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Abstract
Despite the great success of Generative Adversarial Networks (GANs) in synthesizing images, there lacks enough under-
standing of how photo-realistic images are generated from the layer-wise stochastic latent codes introduced in recent GANs.
In this work, we show that highly-structured semantic hierarchy emerges in the deep generative representations from the
state-of-the-art GANs like StyleGAN and BigGAN, trained for scene synthesis. By probing the per-layer representation with
a broad set of semantics at different abstraction levels, we manage to quantify the causality between the layer-wise activations
and the semantics occurring in the output image. Such a quantification identifies the human-understandable variation factors
that can be further used to steer the generation process, such as changing the lighting condition and varying the viewpoint
of the scene. Extensive qualitative and quantitative results suggest that the generative representations learned by the GANs
with layer-wise latent codes are specialized to synthesize various concepts in a hierarchical manner: the early layers tend to
determine the spatial layout, the middle layers control the categorical objects, and the later layers render the scene attributes
as well as the color scheme. Identifying such a set of steerable variation factors facilitates high-fidelity scene editing based
on well-learned GAN models without any retraining (code and demo video are available at https://genforce.github.io/higan).

Keywords Generative model · Scene understanding · Image manipulation · Representation learning · Feature visualization

1 Introduction

Success of deep neural networks stems from representation
learning, which identifies the explanatory factors underly-
ing the high-dimensional observed data (Bengio et al. 2013).
Prior work has shown that many concept detectors spon-
taneously emerge in the deep representations trained for
classification tasks (Zhou et al. 2015; Zeiler and Fergus 2014;
Bau et al. 2017; Gonzalez-Garcia et al. 2018). For exam-
ple, Gonzalez-Garcia et al. (2018) observes that networks
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for object recognition are able to detect semantic object parts,
and Bau et al. (2017) confirms that representations from clas-
sifying images learn to detect different categorical concepts
at different layers.

Analyzing the deep representations and their emergent
structures gives insight into the generalization ability of deep
features (Morcos et al. 2018) as well as the feature transfer-
ability across different tasks (Yosinski et al. 2014), but current
efforts mainly focus on discriminative models (Zhou et al.
2015; Gonzalez-Garcia et al. 2018; Zeiler and Fergus 2014;
Agrawal et al. 2014; Bau et al. 2017). Generative Adversar-
ial Networks (GANs) (Goodfellow et al. 2014; Karras et al.
2017, 2019; Brock et al. 2018) are capable of mapping ran-
dom noises to high-quality images, however, the nature of
the learned generative representations and how a synthesized
image is composed over different layers of the GAN gener-
ator remain much less explored.

It has been known that some internal units of deep mod-
els emerge as object detectors when trained to categorize
scenes (Zhou et al. 2015). Representing and detecting objects
that are most informative to a specific category provides an
ideal solution for classifying scenes, like sofa andTVare rep-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01429-5&domain=pdf
http://orcid.org/0000-0003-1417-1938
http://orcid.org/0000-0003-4030-0684
https://genforce.github.io/higan


1452 International Journal of Computer Vision (2021) 129:1451–1466

Layout Category: Objects from bedroom to living room

Attribute: Indoor lighting Color Scheme

Fig. 1 Scene manipulation results at four different abstraction levels, including spatial layout, categorical objects, scene attributes, and color
scheme. For each tuple of images, the first is the raw synthesis, whilst the followings present the editing process (Color figure online)

resentative of the living room while bed and lamp are of the
bedroom. However, synthesizing a scene requires far more
complex knowledge. In particular, in order to produce realis-
tic yet diverse scene images, a good generative representation
is required to not only generate every individual object, but
also decide the underlying room layout and render various
scene attributes (e.g., the lighting condition).Bau et al. (2018)
has found that some filters in the GAN generator correspond
to the generation of some certain objects, however this anal-
ysis is only at the object level. Fully understanding how a
scene image is synthesized requires examining the variation
factors of scenes at multiple levels, i.e., from the layout level,
the category level, to the attribute level. Recent GANvariants
introduce layer-wise stochasticity to control the synthesis
from coarse to fine (Karras et al. 2019; Brock et al. 2018;
Shaham et al. 2019; Nguyen-Phuoc et al. 2019), however,
how the variation factors originate from the generative rep-
resentations layer by layer and how to quantify such semantic
information still remain unknown.

In this paper, instead of designing new architectures for
better synthesis, we examine the nature of the internal rep-
resentations learned by the state-of-the-art GAN models.
Starting with StyleGAN (Karras et al. 2019) as an example,
we reveal that highly-structured semantic hierarchy emerges
from the deep generative representations, which can well
match the human-understandable scene variations frommul-
tiple abstraction levels, including layout, category, attribute,
and color scheme. We first probe the per-layer representa-
tions of the generator with a broad set of visual concepts as
candidates and then identify the most relevant variation fac-
tors for each layer. For this purpose, we propose a simply
yet effective re-scoring technique to quantify the causality
between the layer-wise activations and the semantics occur-
ring in the output image. In particular, we find that the early

layers determines the spatial layout, the middle layers com-
pose the categorical objects, and the later layers render the
attributes and color scheme of the entire scene.We also show
that identifying such a set of steerable variation factors facili-
tates the versatile semantic image editing, as shown in Fig. 1.
The proposed manipulation technique is applicable to other
GAN variants, such as BigGAN (Brock et al. 2018) and
PGGAN (Karras et al. 2017). More importantly, discovering
the emerged hierarchy in the scene generation brings impacts
on the research of scene understanding, which is one of the
milestone tasks in computer vision andvisual perception.Our
work shows that the deep generative models ‘draws’ a scene
like what humans do, i.e., drawing layout first, then repre-
sentative objects, and finally fine-grained attributes and color
schemes. It leads to many applications in scene understand-
ing tasks such as scene editing, categorization, and parsing.

