
International Journal of Computer Vision (2021) 129:1506–1525
https://doi.org/10.1007/s11263-021-01433-3

Real-Time Semantic Segmentation via Auto Depth, Downsampling
Joint Decision and Feature Aggregation

Peng Sun1 · Jiaxiang Wu2 · Songyuan Li1 · Peiwen Lin3 · Junzhou Huang4 · Xi Li1,5

Received: 20 February 2020 / Accepted: 6 January 2021 / Published online: 19 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
To satisfy the stringent requirements for computational resources in the field of real-time semantic segmentation, most
approaches focus on the hand-crafted design of light-weight segmentation networks. To enjoy the ability ofmodel auto-design,
Neural Architecture Search (NAS) has been introduced to search for the optimal building blocks of networks automatically.
However, the network depth, downsampling strategy, and feature aggregationmethod are still set in advance and nonadjustable
during searching. Moreover, these key properties are highly correlated and essential for a remarkable real-time segmentation
model. In this paper,wepropose a joint search framework, calledAutoRTNet, to automate all the aforementionedkeyproperties
in semantic segmentation. Specifically, we propose hyper-cells to jointly decide the network depth and the downsampling
strategy via a novel cell-level pruning process. Furthermore, we propose an aggregation cell to achieve automatic multi-
scale feature aggregation. Extensive experimental results on Cityscapes and CamVid datasets demonstrate that the proposed
AutoRTNet achieves the new state-of-the-art trade-off between accuracy and speed. Notably, our AutoRTNet achieves 73.9%
mIoU on Cityscapes and 110.0 FPS on an NVIDIA TitanXP GPU card with input images at a resolution of 768 × 1536.

Keywords Real-time semantic segmentation · Neural architecture search · Computer vision · Deep learning

Communicated by Antonio Torralba.

B Xi Li
xilizju@zju.edu.cn

Peng Sun
sunpeng1996@zju.edu.cn

Jiaxiang Wu
jonathanwu@tencent.com

Songyuan Li
leizungjyun@zju.edu.cn

Peiwen Lin
linpeiwen@sensetime.com

Junzhou Huang
jzhuang@uta.edu

1 College of Computer Science and Technology, Zhejiang
University, Hangzhou, China

2 Tencent AI Lab, Shenzhen, China

3 Sensetime Research, Beijing, China

4 University of Texas at Arlington, Arlington, TX, USA

5 Shanghai Institute for Advanced Study, Zhejiang University,
Shanghai, China

1 Introduction

Semantic segmentation, a fundamental topic in computer
vision, aims at assigning per-pixel semantic labels for
images. Recent approaches (Zhao et al. 2017; Chen et al.
2017, 2018b; Zhao et al. 2018b) based on fully convolutional
networks (Long et al. 2015) have achieved remarkable accu-
racy on public benchmarks (Brostow et al. 2008; Cordts et al.
2016; Everingham et al. 2015). Such improvements, how-
ever, come at the cost of deeper and less efficient networks,
which may not be applicable to many real-time systems, e.g.,
autonomous driving and video surveillance.

To perform fast semantic segmentation with satisfactory
accuracy, the design philosophy of real-time segmentation
network architectures mainly concentrates on three aspects:
(1) building block design (Li and Kim 2019; Paszke et al.
2016), which considers the block-level feature representa-
tion capacity, computational complexity, and receptive field
size; (2) network depth and downsampling strategy (Li and
Kim 2019; Li et al. 2019a), which directly affect the accu-
racy and speed of a network, hence real-time networks favor
shallow layers and fast downsampling; and (3) feature aggre-
gation (Yu et al. 2018; Zhao et al. 2018a), which fuses

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-021-01433-3&domain=pdf
http://orcid.org/0000-0003-3023-1662

International Journal of Computer Vision (2021) 129:1506–1525 1507

multi-scale features to compensate the loss of spatial details
caused by fast downsampling.

The above hand-crafted networks make huge progress,
while they require expertise in architecture design based
on laborious trial and error. To relieve this burden, some
researchers introduce neural architecture search (NAS)meth-
ods (Baker et al. 2016; Zoph and Le 2016; Liu et al.
2019b; Xie et al. 2019) into this field, and obtain excellent
results (Chen et al. 2018a; Liu et al. 2019a; Zhang et al.
2019b; Nekrasov et al. 2019). Liu et al. (2019a) and Chen
et al. (2018a) focus on high-quality segmentation instead
of real-time applications. To meet the real-time demand,
Zhang et al. (2019b) search a customized architecture by
introducing a latency loss function. Although its building
blocks are searched, the network depth, downsampling strat-
egy, and feature aggregation method are still set by hand
in advance and nonadjustable during searching. Since these
three aspects are highly correlated and indispensable for a
remarkable real-time segmentation network, the fact that they
are nonadjustable increases the difficulty of finding an opti-
mal real-time architecture (i.e. the best trade-off between
accuracy and speed). These motivate us to explore all the
aspects automatically during the searching process.

In this paper, we propose a joint search framework to
search for the optimal building blocks, network depth, down-
sampling strategy, and feature aggregation method simulta-
neously. Specifically, we propose hyper-cells to decide the
network depth and the downsampling strategy jointly and
automatically via a cell-level pruning process. Moreover,
we propose an aggregation cell to fuse features from mul-
tiple spatial scales automatically. As for the hyper-cell, we
introduce a novel learnable architecture parameter. Thus,
the network depth and downsampling strategy are fully
determined concurrently according to the optimized archi-
tecture parameters. As for the aggregation cell, we aggregate
multi-level features in the network automatically to fuse
the low-level spatial details and high-level semantic context
effectively.

We denote the resulting network as Auto searched Real-
Time semantic segmentation network or AutoRTNet. We
evaluate AutoRTNet on both Cityscapes (Cordts et al. 2016)
and CamVid (Brostow et al. 2008) datasets. The experi-
ments demonstrate the superiority of AutoRTNet, as shown
in Fig. 1, where our AutoRTNet achieves the best accuracy-
efficiency trade-off.

The main contributions can be summarized as follows:

– We propose a joint search framework for real-time
semantic segmentation that automatically searches for
the building blocks, network depth, downsampling strat-
egy, and feature aggregation method simultaneously.

– We propose the hyper-cell to learn the network depth and
downsampling strategy jointly and automatically via the

Fig. 1 The inference speed and accuracy for different networks on
the Cityscapes test set. Compared with other methods, our AutoRTNet
locates in the right-top since it features lower latency with comparable
accuracy. Methods trained using both fine and coarse data are marked
with ∗

cell-level pruning process, and the aggregation cell to
achieve automatic multi-scale feature aggregation.

– Notably, AutoRTNet has achieved 73.9% mIoU on the
Cityscapes test set and 110.0 FPSon anNVIDIATitanXP
GPU card with 768 × 1536 input images.

2 RelatedWork

2.1 Semantic Segmentation

High-quality segmentation FCN (Long et al. 2015) is
the pioneer work which has greatly promoted the devel-
opment of semantic segmentation. Extensions to FCN fol-
low many directions. Encoder–decoder structures (Badri-
narayanan et al. 2017; Lin et al. 2017a; Noh et al. 2015)
combine low-level and high-level features to improve the
accuracy of semantic segmentation. DRN (Yu et al. 2017)
and DeepLab (Chen et al. 2017, 2018b) use dilated con-
volution operations to effectively enlarge the receptive field
size. To capturemulti-scale context information,DeepLabV3
(Chen et al. 2017) and PSPNet (Zhao et al. 2017) propose the
pyramid modules. Recently, attention mechanism (Vaswani
et al. 2017) has been used in segmentation methods (Fu et al.
2019; Zhang et al. 2019a; Zhao et al. 2018b; Li et al. 2018).
These outstanding works are designed for high-quality seg-
mentation, which is inapplicable to real-time applications.
Real-time methods Various algorithms have been proposed
for real-time semantic segmentation. Some works (Wu et al.
2017) reduce the computation overheads via restricting the
size of input images. Channel-pruning algorithms (Paszke

123

1508 International Journal of Computer Vision (2021) 129:1506–1525

et al. 2016; Badrinarayanan et al. 2017) are introduced
to boost the inference speed, and most real-time methods
focus on designing the light-weight and effective network
architectures. The design philosophy of real-time network
architectures mainly can be summarized in the following
three aspects. And in our work, we fully explore all three
aspects simultaneously.
Building block design The building block design (Paszke
et al. 2016; Romera et al. 2017; Mehta et al. 2018; Li and
Kim 2019) requires researchers to give sufficient considera-
tion to the computational complexity, feature representation
capacity, and receptive field size, which is essential for real-
time semantic segmentation. For example, ENet (Paszke et al.
2016) and DABNet (Li and Kim 2019) propose light-weight
blocks and stack them with different dilation rates to form
a whole network. MobileNet and its variants (Howard et al.
2017; Sandler et al. 2018) use blocks with depth-wise sepa-
rable convolution in pursuit of light-weight models.
Network depth and downsampling strategy High-quality
segmentation networks always use the pre-defined back-
bones, e.g. ResNet (He et al. 2016), Xception (Chollet
2017), as encoders. However, for real-time segmentation net-
works, [e.g. DABNet (Li and Kim 2019), DFANet (Li et al.
2019a), ERFNet (Romera et al. 2017)], the network depth
and downsampling strategy (i.e. how many layers in each
stage) are determined mostly by hand as they directly affect
the accuracy and speed of the networks. For pursuing the
fast inference speed, real-time networks always enjoy shal-
low layers and perform fast downsampling with factor 16 or
32.
Feature aggregation The fast downsampling in real-time
networks easily results in the loss of spatial details. Thus,
multi-scale feature aggregation (Yu et al. 2018; Zhao et al.
2018a; Li et al. 2019a) has been proposed to remedy the
loss of spatial details. Zhao et al. (2018a) propose an image
cascade network with multi-scale inputs. Yu et al. (2018)
decouple the network into context and spatial paths to make
the right balance between accuracy and speed. Li et al.
(2019a) aggregate multi-scale features from different layers
to remedy the loss of spatial details.

