Topo-prior with Other Saliency Priors

To validate the proposed topological saliency prior and the
saliency detection framework, we compared the performance
of our TOPS after replacing the topo-complexity guidance

Fig. 12 Components contribution analysis. The framework with-
out topo-prior, regional-level cues, pixel-level cues, and optimization
are denoted as w/oTopo-prior, w/oRegionalCues, w/oPixelCues, and
w/oOptimization, respectively. The TOPSwith a single scale is denoted
as TOPS_sc

with other saliency priors in our framework while keeping
its parameters unchanged in all of the situations.

In this experiment, we replaced our topo-prior with No
Prior (NP), the widely used Center Prior (CP), the Contour-
BasedSpatial Prior (CBSP) (Yanget al. 2016), and theRobust
Background Detection prior (RBD) (Zhu et al. 2014). We
used the Sbias from Eq.6 to serve as the center prior so as
to justify that the performance of TOPS (OTS + selective
pathway) on various datasets is mainly determined by the
topo-complexity rather than center bias. The CBSP and RBD
are two useful saliency priors that can provide reliable spa-
tial and structural prior information for saliency detection,
respectively. Similarly, our topological prior, the OTS map,
is computed from the UCM (Arbelaez 2006). Consequently,
the OTS map inherits precise spatial and structural informa-
tion from the UCM. We also removed the prior information
as a baseline for other situations, which is denoted as no
prior (NP). Figure 13 compares the results of various situa-
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Fig. 13 Comparisons of our framework guided by different saliency priors on ECSSD and DUT-OMRON

tions guiding the selective pathway with NP, CP, CBSP, or
RBD, and the results of our TOPS (i.e., OTS + selective path-
way) for four metrics (PR curves, F-measure, weighted-F,
and MAE) on two representative challenging datasets DUT-
OMRON (Yang et al. 2013) and ECSSD (Shi et al. 2016).
From this figure, we can see that our topo-complexity-guided
method (TOPS) outperforms all of the others in all of the
metrics and on all of the datasets, by a large margin.

Compared with the baseline (the NP + selective pathway),
most of the other prior-guided methods obtain better per-
formance, which means that prior information can indeed
improve performance on the saliency detection task. The
comparison of TOPS and the no prior (NP) solution validates
the significant effect of our topological features.More impor-
tantly, that our TOPS outperforms CBSP and RBD indicates
that our topological saliency prior can obtain more precise
spatial and structural information for saliency detection.

Consequently, we conclude that the topo-complexity
derived from image topological features is a promising prior
that is quite suitable for the task of saliency detection.

4.7.3 Promotion for Existing Unsupervised Methods

Our topo-prior (OTS) not only performs well in the proposed
framework, but it can also promote the performance of exist-
ing unsupervised methods when replacing their priors with
OTS. For example, LMLC (Xie et al. 2012) uses a convex hull
of points of interest as the middle level prior to facilitating
the inference of Bayesian saliency at each pixel. Meanwhile,
CGVS (Yang et al. 2016) adopts the contour information as
spatial prior to guide saliency detection. In this experiment,
we directly replaced the middle level prior with our OTS
for LMLC and a proper Gaussian blurred OTS with an std

of σ = 20 for CGVS. The results shown in Fig. 14 indicate
that our topo-prior significantly promotes their performances
(other method + TP) in terms of all of the metrics on both
ECSSD and DUT-OMRON datasets. These findings further
validate the superiority of our topological prior.

4.7.4 Promotion for Supervised and DNN-based Methods

Generally, supervisedmethods employ annotations andmany
kinds of handcrafted or deep features, and usually obtain
better results than unsupervised methods. However, to the
best of our knowledge, very few of them exploit topologi-
cal properties (Huang et al. 2009; Gu et al. 2013; Chen et al.
2019). Consequently, in this section, we applied our topolog-
ical saliency prior (Sots) to supervised methods DRFI (Wang
et al. 2017a) and HDCT (Kim et al. 2015), the unsupervised
deep neural network (DNN)-based method HCA (Qin et al.
2018), the supervised DNN-based method ETF (Zhou and
Gu 2020), and two newly proposed end-to-end DLB meth-
ods CPD (Wu et al. 2019) and RASv2 (Chen et al. 2020).

According to the details of DRFI (Wang et al. 2017a), the
features of backgroundness (b1∼29) play the most important
role in DRFI. Therefore, we simply modified these features
by b∗

1∼29 = b1∼29 · (1+ Sots), and the rest of DRFI remained
unchanged. According to the details of HDCT (Kim et al.
2015), a global salient region map obtained by HDCT and
a local salient region map obtained via a random forest are
combined to compute the final results. We simply multiplied
our topo-prior map with both of these salient maps directly,
and the rest of HDCT (Kim et al. 2015) remained unchanged.