2 RelatedWork

2.1 Deep Representations from Classifying Images

Many attempts have beenmade to study the internal represen-
tations of deep models trained for classification tasks. Zhou
et al. (2015) analyzed hidden units by simplifying the input
image to see which context region gives the highest response,
Simonyan et al. (2014) applied the back-propagation tech-
nique to compute the image-specific class saliency map, Bau
et al. (2017) interpreted the hidden representations via the aid
of the segmentation mask, Alain and Bengio (2016) trained
independent linear probes to analyze the information sepa-
rability among different layers. There are also some studies
transferring the discriminative features to verify how learned
representations fit with different datasets or tasks (Yosinski
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et al. 2014; Agrawal et al. 2014). In addition, reversing the
feature extraction process by mapping a given representation
back to the image space (Zeiler and Fergus 2014; Nguyen
et al. 2016; Mahendran and Vedaldi 2015) also gives insight
into how neural networks learn to distinguish different cat-
egories. However, these interpretation techniques developed
for classification networks cannot be directly applied to gen-
erative models.

2.2 Deep Representations from Synthesizing Images

Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) advance the image synthesis significantly. Some recent
models (Karras et al. 2017, 2019; Brock et al. 2018) are able
to generate photo-realistic faces, objects, and scenes, making
GANs applicable to real-world image editing tasks, such as
image manipulation (Shen et al. 2018; Xiao et al. 2018a;
Wang et al. 2018; Yao et al. 2018), image painting (Bau
et al. 2018; Park et al. 2019), and image style transfer (Zhu
et al. 2017; Choi et al. 2018). Despite such a great success,
it remains uncertain what GANs have learned to produce
diverse and realistic images. Radford et al. (2015) pointed
out the vector arithmetic phenomenon in the underlying latent
space ofGAN, however, discoveringwhat kinds of semantics
exist inside a well-trained model and how these semantics
are structured to compose high-quality images still remain
unsolved. Bau et al. (2018) analyzed the individual units of
the generator in GAN and found that they learn to synthe-
size informative visual contents such as objects and textures
spontaneously. Besides, Jahanian et al. (2019) explored the
steerability of GANs via distributional shift, and Goetschal-
ckx et al. (2019) boosted the memorability of GANs by
modulating the latent codes. Unlike them, our work quan-
titatively explores the emergence of hierarchical semantics
inside the layer-wise generative representations. A closely
relevantwork, InterFaceGAN (Shen et al. 2020a), interpreted
the latent space of GANs for diverse face editing. We dif-
fer from InterFaceGAN in the following three aspects. First,
instead of examining the initial latent space, we study the
layer-wise generative representations and reveal the seman-
tic hierarchy learned for scene generation, which highly
aligns with human perception. Second, scene images are far
more complex than faces due to the large variety of scene
categories as well as the objects inside, increasing the dif-
ficulty of interpreting scene synthesis models. Accordingly,
unlike InterFaceGAN that clearly knows the target seman-
tics in advance, we employ a broad set of 105 semantics to
serve as candidates for further analysis. Third, we propose
a re-scoring technique to quantify how a particular variation
factor is relevant to different layers of the generator. This also
enables layer-wise manipulation, resulting in a more precise
control of scene editing.

2.3 SceneManipulation

Editing scene images has been a long-standing task in the
computer vision field. Laffont et al. (2014) defined 40 tran-
sient attributes and managed to transfer the appearance
of a similar scene to the image for editing. Cheng et al.
(2014) proposed verbal guided image parsing to recog-
nize and manipulate the objects in indoor scenes. Karacan
et al. (2016) learned a conditional GAN to synthesize out-
door scenes based on pre-defined layout and attributes. Bau
et al. (2019) developed a technique to locally edit generated
images based on the internal interpretation of GANs. Some
otherwork (Liao et al. 2017; Zhu et al. 2017; Isola et al. 2017;
Luan et al. 2017; Park et al. 2020) studied image-to-image
translation and can be used to transfer the style of one scene
to another. Besides, recent work (Abdal et al. 2019, 2020;
Zhu et al. 2020) projected real images onto the latent space
of a well-trained GAN generator and leveraged the GAN
knowledge for image editing. Different from prior work, we
achieve scene manipulation from multiple abstraction levels
by reusing the knowledge from well-learned GAN models
without any retraining.

2.4 Scene Understanding at Multiple Abstraction
Levels

The abstraction levels of scene representations are inspired
by prior literature on cognition studies of scene understand-
ing. Oliva and Torralba (2001) proposed a computational
model for a holistic representation (i.e., the shape of the
scene) instead of individual objects or regions. Oliva and
Torralba (2006) investigated that scene images are initially
processed as a single entity and local information about
objects and parts comes into play at a later stage of visual
processing. Torralba and Oliva (2003) demonstrated how
scene categories could provide the contextual information in
the visual processing chain. Considering that scenes would
have a multivariate attribute representation instead of sim-
ply a binary category membership, Patterson et al. (2014)
advanced the sceneunderstanding intomorefine-grained rep-
resentations, i.e., scene attributes. In this work, we discover
the semantic hierarchy learned by deep generative networks
and manage to align the aforementioned various concepts at
different layers in a hierarchy.