2.2 Neural Architecture Search

Overview Neural architecture search (NAS) focuses on
automating the network architecture design process. Early
NAS methods are time-consuming (e.g. thousands of GPU
days) and computationally expensive via reinforcement
learning (Zoph and Le 2016; Baker et al. 2016; Zoph
et al. 2018; Tan et al. 2019) or evolutionary algorithms
(Miikkulainen et al. 2019; Real et al. 2019). Recently, the
emergence of differentiable NAS methods (Liu et al. 2019b;
Xie et al. 2019; Cai et al. 2018) has greatly relieved the time-
consuming problem while achieving excellent performance.

DARTs (Liu et al. 2019b) is the pioneer work for gradient-
based NAS, and Liu et al. (2019b) propose an iterative
optimization framework which is based on the continuous
relaxation of architecture representation. Xie et al. (2019)
constrain the architecture parameters to approximate one-
hot, resolving the inconsistency in optimizing between the
performance of derived child networks and converged parent
networks. In addition, FBNet (Wu et al. 2019), Proxyless-
NAS (Cai et al. 2018), andMnasNet (Tan et al. 2019) propose
multi-objective optimization with the consideration of real-
world latency.

In this paper, we propose hyper-cells to jointly decide
the key properties (i.e. the downsampling strategy and the
depth of a network) automatically in semantic segmentation.
Searching at this network architecture level gives rise to the
suitable downsampling strategy and depth for a semantic seg-
mentation network. In contrast, DARTs (Liu et al. 2019b) and
SNAS (Xie et al. 2019) only search at the cell level under a
fixed network architecture without considering the intrinsic
properties of semantic segmentation. Thus, the search spaces
of ours and other NAS methods (Liu et al. 2019b; Xie et al.
2019) are essentially different.
NAS for segmentation DPC (Chen et al. 2018a) is the first
work for dense image prediction using NAS methods and
searches for a multi-scale representation module. A similar
work to us is AutoDeepLab (Liu et al. 2019a), they propose
a hierarchical search space and search for the downsampling
path. Although they also search for the downsampling strat-
egy, the mechanism is fundamentally different from ours.
They design the network level continuous relaxation to learn
the downsampling path, while we search for the downsam-
pling strategy via the cell-level pruning progress. Moreover,
they cannot search for the network depth and feature aggre-
gation method, and focus on high-quality segmentation. For
real-time requirements, CAS (Zhang et al. 2019b) searches
for the architecture with customized resource constraints
and achieves excellent real-time performance. However, our
approach can search for the network depth, downsampling
strategy, and feature aggregation method, which is signifi-
cantly different from CAS (Zhang et al. 2019b).
NAS for object detection The combination of multi-scale
features is also essential for object detection (Lin et al. 2017b;
Liu et al. 2016). In the field of NAS, NAS-FPN (Ghiasi
et al. 2019) and Auto-FPN (Xu et al. 2019) search for an
architecture that merges features of varying dimensions and
are successful at searching for the appropriate combination
method. Unlike us, Ghiasi et al. (2019) propose the merging
cell and use an RNN controller to select candidate feature
layers and a binary operation in each merging cell. Their
search space only consists of two binary operations, i.e. sum
and global pooling for simplicity. Xu et al. (2019) search for
an efficient feature fusion module, and their search space is
specially designed for detection and flexible enough to cover

123

International Journal of Computer Vision (2021) 129:1506–1525 1509

co
nv

3x
3

st
rid

e=
2

co
nv

3x
3

st
r id

e=
1

A
S

P
P

M
od

ul
e

Hyper-Cell#1

re
du

ct
io

n
c e

l l

no
rm

al
ce

ll

no
rm

al
c e

ll

no
rm

al
ce

ll

no
rm

al
ce

ll

H
yp

er
O

ut
pu

t 1

Hyper-Cell#2

re
du

ct
io

n
ce

ll

n o
rm

al
ce

ll

no
rm

al
ce

l l

no
rm

al
ce

ll

no
rm

al
ce

ll

H
yp

e r
O

u t
pu

t2

Hyper-Cell#3

re
du

ct
io

n
ce

ll

no
r m

al
c e

ll

no
rm

al
ce

ll

no
rm

al
ce

ll

no
r m

a l
c e

ll

H
yp

er
O

ut
pu

t 3

A
gg

re
ga

tio
n

C
el

l

Fig. 2 Illustration of our joint network architecture search framework.
The network begins with two convolution layers and contains three
hyper-cells which search for the optimal network depth and down-
sampling strategy via the cell-level pruning process. Each hyper-cell

contains a reduction cell and n normal cells. The cells marked with
the dotted white line are pruned after optimization. The aggregation
cell is designed to perform automatic multi-scale feature aggregation
effectively, and it seamlessly integrates the outputs of hyper-cells

many popular designs of detectors. Thus, the search space
design, motivation, and implementation of the above meth-
ods are significantly different from ours.

3 Methods

In this section, we illustrate the proposed real-time semantic
segmentation network search framework in detail. First, we
briefly introduce an overview of the proposed framework.
Second, we describe the differentiable architecture search.
Next, we elaborate on the proposed hyper-cell for joint net-
work depth and downsampling search. Finally, we illustrate
the proposed aggregation cell for automatic multi-scale fea-
ture aggregation.

3.1 Overview

The joint search framework is shown in Fig. 2. We propose
the hyper-cell to search for the optimal network depth and
downsampling strategy as they directly affect the accuracy
and speed of a network. For remedying the loss of spatial
details caused by fast downsampling, a novel aggregation cell
is proposed for automatic multi-scale feature aggregation.
The whole framework contains two pre-defined convolu-
tion layers, three hyper-cells, and an aggregation cell. The
multi-scale module (Chen et al. 2017) is subsequently used
to extract the global and local context for final prediction.
For real-time demands, we take real-world latency into con-
sideration during the searching process.

3.2 Differentiable Architecture Search

Intra-cell search space
The hyper-cell is the building block of the network, and the

cell is the basic component unit of the hyper-cell, as shown
in Fig. 2. There are two types of cells, i.e., normal cells and
reduction cells (Liu et al. 2019b; Xie et al. 2019). The reduc-

tion cells reduce the feature map size by a factor of 2 for
downsampling, and the factor is 1 in normal cells.

A cell is a directed acyclic graph (DAG) consisting
of an ordered sequence of N nodes, denoted by N =
{x (1), . . . , x (N)}. Each node x (i) is a latent representation (i.e.
feature map), and each directed edge (i, j) is associated with
some candidate operations (e.g. conv, pooling) in operation
setO(i, j), representing all possible transformations from x (i)

to x (j). Each cell has two inputs (the outputs of the previous
two cells) and one output (the concatenation of all the inter-
mediate nodes in the cell). The structure of cell is shown on
the right in Fig. 3. Each intermediate node x (j) is computed
based on all of its predecessors:

x (j) =
∑

i< j

õ(i, j)(x (i)), (1)

where õ(i, j) ∈ O(i, j) is the optimal operation at edge (i, j).
In order to determine the optimal operation õ(i, j) at edge

(i, j), we represent the intra-cell search space with a set of
one-hot random variables from a fully factorizable joint dis-
tribution p(M) (Xie et al. 2019). Specifically, each edge (i ,
j) is associated with a one-hot random variable M (i, j). We
use M (i, j) as a mask to multiply all the candidate operations
O(i, j) at edge (i, j), and thus the intermediate node x (j) is
given by:

x (j) =
∑

i< j

∑

o∈O
m(i, j)

o · o(i, j)(x (i)), (2)

where m(i, j)
o ∈ M (i, j) and m(i, j)

o is a random variable in
{0, 1}, it is evaluated to 1 if operation o(i, j) is selected.

To make p(M) differentiable, we use Gumbel Softmax
technique (Jang et al. 2016; Maddison et al. 2016) to relax
the discrete sampling distribution to be continuous and dif-
ferentiable:

M (i, j) = fα(i, j) (G(i, j)) = softmax((logα(i, j) + G(i, j))/λ), (3)

123

1510 International Journal of Computer Vision (2021) 129:1506–1525

where M (i, j) is the softened one-hot random variable for
operation selection at edge (i , j), α(i, j) is the intra-cell archi-
tecture parameter at edge (i , j),G(i, j) =− log(− log(U (i, j)))

is a vector of Gumbel random variables, U (i, j) is a uniform
random variable in the range (0, 1). λ is the temperature
of softmax, and as λ approaches 0, M (i, j) approximately
becomes one-hot. The technique of Gumbel Softmax makes
the entire intra-cell search differentiable (Wu et al. 2018,
2019;Xie et al. 2019) to both network parameterw and archi-
tecture parameter α.

For the candidate operation set O, we collect the opera-
tions as follows:

– zero operation
– skip connection
– 3 × 3 max pooling
– 3 × 3 conv
– 3 × 3 conv, repeat 2
– 3 × 3 separable conv
– 3 × 3 separable conv, repeat 2
– 3 × 3 dilated separable conv, dilation=2
– 3 × 3 dilated separable conv, dilation=4
– 3 × 3 dilated separable conv, dilation=2, repeat 2

Intra-cell latency cost
For the operation selection of cells of a real-time network,

we take real-world latency into consideration. Specifically,
we build a GPU-latency lookup table (Cai et al. 2018; Tan
et al. 2019; Wu et al. 2019; Zhang et al. 2019b) that records
the inference time cost of each candidate operation. The
latency of each operation is measured in micro-second on
a TitanXP GPU. During the searching process, we associate
a cost lat (i, j)o with each candidate operation o(i, j) at edge
(i, j), thus the latency cost of cell p is formulated as:

latp =
∑

(i, j)

∑

o∈O
m(i, j)

o · lat (i, j)o , (4)

where m(i, j)
o ∈ M (i, j) and M (i, j) denotes the softened one-

hot random variable at edge (i, j). By using the pre-built
lookup table and above sampling process, the latency loss is
also differentiable with respect to m(i, j)

o .

