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Abstract
To recognize objects of the unseen classes, most existing Zero-Shot Learning(ZSL)methods first learn a compatible projection
function between the common semantic space and the visual space based on the data of source seen classes, then directly
apply it to the target unseen classes. However, for data in the wild, distributions between the source and target domain
might not match well, thus causing the well-known domain shift problem. Based on the observation that visual features of test
instances can be separated into different clusters, we propose a new visual structure constraint on class centers for transductive
ZSL, to improve the generality of the projection function (i.e.alleviate the above domain shift problem). Specifically, three
different strategies (symmetric Chamfer-distance, Bipartite matching distance, andWasserstein distance) are adopted to align
the projected unseen semantic centers and visual cluster centers of test instances. We also propose two new training strategies
to handle the data in the wild, where many unrelated images in the test dataset may exist. This realistic setting has never
been considered in previous methods. Extensive experiments demonstrate that the proposed visual structure constraint brings
substantial performance gain consistently and the new training strategies make it generalize well for data in the wild. The
source code is available at https://github.com/raywzy/VSC.

Keywords Computer vision · Zero-shot learning · Visual structure constraint

1 Introduction

Relying on massive labeled training datasets, significant
progress has been made for image recognition in the past
years (Simonyan and Zisserman 2014; Szegedy et al. 2015;
He et al. 2016). However, it is unrealistic to label all the
object classes, thus making these supervised learning meth-
ods struggle to recognize objects which are unseen during
training. By contrast, Zero-Shot Learning (ZSL) (Norouzi
et al. 2014; Zhang and Saligrama 2016b; Zhu et al. 2019;
Long et al. 2017) only requires labeled images of seen classes
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(source domain), and are capable of recognizing images of
unseen classes (target domain). The seen and unseen domains
often share a common semantic space, which defines how
unseen classes are semantically related to seen classes. The
most popular semantic space is based on semantic attributes,
where each seen or unseen class is represented by an attribute
vector. Besides the semantic space, images of the source and
target domains are also related and represented in a visual
feature space.

To associate the semantic space and the visual space, exist-
ing methods often rely on the source domain data to learn a
compatible projection function to map one space to the other,
or two compatible projection functions to map both spaces
into one common embedding space. During test time, to rec-
ognize an image in the target domain, semantic vectors of all
unseen classes and the visual feature of this image would be
projected into the embedding space using the learned func-
tion, then nearest neighbor (NN) search will be performed
to find the best match class. However, due to the existence
of the distribution difference between the source and target
domains, especially for in-the-wild data, the learned projec-
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tion function often suffers from thewell-known domain shift
problem.

To compensate for this domain gap, transductive zero-shot
learning (Fu et al. 2015) assumes that the semantic informa-
tion (e.g.attributes) of unseen classes and visual features of
all test images are known in advance. Different ways like
domain adaption (Kodirov et al. 2015) and label propaga-
tion (Zhu and Ghahramani 2002) are well investigated to
better leverage this extra information. Recently, Zhang and
Saligrama (2016b) find that visual features of unseen target
instances can be separated into different clusters even though
their labels are unknown as shown in Fig. 1. By incorporating
this prior as a regularization term, a better label assignment
matrix can be solved with a non-convex optimization proce-
dure. However, their method still has three main limitations:
1) This visual structure prior is not used to learn a better pro-
jection, which directly limits the upper bound of the final
performance. 2) They model the ZSL problem as a less-
scalable batch mode, which requires re-optimization when
adding new test data. 3) Likemost previous transductive ZSL
methods, they have not considered a realistic scenario where
many unrelated imagesmay exist in the test dataset andmake
the above prior invalid.

Considering the first problem, we model the above visual
structure prior as a new constraint to learn a better projection
function rather than use the pre-defined one. In this paper, we
adopt the visual space as the embedding space and project the
semantic space into it. To learn the projection function, we
not only use the projection constraint of the source domain
data as Zhang et al. (2017) but also impose the aforemen-
tioned visual structure constraint of the target domain data.
Specifically, during training, we first project all the unseen
semantic classes into the visual space, then consider three
different strategies (“Chamfer-distance based”, “Bipartite
matching based” and “Wasserstein-distance based”) to align
the projected unseen semantic centers and the visual centers.
However, due to the lack of test instance labels in the ZSL
setting, we approximate these real visual centers with some
unsupervised clustering algorithms (e.g.K-Means). Need to
note that in our method, we directly apply the learned pro-
jection function to the online-mode testing, which is more
friendly to real applications when compared to the batch
mode in Zhang and Saligrama (2016b).

The third problem is common for data in the wild,
where many unrelated images, which belong to neither seen
nor unseen classes, often exist in the target domain. Thus
using current unsupervised clustering algorithms directly on
the whole test dataset will generate invalid visual centers,
and misguide the learning of the projection functions. To
overcome this problem, we further propose a new training
strategies that first filters out the highly unrelated images
and then uses the remaining ones to impose the proposed
visual constraint. The filter is based on the distance from

each image to its closest visual center. Considering the ini-
tial projection function is often deviated more than the later
refined one, we further propose another progressive training
strategy to gradually refine the center and increase the thresh-
old in a class-specific manner. To the best of our knowledge,
we are the first to consider this realistic transductive ZSL
configuration with unrelated test images.

We demonstrate the effectiveness of the proposed visual
structure constraint on many different widely-used datasets.
Extensive experiments on both small datasets like AwA2 and
large-scale dataset like Imagenet all show that the proposed
visual structure constraint can consistently bring substantial
performance gain and achieve state-of-the-art results.

To summarize, our contributions are three-fold as below:

– We have proposed three different types of visual structure
constraint for the projection learning of transductive ZSL
to alleviate its domain shift problem.

– We introduce a realistic transductive ZSL configuration
where many unrelated images exist in the test dataset and
propose two new training strategies to make our method
work for it.

– Experiments demonstrate that the proposed visual struc-
ture constraint can bring substantial performance gain
consistently and achieve state-of-the-art results.

This paper is extended from our preliminary conference
version (Wan et al. 2019) in four ways. First, we propose
a new progressive training strategy for the realistic setting
of data in the wild. Second, we carry out extensive exper-
iments on the large-scale dataset like ImageNet and push
current state-of-the-art performance by a large margin. This
further demonstrates the scalability and effectiveness of our
method. Third, we extend the wasserstein-based visual struc-
ture constraint to its instance-based counterpart and show its
robustness even in some extremely challenging cases. Fourth,
we present deeper and more detailed analysis and discussion
of the proposed method.