3 Variation Factors in Generative
Representations

3.1 Multi-Level Variation Factors for Scene Synthesis

Imagine an artist drawing a picture of the living room. The
very first step is to choose a perspective and set up the room
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Synthesis Layout Objects Synthesis Layout Objects

Scene category:   bedroom
Scene attributes:

Scene category:   living room
Scene attributes:

Fig. 2 Multi-level semantics extracted from two synthesized scenes (Color figure online)

layout. After the spatial structure is set, the next step is to
add objects that typically occur in a living room, such as sofa
and TV. Finally, the artist will refine the details of the picture
with specified decoration styles, e.g., warm or cold, natural
lighting or indoor lighting, etc.. The above process reflects
how a human draws a scene by interpreting it from multiple
abstraction levels. Meanwhile, given a scene image, we are
able to extract multiple levels of semantics from it, as shown
in Fig. 2. As a comparison, GANs follow a completely end-
to-end training manner for synthesizing scenes without any
prior knowledge about the drawing techniques or the con-
cepts of layout and object. Even so, the trained GANs are
able to produce photo-realistic scenes, which makes us won-
der if the GANs have mastered any human-understandable
drawing knowledge as well as the variation factors of scenes
spontaneously.

3.2 Layer-Wise Generative Representations

In general, existing GANs take a randomly sampled latent
code as the input and output an image synthesis. Such a
mapping from the latent codes to the synthesized images is
very similar to the feature extractionprocess in discriminative
models. Accordingly, in this work, we treat the input latent
code as the generative representation which will uniquely
determine the appearance and properties of the output scene.
On the other hand, the recent state-of-the-art GAN models
[e.g., StyleGAN (Karras et al. 2019) and BigGAN (Brock
et al. 2018)] introduce layer-wise stochasticity, as shown in
Fig. 3 We therefore treat them as per-layer generative repre-
sentations.

To explore how GANs are able to produce high-quality
scene synthesis by learning multi-level variation factors as
well as what role the generative representation of each layer
plays in such generation process, this work aims at estab-
lishing the relationship between the variation factors and the
generative representations. Karras et al. (2019) has already
pointed out that the design of layer-wise stochasticity actu-
ally controls the synthesis from coarse to fine, however, what
“coarse” and “fine” actually refer to still remains uncertain.
To better align the variation factors with human perception,

Fig. 3 Comparison between the conventional generator structurewhere
the latent code is only fed into the very first layer and the generator in
state-of-the-art GANs [e.g., StyleGAN (Karras et al. 2019) and Big-
GAN (Brock et al. 2018)] which introduce layer-wise stochasticity by
feeding latent codes to all convolutional layers

we separate them into four abstraction levels, including lay-
out, categorical objects, scene attributes, and color scheme.
We further propose a framework in Sect. 4 to quantify the
causality between the input generative representations and
the output variation factors. We surprisingly find that GANs
synthesize a scene in a manner that is highly consistent with
humans. Over all convolutional layers, GANs manage to
organize these multi-level abstractions as a hierarchy. In par-
ticular, GAN constructs the spatial layout at the early stage,
synthesizes category-specified objects at the middle stage,
and renders the scene attribute and color scheme at the later
stage.

4 Identifying the Emergent Variation Factors

As described in Sect. 3, we target at interpreting the latent
semantics learned by scene synthesis models from four
abstraction levels. Previous efforts on several scene under-
standing databases (Zhou et al. 2017; Xiao et al. 2010;
Laffont et al. 2014; Patterson et al. 2014) enable a series of
classifiers to predict scene attributes and categories. Besides,
we also employ several classifiers focusing on layout detec-
tion (Zhang et al. 2019) and semantic segmentation (Xiao
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Fig. 4 Pipeline of identifying the emergent variation factors in gen-
erative representation. By deploying a broad set of off-the-shelf image
classifiers as scoring functions, F(·), we are able to assign a synthesized
image with semantic scores corresponding to each candidate variation
factor. For a particular concept, we learn a decision boundary in the

latent space by considering it as a binary classification task. Then we
move the sampled latent code towards the boundary to see how the
semantic varies in the synthesis, and use a re-scoring technique to quan-
titatively verify the emergence of the target concept (Color figure online)

et al. 2018b). Specially, given an image, we are able to use
these classifiers to get the response scores with respect to var-
ious semantics. However, only predicting the semantic labels
is far from identifying the variation factors that GANs have
captured from the training data. More concretely, among all
the candidate concepts, not all of them are meaningful to a
particular model. For instance, “indoor lighting” will never
happen in outdoor scenes such as bridge and tower, which
“enclosed area” is always true for indoor scenes such as bed-
room and kitchen. Accordingly, we come up with a method
to quantitatively identify the most relevant and manipulable
variation factors that emerge inside the learned generative
representation. Figure 4 illustrates the identification process
which consists of two steps, i.e., probing (Sect. 4.1) and ver-
ification (Sect. 4.2). Such identification enables the diverse
scene manipulation (Sect. 4.3). Note that we use the same
approach as InterFaceGAN (Shen et al. 2020b) to get the
latent boundary for each candidate in the probing process in
Sect. 4.1.

4.1 Probing Latent Space

The generator of GAN, G(·), typically learns the mapping
from latent space Z to image space X . Latent vectors z ∈ Z
can be considered as the generative representations learned
by GANs. To study the emergence of variation factors inside
Z , we need to first extract semantic information from z. For
this purpose, we utilize the synthesized image, x = G(z),
as an intermediate step and employ a broad set of image
classifiers to help assign semantic scores for each sampled
latent code z. Taking “indoor lighting” as an example, the
scene attribute classifier is able to output the probability of
how an input image looks like having indoor lighting, which
we use as the semantic score. Recall that we divide scene
representation into layout, object (category), and attribute
levels, we introduce layout estimator, scene category recog-
nizer, and attribute classifier to predict semantic scores from

these abstraction levels respectively, forming a hierarchical
semantic space S. After establishing the mapping from the
latent spaceZ to the semantic spaceS, we search the decision
boundary for each concept by treating it as a bi-classification
problem, as shown in Fig. 4. Here, taking “indoor lighting”
as an instance, the boundary separates the latent space Z to
two sets, i.e., presence or absence of indoor lighting.