3.3 Joint Network Depth and Downsampling Search

Hyper-cell search space
The network depth and downsampling strategy affect the

accuracy and speed of a network directly in real-time seman-
tic segmentation. To adjust them jointly and automatically,
we formulate the two design-making processes as a single
cell-level pruning process. Specifically, we propose a hyper-
cell, as shown in Fig. 3, which consists of a reduction cell
and n normal cells. We introduce n+1 edges to connect each
cell with the hyper-cell’s output and associate the edges with

Reduction Cell

Normal Cell-1

Normal Cell-2

Normal Cell-3

Normal Cell-4

Hyper Output
Hyper-Cell

Hyper Output

0 0 010

Hyper-Cell

Cell k

Reduction Cell

Fig. 3 Illustration of our hyper-cell. The hyper-cell consists of a reduc-
tion cell and n normal cells and n+1 edges with architecture parameter
which encodes the depth of the hyper-cell. The structure of cell is shown
on the right in this figure

the learnable architecture parameter β. The intra-cell archi-
tecture parameters α of n normal cells are shared in the same
hyper-cell.

We determine the depth of each hyper-cell by limiting that
only one edge can be activated for each hyper-cell, and all
cells behind this activated edge can be pruned safely. Each
specific edge in hyper-cell s is associated with a one-hot ran-
domvariableUs = (us1, u

s
2,…, usn+1) from a fully factorizable

joint distribution P(U). The Us works as a mask during the
training process, and the output of the hyper-cell s is designed
as:

HyperOut (s) =
n+1∑

p=1

u p
s · (Cp

s), (5)

where Cs
p is the output of p-th cell in hyper-cell s, u

s
p repre-

sents the random variable in {0, 1} of p-th edge of hyper-cell
s. We adopt the Gumbel Softmax based sampling process to
make the training process differentiable:

Us = fβs (Gs) = softmax((logβs + Gs)/λ), (6)

where Us is the softened one-hot random variable for edge
selection of hyper-cell s, βs is the architecture parameter of
hyper-cell s. Gs and λ are similar to the ones in Eq. (3).
The hyper-cell architecture parameter β we introduced can
be effectively optimized together with the network parameter
w, intra-cell architecture parameter α in the same round of
back-propagation. After stacking hyper-cells to form awhole
network, the network depth and downsampling strategy can

123

International Journal of Computer Vision (2021) 129:1506–1525 1511

be fully explored concurrently according to the architecture
parameter β.

To better explain the cell-level pruning process, we give
an example as follows. In the initial phase, let’s say we have
five cells (one reduction cell and four normal cells) and each
cell in hyper-cell keeps its original inputs and outputs. As
shown in Fig. 3, if the fourth edge is activated currently (i.e.
U is {0, 0, 0, 1, 0}), the Normal Cell-4 will be pruned in this
iteration, and the output of this hyper-cell is the output of
Normal Cell-3. At the same time, the reduction cell in the
next hyper-cell s + 1 takes the outputs of hyper-cell s and
Normal Cell-2 in hyper-cell s as its inputs, to stick to the
“two-input” principle of the cell. The learning and adjusting
like this go through the entire searching phase.

By introducing the architecture parameter β in the pro-
posed hyper-cell, we can dynamically adjust and search for
the network depth as well as the downsampling strategy for
real-time semantic segmentation.
NetworkLatencyCostWedefine the set of cells in all hyper-
cells in the initial phase as P , after optimization, the number
of the set is reduced and the new set is marked as P̄ . For the
current architecture (α, β) containing several hyper-cells, the
total latency excludes the pruned cells and can be calculated
as:

Lat(α, β) =
∑

p∈P̄

latp, (7)

where P̄ is the set of remaining cells in all hyper-cells of
architecture (α, β). The latp is the latency of cell p. We
construct the latency loss function LLat as:

Llat = log(Lat(α, β)). (8)

Thus, the total loss function can be formulated as:

Ltotal = LCE + γ Llat , (9)

where LCE is the cross-entropy loss between the predictions
of the architecture (α, β) with network weights w and the
ground truth. LLat denotes the total latency loss of architec-
ture (α, β). Moreover, γ controls the magnitude of latency
term (i.e. balance the trade-off between accuracy and speed).

3.4 Network-Level Auto Feature Aggregation

For remedying the loss of spatial details in real-time seg-
mentation networks due to fast downsampling, we propose
the aggregation cell to automatically aggregate features by
optimal operations from different levels in the network. The
aggregation cell seamlessly integrates the outputs of the
above hyper-cells, and the outputs of the early hyper-cells
can compensate for the loss of spatial details.

Fig. 4 Overview of the aggregation cell for automatic multi-scale fea-
ture aggregation. The aggregation cell contains E edges (dotted arrows),
and each edge is equiped with some candidate operations. The “s = 2”
means stride = 2

The structure of the proposed aggregation cell is shown
in Fig. 4. The aggregation cell takes three hyper-cells’ out-
puts with different resolutions as its inputs, and thus the
aggregation cell is designed to combine multi-scale features
(i.e. low-level spatial details and high-level semantic con-
text). The aggregation cell is designed as a directed acyclic
graph consisting of M nodes and E edges. Each node is a
latent representation (i.e. featuremap) and each directed edge
is associated with some candidate operations. As shown in
Fig. 4, each edge’s stride is set to 1, unless explicitly spec-
ified by “s = 2” (stride 2), which acts as the downsampling
connection. The output of the aggregation cell is designed as
the concatenation of the final feature maps from three hyper-
cells. We use the same sampling and optimization process
as intra-cell search in Sect. 3.2 to optimize the aggregation
cell’s architecture parameter.

Given the candidate operation set, the aggregation cell also
efficiently enlarges the receptive field of the network. For the
operation set of the aggregation cell, we collect following 5
kinds of operations:

– 1×1 conv, repeat 2
– 3×3 conv, repeat 2
– 3×3 dilated separable conv, dilation=2, repeat 2
– 3×3 dilated separable conv, dilation=4, repeat 2
– 3×3 dilated separable conv, dilation=8, repeat 2

4 Experiments

To verify the effectiveness and superiority of our joint search
framework, we compare our AutoRTNet with other state-of-
the-art methods on two challenging benchmarks: Cityscapes
(Cordts et al. 2016) andCamVid (Brostow et al. 2008).More-
over, we conduct a series of ablation studies to verify the
effectiveness of the proposed hyper-cell and aggregation cell.
Furthermore, we provide an in-depth analysis of the archi-
tecture searched by our framework. Finally, we give detailed
quantitative results, visualization results, and adequate com-
parisons with other state-of-the-art methods.

123

1512 International Journal of Computer Vision (2021) 129:1506–1525

4.1 Implementation Details

Searching For the searching process, the whole network
contains three hyper-cells and the initial cell numbers in
these hyper-cells are {5, 10, 10}, respectively. The interme-
diate node number of the cell is set to 2. The initial channel
number is 8, and the channels are ×3 when downsampling
in reduction cells. The searching process, which is con-
ducted on the Cityscapes dataset, runs 150 epochs with
mini-batch size 16, which takes approximately 16 hours
with 16 TitanXP GPU cards. Similar to FBNet (Wu et al.
2019), we postpone the training of the hyper-cell archi-
tecture parameters β by 50 epochs to warm-up network
weights w and intra-cell architecture parameters α. The
α and β are optimized by Adam, with an initial learn-
ing rate of 0.001, a momentum (0.5, 0.999) and a weight
decay 1e-4. The w is optimized using SGD with a momen-
tum 0.9, a weight decay 1e-3, and the cosine learning
scheduler that decays learning rate from 0.025 to 0.001.
For Gumbel Softmax, we set the initial temperature λ

in equation (3) and (6) as 3.0 empirically, and gradually
decrease to the minimum value of 0.03. We set the node
number M and edge number E as 7 in the aggregation
cell.
RetrainingWhen the searching process is over, the searched
network is firstly pretrained on the ImageNet dataset from
scratch. We then finetune the network on the specific seg-
mentation dataset (i.e. Cityscapes or CamVid) for 200 epochs
with mini-batch size 16. The base learning rate is 0.01 and
the ‘poly’ learning rate policy is adopted with a power 0.9,
together with a momentum 0.9 and a weight decay 0.0005.
Following (Wu et al. 2016; Yu et al. 2018), we compute the
loss function with the online bootstrapping strategy. Data
augmentation contains random horizontal flip, random resiz-
ing with scale ranges in [0.5, 2.0], and random cropping into
fix size for training.

4.2 Benchmarks and EvaluationMetrics

Cityscapes (Cordts et al. 2016), a public street scene dataset,
contains high quality pixel-level annotations of 5000 images
with size 1024 × 2048 and 19,998 images with coarse
annotations. 19 semantic classes are used for training and
evaluation. CamVid (Brostow et al. 2008) is another pub-
lic dataset, and it contains 701 images in total. We follow
the training/testing set split in (Zhang et al. 2019b; Bros-
tow et al. 2008), with 468 training and 233 testing labeled
images. These images are densely labeled with 11 semantic
class labels. We use three evaluation metrics, including the
mean of class-wise intersection over union (mIoU), network
forward time (Latency), and Frames Per Second (FPS).

4.3 Real-Time Semantic Segmentation Results

In this section, we compare our AutoRTNet with other real-
time segmentation methods. We run all experiments based
on Pytorch 0.4 (Paszke et al. 2017) and measure the latency
on an NVIDIA TitanXP GPU card under CUDA 9.0. For a
fair comparison, we directly quote the reported remeasured
or estimated speed results on TitanXP of other algorithms
mentioned in (Zhang et al. 2019b; Orsic et al. 2019). For the
AutoRTNet, we report the average inference time through
500 times. In this process, we don’t employ any test aug-
mentation.
Results on Cityscapes.