2 RelatedWork

Zero-shot Learning and Semantic Spaces. Though deep
supervised learning has gained enormous success for the
image recognition task (Simonyan and Zisserman 2014;
Szegedy et al. 2015; He et al. 2016), it relies on large-scale
human annotations and cannot generalize to new unseen
classes. Zero-shot learning bridges the gap between training
seen classes and testing unseen classes via different kinds of
semantic spaces.Among them, themost popular and effective
one is the attribute-based semantic space (Farhadi et al. 2009;
Akata et al. 2013; Lampert et al. 2009). The attributes are
often designed by experts to represent the class-specific prop-
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erties, which are demonstrated to be reliable and effective.
To incorporate more attributes for fine-grained recognition
tasks, the text description-based semantic space is proposed
in Reed et al. (2016), Zhang et al. (2017), Elhoseiny et al.
(2013), Zhu et al. (2018), which provides a more natural
language interface. Compared to these two labor-intensive
types of methods, word vector-based methods (Frome et al.
2013; Miller 1995; Norouzi et al. 2014; Wang et al. 2018)
can learn the semantic space from large text corpus automati-
cally and save much human labor. However, they often suffer
from visual-semantic discrepancy problem and achieve infe-
rior performance.
Embedding Spaces. To relate the visual features of test
images and semantic attributes of unseen classes, three dif-
ferent embedding spaces are often used by existing zero-shot
learning methods: the original semantic space, the original
visual space, and the newly-learned common intermediate
embedding space. Specifically, they often learn a projection
function from thevisual space to the semantic space (Lampert
et al. 2014; Reed et al. 2016; Frome et al. 2013;Annadani and
Biswas 2018) or from the semantic space to the visual space
(Kodirov et al. 2015; Shigeto et al. 2015; Zhang et al. 2017)
in the first two cases, or learn two projection functions from
semantic and visual space to the common embedding space
(Changpinyo et al. 2016; Lu 2016; Zhang and Saligrama
2016a) respectively, which can be modeled as a regression
or ranking problem solved by conventional methods or deep
neural networks. In our method, we also use the visual space
as the embedding space, because it is demonstrated helpful
in alleviating the hubness problem (Radovanović et al. 2010)
in Zhang et al. (2017). More importantly, our structure con-
straint is based on the separability of visual features of unseen
classes.
GAN-based Zero-shot Learning. With the recent progress
of generative adversarial networks(GAN) (Goodfellow et al.
2014), a series of GAN-based zero-learning methods (Xian
et al. 2018; Felix et al. 2018; Xian et al. 2019; Huang
et al. 2019; Li et al. 2019) have been proposed to solve
the domain shift problem. For example, f-CLSWGAN (Xian
et al. 2018) directly employs the conditional Wasserstein
GAN (Arjovsky et al. 2017) to generate the sample features
of unseen classes based on the class attributes, which could
be utilized for consequent supervised learning. To ensure the
synthetic visual features can recover their semantic features
back, Felix et al. (2018) further add a multi-modal cycle-
consistent constraint into GAN-based ZSL. In LisGAN (Li
et al. 2019), a novel sample strategy is proposed to improve
the ZSL performance. To achieve any-shot learning, Xian
et al. (2019) design a f-VAEGAN-D2 frameworkwhich com-
bines both GAN and VAE (Kingma and Welling 2013).

Although the above-mentioned GAN-based ZSLmethods
can achieve promising results in both conventional ZSL and
generalized ZSL, they have some drawbacks compared to

projection-basedmethods. Firstly, like other generativemod-
els, the training instability also exists in GAN-based ZSL.
Besides, enough samples are needed to narrow down the gap
between the generated distributions and the real feature dis-
tributions. When the training samples for each seen class
are not enough, the generator usually could not capture the
underlying distribution well. In contrast, our method could
alleviate this problem well since the training only relies on
the visual center. Last but not least, GAN-based ZSL could
not be directly applied under the proposed realistic transduc-
tive setting because of the overlap between noise distribution
and real distribution.
Domain Shift and Transductive Zero-shot Learning. Since
the target unseen classes are disjointed to source seen classes,
their underlying data distribution might be very different. In
such cases, if we only learn the projection functions based on
the source domain data, the learned projection functions will
be biased and incur a serious performance gap when directly
applied to the target domain. This problem is first witnessed
by Fu et al. (2015) and alleviated by a new transductive zero-
shot learning setting. Under this setting, the unseen target
domain data is leveraged in the learning stage to improve the
generalization ability and different strategies have been pro-
posed. For example, a multi-view semantic space alignment
process is used to correlate different semantic views and the
low-level feature view by projecting them onto a common
latent space learned using multi-view canonical correlation
analysis in Fu et al. (2015). And unsupervised domain adap-
tion is utilized in Kodirov et al. (2015) by proposing a
novel regularized sparse coding framework. Our method
also belongs to transductive approaches, and the proposed
visual structure constraint is inspiredbyZhangandSaligrama
(2016b), but we have addressed their aforementioned draw-
backs and improved the performance significantly. To the
best of our knowledge, we are the first that utilizes the
structure of visual space to constrain the projection function
learning in transductive ZSL.

3 Method

Problem Definition. In ZSL setting, we have Ns source
labeled samples Ds ≡ {(xsi , ysi )}Ns

i=1, where xsi is an image
and ysi ∈ Ys = {1, . . . , S} is the corresponding label within
total S source classes. We are also given Nu unlabeled tar-
get samples Du ≡ {xui }Nu

i=1 that are from target classes
Yu = {S + 1, . . . , S + U }. According to the definition of
ZSL, there is no overlap between source seen classes Ys and
target unseen classes Yu , i.e.Ys ∩Yu = ∅. But they are asso-
ciated in a common semantic space, which is the knowledge
bridge between the source and target domain. As explained
before, we adopt semantic attribute space here, where each
class z ∈ Ys ∪Yu is represented with a pre-defined auxiliary
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Fig. 1 Visualization of CNN feature distribution of 10 target unseen
classes on AwA2 dataset using t-SNE, which can be clearly clustered
into several real centers (stars). Squares (VCL) are synthetic centers pro-
jected by the projection function learned only from source domain data.
By incorporating our visual structure constraint, our method (BMVSc)
can help to learn better projection function and the generated synthetic
semantic centers would be much closer to the real visual centers

attribute vector az ∈ A. The goal of ZSL is to predict the
label yui ∈ Yu given xui with no labeled training data.

Besides the semantic representations, images of the source
and target domains are also represented with their corre-
sponding features in a common visual space. To relate these
two spaces, projection functions are often learned to project
these two spaces into a common embedding space. Following
Zhang et al. (2017), we directly use the visual space as the
embedding space, in which case only one projection func-
tion is needed. The key problem then becomes how to learn
a better and generalized projection function.
Motivation. Our method is inspired by Zhang and Saligrama
(2016b), whose idea is shown in Fig. 1: thanks to the power-
ful discriminativity of pre-trainedCNN, the visual features of
test images can be separated into different clusters.Wedenote
the centers of these clusters as real centers. We believe that if
we have a perfect projection function to project the semantic
attributes to the visual space, the projected points (called syn-
thetic centers) should align with real centers. However, due
to the domain shift problem, the projection function learned
on the source domain is not perfect so that the synthetic cen-
ters (i.e.VCL centers in Fig. 1) will deviate from real centers,
and then NN search among these deviated centers to assign
labels will cause inferior ZSL performance. Based on the

above analysis, besides source domain data, we attempt to
take advantage of the existing discriminative structure of tar-
get unseen class clusters during the learning of the projection
function, i.e.the learned projection function should also align
the synthetic centers with the real ones in the target domain.