4.2 VerifyingManipulable Variation Factors

After probing the latent space with a broad set of candidate
concepts, we still need to figure out which ones are most
relevant to the generative model by acting as the variation
factors. The key issue is how to define “relevance”. We argue
that if the target concept is manipulable from the latent space
perspective (e.g., changing the indoor lighting status of the
synthesized image via simply varying the latent code), the
GAN model is considered as having captured such variation
factor during training.

As mentioned above, we have already got a separation
boundary for each candidate. Let {ni }Ci=1 denote the normal
vectors of these boundaries, where C is the total number of
candidates. For a certain boundary, if we move a latent code
z along its normal direction (positive), the semantic score
should also increase correspondingly. Therefore, we propose
to re-score the varied latent code to quantify how a variation
factor is relevant to the target model for analysis. As shown
in Fig. 4, this process can be formulated as

Δsi= 1

K

K∑

k=1

max
(
Fi

(
G

(
zk + λni

))
−Fi

(
G

(
zk

))
, 0

)
,

(1)

where 1
K

∑K
k=1 stands for the average of K samples to make

the metric more accurate. λ is a fixed moving step. To make
this metric comparable among all candidates, all normal vec-
tors {ni }Ci=1 are normalized to the fixed norm 1 and λ is set
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(a) (b) (c)

Fig. 5 Three types of manipulation: a independent manipulation; b
joint manipulation; c jittering manipulation (Color figure online)

as 2. With this re-scoring technique, we can easily rank the
scoreΔsi among allC concepts to retrieve the most manipu-
lable variation factors. Here, this technique is also performed
layer by layer to identify the most relevant layers for each
semantic.

4.3 Manipulation with Diversity

After identifying the semantics as well as the most adequate
layers, we propose several manipulation approaches to con-
trol the generation process, as shown in Fig. 5. A simple
and straightforward way, named independent manipulation,
is to push the code z along the normal vector ni of a cer-
tain semantic with a step length λ. The manipulated code
z′ ← z + λn is then fed into the most relevant layers of the
generator to produce a new image. A second way of manip-
ulation enables scene editing with respect to more than one
variation factor simultaneously. We call it joint manipula-
tion. Taking two variation factors, with normal vector n1 and
n2, as an example, the original code z is moved along the two
directions simultaneously as z′ ← z+λ1n1+λ2n2. Here, λ1
and λ2 are step parameters which control the strength of the
manipulationof these two semantics respectively.Besides the
above two types ofmanipulation, we further propose to intro-
duce randomness into the manipulation process to increase
the diversity, namely jittering manipulation. The key idea is
to slightly modulate the manipulation direction with a ran-
domly sampled noise δ ∼ N (0, 1), bringing perturbation
onto the main direction. It can be accordingly formulated as
z′ ← z + λn + δ.

5 Experiments

In the generation process, the deep representation at each
layer, especially for StyleGAN (Karras et al. 2019) and Big-
GAN (Brock et al. 2018), is actually directly derived from the
projected latent code. Therefore, we consider the latent code
as the generative representation. In addition, we conduct a
detailed empirical analysis of the variation factors identified
across the layers of the generators in GANs. Experimental
results suggest that the hierarchy of variation factors emerges

Table 1 Description of the StyleGAN models trained on different cat-
egories

Scene category Type Training number FID↓
Bedroom (official) Indoor 3M 2.65

Living room Indoor 1.3M 5.16

Kitchen Indoor 1M 5.06

Restaurant Indoor 626K 4.03

Bridge Outdoor 819K 6.42

Church Outdoor 126K 4.82

Tower Outdoor 708K 5.99

Mixed Indoor 500K each 3.74

↓ Means the lower the better

in the deep generative representations as a result of learning
to synthesize scenes.

The experimental section is organized as follows: Sect. 5.1
introduces our experimental details including generative
models, training datasets and the off-the-shelf classifiers.
Section 5.2 contains the layer-wise analysis on the state-of-
the-art StyleGAN model (Karras et al. 2019), quantitatively
and qualitatively verifying that the multi-level variation fac-
tors are encoded in the latent space. In Sect. 5.3, we explore
the question on how GANs represent categorical informa-
tion such as bedroom v.s. living room, revealing that GAN
synthesizes the shared objects at some intermediate layers.
By controlling their activations only, we can easily overwrite
the category of the output image, e.g. turning bedroom into
living room, while preserving its original layout and high-
level attributes such as indoor lighting. Section 5.4 further
shows that our approach can faithfully identify the most
relevant attributes associated with a particular scene, facil-
itating semantic scene manipulation. Section 5.5 conducts
the ablation studies on re-scoring technique and layer-wise
manipulation to show the effectiveness of our approach.

5.1 Experimental Details

5.1.1 Generator Models

Thiswork conducts experiments on state-of-the-art deep gen-
erative models for high-resolution scene synthesis, including
StyleGAN (Karras et al. 2019), BigGAN (Brock et al. 2018),
and PGGAN (Karras et al. 2017). Among them, PGGAN
employs the conventional generator structurewhere the latent
code is only fed into the very first layer. Differently, Style-
GAN and BigGAN introduce layer-wise stochasticity by
feeding latent codes to all convolutional layers as shown in
Fig. 3. And our layer-wise analysis sheds light on why it is
effective.
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PositiveNegative PositiveNegativeNegative Positive Negative Positive

Fig. 6 The definition of layout for indoor scenes. Green lines represent
the outline predicted by the layout estimator. The dashed line indicates
the horizontal center, and the red point is the center point of the intersec-
tion line between two walls. The relative position between the vertical
line and the center point is used to split the dataset (Color figure online)