We conduct the searching process with latency term
weight γ 0.01 and 0.001, and obtain the relatively fast
and slow networks named AutoRTNet-F and AutoRTNet-
S, respectively. We evaluate them on the Cityscapes test set.
The validation set is added for training before submitting to
the online Cityscapes server. Following (Zhang et al. 2019b;
Yu et al. 2018), we scale the resolution of the images from
1024 × 2048 to 768 × 1536 as inputs to measure the speed
and accuracy. As shown in Table 1, our AutoRTNet achieves
the best trade-off between accuracy and speed. AutoRTNet-
F yields 72.2% mIoU while maintaining 110.0 FPS on the
Cityscapes test set with only fine data and without any test
augmentation. When the coarse data is added to the training
set, the mIoU achieves 73.9%, which is the state-of-the-
art trade-off for real-time semantic segmentation. Compared
with BiseNet (Yu et al. 2018) and CAS (Zhang et al. 2019b)
which have a comparable speed to us, AutoRTNet-F sur-
passes them by 3.8% and 1.7% in mIoU on the Cityscapes
test set, respectively. Comparedwith other real-time segmen-
tation methods (e.g. ENet (Paszke et al. 2016), ICNet (Zhao
et al. 2018a)), ourAutoRTNet-F surpasses them in both speed
and accuracy by a large margin. Moreover, our AutoRTNet-
S achieves 74.3% and 75.8% mIoU (+ coarse data) on the
Cityscapes test set with 71.4 FPS, which is also the state-of-
the-art real-time performance.
Results on CamVid To validate the transferability of the
networks searched by our framework, we directly trans-
fer AutoRTNet-F and AutoRTNet-S, which are obtained on
Cityscapes, to the CamVid dataset, as reported in Table 2.
We only transfer the network architectures and train them
on CamVid from scratch. With 720 × 960 input images,
AutoRTNet-F achieves 73.5% mIoU on the CamVid test
set with 140.0 FPS, which is the state-of-the-art trade-off
between accuracy and speed. AutoRTNet-S achieves 74.2%
mIoU with 82.5 FPS. We also conduct the architecture
search on CamVid (γ = 0.1) and name the resulting ultra-
fast networkAutoRTNet-U.Notably,AutoRTNet-Uachieves
appealing 250.0 FPS while maintaining 68.6% mIoU on the
CamVid test set, which surpasses ICNet (Zhao et al. 2018a)

123

International Journal of Computer Vision (2021) 129:1506–1525 1513

Table 1 Accuracy and speed
comparison of our method
against other state-of-the-art
methods on the Cityscapes test
set

Method Input size mIoU (%) Latency (ms) FPS

FCN-8S 2015 512 × 1024 65.3 227.23 4.4

PSPNet 2017 713 × 713 78.4 1288.0 0.78

PSPNet∗ 2017 713 × 713 81.2 1288.0 0.78

DeepLabV3∗ 2017 769 × 769 81.3 769.23 1.3

AutoDeepLab∗ †2019a 769 × 769 81.2 303.0 3.3

SegNet 2017 360 × 640 57.0 30.3 33

ENet 2016 360 × 640 58.3 12.7 78.4

SQ 2016 1024 × 2048 59.8 46.0 21.7

ERFNet 2017 512 × 1024 69.7 48.5 20.6

ICNet 2018a 1024 × 2048 69.5 26.5 37.7

DF1-Seg 2019b 768 × 1536 73.0 29.1 34.4

SwiftNet 2019 1024 × 2048 75.1 26.2 38.1

ESPNet 2018 512 × 1024 60.3 8.2 121.7

DFANet 2019a 1024 × 1024 71.3 10.0 100.0

DFANet † 2019a 1024 × 1024 71.3 20.6 † 48.5 †

BiSeNet 2018 768 × 1536 68.4 9.52 105.8

CAS 2019b 768 × 1536 70.5 9.25 108.0

CAS∗ 2019b 768 × 1536 72.3 9.25 108.0

AutoRTNet-F 768 × 1536 72.2 9.09 110.0

AutoRTNet-F∗ 768 × 1536 73.9 9.09 110.0

AutoRTNet-S 768 × 1536 74.3 14.0 71.4

AutoRTNet-S∗ 768 × 1536 75.8 14.0 71.4

Methods trained using both fine and coarse data are marked with ∗. The mark † represents the speed is
remeasured by us on Titan XP

Table 2 Results on the CamVid
test set with resolution 720 ×
960

Method mIoU (%) Latency(ms) FPS Parameters (M)

SegNet 2017 55.6 34.01 29.4 29.5

ENet 2016 51.3 16.33 61.2 0.36

ICNet 2018a 67.1 28.98 34.5 26.5

BiSeNet 2018 65.6 – – 5.8

DFANet 2019a 64.7 8.33 120 7.8

CAS 2019b 71.2 5.92 169 –

AutoRTNet-F 73.5 7.14 140.0 2.5

AutoRTNet-S 74.2 12.1 82.5 3.9

AutoRTNet-U 68.6 4.0 250.0 1.4

(67.1% mIoU with 34.5 FPS) and DFANet (Li et al. 2019a)
(64.7% mIoU with 120 FPS) significantly.
Parameter results Many computationally limited mobile
platforms have restrictive memory constraints for real-time
applications, and thus the parameter size is also an important
consideration. Table 2 shows the results of our AutoRT-
Net and other methods on the CamVid test set. With only
2.5 million parameters, our AutoRTNet-F achieves impres-
sive accuracy (i.e. 73.5% mIoU) on the CamVid test set,
which significantly outperforms existing real-time segmen-

tation networks. The parameter sizes of AutoRTNet-S and
AutoRTNet-U are 3.9M and 1.4M, respectively.

4.4 Ablation Study

The contribution of each component is investigated in the fol-
lowing ablation studies on the Cityscapes validation set. The
latency termweight γ in Eq. (7) is set to 0.01 and all networks
are firstly pretrained on ImageNet in following experiments
for a fair comparison, if not specially noted.

123

1514 International Journal of Computer Vision (2021) 129:1506–1525

Table 3 Comparison with
random search on the
Cityscapes validation
set

Method mIoU (%) Latency (ms) FPS

AutoRTNet 72.9 9.09 110.0

Random search 66.7 ± 2.5 11.4 ∼ 16.2 87.5 ∼ 61.2

Table 4 The optimization
results of hyper-cells with
different initial states and
different random seeds

Random seed Initial phase After optimization mIoU Frames Per
setting {a, b, c} {a, b, c} (%) Second (FPS)

2 {5, 10, 10} {2, 4, 6} 72.9 110.0

2 {5, 10, 15} {2, 4, 6} 73.0 106.5

2 {5, 15, 15} {1, 4, 6} 72.5 102.8

2 {10, 10, 10} {2, 4, 6} 72.8 112.3

1 {5, 10, 10} {2, 4, 6} 72.3 113.9

3 {5, 10, 10} {1, 4, 7} 72.8 107.9

Table 5 Comparison to random
downsampling strategy

Downsampling positions mIoU (%) FPS Downsampling design rule

(1, 3, 7) 72.9 110.0 Hyper cell

(1, 5, 10) 71.6 90.2 Random

(3, 5, 8) 72.5 75.7 Random

(1, 2, 4) 68.4 125 Random

4.4.1 Comparison with Random Search

As discussed in (Li and Talwalkar 2019; Yu et al. 2019),
NAS is a specialized hyper-parameter optimization problem,
and random search is a competitive baseline for the prob-
lem. We apply random search to semantic segmentation by
randomly sampling ten architectures from our previously-
defined search space. The whole search space contains
intra-cell operation selection and hyper-cell depth decision,
which is significantly challenging for random search to
find a satisfactory network. As shown in Table 3, random
search achieves the average 66.7% mIoU ± 2.5% on the
Cityscapes validation set with ImageNet pretrained, which
is substantially lower than our AutoRTNet. The results also
demonstrate the effectiveness of our search algorithm.

4.4.2 Hyper-Cell

Robustness Firstly, to verify the robustness of hyper-cell,
we set different initial numbers of cells and different random
seeds in the initialization phase. The network contains three
hyper-cells and the initial cell numbers in hyper-cells are set
to {a, b, c}, after optimization, the numbers of cells remaining
in each hyper-cell are {a, b, c}. As shown in Table 4, the
experiments demonstrate that the hyper-cells are insensitive
to both initial numbers of cells and random seeds, which
verify the robustness and stability of the hyper-cell.

Downsampling strategy To demonstrate the effectiveness
of the downsampling strategy searched by hyper-cells, we
compare the random downsampling position settings with
the searched one. The total cell number is 12 (i.e., a+b+c
= 12) searched by our framework, we fix the searched cell
structures and only change the downsampling positions (x, y,
z) randomly for a fair comparison. The (x, y, z) represents the
index positions of reduction cells in the 12 cells. After pre-
training and retraining, the results in Table 5 demonstrate the
superiority of the searched downsampling strategy through
hyper-cells. Compared with the random ones, our hyper-cell
achieves the best trade-off between accuracy and speed.
Hyper-cell number In our framework, we set the number of
hyper-cells as 3 empirically. Thus, the downsampling factor
is 16 with a stem convolution layer. In fact, the number of
hyper-cells also can be learned by a learnable architecture
parameter δ, and the optimization process of δ is similar to
that of the architecture parameter β. Specifically, the number
of hyper-cells can be learned by a hyper-cell-level prun-
ing process, i.e., from the initial hyper-cell numbers to the
reduced hyper-cell numbers automatically as follows. First,
we introduce edges to connect with each output of hyper-
cells, and associate them with the learnable parameters δ.
Then, we determine the number of hyper-cells by limiting
that only one edge can be activated. We set the initial hyper-
cell number as 5 and thus the initial max downsampling
factor is 64, which covers the common practices. Finally,
the parameter δ and network parameters w are optimized to

123

International Journal of Computer Vision (2021) 129:1506–1525 1515

Table 6 The optimization results of the number of hyper-cells

Initial hyper-cell
number

δ after optimization Optimized hyper-cell
number

5 {0, 0, 1, 0, 0} 3

5 {0, 0, 0, 1, 0} 4

5 {0, 0, 1, 0, 0} 3

5 {0, 0, 1, 0, 0} 3

5 {0, 0, 0, 1, 0} 4

Table 7 The optimization results with different hyper-cell numbers

Hyper-cell
number

Initial phase After opti-
mization

mIoU (%) FPS

3 {5, 10, 10} {2, 4, 6} 72.9 110.0

4 {5, 10, 10, 10} {1, 2, 5, 5} 73.1 106.7

5 {5, 10, 10, 10, 10} {1, 2, 3, 4,
2}

71.7 118.3

Table 8 Ablation study for the aggregation cell

Methods mIoU (%) FPS

(a) Without aggregation cell 69.9 116.2

(b) Random aggregation cell 71.4 108.5

(c) AutoRTNet-F̄ 72.2 112.8

(d) AutoRTNet-F 72.9 110.0

determine the number of hyper-cells automatically. We per-
form five repeated experiments as shown in Table 6. With
latency weight γ = 0.01, the hyper-cell number determined
by the parameter δ is 3 or 4.