According to the details of HCA (Qin et al. 2018), the
deep features extracted from the pre-trained VGG network
are processed by hierarchical cellular automata. Note that
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Fig. 14 Comparisons with other methods (including LMLC (Xie et al. 2012), and CGVS (Yang et al. 2016)) on two datasets when replacing their
priors with the proposed topo-prior (OTS).t0 and t1 mean the situations of 1 and 2 iterations, respectively

HCA also employs a scheme to integrate with saliency pri-
ors. Therefore, we simply adopted our topo-prior as this
prior information, and the rest of HCA remained unchanged.
According to the details of ETF (Zhou and Gu 2020), a topo-
logical feature map St f is incorporated into a DNN. We
simply modified the topo-feature maps by our topo-prior
as S∗

t f = St f · (1 + Sots), and the rest of ETF remained
unchanged.

Integrating existing conventional methods into the SOTA
deep neural networks while obtaining better performance is
also meaningful and practical. One of the difficulties is that
they are end-to-end and too compact to integrate with other
handcrafted cues. Two newly proposed state-of-the-arts, e.g.,
CPD (Wu et al. 2019), and RASv2 (Chen et al. 2020) can be
appropriately integrated into by our topo-prior , since both of
them generate prior maps (i.e., attention maps, Satt ) to guide
the rest of the models to produce better results.

Similar to previous modulated methods (DRFI*, HDCT*,
HCA*, and ETF*), the core idea is to modify the generated
prior map (Satt ) with our topo-prior (Sots) with a learnable
weighting (ω), which is formulated as S∗

att = Satt · (1 + ω ·
Sots). The rests of CPDandRASv2 remained unchanged. For
RASv2, we used the prior map generated by the last layer as
Satt . One difference compared with the previous modulated
methods is that we retrained the modulated models.

From Table 4 we can see that the topo-prior modulated
CPD (i.e., CPD*) performs consistently better across all the
three datasets in terms of both metrics than the original CPD.
In addition, compared with the original RASv2, the RASv2*
performs better on the PASCAL-S dataset, while slightly
worse on other datasets. We argue with two probably reasons
for this observation. First, the topological features like ours

may have been partly learned in some SOTA methods such
as RASv2, while other methods like CPD does not. Second,
PASCAL-S is a special datasets compared with other SOD
datasets, because the ground-truths were generated by the
fixation and full segmentations rather than directly outlining
the salient objects by person. This fact makes the PASCAL-
S one of the hardest SOD datasets, and also the one that is
most consistent with human cognition. Fortunately, our topo-
prior can appropriately capture the fixation as Table 3 shows,
which makes our topo-prior able to improve the RASv2 on
difficult datasets such as PASCAL-S.

The results (especially theDRFI*, HDCT*,HCA*, ETF*,
CPD*, and RASv2*) in Table 4 show that our topo-prior has
large potential to promote the performance of the supervised,
unsupervised DNN-based methods, and even the newly pro-
posed SOTADLBmethods, which further confirms the value
of our topo-prior.

4.8 Time Efficiency

Because our system is based on the UCMs and superpixel
map, the complexity is affected by the number, area, and
structure of the regions. To further demonstrate the efficiency
of our method, we show the average time cost for each com-
ponent of our framework in Table 5 and for each image in
Table 6.

Our system is implemented in Matlab2016a using a PC
with 3.60 GHz CPU and 32G RAM. As shown in Table 5 ,
it takes about 0.7 s to obtain a UCM, 1.7 s to calculate the
topological saliency prior Sots , 2.4 s to compute the pixel-
level saliency Sps , 0.5 s for the regional-level saliency Srs ,
and another 0.3 s for saliency fusion and optimization. It
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Table 4 Quantitative validation of the promotion for supervised SOD
methods and DNN-based methods combined with our topo-prior. DRFI
and HDCT are the supervised methods with handcrafted features; HCA

and ETF are classical DNN-based methods; CPD and RASv2 are the
newly proposed end-to-end DLB SOTA methods

Datasets ECSSD PASCAL-S HKU-IS

Methods MAE ↓ F∗
β ↑ MAE F∗

β MAE F∗
β

DRFI ( Wang et al. (2017a)) 0.170 0.519 0.211 0.434 0.145 0.506

DRFI* 0.169 
 0.543 0.208 0.475 0.154 0.511

HDCT ( Kim et al. (2015)) 0.198 0.452 0.230 0.379 0.165 0.453

HDCT* 0.191 0.489 0.222 0.421 0.158 0.488

HCA ( Qin et al. (2018)) 0.119 0.675 0.160 0.591 0.115 0.627

HCA* 0.116 0.684 0.158 0.582 0.103 0.645

ETF ( Zhou and Gu (2020)) 0.082 0.769 0.116 0.674 0.068 0.737

ETF* 0.078 0.796 0.112 0.695 0.061 0.771

CPD ( Wu et al. (2019)) 0.037 0.898 0.074 0.800 0.034 0.875

CPD* 0.035 0.907 0.069 0.809 0.031 0.888

RASv2 ( Chen et al. (2020)) 0.034 0.913 0.067 0.820 0.030 0.894

RASv2* 0.034 0.909 0.065 0.822 0.031 0.891


. Values in bold denote that the extended methods with our topo-priors are better than the originals

Table 5 Time Efficiency Analysis for Each Component

Component ucm Sots Sps Srs opt. TOPS_sc TOPS

Time (s) 0.7 1.7 2.4 0.5 0.3 3.2 5.5

�. The time for computation of ucm is included in Sots , and the time for computing Sots is included in Sps

Table 6 Time efficiency comparison with other methods

Method PDP HCCH DRFI HDCT TOPS_sc TOPS

Time (s) 2.5 2.9 5.9 4.1 3.2 5.5

�. The code of all methods listed here are written in MATLAB.
�. Training times for DRFI and HDCT are not included

costs about 3.2 s for single-scale computation and around
5.5 s (with three threads) for the whole system.