5.1.2 Scene Categories

Among thementioned generator models, PGGAN and Style-
GAN are actually trained on LSUN dataset (Yu et al. 2015)
while BigGAN is trained on Places dataset (Zhou et al.
2017). To be specific, LSUN dataset consists of 7 indoor
scene categories and 3 outdoor scene categories, and Places
dataset contains 10million images across 434 categories. For
PGGANmodel,weuse the officially releasedmodels, each of
which is trained to synthesize scene within a individual cate-
gory ofLSUNdataset. For StyleGAN, only onemodel related
to scene synthesis (i.e., bedroom) is released at this link. For
a more thorough analysis, we use the official implementation
to train multiple models on other scene categories, including
both indoor scenes (living room, kitchen, restaurant) and out-
door scenes (bridge, church, tower). We also train a mixed
model on the combination of images from bedroom, living
room, and dining room with the same implementation. This
model is specifically used for categorical analysis. For each
StyleGAN model, Table 1 shows the category, the number
of training samples, as well as the corresponding Fréchet
inception distances (FID) (Heusel et al. 2017) which can
reflect the synthesis quality to some extent. For BigGAN, we
use the author’s officially unofficial PyTorchBigGAN imple-
mentation to train a conditional generative model by taking
category label as the constraint on Places dataset (Zhou et al.
2017). The resolution of the scene images synthesized by all
of the above models is 256 × 256.

5.1.3 Semantic Classifiers

To extract semantic from synthesized images, we employ
various off-the-shelf image classifiers to assign these images
with semantic scores frommultiple abstraction levels, includ-
ing layout, category, scene attribute, and color scheme.
Specifically, we use (1) a layout estimator (Zhang et al.
2019), which predicts the spatial structure of an indoor place,
(2) a scene category classifier (Zhou et al. 2017), which clas-

sifies a scene image to 365 categories, and (3) an attribute
predictor (Zhou et al. 2017), which predicts 102 pre-defined
scene attributes in SUN attribute database (Patterson et al.
2014).We also extract color scheme of a scene image through
its hue histogram in HSV space. Among them, the category
classifier and attribute predictor can directly output the prob-
ability of how likely an image belongs to a certain category
or how likely an image has a particular attribute. As for the
layout estimator, it only detects the outline structure of an
indoor place, shown in Fig. 6.

5.1.4 Semantic Probing and Verification

Given a well-trained GAN model for analysis, we first gen-
erate a collection of synthesized scene images by randomly
sampling N latent codes (5,00,000 in practice). And then, the
aforementioned image classifiers are used to assign semantic
scores for each visual concept. It is worth noting that we use
the relative position between image horizontal center and the
intersection line of two walls to quantify layout, as shown in
Fig. 6. After that, for each candidate, we select 2000 images
with the highest response as positive samples, and another
2000 with the lowest response as negative ones. In particular,
living room and bedroom are treated as positive and negative
for scene category respectively for the mixedmodel. A linear
SVM is trained by treating it as a bi-classification problem
(i.e., data is the sampled latent code while the label is binary
indicating whether the target semantic appears in the corre-
sponding synthesis or not) to get a linear decision boundary.
Finally, we re-generate K = 1000 samples for semantic ver-
ification as described in Sect. 4.2.

5.2 Emerging Semantic Hierarchy

Humans typically interpret a scene in a hierarchy of seman-
tics, from its layout, underlying objects, to the detailed
attributes and the color scheme. Here the underlying objects
refer to the set of objects most relevant to a specific cat-
egory. This section shows that GAN composes a scene
over the layers in a similar way with human perception.
To enable analysis on layout and object, we take the mixed
StyleGAN model trained on indoor scenes as the target
model. StyleGAN (Karras et al. 2019) learns a more dis-
entangled latent space W on top of the conventional latent
space Z . Specifically, for �-th layer, w ∈ W is linearly
transformed to layer-wise transformed latent code y(�) with
y(�) = A(�)w + b(�), where A(�), b(�) are the weight and
bias for style transformation respectively. We thus perform
layer-wise analysis by studying y(�) instead of z in Eq. (1).

To quantify the importance of each layer with respect
to each variation factor, we use the re-scoring technique to
identify the causality between the layer-wise generative rep-
resentation y(�) and the semantic emergence. The normalized
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Layout

Objects (Bedroom Living room)

Attributes (Indoor lighting)

Bottom Lower Upper

Color Scheme

Top

Layout Objects Attributes Color Scheme

Layer Index0 13

1

Fig. 7 Top: Four levels of visual abstractions emerge at different layers
of StyleGAN. Vertical axis shows the normalized perturbation score
Δsi . Bottom: Layer-wise manipulation results. The first column is the
original synthesis and the other columns are the manipulated images
at layers from four different stages respectively. Blue boxes highlight
the results from varying the latent code at the most proper layer for the
target concept (Color figure online)

score in the top Fig. 7 shows that the layers of the generator in
GAN are specialized to compose semantics in a hierarchical
manner: the bottom layers determine the layout, the lower
layers and upper layers control category-level and attribute-
level variations respectively, while color scheme is mostly
rendered at the top. This is consistent with human perception.
In StyleGANmodel that is trained to produce 256×256 scene
images, there are totally 14 convolutional layers. Accord-
ing to our experimental results, layout, object (category),
attribute, color scheme correspond to bottom, lower, upper,
and top layers respectively, which are actually [0, 2), [2, 6),
[6, 12) and [12, 14) layers.