Then, we conduct the experiments with different numbers
of hyper-cells, including the numbers 3 and 4, which are
determined by δ, and hand-designed number 5. The results
are shown in Table 7, we observe that AutoRTNet obtains
similar performance when the hyper-cell number is 3 or 4.
When the hyper-cell number is 5, there has a degradation
in performance, which demonstrates the effectiveness of the
hyper-parameter δ. Hence, the hyper-cell number can be set
as 3 or 4 in our framework.

4.4.3 Aggregation Cell

To demonstrate the effectiveness of the proposed aggrega-
tion cell, we conduct a series of experiments with different
strategies: (a) without multi-scale feature aggregation; (b)
with the aggregation cell using selected operations randomly
from the aggregation cell’s search space; (c)with the searched
aggregation cell under γ = 0.01, the corresponding network
is named AutoRTNet-F̄; d) with the searched unconstrained
aggregation cell (i.e. our AutoRTNet-F), i.e., we have not
introduced the latency constraint for the aggregation cell.

Among them, the result of the random aggregation cell is
the average result over ten repeated random experiments
and the results are shown in Table 8. Overall, the searched
aggregation cell successfully boosts up the mIoU from 69.9
to 72.9% on the Cityscapes validation set. Particularly, the
searched aggregation cell surpasses the random one 1.5%
performance gains. Moreover, we observe that the accu-
racy degrades from 72.9 to 72.2% mIoU while the speed
only gains 0.22 ms (+2.8 FPS) improvement when adding
the latency constraint to the aggregation cell. Thus, for a
better overall trade-off between accuracy and speed, we
do not introduce the latency constraint to the aggregation
cell.

4.4.4 Hyper-Cell Searching Process

To better analyze howhyper-cell works throughout thewhole
searching process, we visualize the number of cells of each
hyper-cell after the warm-up phase, as depicted in Fig. 5. The
initial cell numbers are {5, 10, 10} and eventually converge to
{2, 4, 6} in three hyper-cells. The blue lines from top to bot-
tom denote the actual cell numbers according to the current
architecture parameter β of each hyper-cell, and red curves
represent the mathematical expectation values of current cell
numbers. We observe that our framework explores different
cell numbers (i.e. different depths) in each hyper-cell actively
at the early stage of searching, and the expectation values
of cell numbers also change gradually. The cell numbers
progressively become stable towards the final architecture
in the late stage of searching, and the actual cell number
lines gradually get close to the expectation curves. Another
interesting observation is that hyper-cell #1 finds its optimal

Fig. 5 Illustration of cell numbers in hyper-cells during the searching
process. Blue lines from top to bottom denote the actual cell number
changing in each hyper-cell with the increase of epochs, and red curves
represent the mathematical expectation values of the current cell num-
bers in hyper-cells (Color figure online)

123

1516 International Journal of Computer Vision (2021) 129:1506–1525

Fig. 6 The results of different latency settings on CamVid

depth much earlier than the other ones, indicating that the
searching process follows a shallow-to-deep manner as we
expected.

4.4.5 Different Latency Settings

Our joint search framework searches for the optimal net-
work architectures under different latency settings (i.e. loss
weight γ). In Sect. 4.3, AutoRTNet-F and AutoRTNet-S
are searched with γ = 0.01 and 0.001 on the Cityscapes
dataset, respectively, which demonstrates the flexibility of
our framework. We also conduct the architecture search
on the CamVid dataset with different latency settings,
and the results are as depicted in Fig. 6. The networks

searched with γ = 0.001, 0.01, 0.05, 0.1 achieve 73.3%,
70.2%, 69.2%, 68.6% mIoU and 138.0, 200.2, 232.1, 250.0
FPS on the CamVid test set, respectively. Notably, our
AutoRTNet-U achieves 250.0 FPS while maintaining 68.6%
mIoU, which surpasses ICNet (67.1% mIoU with 34.5
FPS) and DFANet (64.7% mIoU with 120 FPS) signifi-
cantly.

4.5 Insights from Searched AutoRTNet-F

We provide an in-depth analysis of the AutoRTNet-F
searched by our framework. We use the NAS methods to
search the suitable architectures for specific tasks, likewise,
we should understand why the searched network works well
and it will guide the hand-designed process in turn. We have
the following three important observations.
Early downsamplingWenotice that the searched downsam-
pling strategy is stable and reasonable. As shown in Table 4,
in the first hyper-cell, whether the initialized cell number is
5 or 10, the final number is at most 2 after the optimization.
The reason is that the visual information is highly spatially
redundant, thus can be compressed into a more efficient
representation. Under the latency constraints, the searched
downsampling strategy is as we expected and follows the
early downsampling prior knowledge (Paszke et al. 2016).
Suitable receptive field The suitable receptive field size
is crucial for semantic segmentation (Luo et al. 2016). A
too-large receptive field may introduce some extra noises or
negative interference, and the network cannot capture enough
context information if it is too small. During the searching
process, our AutoRTNet continuously adjusts the operation
selection to determine the suitable receptive field. For exam-
ple, in the optimized aggregation cell, as shown in Fig. 7, the

conv3x3 r2

conv3x3 r2

concatenation

conv3x3 r2

conv3x3 r2

dil conv3x3 d4,r2

conv3x3 r2

conv3x3 r2

conv3x3 r2

conv3x3 r2

conv3x3 r2
max_pool3x3

conv3x3 d4

max_pool3x3

max_pool3x3

max_pool3x3
dil conv3x3, d2

conv3x3 r2

conv3x3 r2

dil conv3x3, d2

conv3x3 r2

max_pool3x3

conv3x3 r2

conv3x3 r2

conv3x3 r2

conv3x3 r2
conv3x3 r2

conv3x3 r2

sep conv3x3

dil conv3x3, d4

conv3x3 r2
conv3x3

conv3x3 r2

conv3x3 r2

skip_connect

dil conv3x3 d4,r2

conv3x3 r2

Hyper-cell#1 reduction cell Hyper-cell#2 reduction cell Hyper-cell#3 reduction cell

Hyper-cell#1 normal cell Hyper-cell#2 normal cell Hyper-cell#3 normal cell
Aggregation cell

conv3x3 r2

Fig. 7 Illustration of the detailed AutoRTNet-F architecture. The structures of the reduction cells and normal cells in three hyper-cells are shown
in the figure respectively. The structure of searched aggregation cell in shown on the right. Best viewed in color (Color figure online)

123

International Journal of Computer Vision (2021) 129:1506–1525 1517

conv3x3 r2

conv3x3 r2

conv3x3 r2

conv3x3 r2

conv3x3
max_pool3x3

conv3x3 r2

conv3x3 r2

conv3x3

conv3x3 r2
skip_connect

max_pool3x3

conv3x3 r2

conv3x3, r2

conv3x3 r2

conv3x3 r2

conv3x3 r2

conv3x3, r2
conv3x3 r2

conv3x3 r2

conv3x3 r2

dil conv3x3, d2
max_pool3x3

conv3x3 r2

max_pool3x3

max_pool3x3

conv3x3 r2

Hyper-cell#1 reduction cell Hyper-cell#2 reduction cell Hyper-cell#3 reduction cell

Hyper-cell#1 normal cell Hyper-cell#2 normal cell Hyper-cell#3 normal cell

(a) (b) (c)

max_pool3x3

max_pool3x3

conv3x3 r2

Fig. 8 Illustration of the detailed AutoRTNet-F’ architecture

Table 9 The hyper-parameters used for the search and the correspond-
ing results of AutoRTNet-F and AutoRTNet-F’

AutoRTNet-F AutoRTNet-F’

Hyper-parameters when training

(a) Latency loss weight (γ) 0.01 0.001

(b) Input image size (H × W) 768 × 1536 720 × 960

(c) Mini-batch size 16 16

(d) Searched dataset Cityscapes CamVid

Results after retraining

Speed on CamVid (FPS) 140.0 FPS 138.0 FPS

Performance on CamVid (mIoU) 73.5% 73.3%

operations from the outputs of the third hyper-cell always
choose the operation with a dilation rate is 4 rather than
2 or 8 also in the search space. So we should choose the
corresponding operations for the suitable receptive field in
hand-designed semantic segmentation networks.
Operation selectionThe early operations act as good feature
extractors. As shown in Fig. 7, the selection of operations in
early stages always tends to be conv 3×3. The middle and
deep layers have a diversity of operation selection.When per-
forming multi-scale feature aggregation in the aggregation
cell, we clearly found that the deeper layers enjoy dilated
convolution operations, while the lower layers only prefer
the common convolution operations.

4.6 Comparison of Networks Searched on Different
Datasets

In this part, we compare the similarities and differences of
AutoRTNet-F searched on Cityscapes and its counterpart,
which is searched on CamVid. We depict the architecture
searched on CamVid with γ = 0.001 in Fig. 8, which
is named as AutoRTNet-F’. Compared with AutoRTNet-F,
AutoRTNet-F’ has a similarHyper-cell #1 architecture.How-
ever, Hyper-cell #2 and Hyper-cell #3 of two networks are
rather different. Specifically, Hyper-cell #2 of AutoRTNet-

F selects more max-pooling operations than AutoRTNet-F’,
and Hyper-cell #3 of AutoRTNet-F prefers more convolution
operations than AutoRTNet-F’. Moreover, AutoRTNet-F,
which is searched at higher image resolution, has more
dilated convolution operations than AutoRTNet-F’. We also
list the used hyper-parameters for the network search and the
corresponding network performance as shown in Table 9.
Other searching hyper-parameters remain the same when
searching for AutoRTNet-F and AutoRTNet-F’.