3.1 Visual Center Learning (VCL)

In this section, we first introduce a baseline method which
learns the projection function f only with source domain
data. Specifically, a CNN feature extractor φ(·) is used to
convert each image x into a d-dimensional feature vector
φ(x) ∈ Rd×1. According to the above analysis, each class i
of source domain should have a real visual center csi , which is
defined as themean of all feature vectors in the corresponding
class. For the projection function f , a two-layer embedding
network is utilized to transfer source semantic attribute asi to
generate corresponding synthetic center csyn,s

i :

csyn,s
i = f (asi ) = σ2(w

T
2 σ1(w

T
1 a

s
i )) (1)

where σ1(·) and σ2(·) denote non-linear operation (Leaky
ReLU with negative slope of 0.2 by default). w1 and w2 are
the weights of two fully connected layers to be learned.

Since the correspondence relationship is given in the
source domain, we directly adopt the simple mean square
loss to minimize the distance between synthetic centers csyn

and real centers c in the visual feature space:

LMSE = 1

S

S∑

i=1

∥∥csyn,s
i − csi

∥∥2
2 + λ�(w1, w2) (2)

where �(·) is the L2-norm parameter regularizer decreasing
the model complexity, we empirically set λ = 0.0005. Need
to note that different from Zhang et al. (2017) which trains
with a large number of individual instances of each class i ,
we choose to utilize a single cluster center csi to represent
each object class, and train the model with just several center
points. It is based on the observation that the instances of the
same category could form compact clusters, and will make
our method much more computationally efficient.

When performing ZSL prediction, we first project the
semantic attributes of each unseen class i to its corresponding
synthetic visual center csyn,u

i using the learned embedding
network as in Equation (1). Then for a test image xuk , its clas-
sification result i∗ can be achieved by selecting the nearest
synthetic center in the visual space. Formally,

i∗ = argmin
i

∥∥φ(xuk ) − csyn,u
i

∥∥
2 (3)
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CDVSc BMVSc

Fig. 2 Illustration of possible many-to-one matching problem in
Chamfer-distance based visual structure constraint, which can be
avoided in the bipartite matching based visual structure constraint

3.2 Chamfer-Distance-basedVisual Structure
Constraint(CDVSc)

As discussed earlier, the domain shift problem will cause
the target synthetic centers csyn,u deviated from the real cen-
ters cu , thus yields poor performance. Intuitively, if we also
require the projected synthetic centers to align with the real
ones by using the target domain dataset during the learning
process, a better projection function can be learned. How-
ever, due to the lack of the label information of the target
domain, it is impossible to directly get real centers of unseen
classes. Considering the fact that the visual features of unseen
classes can be separated into different clusters, we try to uti-
lize some unsupervised clustering algorithms (K-means by
default) to get approximated real centers. To valid it, we plot
the K-means centers in Fig. 1, which are very close to the
real ones.

After obtaining the cluster centers, aligning the structure
of cluster centers to that of synthetic centers can be formu-
lated as reducing the distance between the two unordered
high-dimensional point sets. Inspired by thework in 3D point
clouds (Fan et al. 2017), a symmetric Chamfer-distance con-
straint is proposed to solve the structure matching problem:

LCD =
∑

x∈Csyn,u

miny∈Cclu,u ‖x − y‖22

+
∑

y∈Cclu,u

minx∈Csyn,u ‖x − y‖22
(4)

where Cclu,u indicates the cluster centers of unseen classes
obtained by K-means algorithm. Csyn,u represents the syn-
thetic target centers obtained with the learned projection.
Combining the above constraint, the final loss function to
train the embedding network is defined as:

LCDV Sc = LMSE + β × LCD (5)

3.3 Bipartite-Matching-basedVisual Structure
Constraint(BMVSc)

CDVSc helps to preserve the structure similarity of two sets,
but sometimes many-to-one matching may happen with the
Chamfer-distance constraint as shown inFig. 2. This conflicts
with the important prior in ZSL that the obtained matching
relation between synthetic and real centers should conform
to the strict one-to-one principle. When undesirable many-
to-onematching arises, the synthetic centers will be pulled to
incorrect real centers and result in inferior performance. To
address this issue, we change CDVSc to bipartite matching
based visual structure constraint (BMVSc), which aims to
find a global minimum distance between the two sets mean-
while to satisfy the strict one-to-one matching principle.

We first consider a graph G = (V , E) with two parti-
tions A and B, where A is the set of all synthetic centers
Csyn, u and B contains all cluster centers of target classes.
Let disi j ∈ D denotes the Euclidean distance between i ∈ A
and j ∈ B, element xi j of the assignment matrix X defines
the matching relationship between i and j . To find a one-to-
one minimum matching between real and synthetic centers,
we could formulate it as amin-weight perfectmatching prob-
lem, and optimize the problem as follows:

LBM = min
X

∑

i, j

disi j xi j ,

s.t .
∑

j

xi j = 1,
∑

i

xi j = 1, xi j ∈ {0, 1}
(6)

In this formulation, the assignment matrix X strictly con-
forms to the one-to-one principle. To solve this linear
programmingproblem,we employKuhn-Munkres algorithm
whose time complexity is O(V 2E). Like CDVSc, we also
combine the MSE loss and this bipartite matching loss.

LBMV Sc = LMSE + β × LBM (7)

3.4 Wasserstein-Distance-basedVisual Structure
Constraint(WDVSc)

Ideally, if the synthetic and real centers are compact and
accurate, the above bipartite matching based distance can
achieve a global optimalmatching.However, this assumption
is not always valid, especially for the approximated cluster
centers of target classes, because these centers may contain
noises and are not accurate enough. Therefore, instead of
using a hard-value (0 or 1) assignment matrix X , a soft-value
X whose values represent the joint probability distribution
between these two point sets is further considered by using
the Wasserstein distance. In the optimal transport theory,
Wasserstein distance is demonstrated as a good metric for
measuring the distance between two discrete distributions,
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whose goal is to find the optimal “coupling matrix” X that
achieves the minimum matching distance. Its objective for-
mulation is the same as Equation (6), but X represents the
soft joint probability values rather than {0, 1}. In this paper,
in order to make this optimization problem convex and solve
it more efficiently, we adopt the entropy-regularized optimal
transport problem by using the Sinkhorn iterations (Cuturi
2013).

LWD = min
X

∑

i, j

disi j xi j − εH(X)

H(X) = −
∑

i j

xi j logxi j
(8)

where H(X) is the entropy of matrix, ε is the regularization
coefficient to encourage smoother assignment matrix X . The
solution X can be written in form X = diag{u}Kdiag{v}
(diag{v} returns a square diagonalmatrixwith vector v as the
main diagonal), and the iterations alternate between updating
u and v is:

u(k+1) = a

Kv(k+1)
, v(k+1) = b

K T u(k+1)
(9)

Here, K is a kernel matrix calculated with D. Since these
iterations are solving a regularized version of the original
problem, the correspondingWasserstein distance that results
is sometimes called the Sinkhorn distance. Combining this
constraint, the final loss function is:

LWDV Sc = LMSE + β × LWD (10)

3.5 A Realistic Setting with Unrelated Test Data in
theWild

Existing transductive ZSL methods always assume that all
the images in the test dataset belong to target unseen classes
we have already defined. However, in the wild, many unre-
lated images which do not belong to any defined class may
exist. If we directly perform clustering on all these unfiltered
images, the approximated real centers will deviate far from
the real centers of unseen classes and make the proposed
visual structure constraint invalid. This problem also exists
in Zhang and Saligrama (2016b). To solve this realistic chal-
lenging setting, we propose two new training strategies for
our method. In both of these two strategies, we assume the
domain shift problem is not that severe, so the initial unseen
synthetic centers learned by VCL are roughly correct. This
assumption makes sense in that the source and target classes
are related in a common attribute space.