To visually inspect the identified variation factors, we
move the latent vector along the boundaries at different lay-
ers to show how the synthesis varies correspondingly. For
example, given a boundary in regards to room layout, we
vary the latent code towards the normal direction at bot-
tom, lower, upper, and top layers respectively. The bottom of
Fig. 7 shows the qualitative results for several concepts. The
emerged variation factors follow a highly-structured seman-

95% 5% 0% 0%

10% 90% 0% 0%

0% 5% 85% 5%

0% 0% 25% 75%

Layout

Objects

Attributes

Color 
Scheme

User Study

Bottom Lower Upper Top

Fig. 8 User study on how different layers correspond to variation fac-
tors from different abstraction levels (Color figure online)

tic hierarchy, e.g., layout can be best controlled at the early
stage while color scheme can only be changed at the final
stage. Besides, varying latent code at the inappropriate lay-
ers may also change the image content, but the changing
might be inconsistent with the desired output. For example,
in the second row, modulating the code at bottom layers for
category only leads to a random change in the scene view-
point.

To better evaluate the manipulability across layers, we
conduct a user study. We first generate 500 samples and
manipulate them with respect to several concepts on differ-
ent layers. For each concept, 20 users are asked to choose
the most appropriate layers for manipulation. Specifically,
in terms of a certain concept, we manipulate it at the bot-
tom, lower, upper, top layers to produce a quadruplet. Users
are asked to select single image with the desired change,
unknowing the shuffled order of the quadruplet. The distri-
bution of the choice for each abstraction level is recorded.
Figure 8 shows the user study results, where most peo-
ple think bottom layers best align with layout, lower layers
control scene category, etc.. This is consistent with our obser-
vations in Fig. 7. It suggests that hierarchical variation factors
emerge inside the generative representation for synthesizing
scenes. and that our re-scoring method indeed helps identify
the variation factors from a broad set of semantics.

Identifying the semantic hierarchy and the variation fac-
tors across layers facilitates semantic scene manipulation.
We can simply push the latent code toward the boundary
of the desired attribute at the appropriate layer. Figure 10a
shows that we can change the decoration style (crude to
glossy), the material of furniture (cloth to wood), or even
the cleanliness (tidy to cluttered) respectively. Furthermore,
hierarchical variation factors could be jointly manipulated.
In Fig. 10b we simultaneously edit the room layout (rotating
viewpoint) at early layers, scene category (converting bed-
room to living room) at middle layers, and scene attribute
(increasing indoor lighting) at later layers.

5.3 What Makes a Scene?

As mentioned above, GAN models for synthesizing scenes
are capable of encoding hierarchical semantics inside the
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generative representation, i.e., from layout, object (category),
to scene attribute and color scheme. One of the most notice-
able properties is that the middle layers of GAN actually
synthesize different objects for different scene categories. It
raises the question of what makes a scene as living room
rather than bedroom. Thus we further dive into the encoding
of categorical information in GANs, to quantify how GAN
interprets a scene category as well as how the scene category
is transformed from an object perspective.

We employ the StyleGAN model trained on the mixture
of bedroom, living room, and dining room, and then search
the semantic boundary between every two categories. To
extract the objects from the synthesized images, we apply
a semantic segmentation model (Xiao et al. 2018b), which
can segment 150 objects (TV, sofa, etc.) and stuff (ceil-
ing, floor, etc.). Specifically, we first randomly synthesize
500 living room images, and then vary the corresponding
latent codes towards the “living room-bedroom” boundary
and “bedroom-dining room” boundary in turn. Segmenta-
tion masks of images before and after manipulation are
obtained, as shown in Fig. 9. After tracking label map-
ping for each pixel via the image coordinate during the
manipulation process, we are able to compute the statis-
tics and observe how objects change along with transformed
categories.

Figure 9 shows the objects mapping in the category trans-
formation process. It clearly suggests that (1) when an image
is manipulated among different categories, most of the stuff
classes (e.g., ceiling and floor) remain the same, but some
objects are mapped into other classes. For example, the sofa
in living room is mapped to the pillow and bed in bed-
room, and the bed in bedroom is further mapped to the
table and chair in dining room. This phenomenon happens
because sofa, bed, dining table and chair are distinguish-
able and discriminative objects for living room, bedroom,
and dining room respectively. Thus, when category is trans-
formed, the representative objects are supposed to change.
(2) Some objects are shareable between different scene cat-
egories, and the GAN model is able to spot such property
and learn to generate these shared objects across differ-
ent classes. For example, the lamp in living room (on the
left boundary of the image) still remains after the image
is converted to bedroom, especially in the same position.
(3) With the ability to learn object mapping as well as
share objects across different classes, we are able to turn
an unconditional GAN into a GAN that can control cate-
gory. Typically, to make GAN produce images from different
categories, class labels have to be fed into the genera-
tor to learn a categorical embedding, like BigGAN (Brock
et al. 2018). Our result suggests an alternative approach
(Fig. 10).

Living Room Bedroom Dining Room

Fig. 9 Objects are transformed by GANs to represent different scene
categories. The top shows that the object segmentation mask varies
when manipulating a living room into a bedroom, and further into a
dining room. The bottom visualizes the object mapping that appears
during category transition, where pixels are counted only from object
level instead of instance level. GANs can learn shared objects as well
as the transformation of objects with similar appearance when trained
to synthesize scene images from more than one category

5.4 Diverse Attribute Manipulation

5.4.1 Attribute Identification

The emergence of variation factors for scene synthesis
depends on the training data. Here we apply our method to
a collection of StyleGAN models, to capture a wide range
of manipulable attributes out of the 102 scene attributes pre-
defined in SUN attribute database (Patterson et al. 2014).
Each StyleGAN in the collection is trained to synthesize
scene images from a certain category, including both out-
door (bridge, church, tower) and indoor scenes (living room,
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Layout Objects Indoor lighting Joint

(a) (b)