4.7 Detailed Time and GPU Information

The inference time or FPS is influenced by the GPU device
and the input image size of the model. Here we list detailed
information of previous approaches in Table 10 for readers
as reference. Our GPU device is Nvidia TitanXP GPU. For a
fair comparison, we directly quote the reported remeasured
or estimated results on TitanXP of other algorithms in CAS
(Zhang et al. 2019b) and SwiftNet (Orsic et al. 2019) paper.
And we remeasure the speed of the methods based on our
implementation if the original speed was reported on differ-
entGPUs and notmentioned inCAS (Zhang et al. 2019b) and
SwiftNet (Orsic et al. 2019). Note that our implementations
and speedmeasurements do not use TensorRT optimizations.

The speed of DFANet is reported on TitanX GPU, and
also not mentioned in CAS (Zhang et al. 2019b) and Swift-
Net (Orsic et al. 2019). Thus, we remeasure the inference
time on TitanXP carefully for a fair comparison. There still
has a speed gap between the original speed and the one we
measured, we suspect that this is caused by the inconsistency
of the implementation platform. We reimplement DFANet
using official PyTorch (Paszke et al. 2017), and they mea-
sure it on their framework in which the depth-wise separable
convolution is more fully optimized.

4.8 Detailed Quantitative Results andVisualization
Results

Here we provide detailed quantitative results of per-class
mIoU on the Cityscapes and CamVid datasets. Moreover,
we provide the performance of the AutoRTNet on the full-
resolution Cityscapes validation set. Finally, we provide
some visual segmentation results onCityscapes andCamVid.

4.8.1 Cityscapes Dataset

Compared with other methods, our AutoRTNet-F achieves
an overall 72.2%mIoUwith 110.0 FPS, which is the state-of-
the-art trade-off between accuracy and speed. The per-class
accuracy values are shown in Table 11. In comparison
with other methods with public per-class accuracy on the
Cityscapes test set, our predictions are more accurate in 13
out of 19 classes. AutoRTNet-F achieves slight improve-

123

1518 International Journal of Computer Vision (2021) 129:1506–1525

Ta
bl
e
10

T
he

de
ta
ile
d
in
fo
rm

at
io
n
of

ou
r
A
ut
oR

T
N
et
an
d
ot
he
r
st
at
e-
of
-t
he
-a
rt
m
et
ho
ds

on
th
e
C
ity

sc
ap
es

te
st
se
t

M
et
ho
d

In
pu
ts
iz
e

m
Io
U
(%

)
L
at
en
cy

(m
s)
on

T
ita
nX

P
FP

S
on

T
ita

nX
P

O
ri
gi
na
lr
es
ul
ts

va
l

te
st

FP
S

G
PU

FC
N
-8
S
(L
on
g
et
al
.2
01
5)

51
2

×
10
24

–
65
.3

22
7.
23

4.
4

–
–

PS
PN

et
∗
(Z
ha
o
et
al
.2
01
7)

71
3

×
71
3

–
81
.2

12
88
.0

0.
78

–
–

D
ee
pL

ab
V
3∗

(C
he
n
et
al
.2
01
7)

76
9

×
76
9

–
81
.3

76
9.
23

1.
3

–
–

A
ut
oD

ee
pL

ab
∗
(L
iu

et
al
.2
01
9a
)

76
9

×
76
9

–
81
.2

30
3.
0

3.
3

–
–

Se
gN

et
(B

ad
ri
na
ra
ya
na
n
et
al
.2
01
7)

64
0

×
32
0

–
57
.0

30
.3

33
–

–

SQ
(T
re
m
le
ta
l.
20
16
)

10
24

×
20
48

–
59
.8

46
.0

21
.7

–
T
ita
n
X
M

E
N
et
(P
as
zk
e
et
al
.2
01
6)

64
0

×
32
0

–
58
.3

12
.7

78
.4

13
5.
4

T
ita
n
X

E
R
FN

et
(R

om
er
a
et
al
.2
01
7)

10
24

×
51
2

–
69
.7

48
.5

20
.6

11
.2

T
ita
nX

M

IC
N
et
(Z
ha
o
et
al
.2
01
8a
)

10
24

×
20
48

67
.7

69
.5

26
.5

37
.7

30
.3

T
IT
A
N
X
(M

)

Sw
if
tN

et
(O

rs
ic
et
al
.2
01
9)

10
24

×
20
48

74
.4

75
.1

26
.2

38
.1

34
.0

G
T
X
10
80
T
i

D
F1

-S
eg

(L
ie
ta
l.
20
19
b)

76
8

×
15
36

74
.1

73
.0

29
.1

34
.4

30
.7

G
T
X
10
80
T
i

E
SP

N
et
(M

eh
ta
et
al
.2
01
8)

10
24

×
51
2

–
60
.3

8.
2

12
1.
7

11
2

T
ita
nX

B
iS
eN

et
(Y
u
et
al
.2
01
8)

76
8

×
15
36

69
.0

68
.4

9.
52

10
5.
8

10
5.
8

T
ita
nX

P

D
FA

N
et
(L
ie
ta
l.
20
19
a)

10
24

×
10
24

–
71
.3

20
.6
†

48
.5
†

10
0.
0

T
ita
nX

C
A
S
(Z
ha
ng

et
al
.2
01
9b
)

76
8

×
15
36

71
.6

70
.5

9.
25

10
8.
0

10
8.
0

T
ita
nX

P

C
A
S∗

(Z
ha
ng

et
al
.2
01
9b
)

76
8

×
15
36

72
.5

72
.3

9.
25

10
8.
0

10
8.
0

T
ita
nX

P

A
ut
oR

T
N
et
-F

76
8

×
15
36

72
.9

72
.2

9.
09

11
0.
0

11
0.
0

T
ita
nX

P

A
ut
oR

T
N
et
-F

∗
76
8

×
15
36

74
.5

73
.9

9.
09

11
0.
0

11
0.
0

T
ita
nX

P

A
ut
oR

T
N
et
-S

76
8

×
15
36

74
.7

74
.3

14
.0

71
.4

71
.4

T
ita
nX

P

A
ut
oR

T
N
et
-S

∗
76
8

×
15
36

76
.0

75
.8

14
.0

71
.4

71
.4

T
ita
nX

P

M
et
ho
ds

tr
ai
ne
d
us
in
g
bo
th

fin
e
an
d
co
ar
se

da
ta
ar
e
m
ar
ke
d
w
ith

∗.
T
he

m
ar
k
†
re
pr
es
en
ts
th
e
sp
ee
d
is
re
m
ea
su
re
d
by

us

123

International Journal of Computer Vision (2021) 129:1506–1525 1519

Ta
bl
e
11

D
et
ai
le
d
pe
r-
cl
as
s
ac
cu
ra
cy

co
m
pa
ri
so
n
of

ou
r
A
ut
oR

T
N
et
w
ith

ot
he
r
m
et
ho

ds
on

th
e
C
ity

sc
ap
es

te
st
se
t

M
et
ho

d
R
oa
d
Si
de
w
al
k
B
ui
ld
in
g
W
al
l
Fe

nc
e
Po

le
T
ra
ffi
c
lig

ht
T
ra
ffi
c
si
gn

V
eg
et
at
io
n

Te
rr
ai
n
Sk

y
Pe
rs
on

R
id
er

C
ar

T
ru
ck

B
us

T
ra
in

M
ot
or
cy
cl
e
B
ic
yc
le

M
ea
n
IO

U
(%

)
FP

S

Se
gN

et
20
17

96
.4

73
.2

84
.0

28
.4

29
.0

35
.7

39
.8

45
.1

87
.0

63
.8

91
.8

62
.8

42
.8

89
.3

38
.1

43
.1

44
.1

35
.8

51
.9

57
.0

33

E
N
et
20
16

96
.3

74
.2

75
.0

32
.2

33
.2

43
.4

34
.1

44
.0

88
.6

61
.4

90
.6

65
.5

38
.4

90
.6

36
.9

50
.5

48
.1

38
.8

55
.4

58
.3

78
.4

IC
N
et
20
18
a

97
.1

79
.2

89
.7

43
.2

48
.9

61
.5

60
.4

63
.4

91
.5

68
.3

93
.5

74
.6

56
.1

92
.6

51
.3

72
.7

51
.3

53
.6

70
.5

69
.5

37
.7

E
SP

N
et
20
18

97
.0

77
.5

76
.2

35
.0

36
.1

45
.0

35
.6

46
.3

90
.8

63
.2

92
.6

67
.0

40
.9

92
.3

38
.1

52
.5

50
.1

41
.8

57
.2

60
.3

12
1.
7

E
R
FN

et
20
17

97
.9

82
.1

90
.7

45
.2

50
.4

59
.0

62
.6

68
.3

91
.9

69
.4

94
.2

78
.5

59
.8

93
.4

52
.3

60
.8

53
.7

49
.9

64
.2

69
.7

20
.6

B
iS
eN

et
20
18

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
68
.4

10
5.
8

D
FA

N
et
20
19
a
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

71
.3

83
.1

C
A
S
20
19
b

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
70
.5

10
8.
0

A
ut
oR

T
N
et
-F

98
.5

84
.9

91
.4

45
.9

53
.0

52
.2

60
.3

67
.3

91
.5

70
.6

93
.9

78
.2

62
.5

95
.3

63
.7

74
.5

63
.9

56
.8

67
.0

72
.2

11
0.
0

A
ut
oR

T
N
et
-S

98
.4

86
.6

91
.2

52
.2

54
.9

58
.5

63
.7

68
.4

91
.5

71
.5

94
.9

79
.3

61
.4

95
.4

65
.9

78
.0

69
.8

59
.6

69
.8

74
.3

71
.4

123

1520 International Journal of Computer Vision (2021) 129:1506–1525

Ta
bl
e
12

A
cc
ur
ac
y
an
d
sp
ee
d
co
m
pa
ri
so
n
on

th
e
C
ity

sc
ap
es

va
lid

at
io
n
se
tw

ith
im

ag
e
re
so
lu
tio

n
10

24
×

20
48

M
et
ho
d

In
pu
ts
iz
e

m
Io
U
(%

)
FP

S
on

T
ita

n
X
P

O
ri
gi
na
lR

es
ul
ts

FP
S

G
PU

SQ
(T
re
m
le
ta
l.
20
16
)