Specifically, in the first strategy, we use the baseline VCL
to get the initial unseen synthetic centers and then directly

Algorithm1The “one-step” training strategy for the realistic
setting in the wild.
Step 1: Only use the source domain data to train the baseline VCL to
learn an initial projection function f .

Step 2: For each source class in Ys in the visual feature space, we
find its farthest sample feature point pair and calculate their feature
distanceDi . And we set the distance threshold as λdist = max{Di }/2

Step 3: Map each target attribute aui to get its corresponding synthetic
visual center csyn,u

i , and we denote C = {csyn,u
1 , ..., csyn,u

U }. Then
select reliable images x if and only if ∃ci ∈ C , ‖x − ci‖22 ≤ λdist to
construct a new target domain and perform unsupervised clustering
on this domain

Step 4: Conduct CDVSc, BMVSc or WDVSc.

filter out unrelated images with one specific feature distance
threshold before conducting CDVSc, BMVSc or WDVSc.
The details of this training strategy are shown inAlgorithm 1.
Since the visual structure constraint is only leveraged in one
step, this strategy is called the “one-step” training strategy.
Since we do not have the ground truth labels of target domain
andmany noisy samples exist, we use the farthest sample fea-
ture distance of the source domain to set the feature distance
threshold λdist .

By contrast, in the second strategy, rather than using only
one specific feature distance threshold, we do it in a pro-
gressive way which aims to get more accurate synthetic
centers and use larger feature distance threshold in multi-
ple alternative steps. At each step t , we will not only use the
latest projection function ft−1 to get more accurate synthetic
visual centers but also use looser feature distance threshold
to include more target domain data. The following experi-
ments will demonstrate that this progressive training strategy
is often more robust and can generate better results.

4 Experiments

Implementation Details. We adopt the pretrained ResNet-
101 to extract visual features unless specified. All images
are resized to 224 × 224 without any data augmentation,
and the dimension of extracted features is 2048. The hidden
unit numbers of the two FC layers in the embedding network
are both 2048. Both visual features and semantic attributes
are L2-normalized. Using Adam optimizer, our method is
trained for 5000 epochs with a fixed learning rate of 0.0001.
The weight β in CDVSc and BMVSc is cross-validated in
[10−4, 10−3] and [10−5, 10−4] respectively, while WDVSc
directly sets β = 0.001 because of its very stable perfor-
mance.
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Algorithm 2The “progressive” training strategy for the real-
istic setting in the wild. T is the alternative step number.
Step 1: Similar as the “one-step” training strategy, we first only use
the source domain data to train the baseline VCL to learn an initial
projection function f0.

Step 2: Similarly, for each source class in Ys in the visual feature
space, we find its farthest sample feature point pair and calculate their
feature distance Di . And we set the maximum distance threshold as
λmax
dist = max{Di }/2.

Step 3: We further classify all the target domain samples by finding
the closest csyn,u

i as Equation (3). And for each target unseen class,
we find the nearest feature sample to the synthetic visual center csyn,u

i
and denote the minimum feature distance as λimin .

for t = 1 to T do

Step t-1: Map each target attribute aui to get its corresponding
synthetic visual center csyn,u

i using the projection function ft−1,
and we denote Ct = {csyn,u

1 , ..., csyn,u
U }.

Step t-2: For each csyn,u
i , we set the distance threshold λ

i,t
dist =

λimin + (t − 1) ∗ (λmax
dist − λimin). Then select reliable images x if∥∥x − csyn,u

i

∥∥2
2 ≤ λ

i,t
dist to construct a new target domain.

Step t-3: ConductCDVSc,BMVSc orWDVSc to learn an updated
projection function ft .

end for

Datasets. Extensive experiments are conducted on three
widely-used ZSL benchmark datasets, i.e., Animals with
Attributes 2 (AwA2) (Xian et al. 2018), Caltech-UCSDBirds
200-2011 (CUB) (Wah et al. 2011) andSceneUNderstanding
(SUN) (Patterson et al. 2014). The statistics of these datasets
are briefly introduced as below:

– Animals with Attributes2 (AwA2) (Xian et al. 2018)
contains 37,322 images from 50 animals categories,
where 40 of 50 classes are used for training and the rest
10 are used for testing. We adopt the class-level continu-
ous 85-dim attributes as the semantic representations. For
fair comparison with previous methods, we also report
the results on AwA1 Lampert et al. (2014) which is an
old version of animal datasets of ZSL.

– Caltech-UCSD Birds 200-2011 (CUB) (Wah et al.
2011) is a fine-grained bird dataset with 200 species of
birds and 11,788 images. Each image is associated with
a 312-dim continuous attribute vector. Following Xian
et al. (2018), we use the class-level attribute vector and
the 150/50 split.

– SUN-Attribute (SUN) (Patterson et al. 2014) includes
14,340 images coming from 717 scenes. Each sample is
paired with a binary 102-dim semantic vector. We com-
pute class-level continuous attributes as our semantic
representations by averaging the image-level attributes

for each class. 707/10 (SUN10) and 645/72 (SUN72)
splits are adopted in our experiments.

DataSplits. (1)StandardSplits (SS): The standard seen/unseen
class split is first proposed in Lampert et al. (2009) and then
widely used in most ZSL works. (2) Proposed Splits (PS):
Many recent ZSL methods extract visual features using Ima-
geNet 1K classes pretrained CNN models, and the unseen
classes in SS may overlap with these 1K classes, which actu-
ally violates the zero-shot setting that the test classes should
be unseen during ZSL training. Based on this consideration,
Xian et al. (2018) introduces the Proposed Splits (PS), in
which the overlapped ImageNet classes are removed from
the test set of unseen classes. In this paper, we report the
results on both the standard splits and the proposed splits for
fair comparisons.
Evaluation Metrics. For fair comparison and completeness,
we consider two different ZSL settings: 1) Conventional
ZSL, which assumes all the test instances only belong to tar-
get unseen classes. 2)GeneralizedZSL, where test instances
are from both seen and unseen classes, which is a more real-
istic setting in real applications. For the former setting, we
compute the multi-way classification accuracy (MCA) as in
previous works.

accY = 1

‖Y‖
‖Y‖∑

i=1

# correct predictions in i

# samples in i
(11)

For the latter one, we define three metrics. 1) accYs –
the accuracy of classifying the data samples from the seen
classes to all the classes (both seen and unseen); 2) accYu –
the accuracy of classifying the data samples from the unseen
classes to all the classes; 3) H – the harmonic mean of accYs

and accYu :

H = 2 ∗ accYu ∗ accYs

accYu + accYs

(12)

4.1 Qualitative Results

In Fig. 3, we have shown some qualitative results of the
proposedBMVSc on theAwA2 andCUBdatasets. Although
the test images of each class have an overall different appear-
ance, the projection function learned by our method can
still capture important discriminative semantic information
from their visual characteristics, which corresponds to their
semantic attributes. For example, the predicted sheep images
in AwA2 all share furry, bulbous and hooves attributes. How-
ever, we could also observe some misclassified images such
as the walrus in row 6 of AwA2. After careful analysis, we
find two possible reasons: 1) The discriminative ability of the
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Yellow billed Cuckoo

Black billed Cuckoo Black billed Cuckoo

Indigo Bunting

Gray crowned Rosy Finch

Horned Grebe

Rhinoceros Auklet

AwA2 CUB

Fig. 3 Qualitative results of BMVSc on 6 categories of AwA2 and CUB datasets. We list the top-6 images classified to each category. The
misclassified images are marked with red bounding boxes and the right name of category is below the corresponding image

pretrained CNN is not enough to separate the visual appear-
ances between highly similar categories. In fact, the visual
appearance of seal and walrus are so close that even people
could not distinguish them by rule and line without expert
knowledge. This problem can be solved only by more pow-
erful visual features. 2) Some attribute annotations are not
accurate enough. For example, the seal category possesses
spots of semantic descriptions, but walrus does not, but both
these two categories own this attribute in the semantic anno-
tation. Such incorrect supervision information will mislead
the learning of the projection function.