Wood Cluttered spaceGlossy

Fig. 10 a Independent attribute manipulation results on Upper layers.
The middle row is the source images. We are able to both decrease
(top row) and increase (bottom row) the variation factors in the images.
b Joint manipulation results, where the layout, objects and attribute

are manipulated at proper layers. The first column indicates the source
images and themiddle three columns are the independentlymanipulated
images (Color figure online)
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Fig. 11 Comparison of the top scene attributes identified in the generative representations learned by StyleGAN models for synthesizing different
scenes. Vertical axis shows the perturbation score Δsi (Color figure online)

kitchen). Figure 11 shows the top-10 relevant semantics to
each model. It is seen that “sunny” has high scores on all
outdoor categories, while “lighting” has high scores on all
indoor categories. Furthermore, “boating” is identified for
bridge model, “touring” for church and tower, “reading”
for living room, “eating” for kitchen, and “socializing” for
restaurant. These results are highly consistent with human
understanding and perception, suggesting the effectiveness
of the proposed quantification method.

5.4.2 Attribute Manipulation

Recall the three types of manipulation in Sect. 4.3: indepen-
dent manipulation, joint manipulation, and jittering manip-
ulation. We first conduct independent manipulation on 3
indoor and 3 outdoor scenes with the most relevant scene
attributes identified with our approach. Figure 12 shows the
resultswhere the original synthesis (left image in each pair) is

manipulated along the positive (right) direction. We can tell
that the edited images are still with high quality and the target
attributes indeed change as desired. We then jointly manip-
ulate two attributes with bridge synthesis model as shown
in Fig. 13. The central image of the 3 × 3 image grid is the
original synthesis, the second row and the second column
show the independent manipulation results with respect to
“vegetation” and “cloud” attributes respectively, while other
images on the four corners are the joint manipulation results.
It turns out that we achieve good control of these two seman-
tics and they seem to barely affect each other. However, not
all variation factors show such strong disentanglement. From
this point of view, our approach also provides a new metric
to help measure the entanglement between two variation fac-
tors, which will be discussed in Sect. 6. Finally, we evaluate
the proposed jitteringmanipulation by introducing noise into
the “cloud” manipulation . From Fig. 14, we observe that
the newly introduced noise indeed increases the manipula-
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Fig. 12 Independent manipulation results on StyleGAN models trained for synthesizing indoor and outdoor scenes. In each pair of images, the
first is the original synthesized sample and the second is the one after manipulating a certain semantic (Color figure online)
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Fig. 13 Joint manipulation results along both cloud and vegetation boundaries with bridge synthesis model. Along the vertical and horizontal axis,
the original synthesis (the central image) is manipulated with respect to vegetation and cloud attributes respectively (Color figure online)

tion diversity. It is interesting that the introduced randomness
may not only affect the shape of added cloud, but also change
the appearance of the synthesized tower. But both cases keep
the primary goal, which is to edit the cloudiness.

5.5 Ablation Studies

5.5.1 Re-scoring Technique

Before performing the proposed re-scoring technique, we
have twomore steps, which are (1) assigning semantic scores
for synthesized samples, and (2) training SVM classifiers to
search semantic boundary.Wewould like to verify the neces-
sity of the re-scoring technique in identifying manipulable
semantics. Ablation study is conducted on the StyleGAN
model trained for synthesizing bedrooms. As shown in
Fig. 15, the left figure sorts the scene attributes by howmany
samples are labelled as positive ones, the middle figure sorts
by the accuracy of the trained SVMclassifiers, while the right
figure sorts by our proposed quantification metric.

In left figure, “no horizon”, “man-made”, and “enclosed
area” are attributes with highest percentage. However, all
these three attributes are default properties of the bedroom
and thus notmanipulable.On the contrary,with the re-scoring
technique for verification, our method successfully filters
out these invariable candidates and reveals more meaningful
semantics, like “wood” and “indoor lighting”. In addition,
our method also manages to identify some less frequent

but actually manipulable scene attributes, such as “cluttered
space”.

In the middle figure, almost all attributes get similar
scores, making them indistinguishable. Actually, even the
worst SVM classifier (i.e., “railroad”) achieves 72.3% accu-
racy. That is because even some variation factors are not
encoded in the latent representation (or say, notmanipulable),
the corresponding attribute classifier still assigns synthesized
images with different scores. Training SVM on these inac-
curate data can also result in a separation boundary, even it
is not expected as the target concept. Therefore, only relying
on the SVM classifier is not enough to detect relevant varia-
tion factors. By contrast, our method pays more attention to
the score modulation after varying the latent code, which is
not biased by the initial response of attribute classifier or the
performance of SVM. As a result, we are able to thoroughly
yet precisely detect the variation factors in the latent space
from a broad candidate set.

5.5.2 Layer-Wise Manipulation

To further validate the emergence of semantic hierarchy, we
make ablation study on layer-wise manipulation with Style-
GAN model. First, we select “indoor lighting” as the target
semantic, and vary the latent code only on upper (attribute-
relevant) layers v.s. on all layers. We can easily tell from
Fig. 16 that when manipulation “indoor lighting” at all lay-
ers, the objects inside the room are also changed. By contrast,
manipulating latent codes only at attribute-relevant layers can
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Fig. 14 Jittering manipulation results with tower synthesis model for
cloud attribute. Specifically, themovement in the latent space of synthe-
sized image is disturbed. Thus, when the cloud appears, both the shape

of added cloud and appearance of the generated tower change. The top
left image of two samples is the original output while the rest are the
results under jittering manipulation separately (Color figure online)

Fig. 15 Ablation study on the proposed re-scoring technique with StyleGAN model for bedroom synthesis. The left shows the percentage of scene
attributes with the positive scores, the middle figure sorts by the accuracy of SVM classifiers, while the right figure sorts by our methods (Color
figure online)

satisfyingly increase the indoor lighting without affecting
other factors. Second, we select bottom layers as the target
layers, and select boundaries from all four abstraction levels
for manipulation. As shown in Fig. 17, no matter what level
of semantics we choose, as long as the latent code is modified
at bottom (layout-relevant) layers, only layout instead of all
other semantics varies. These two experiments further verify
our discovery about the emergence of the semantic hierarchy
that the early layers tend to determine the spatial layout and
configuration instead of other abstraction level semantics.