10
24

×
20
48

59
.8

–
–

T
ita
n
X
(M

)

IC
N
et
(Z
ha
o
et
al
.2
01
8a
)

10
24

×
20
48

69
.5

55
.6

30
.3

T
ita
n
X
(M

)

Sw
if
tN

et
(O

rs
ic
et
al
.2
01
9)

10
24

×
20
48

74
.4

38
.1

34
.0

G
T
X
10
80
T
i

C
A
S
(Z
ha
ng

et
al
.2
01
9b
)

10
24

×
20
48

74
.0

45
.2

34
.2

G
T
X
10
70

A
ut
oR

T
N
et
-F

10
24

×
20
48

75
.0

62
.7

62
.7

T
ita
n
X
P

A
ut
oR

T
N
et
-S

10
24

×
20
48

76
.8

45
.6

45
.6

T
ita
n
X
P

123

International Journal of Computer Vision (2021) 129:1506–1525 1521

Table 13 Detailed per-class accuracy comparison of our AutoRTNet with other methods on the CamVid test set

Method Building Tree Sky Car Sign Road Pedestrian Fence Pole Sidewalk Bicyclist Mean IOU(%) FPS

SegNet 2017 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 55.6 29.4

ENet 2016 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 51.3 61.2

ICNet 2018a – – – – – – – – – – – 67.1 34.5

BiseNet-Xception39 2018 82.2 74.4 91.9 80.8 42.8 93.3 53.8 49.7 25.4 77.3 50.0 65.6 –

BiseNet-Res18 2018 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7 –

DFANet 2019a – – – – – – – – – – – 64.7 120.0

CAS 2019b – – – – – – – – – – – 71.2 169.0

AutoRTNet-F 88.1 78.4 91.7 93.0 44.0 96.2 66.8 60.8 33.0 88.6 67.4 73.5 140.0

AutoRTNet-S 89.1 79.3 91.7 92.5 41.0 96.8 64.7 66.5 32.2 90.0 72.1 74.2 82.5

AutoRTNet-U 87.5 77.9 91.7 90.6 30.4 95.6 62.2 47.1 25.2 87.5 58.9 68.6 250.0

(a) Image (b) Ground Truth (c) ICNet (d) AutoRTNet-F

Fig. 9 Visual segmentation results on the Cityscapes validation set. a Image. b Ground Truth. c ICNet. d AutoRTNet-F

ments on the general classes (Road, Sidewalk, Building,
Terrain, Car, etc.) while obtaining a significant accuracy
improvement on the challenging classes (Truck, Motorbike,
Train, Fence, Rider, etc.). Moreover, AutoRTNet-S achieves
74.3% mIoU on the Cityscapes test set with 71.4 FPS.

The cityscapes dataset contains high-resolution 1024 ×
2048 images, which makes it a big challenge for real-time

semantic segmentation. With high-resolution image inputs,
Zhao et al. (2018a) focus on building a practically fast seman-
tic segmentation system while accomplishing high-quality
results. SwiftNet (Orsic et al. 2019) and CAS (Zhang et al.
2019b) also perform the experiments onCityscapeswith full-
resolution image inputs. In this part, we compare with these
methods on the Cityscapes validation set and the results are

123

1522 International Journal of Computer Vision (2021) 129:1506–1525

(a) Image (b) Ground Truth (c) ICNet (d) AutoRTNet-F

Fig. 10 Visual segmentation results on CamVid test set. a Image. b Ground Truth. c ICNet. d AutoRTNet-F

shown in Table 12. We refer to the speed scaling factors on
different GPUs in SwiftNet (Orsic et al. 2019) paper and esti-
mate the speed values of ICNet, SwiftNet, CAS on Titan XP
GPU.
AutoRTNet-FOur AutoRTNet-F achieves 75.0%mIoU and
62.7 FPS on the full-resolution Cityscapes validation set (i.e.
1024 × 2048). To the best of our knowledge, the real-time
performance of AutoRTNet-F outperforms all existing real-
time methods. Compared with ICNet, AutoRTNet surpasses
it by 5.5% in mIoU with a faster inference speed. Moreover,
AutoRTNet outperforms SwiftNet and CAS by 0.6% and
1.0% in mIoU, and has a great advantage in inference speed
(i.e. 62.7 FPS vs 38.1 FPS, 62.7 FPS vs 45.2 FPS).
AutoRTNet-SOurAutoRTNet-S achieves 76.8%mIoUwith
45.6 FPS on the full-resolution Cityscapes validation set,
which is the state-of-the-art real-time performance. Com-
paredwith SwiftNet andCAS that both have a little bit slower
speed than us, our AutoRTNet-S surpasses them by 2.4% and
2.8% in mIoU, respectively.

4.8.2 CamVid Dataset

As shown in Table 13, with 720 × 960 input images, the
searched AutoRTNet-F achieves 73.5% mIoU with 140.0
FPS, which is the state-of-the-art trade-off between accuracy
and speed on the CamVid test set. In comparison with other
methods, the predictions of our AutoRTNet-F aremore accu-
rate in 7 out of the 11 classes.More importantly, the inference
speed of AutoRTNet-F achieves 140 FPS, which is impres-
sive compared with other methods. (e.g. SegNet 29.4 FPS,
ENet 61.2 FPS, ICNet 34.5 FPS). The per-class accuracy of
AutoRTNet-S and AutoRTNet-U are also shown in Table 13.

4.8.3 Visual Segmentation Results

Weprovide some visual prediction results on bothCityscapes
and CamVid datasets here. As shown in Figs. 9 and 10, the
columns correspond to the input image, ground truth, the
prediction of ICNet, and the prediction of our AutoRTNet-

123

International Journal of Computer Vision (2021) 129:1506–1525 1523

Table 14 Results on the Cityscapes validation set of our networks and PSPNet

Method mIoU (%) Latency (ms) FPS Parameters (M)

PSPNet-Res50 77.3 636.9 1.57 49.08

PSPNet-Res101 78.6 1288.0 0.78 68.07

AutoRTNet-S 74.7 12.1 82.5 3.88

AutoRTNet-Ŝ 78.5 114.9 8.7 58.96

Table 15 Results on the Cityscapes test set of our AutoRTNet-Ŝ and other high-accuracy methods

Method mIoU (%) Latency(ms) FPS

PSPNet-Res101∗2017 81.2 1288.0 0.78

DeepLabV3∗2017 81.3 769.23 1.3

AutoDeepLabV3∗2019a 81.2 303.0 3.3

AutoRTNet-Ŝ∗ 81.0 114.9 8.7

F. Compared with ICNet, AutoRTNet-F produces more
accurate and detailed results with faster inference speed.
For example, AutoRTNet-F captures small objects in more
details (e.g. traffic light in Fig. 9, poles in Fig. 10) and gen-
erates “smoother” results on object boundaries (e.g. rider,
fence in Fig. 9, car in Fig. 10).

4.9 Comparison with High-Accuracy Models

It can be found that our AutoRTNet has a performance gap
to high-accuracy methods, e.g. PSPNet, even with small γ

values. In fact, in our framework, the performance of the
searched network is mainly affected by two key factors: (1)
the search space size and (2) the latency loss weight γ . We
aim to search real-time networks and thus use a relatively
small search space, which is responsible for the performance
gap. Specifically, the maximal number of channels in our
search space is only 144, and the parameter size of the
search space is only 12.14 M. The searched AutoRTNet-S
has only 3.88 M parameters, while PSPNet-ResNet101 has
68.07 M.

For a comparison with PSPNet, we directly expand our
AutoRTNet-S by widening the network widths (i.e. 4 ×
channels) to obtain a larger network named AutoRTNet-Ŝ.
Then, we evaluate it on the Cityscapes validation set, and
the corresponding results are shown in Table 14. We observe
that AutoRTNet-Ŝ achieves 78.5% mIoU on the validation
set, which has a very close accuracy (only 0.1% mIoU dif-
ference) with PSPNet-ResNet101 (78.6% mIoU). Note that
our AutoRTNet-Ŝ is about 10 times faster in inference than
PSPNet-ResNet101 (8.7 FPS VS 0.78 FPS).

Moreover, we also train AutoRTNet-Ŝ with the coarse
annotations in comparison with other high-accuracy meth-
ods, and the results on the Cityscapes test set are shown
in Table 15. From the experimental results, AutoRTNet-
Ŝ sacrifices the real-time speed and obtains the accuracy
improvement. Even so, the high-performance network still
has a 10 × inference speed compared to PSPNet. In con-
clusion, the experiment proves the great potential of our
AutoRTNet. Although our framework focuses on the real-
time segmentation network search under a relatively small
search space, it also can be generalized and adaptive to
the high-accuracy scenario flexibly by enlarging the search
space.

5 Conclusion

In this paper, we propose a novel joint search framework that
covers all three main aspects of the design philosophy for
real-time semantic segmentation networks. The framework
searches for building blocks, network depth, downsampling
strategy, and feature aggregationmethod simultaneously.The
hyper-cell is proposed for searching the network depth and
downsampling strategy jointly and automatically, and the
aggregation cell is introduced for automatic multi-scale fea-
ture aggregation. Extensive experiments on both Cityscapes
and CamVid datasets demonstrate the superiority and effec-
tiveness of our approach.