Since our multi-scale version can use multiple threads for
acceleration, we use three threads to calculate each scale. As
shown in Table 6, our method with a single scale costs less
time than DRFI and HDCT, but our multi-scale version costs
more. However, both of our single- and multi-scale methods
outperform all of the other unsupervised methods, as shown
in Table 2.

4.9 Limitations and FutureWork

Our system extracts topological information based on a seg-
mentationmethod and combines the color contrastmapunder
the guidance of topo-prior. Therefore, there exist two limita-
tions affecting the performance.

Firstly, the topo-prior may be not good. Statistics con-
ducted in Sec.3.2.2 have shown that positive relationship
exits between topo-complexity and visual saliency. However,

Fig. 15 Examples of the cases of negative correlation between topo-
complexity (i.e., topo-prior, OTS) and human-labeled saliency. (a) and
(b) show the failure examples caused by bad topo-priors while (c) is
an imperfect example caused by unsufficient low-level segmentation
scheme

there are still very few images having negative relation. Fig-
ure 15 (a) shows an image containing a cluttered background
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and (b) shows an image containing an object with large but
sparse shape.

Methods only employing the bottom-up cues regard the
regions with higher local contrast more salient, then it
will assign higher saliency values to the regions of higher
contrast, even they are located in background areas.Our topo-
complexity (or OTS) is purely bottom-up based and suffered
from this problem, as shown in the second column of Fig.
15. We argue that there may exist higher level or top-down
modulation while we are paying attention to such scenes, for
example, semantic, or task-related modulation.

Secondly, the topo-prior is good but the whole system
can not segment the objects accurately. Although the object
shown in Fig. 15 (c) can be roughly located, the final segmen-
tation result is unfavorable because of the low contrast; and
the low-level segmentation used in our method is insufficient
to segment the targets even the topological prior is almost
correct.

To overcome these limitations, we plan to incorporate
higher-level priors into the non-selective pathway and more
sensitive local cues into the selective pathway of our frame-
work.

Moreover, our model is enclosed-region based and needs
off-line low-level feature (i.e., contour) extraction, which
makes it seems difficult to combine with existing net-
works. However, after extensive experiments, we found
that our assumption of enclosed region does not degrade
our model’s performance too much, because in real-world
scenes, enclosed regions are quite common (Zitnick andDol-
lár 2014; Cheng et al. 2014b), or at least, for object-based
computer vision tasks (e.g., object detection and object track-
ing), our targets are enclosed-region shaped.

As for the requirement of extracting low-level features
off-line, we admit this makes our model not as easy as
those end-to-end network models in implementation. How-
ever, we think this also leave us chance to employ effective
knowledge-based models to extract effective low-level (and
even middle- and high-level) features when no large amount
of samples are available for those end-to-end network mod-
els. In fact, many researches have demonstrated that effective
knowledge-based processing (e.g., pose estimation, simi-
global matching) can largely improve the performance of
end-to-end network models (Klingner et al. 2020; Seki and
Pollefeys 2017). Our future work is to build more effective
low-level feature extraction (i.e., contour extraction) used for
our topological complexity computation.

5 Conclusion

In this article, inspired by Topological Perception Theory
(TPT),we established a relatively complete and effective sys-
tem for saliency detection. It contains a computational model

of TPT, a topo-complexity calculation method, and a topo-
prior-guided framework inspired by Guided Search Theory
for combining global–local saliency. The computational TPT
model provides a compact mathematical solution for topo-
logical feature extraction. The topo-complexity calculation
method offers a feasible scheme to compute the topological
saliency prior maps from real-world images. The framework
combining local cues under the guidance of the topological
saliency prior obtains better performance than unsupervised
state-of-the-art methods. The topo-complexity prior can be
used to predict human fixation and promote other methods.
Moreover, our extensive analyses confirm that the topo-prior
is effective and quite suitable to act as a novel saliency prior
that can also be incorporated into existing salient object
detectionmodels for performancepromotion.Qualitative and
quantitative comparisons confirm that our systemcan achieve
competitive performance in SOD tasks compared with even
the newly proposed SOTA methods. Besides, the close rela-
tion revealed in this work between the topological properties
and the visual saliency provides a significant perspective for
further exploiting the connection of saliency detection and
topological perception theory.
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