6 Discussions

6.1 Disentanglement of Semantics

Some variation factors we detect in the generative repre-
sentation are more disentangled with each other than other
semantics. Compared to the perceptual path length and lin-
ear separability described in Karras et al. (2019) and the
cosine similarity proposed in Shen et al. (2020a), our work
offers a new metric for disentanglement analysis. In particu-
lar, wemove the latent code along one semantic direction and
then check how the semantic scores of other factors change
accordingly. As shown in Fig. 18a, when the spatial lay-

out is modified, all attributes are barely affected, suggesting
that GAN learns to disentangle layout-level semantic from
attribute-level. However, there are also some scene attributes
(from same abstraction level) entangling with each other.
Taking Fig. 18c as an example, when modulating “indoor
lighting”, “natural lighting” also varies. This is also aligned
with human perception, further demonstrating the effective-
ness of our proposed quantificationmetric.Qualitative results
are also included in Fig. 18d–f.

6.2 Application to Other GANs

We further apply our method for two other GAN structures,
i.e., PGGAN (Karras et al. 2017) and BigGAN (Brock et al.
2018). These two models are trained on LSUN dataset (Yu
et al. 2015) and Places dataset (Zhou et al. 2017) respectively.
Compared to StyleGAN,PGGANfeeds the latent vector only
to the very first convolutional layer and hence does not sup-
port layer-wise analysis. But the proposed re-scoringmethod
can still be applied to help identify manipulatable seman-
tics, as shown in Fig. 19a. BigGAN is the state-of-the-art
conditional GAN model that concatenates the latent vector
with a class-guided embedding code before feeding it to the
generator, and it also allows layer-wise analysis like Style-
GAN. Figure 19b gives analysis results on BigGAN from
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Upper AllUpper All

Fig. 16 Comparison results between manipulating latent codes at only upper (attribute-relevant) layers and manipulating latent codes at all layers
with respect to indoor lighting on StyleGAN (Color figure online)

Layout Objects Indoor lighting Color Scheme

Fig. 17 Manipulation at the bottom layers in 4 different directions, along the directions of layout, objects (category), indoor lighting, and color
scheme on StyleGAN (Color figure online)
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Fig. 18 a–c Quantitative effects on scene attributes (already sorted). Vertical axis shows the perturbation score Δsi in log scale. d–f Qualitative
results also show the effect when varying the most relevant factor (Color figure online)

attribute level, where we can tell that scene attribute can be
best modified at upper layers compared to lower layers or
all layers. As for BigGAN model with 256 × 256 resolu-
tion, there are total 12 convolutional layers. As the category
information is already encoded in the “class” code, we only
separate the layers to two groups, which are lower (bottom
6 layers) and upper (top 6 layers). Meanwhile, the quantita-
tive curve shows the consistent result with the discovery on
StyleGAN as in Fig. 7a. These results demonstrate the gen-
eralization ability of our approach as well as the emergence
of manipulatable factors in other GANs.

6.3 Limitation

There are several limitations for future improvement. (1)
More thorough and precise off-the-shelf classifiers: although
we collect as many visual concepts as possible and summa-

rize them into various levels by prior work, such as layout
in Oliva and Torralba (2001), category in Torralba and Oliva
(2003), and attribute in Patterson et al. (2014), such classi-
fiers remain to be improved together with the development of
scene understanding. In case the defined broad set of seman-
tics is not enough, we could further enlarge the dictionary
following the stardard annotation pipeline in Zhou et al.
(2017) andPatterson et al. (2014). In addition, such classifiers
trained on the large-scale benchmark of scene understanding
could be replaced by more powerful discriminative models
to improve the accuracy. (2) Boundary search: for simplicity
we only use the linear SVM for semantic boundary search.
This limits our framework from interpreting the latent seman-
tic subspace with more complex and nonlinear structure. (3)
Generalization beyond scene understanding: the main pur-
pose of this work is to interpret scene-related GANs, which
is a challenging task considering the large diversity of scene
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Fig. 19 a Some variation factors identified from PGGAN (bedroom). b Layer-wise analysis on BigGAN from the attribute level (Color figure
online)

images as well as the difficulty of scene understanding. How-
ever, these abstraction levels canbehard to generalize to other
datasets beyond scenes. Even so, we believe that this work is
still able to provide some insights on analyzing GANmodels
trained on other datasets. For example, for scene synthesis,
we found that early layers control scene layout, which can be
viewed as structural information, such as rotation. Accord-
ingly, we can fairly generalize that the early layers of face
synthesis models control the face pose and the early layers
of car synthesis models control the car orientation.

7 Conclusion

In this paper, we show the emergence of highly-structured
variation factors inside the deep generative representations
learned by GANs with layer-wise stochasticity. In particular,
the GANmodel spontaneously learns to set up layout at early
layers, generate categorical objects at middle layers, and ren-
der scene attribute and color scheme at later layers when
trained to synthesize scenes.A re-scoringmethod is proposed
to quantitatively identify the manipulatable semantic con-
cepts within a well-trained model, enabling photo-realistic
scene manipulation. We will explore to extend this manip-
ulation capability of GANs for real image editing in future
work.
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