4.2 Conventional ZSL Results

To show the effectiveness of the proposed visual structure
constraint, we first compare our method with existing state-
of-the-art methods in the conventional setting. Table 1 is the
comparison results under standard splits (SS), where we also
re-implement our method using 4096-dimensional VGG fea-
tures to guarantee fairness.Obviously,with the three different
types of visual structure constraint, our method can obtain
substantial performance gains consistently on all the datasets
and outperforms previous state-of-the-art methods. The only
exception is that VZSL (Wang et al. 2018) is slightly bet-
ter than our method on the AwA1 dataset when using VGG
features.

Specially, comparing with SP-ZSR (Zhang and Saligrama
2016b) which shares the similar spirit with our method, we
could find that their performance sometimes is even worse
than inductive methods such as SynC (Changpinyo et al.
2016), SCoRe (Morgado and Vasconcelos 2017) or VCL.
The possible underlying reason is that, when utilizing the
structure information only in test time, the final performance
gain highly depends on the quality of the projection func-

tion. When the projection function is not good enough, the
initial synthetic centers will deviate far from the real centers
and result in bad matching results with unsupervised clus-
ter centers, thus causing even worse results. By contrast, in
our method, this visual structure constraint is incorporated
into the learning of projection function in the training stage,
which can help to learn a better projection function and bring
performance gain consistently. Another bonus is that, during
runtime, we can directly do recognition in real-time online-
mode rather than the batch-mode optimization in SP-ZSR
(Zhang and Saligrama 2016b), which is more friendly in real
applications.

The results on proposed splits of AwA2, CUB and SUN72
are reported in Table 2 with ResNet-101 features. It can be
seen that almost all methods suffer from performance degra-
dation under this setting. However, our proposed method
could still maintain the highest accuracy. Specifically, the
improvements obtained by our method range from 0.8% to
25.8%,which indicate that visual structure constraint is effec-
tive in solving the domain shift problem.

4.3 Large-Scale Conventional ZSL Results

To further evaluate the effectiveness of the real large-scale
scenarios, we follow the procedure of Frome et al. (2013) and
evaluate our method on the widely used subset of ImageNet.
It corresponds to 1,549 unseen classes that are within two
hops of the 1,000 seen classes according to the existing hier-
archical structure of ImageNet. There exists certain classes
without specific semantic representations. Instead of drop-
ping them directly like Changpinyo et al. (2018), we average
each word embedding to construct corresponding semantic
attributes. For the evaluation metric, we employ Hit@K as
Frome et al. (2013) which is defined as the percentage of test
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Table 1 Quantitative comparisons of MCA (%) under standard splits
(SS) in conventional ZSL setting. I: Inductive, T: Transductive, O:
Our method, Bold: Best, Italic: Second best, V: VGG, R: ResNet, G:

GoogLeNet. It can be seen that the proposed three types of visual struc-
ture constraints can bring substantial performance gain and outperform
existing state-of-the-art methods

Method Features AwA1 AwA2 CUB SUN72 SUN10

I CONSE Norouzi et al. (2014) R 63.6 67.9 36.7 44.2 –

SSE Zhang and Saligrama (2015) V 76.3 – 30.4 – 82.5

JLSE Zhang and Saligrama (2016a) V 80.5 – 42.1 – 83.8

SynC Changpinyo et al. (2016) R 72.2 71.2 54.1 59.1 –

SAE Kodirov et al. (2017) R 80.6 80.7 33.4 42.4 –

SCoRe Morgado and Vasconcelos (2017) V 82.8 – 59.5 – –

f-CLSWGAN Xian et al. (2018) R 69.9 – 61.5 62.1 –

T SP-ZSR Zhang and Saligrama (2016b) V 92.0 – 53.2 – 86.0

DSRL Ye and Guo (2017) V 87.2 – 57.1 – 85.4

DMaP Li et al. (2017) V+G+R 90.5 – 67.7 – –

VZSL Wang et al. (2018) V 94.8 – 66.5 – 87.8

QFSL Song et al. (2018) V – 84.1 61.2 – –

O VCL V 81.7 82.6 58.2 58.8 87.2

CDVSc V 89.6 93.3 69.9 59.7 90.6

BMVSc V 92.7 94.0 70.8 61.3 89.7

WDVSc V 92.9 94.2 71.0 62.3 91.2

VCL R 82.0 82.5 60.1 63.8 89.6

CDVSc R 94.3 93.9 74.2 64.5 90.5

BMVSc R 95.9 96.8 73.6 66.2 91.7

WDVSc R 96.2 96.7 74.2 67.8 92.2

Table 2 Quantitative
comparisons under the proposed
splits (PS) in conventional ZSL
setting. It shows that, though
most methods suffer from
performance degradation under
this setting, our method can still
achieve the best performance
and beat other methods by a
large margin

Method AwA2 CUB SUN72 Ave.

CONSE Norouzi et al. (2014) 44.5 34.3 38.8 39.2

DeViSE Frome et al. (2013) 59.7 52.0 56.5 56.0

SJE Akata et al. (2015) 61.9 53.9 53.7 56.5

SynC Changpinyo et al. (2016) 46.6 55.6 56.3 52.8

SAE Kodirov et al. (2017) 54.1 33.3 40.3 42.5

SCoRe Morgado and Vasconcelos (2017) 69.5 61.0 51.7 60.7

LDF Li et al. (2018a) – 69.2 – –

cycle-CLSWGAN Felix et al. (2018) 66.3 58.4 60.0 61.6

PSR-ZSL Annadani and Biswas (2018) 63.8 56.0 61.4 60.4

LisGAN Li et al. (2019) 70.6 58.8 61.7 63.7

DCN Liu et al. (2018b) – 56.2 61.8 –

LsrGAN Li et al. (2019) 66.4 60.3 62.5 63.1

VCL 61.5 59.6 59.4 60.1

CDVSc 78.2 71.7 61.2 70.3

BMVSc 81.7 71.0 62.2 71.6

WDVSc 87.3 73.4 63.4 74.7
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Table 3 Quantitative results on
the large-scale ImageNet dataset
in conventional ZSL setting.
Even under this very challenging
setting, our method still beats
the baseline method VCL and
previous state-of-the-art
methods by more than 5%