Acknowledgements This work is supported in part by National Nat-
ural Science Foundation of China under Grant U20A20222, Zhe-
jiang Provincial Natural Science Foundation of China under Grant
LR19F020004, National Key Research and Development Program of

123

1524 International Journal of Computer Vision (2021) 129:1506–1525

China under Grant 2020AAA0107400, and key scientific technological
innovation research project by Ministry of Education.

References

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A
deep convolutional encoder-decoder architecture for image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(12), 2481–2495.

Baker, B., Gupta, O., Naik, N., & Raskar, R. (2016). Designing neural
network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167.

Brostow, G. J., Shotton, J., Fauqueur, J., & Cipolla, R. (2008). Segmen-
tation and recognition using structure from motion point clouds.
In European conference on computer vision (pp. 44–57). Springer.

Cai, H., Zhu, L., & Han, S. (2018). Proxylessnas: Direct neural archi-
tecture search on target task and hardware. arXiv:1812.00332.

Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethink-
ing atrous convolution for semantic image segmentation. arXiv
preprint arXiv:1706.05587.

Chen, L. C., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F.,
Adam, H., Shlens, J. (2018a). Searching for efficient multi-scale
architectures for dense image prediction. In Advances in Neural
Information Processing Systems (pp. 8699–8710).

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018b).
Encoder–decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European conference
on computer vision (ECCV) (pp. 801–818).

Chollet, F. (2017). Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 1251–1258).

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes
dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 3213–3223).

Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn,
J., & Zisserman, A. (2015). The pascal visual object classes chal-
lenge: A retrospective. International Journal of Computer Vision,
111(1), 98–136.

Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., & Lu, H. (2019). Dual
attention network for scene segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
3146–3154).

Ghiasi, G., Lin, T. Y., & Le, Q. V. (2019). Nas-fpn: Learning scalable
feature pyramid architecture for object detection. In The IEEE
conference on computer vision and pattern recognition (CVPR)

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for
image recognition. InProceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 770–778).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Effi-
cient convolutional neural networks formobile vision applications.
arXiv preprint arXiv:1704.04861.

Jang, E., Gu, S., & Poole, B. (2016). Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144.

Li, G.,&Kim, J. (2019). Dabnet: Depth-wise asymmetric bottleneck for
real-time semantic segmentation. In British machine vision con-
ference

Li, H., Xiong, P., An, J., &Wang, L. (2018). Pyramid attention network
for semantic segmentation. arXiv preprint arXiv:1805.10180.

Li, H., Xiong, P., Fan, H., & Sun, J. (2019a). Dfanet: Deep feature
aggregation for real-time semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition
(pp. 9522–9531).

Li, L., & Talwalkar, A. (2019). Random search and reproducibility
for neural architecture search. CoRR abs/1902.07638. http://arxiv.
org/abs/1902.07638.

Li, X., Zhou, Y., Pan, Z., Feng, J. (2019b). Partial order pruning:
For best speed/accuracy trade-off in neural architecture search. In
Proceedings of IEEE conference on computer vision and pattern
recognition (CVPR).

Lin, G., Milan, A., Shen, C., & Reid, I. (2017a). Refinenet: Multi-path
refinement networks for high-resolution semantic segmentation.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1925–1934).

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S.
(2017b). Feature pyramid networks for object detection. InCVPR.

Liu, C., Chen, L. C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., &
Fei-Fei, L. (2019a).Auto-deeplab:Hierarchical neural architecture
search for semantic image segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
82–92).

Liu, H., Simonyan, K., & Yang, Y. (2019b). DARTS: Differentiable
architecture search. In ICLR

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C. Y., &
Berg, A. C. (2016). Ssd: Single shot multibox detector. In ECCV.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 3431–
3440).

Luo, W., Li, Y., Urtasun, R., & Zemel, R. (2016). Understanding the
effective receptive field in deep convolutional neural networks. In
Advances in neural information processing systems (pp. 4898–
4906).

Maddison, C. J., Mnih, A., & Teh, Y. W. (2016). The concrete distribu-
tion: A continuous relaxation of discrete random variables. arXiv
preprint arXiv:1611.00712.

Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., & Hajishirzi, H.
(2018). Espnet: Efficient spatial pyramid of dilated convolutions
for semantic segmentation. In Proceedings of the European con-
ference on computer vision (ECCV) (pp. 552–568).

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Fran-
con, O., et al. (2019). Evolving deep neural networks. Artificial
intelligence in the age of neural networks and brain computing
(pp. 293–312). Amsterdam: Elsevier.

Nekrasov,V., Chen,H., Shen, C.,&Reid, I. (2019). Fast neural architec-
ture search of compact semantic segmentationmodels via auxiliary
cells. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 9126–9135).

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network
for semantic segmentation. In Proceedings of the IEEE interna-
tional conference on computer vision (pp. 1520–1528).

Orsic,M., Kreso, I., Bevandic, P., &Segvic, S. (2019). In defense of pre-
trained imagenet architectures for real-time semantic segmentation
of road-driving images. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 12607–12616).

Paszke, A., Chaurasia, A., Kim, S., & Culurciello, E. (2016). Enet: A
deep neural network architecture for real-time semantic segmen-
tation. arXiv preprint arXiv:1606.02147.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic
differentiation in PyTorch. In NIPS autodiff workshop.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized
evolution for image classifier architecture search. Proceedings of
the AAAI Conference on Artificial Intelligence, 33, 4780–4789.

Romera, E., Alvarez, J. M., Bergasa, L. M., & Arroyo, R. (2017).
Erfnet: Efficient residual factorized convnet for real-time seman-

123

http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1805.10180
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1606.02147

International Journal of Computer Vision (2021) 129:1506–1525 1525

tic segmentation. IEEE Transactions on Intelligent Transportation
Systems, 19(1), 263–272.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C.
(2018). Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4510–4520).

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A.,
& Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 2820–2828).

Treml, M., Arjona-Medina, J., Unterthiner, T., Durgesh, R., Fried-
mann, F., Schuberth, P., Mayr, A., Heusel, M., Hofmarcher, M.,
Widrich, M. et al. (2016). Speeding up semantic segmentation for
autonomous driving. In MLITS, NIPS workshop (Vol. 2, p. 7).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you
need. In Advances in neural information processing systems (pp.
5998–6008).

Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., & Keutzer, K. (2018).
Mixed precision quantization of convnets via differentiable neural
architecture search. arXiv preprint arXiv:1812.00090.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P.,
Jia, Y.,&Keutzer, K. (2019). Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In CVPR
(pp. 10734–10742).

Wu, Z., Shen, C., &Hengel, A. V. D. (2016). High-performance seman-
tic segmentation using very deep fully convolutional networks.
arXiv preprint arXiv:1604.04339.

Wu, Z., Shen, C., Hengel, A. V. D. (2017). Real-time seman-
tic image segmentation via spatial sparsity. arXiv preprint
arXiv:1712.00213.

Xie, S., Zheng, H., Liu, C., & Lin, L. (2019). SNAS: Stochastic neural
architecture search. In ICLR.

Xu, H., Yao, L., Zhang, W., Liang, X., & Li, Z. (2019). Auto-fpn:
Automatic network architecture adaptation for object detection
beyond classification. In The IEEE international conference on
computer vision (ICCV).

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet:
Bilateral segmentation network for real-time semantic segmen-
tation. In Proceedings of the European conference on computer
vision (ECCV) (pp. 325–341).

Yu, F., Koltun, V., & Funkhouser, T. (2017). Dilated residual networks.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 472–480).

Yu, K., Sciuto, C., Jaggi, M., Musat, C., & Salzmann,M. (2019). Evalu-
ating the search phase of neural architecture search. arXiv preprint
arXiv:1902.08142.

Zhang, H., Zhang, H., Wang, C., & Xie, J. (2019a). Co-occurrent
features in semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 548–
557).

Zhang, Y., Qiu, Z., Liu, J., Yao, T., Liu, D., & Mei, T. (2019b). Cus-
tomizable architecture search for semantic segmentation. InCVPR
(pp. 11641–11650).

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017) Pyramid scene pars-
ing network. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2881–2890).

Zhao, H., Qi, X., Shen, X., Shi, J., & Jia, J. (2018a). Icnet for real-time
semantic segmentation on high-resolution images. In Proceedings
of the European conference on computer vision (ECCV) (pp. 405–
420).

Zhao,H., Zhang,Y., Liu, S., Shi, J., Loy, C. C., Lin, D.,& Jia, J. (2018b).
PSANet: Point-wise spatial attention network for scene parsing.
In ECCV.

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning
transferable architectures for scalable image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (pp. 8697–8710).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1604.04339
http://arxiv.org/abs/1712.00213
http://arxiv.org/abs/1902.08142
http://arxiv.org/abs/1611.01578

	Real-Time Semantic Segmentation via Auto Depth, Downsampling Joint Decision and Feature Aggregation
	Abstract
	1 Introduction
	2 Related Work
	2.1 Semantic Segmentation
	2.2 Neural Architecture Search

	3 Methods
	3.1 Overview
	3.2 Differentiable Architecture Search
	3.3 Joint Network Depth and Downsampling Search
	3.4 Network-Level Auto Feature Aggregation

	4 Experiments
	4.1 Implementation Details
	4.2 Benchmarks and Evaluation Metrics
	4.3 Real-Time Semantic Segmentation Results
	4.4 Ablation Study
	4.4.1 Comparison with Random Search
	4.4.2 Hyper-Cell
	4.4.3 Aggregation Cell
	4.4.4 Hyper-Cell Searching Process
	4.4.5 Different Latency Settings

	4.5 Insights from Searched AutoRTNet-F
	4.6 Comparison of Networks Searched on Different Datasets
	4.7 Detailed Time and GPU Information
	4.8 Detailed Quantitative Results and Visualization Results
	4.8.1 Cityscapes Dataset
	4.8.2 CamVid Dataset
	4.8.3 Visual Segmentation Results

	4.9 Comparison with High-Accuracy Models

	5 Conclusion
	Acknowledgements
	References