Test data Method Hit@K (%)
1 2 5 10 20

ILSVRC2010 DIPL Zhao et al. (2018) – – 31.7 – –

2-hop CONSE Norouzi et al. (2014) 8.3 12.9 21.8 30.9 41.7

SYNC Changpinyo et al. (2016) 10.5 16.7 28.6 40.1 52.0

EXEM Changpinyo et al. (2017) 12.5 19.5 32.3 43.7 55.2

f-CLSWGAN Xian et al. (2018) 10∼12 – – – –

f-VAEGAN-D2 Xian et al. (2019) 13∼14 – – – –

2-hop VCL 12.3 19.3 31.3 40.3 48.7

WDVSc 17.6 26.7 38.8 47.5 57.9

broad hatchet mallettack_hammerax ax bricklayer's hammer

carpenter_ant army ant pharaoh ant slave ant bombardier_beetle

golden hamster golden hamster eurasian hamster swamp_rabbit ermine ferret

caffe latte caffe latte coffee soup ladle concoction cream_pitcher

Fig. 4 Some classification results on the large-scale imagenet dataset.
The leftmost column of the images are the input test images, while the
second to six columns of images are representative sample images of

top-5 classified categories. It shows that though the top-1 classifica-
tion results of some samples are not correct, they are all predicted into
visually similar categories

images whose true labels belong to topK predictions ofmod-
els. As shown in Table 3, our WDVSc outperforms baseline
VCL and previous state-of-the-art methods bymore than 5%.
Note that the baseline method DIPL (Zhao et al. 2018) only
reports its results on the test data ILSVRC 2010, which is a
subset of the default 2-hop test data, so it is relatively easier.

In Fig. 4, we further provide four classification results.
Though the number of unseen classes is very large in this
dataset, our method can still work quite well and cor-
rectly categorize the input test images into corresponding
categories. Moreover, for some samples whose top-1 classi-
fication results are not correct, they are all categorized into
visually similar categories. It is consistent with the increased
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Table 4 Quantitative comparisons under the generalized ZSL setting.
Obviously, most methods including our baseline VCL cannot maintain
the same level accuracy for both seen and unseen classes. The much

better results on the source seen classes should be because of the seri-
ous domain shift problem, which can be significantly alleviated by the
proposed visual structure constraints

Method AwA2 CUB SUN72
accYu accYs H accYu accYs H accYu accYs H

CONSE Norouzi et al. (2014) 0.5 90.6 1.0 1.6 72.2 3.1 6.8 39.9 11.6

SSE Zhang and Saligrama (2015) 8.1 82.5 14.8 8.5 46.9 14.4 2.1 36.4 4.0

DeViSE Frome et al. (2013) 17.1 74.7 27.8 23.8 53.0 32.8 16.9 27.4 20.9

SJE Akata et al. (2015) 8.0 73.9 14.4 23.5 59.2 33.6 14.7 30.5 19.8

ESZSL Romera-Paredes and Torr (2015) 5.9 77.8 11.0 12.6 63.8 21.0 11.0 27.9 15.8

SynC Changpinyo et al. (2016) 10.0 90.5 18.0 11.5 70.9 19.8 7.9 43.3 13.4

ALE Akata et al. (2016) 14.0 81.8 23.9 23.7 62.8 34.4 21.8 33.1 26.3

PSR-ZSL Annadani and Biswas (2018) 20.7 73.8 32.3 24.6 54.3 33.9 20.8 37.2 26.7

cycle-CLSWGAN Felix et al. (2018) 56.9 64.0 60.2 45.7 61.0 52.3 49.4 33.6 40.0

LisGAN Li et al. (2019) 52.6 76.3 62.3 46.5 57.9 51.6 42.9 37.8 40.2

f-VAEGAN-D2 Xian et al. (2019) 57.6 70.6 63.5 48.4 60.1 53.6 45.1 38.0 41.3

LsrGAN Vyas et al. (2020) 54.6 74.6 63.0 48.1 59.1 53.0 44.8 37.7 40.9

VCL 21.4 89.6 34.6 15.6 86.3 26.5 10.4 63.4 17.9

CDVSc 66.9 88.1 76.0 37.0 84.6 51.4 27.8 63.2 38.6

BMVSc 71.9 88.2 79.2 33.1 86.1 47.9 29.9 62.9 40.6

WDVSc 76.4 88.1 81.8 43.3 85.4 57.5 30.5 63.1 41.1

performance number with a larger K . In fact, it is even dif-
ficult for human to tell the difference among these visually
similar categories.

4.4 Generalized ZSL Results

In Table 4, we compare our method with eight different gen-
eralized ZSL methods. It can be seen that, although almost
all the methods including our baseline VCL cannot maintain
the same level accuracy for both seen (accYs ) and unseen
classes (accYu ), our method with visual structure constraints
significantly outperforms othermethods by a largemargin on
these datasets.More specifically, takeCONSE (Norouzi et al.
2014) as an example, due to the domain shift problem, it can
achieve the best results on the source seen classes but totally
fails on the target unseen classes. By contrast, since the pro-
posed two structure constraints can help to align the structure
of synthetic centers to that of real unseen centers, our method
can achieve acceptable ZSL performance on target unseen
classes. This generalized ZSL setting demonstrates that the
proposed visual structure constraints can help alleviate the
aforementioned domain shift problem again.

4.5 Results of the Realistic Setting in theWild

To imitate the setting in the wild where many unrelated
images may exist in the test dataset, we prepare two types
of datasets, coarse-grained and fine-grained respectively.
Specifically, for the coarse-grained dataset,wemix theAwA2

test dataset with extra 8K unrelated images from the aPY
dataset. These unrelated images do not belong to the classes
of eitherAwA2or ImageNet-1K. For thefine-grained dataset,
we hold out 10 unseen classes of CUB dataset as noise sam-
ples to confuse the target domain. From Table 5, we have the
following analyses. 1)It could be seen that without filtering
out the unrelated images, the performance of ourmethodwith
CDVSc, BMVSc, and WDVSc all degrades when compared
to the baseline VCL on the coarse-grained dataset, which
means that the alignment of wrong visual structures is coun-
terproductive to the learning of projection function. 2) On
the fine-grained dataset, directly constraining the noisy tar-
get domain with the visual center does not hurt that much.
The underlying reason may be that the visual feature of the
fine-grained image sometimes is indistinguishable as shown
in Fig. 9. 3) With the new training strategies (S + ∗, P + ∗),
the proposed visual structure constraints can work very well
and bring substantial performance gain consistently on both
coarse-grained and fine-grained datasets. 4) The progressive
training strategy P +∗ is better than the one-step training
strategy S + ∗, which demonstrates the benefits from grad-
ually improving the projection function with more domain
target samples and looser distance constraints (Table 6).

Besides the final performance, we further analyze the
influence of distance threshold on these two strategies for
the standard split (top) and the proposed split (bottom) in
Fig. 5 on AwA2 dataset. Though they both have different
MCA results for different threshold values, we find the pro-
gressive strategy is also overall more robust and better than
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Table 5 Results (%) in the more realistic setting. With the new pro-
posed one-stage (S + ∗) and progressive (P + ∗) training strategy, the
proposedmethod can still workwell and bring performance gain. In par-
ticular, we find WDVSc is extremely robust in this challenging setting

thanks to its inherent soft matching scheme and the progressive training
strategy is better than the one-stage one as well. The experiments are
conducted on both coarse-grained dataset AwA and fine-grained dataset
CUB

Method VCL CDVSc BMVSc WDVSc S+CDVSc S+BMVSc S+WDVSc P+CDVSc P+BMVSc P+WDVSc

AwA SS+noise 82.5 79.7 78.3 81.3 89.3 86.9 92.4 90.0 88.5 92.5

AwA PS+noise 61.5 57.4 58.9 60.8 65.3 66.7 78.3 73.7 75.4 79.3

CUB SS+noise 63.0 62.2 63.9 63.4 65.2 65.3 67.7 65.9 66.9 68.1

CUB PS+noise 68.2 70.8 69.3 68.1 72.3 70.6 72.9 74.2 70.9 73.6

Fig. 5 The comparison results between the one-step and progressive
training strategy in the realistic setting for standard split (SS, top) and
proposed split (PS, top) respectively. The x-axis threshold denotes the
feature distance threshold and the max feature distance threshold in
these two settings respectively. It shows that the progressive training
strategy is overall more robust and better than the one-step one for
different thresholds

the one-step training strategy. Need to note that the thresh-
old value here means the feature distance threshold λdist in
Algorithm 1 and the maximum distance threshold λmax

dist in
Algorithm 2 respectively.

Fig. 6 Matching matrixs between the projected semantic centers and
visual cluster centers of CDVSc (left) and BMVSc (right) on the AwA2
dataset. BMVSc can guarantee strict one-one matching while CDVSc
may have many-to-one matching

4.6 More Analysis

Possible many-to-one problem in CDVSc.To verify that there
may exist many-to-onematching problem during the training
of CDVSc, we randomly select the output of embedding
networks of one epoch and visualize the matching results on
the AwA2 dataset in Fig. 6. It can be seen that one projected
semantic center can be matched by multiple visual cluster
centers, and vice versa. By contrast, BMVSc can guarantee
strict one-one matching, which may be the reason of better
results of this dataset.
Progressive improvement of center matching in BMVSc. The
final ZSL performance depends on the alignment of the pro-
jected semantic centers and real visual centers. In ourmethod
we use K-means cluster centers to approximate the real cen-
ters and minimize their matching distance. So one natural
question would be ”whether we can achieve this final objec-
tive by training with cluster centers from K-means?”. To
answer this question, we calculate the the number of right
matching point and distances between the projected seman-
tic centers and real visual centers respectively during the
training of BMVSc . We plot these two metrics of the SUN
dataset in Fig. 7. Obviously, BMVSc can definitely improve
thematching of the projected semantic centers and real visual
centers by only using the cluster centers from K-means dur-
ing the whole training processing.
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Fig. 7 The right matching number (“epoch-match”) and distance
(“epoch-dis”) between the projected semantic centers and real visual
centers during the training of BMVSc on the SUN dataset, which
demonstrate the BMVSc can improve the matching relation by only
using the approximated K-means centers

Fig. 8 The comparison of convergence curve between instance-based
method (DEM) and our center-based method (VCL). It shows that
center-based objective converges faster than instance-based objective

Center-based objective vs Instance-based objective. Com-
pared to previous instance-based optimization objective, our
center-based optimization objective is much more computa-
tionally efficient. To verify this point, we re-implement the
work DEM (Zhang et al. 2017) and adopt the same net-
work structure, parameter setting and optimization algorithm
with our VCL method on the AwA2 dataset. Then we plot
the change of loss and accuracy with epoch increasing in
Fig. 8 respectively. It shows that our center-based optimiza-
tion objective converges faster than previous instance-based
optimization objective and can even achieve slightly better
final results.
Why are slightly worse results obtained by BMVSc than
CDVSc on the CUB dataset? In our paper, three different
types of visual structure constraint are proposed to allevi-
ate the domain shift problem in ZSL. BMVSc can solve the
possible many-to-one matching problem in CDVSc and sat-
isfy the strict one-to-one principle, which potentially helps
to achieve better results, such as the gain can be observed on
the AwA2 and SUN datasets. However, on the CUB dataset,
the performance of BMVSc is slightly worse than CDVSc.
Although this difference is quite subtle when it is compared

Fig. 9 Feature distribution of the CUB dataset, which shows the feature
distribution is not that separable for all categories

to the absolute gain coming from the visual structure con-
straint, we still want to find the possible underlying reason.

To answer this question, we first plot the feature distribu-
tion of all the categories of the CUB dataset in Fig. 9 with
TSNE. We could find that the feature distribution of some
categories is too close to be distinguished because the fea-
ture pretrained on ImageNet is not representative enough for
this CUB dataset. This somehow violates our assumption
that the separated clusters of unseen classes obtained from
pre-trained CNNmodels are already discriminative, and thus
lead to this degradation phenomenon. To verify it, we check
the matching matrix obtained by our methods and find that
there indeed exists wrong matches due to very closed real
centers. Specifically, consider synthetic center X of yellow
billed cuckoo, and two similar real centers Y and Z of man-
grove cuckoo and yellow billed cuckoo which are shown in
Fig. 10. X − Z is the right matching, and X − Y is the
wrong matching. In BMVSc, if the wrong matching hap-
pens, X will be pulled closer to inaccurate center Y (loss
term: ‖X − Y‖22). By contrast, the contribution of CDVSc

to the final loss is
‖X−Y‖22+‖X−Z‖22

2 , which will also force X
to approach Z and alleviate the wrong matching problem to
some certain degree.
Importance of unsupervised cluster centers and semantic
attributes. In our method, to recognize the target domain
images, two different types of knowledge are leveraged:
unsupervised cluster centers of target domain and semantic
attributes. To study the importance of these two components,
we design a simple voting algorithm to calculate the upper
bound of unsupervised clustering algorithms for ZSL recog-
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Fig. 10 Matching relations between synthetic center and two similar
real centers. Red line denotes BMVSc matching, and green line and red
line denote CDVSc matching

nition. Specifically,we assume the ground truth label for each
unseen instance is accessible. Then for each cluster center
obtained by K-means, we predict its category through a vot-
ing process, i.e.its category is the one which most images
in this cluster belong to. Finally, the classification results
for test instances are directly set to the label of the corre-
sponding cluster. In this way, because we have already used
the ground truth information, it can be viewed as the upper
bound ofK-means clustering algorithm.As shown in Table 7,
its performance is even better than our baseline VCL. which
demonstrates that the information of unsupervised clustering
is very useful. By combining the semantic attributes and this
unsupervised cluster information during the learning process,
our methodCDVSc,BMVSc andWDVSc are all better than
the upper bound of K-Means and VCL.
Stability of unsupervised cluster centers. Since the proposed
the visual structure constraint depends on the unsupervised
clustering which has a certain degree of randomness, one
may ask “if the final ZSL performance is stable enough”?
To analyze this point in detail, we run the whole pipeline for
5 times on both AwA2 and CUB dataset using WDVSc. To
eliminate the influence of other factors, we initialize the pro-
jection function f with the sameparameters, only keeping the

Table 7 Analysis to demonstrate the importance of unsupervised clus-
ter centers and semantic attributes. By combining these two types of
information during training, ourCDVSc,BMVSc andWDVSc achieve
better results than the upper bound of K-Means and VCL

AwA2 CUB SUN

K-Means 75.0 67.4 57.6

VCL 61.5 59.6 59.4

CDVSc 78.2 71.7 61.2

BMVSc 81.7 71.0 62.2

WDVSc 87.3 73.4 63.4

randomness of the clustering methods. Based on the experi-
mental results of Table 8, we could find that the performance
variance of our method on each dataset is very minor. By
using more advanced clustering methods like Chang et al.
(2017), we believe the stability and performance could be
further improved.
Instance based WDVSc. Though our method uses the default
center-based objective function, we find the proposed
wassertein-distance-based visual structure constraint can
also support instance-based objective function well. This
is because the wassertein distance can be used to measure
the distance between two discrete distributions with unequal
sample numbers, inwhich case the “couplingmatrix” X is not
a square matrix anymore. Specifically, we do not use unsu-
pervised clustering algorithms to generate approximated real
centers B in advancebut insteaddirectly use the visual feature
of each instance to find their individual optimal matching. To
verify its effectiveness,we conduct the controlled experiment
on three different datasets and evaluation settings (standard
split “SS” and proposed split “PS”). As shown in Table 9,
without unsupervised clustering, the instance-basedWDVSc
is a little worse than the default center-basedWDVSc but still
significantly better than the baseline VCL. It further demon-
strates the strong generalization ability of the proposed visual
structure constraint.

Besides dropping the cluster procedure, instance-based
WDVSc also has other advantages compared with center-
based WDVSc. Sometimes there may exist some extreme
cases where the number of samples in some classes is very
small and thus the unsupervised clustering results will be
insensible and inaccurate to some extent. In these cases, it
is more suitable to use the instance-based WDVSc through

Table 6 Generality to the word vector based semantic space on the AwA1 dataset. Though the word vector contains less effective information than
semantic attributes, our visual structure constraint can work very well and bring significant performance gain

Method DeViSE Frome
et al. (2013)

ZSCNN Lei et al.
(2015)

SS-Voc Fu and
Sigal (2016)

DEM Zhang
et al. (2017)

VCL CDVSc BMVSc WDVSc

MCA (%) 50.4 58.7 68.9 78.8 72.3 79.4 83.9 90.8
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Table 8 We run the whole pipeline multiple times and record the MCA (%) performance on AwA2 and CUB dataset. It demonstrates the stability
of used cluster methods. Meanwhile, the averaged results are slightly higher than the previous report results

Random Test 1 2 3 4 5 Report Mean Std

AwA2 96.62 96.81 96.72 96.58 96.83 96.7 96.712 ± 0.09948

CUB 73.34 73.59 73.76 73.68 73.78 73.4 73.63 ± 0.15975

Table 9 Comparison results (%) among the baseline VCL, the
default center based WDVSc (“WDVSc”) and instance based WDVSc
(“WDVSc-instance”) on different datasets and conventional settings. It
shows that the instance based WDVSc is worse than the default cen-

ter based WDVSc but still much better than the VCL baseline, which
demonstrates the strong generalization ability of the proposed visual
structure constraint

Method AwA2 (SS) AwA2(PS) CUB (SS) CUB (PS) SUN72 (SS) SUN72 (PS)

VCL 82.5 61.5 60.1 59.6 63.8 59.4

WDVSc 96.7 87.3 74.2 73.4 67.8 63.4

WDVSc-instance 95.0 82.1 70.3 71.3 65.6 61.4

Fig. 11 The comparison results of MCA (%) on the AwA2 and CUB
dataset by using instance based WDVSc with different sample number
of each target class. It shows that instance based WDVSc can work
quite well for this extremely challenging case. And better results can
be achieved with more samples

directly measuring the distance of two discrete feature dis-
tributions with unequal quantity. To simulate this setting, we
test both AwA2 and CUB dataset and only keep 1 to 5 images
for each class respectively. It can be seen fromFig. 11 that our
method can achieve substantial improvements over the VCL
baseline even in this extremely challenging case by using the
instance based WDVSc. And with more target images for
each class, the final performance increases consistently.
Generality to word vectors based semantic space. Compared
to some previous methods which are only applicable to one
specific semantic space, we further demonstrate that the pro-
posed visual structure constraint can also be applied to word
vector-based semantic space. Specifically, to obtain the word
representations for the embedding networks inputs, we use
the GloVe text model (Pennington et al. 2014) trained on the
Wikipedia dataset leading to 300-d vectors. For the classes
containing multiple words, we match all the words in the
trained model and average their word embeddings as the cor-
responding category embedding.As shown inTable 6, though
the contained effective information of word vectors is less
than that of semantic attributes, the proposed visual structure

constraint can still bring substantial performance gain and
outperform previous methods. Note that DEM (Zhang et al.
2017) utilized 1000-d word vectors provided by Fu et al.
(2014), Fu et al. (2015) to represent a category.
Robustness for imperfect separability of visual features for
unseen classes. Though our motivation is inspired by the
great separable ability of visual features for unseen classes
on the AwA2 dataset, we find the proposed visual structure
constraint is very robust and does not rely on it seriously. For
example, on theCUBdataset, the feature distribution in Fig. 9
is not totally separable, but the proposed visual structure con-
straint still brings significant performance gain as shown in
the above Tables. Because even though there are some incor-
rect clusters, as long as most of them are correct clusters, the
proposed visual structure constraint will be beneficial.

On the other hand, though the unseen class number K
is often pre-defined, we find the proposed visual constraint
can improve the performance even when it is unknown. In
Fig. 12, we report the performance for different K (K ≤
unseen class number) on coarse-grained AwA2 dataset and
fine-grained SUN dataset. Specifically, we first perform
K-means both in the semantic space and visual space simul-
taneously, then useWDVSc to align these two synthetic sets.
Obviously, the proposed visual structure constraint can bring
performance gain consistently. In other words, as long as the
visual features can form some superclasses (not fine-level,
which is satisfiedbymost datasets), the proposedvisual struc-
ture constraint is always effective.We further conduct similar
experiments by using WDVSc on the large-scale ImageNet
dataset. As shown in Fig. 13, the recognition accuracy by
using the visual structure constraint also improves the base-
line VCL consistently while increasing the number of visual
centers. We believe the proposed visual structure constraint
could capture a more fine-grained structure of visual space
with an increase of K , thus achieving better results.
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Fig. 12 MCAresults (%) of different cluster number K (super-class) on
coarse-grained dataset (AwA2) and fine-grained dataset (SUN). Note
that the total unseen class number of AwA2 and SUN are 10 and 72
respectively. coarse-grained all and fine-grained all denote that directly
use the maximum cluster number

Fig. 13 ImageNet results with different unknown K . On the one hand,
it demonstrates the effectiveness of our method even without knowing
K . On the other hand, the proposed visual structure constraint could
capture more fine-grained structure information with the increase of K
and achieves better results. Note that the unseen class number of this
setting is 1549

5 Conclusion

Domain shift is a key problem for ZSL in the wild. To alle-
viate it, three different types of visual structure constraint
are proposed for transductive ZSL in this paper. Moreover,
we introduce a new transductive ZSL configuration for real
scenarios and design two new training strategies to make
our method work for it. Experiments demonstrate that our
method brings substantial performance gain consistently on
different benchmark datasets, outperforms previous state-of-
the-art methods by a large margin and generalizes well for

data in the wild, including large-scale data and some extreme
cases.
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