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Abstract
The capability of image deraining is a highly desirable component of intelligent decision-making in autonomous driving
and outdoor surveillance systems. Image deraining aims to restore the clean scene from the degraded image captured in a
rainy day. Although numerous single image deraining algorithms have been recently proposed, these algorithms are mainly
evaluated using certain type of synthetic images, assuming a specific rain model, plus a few real images. It remains unclear
how these algorithms would perform on rainy images acquired “in the wild” and how we could gauge the progress in the
field. This paper aims to bridge this gap. We present a comprehensive study and evaluation of existing single image deraining
algorithms, using a new large-scale benchmark consisting of both synthetic and real-world rainy images of various rain types.
This dataset highlights diverse rain models (rain streak, rain drop, rain and mist), as well as a rich variety of evaluation
criteria (full- and no-reference objective, subjective, and task-specific). We further provide a comprehensive suite of criteria
for deraining algorithm evaluation, including full- and no-reference metrics, subjective evaluation, and the novel task-driven
evaluation. The proposed benchmark is accompanied with extensive experimental results that facilitate the assessment of the
state-of-the-arts on a quantitative basis. Our evaluation and analysis indicate the gap between the achievable performance on
synthetic rainy images and the practical demand on real-world images.We show that, despite many advances, image deraining
is still a largely open problem. The paper is concluded by summarizing our general observations, identifying open research
challenges and pointing out future directions. Our code and dataset is publicly available at http://uee.me/ddQsw.
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1 Introduction

Images captured in rainy days suffer from noticeable degra-
dation of scene visibility. For example, raindrops inevitably
adhered to camera lenses orwindscreens in a rainy day,which
occlude and deform some image areas and make the per-
formances of many algorithms in the vision systems (such
as object detection, tracking, recognition, etc.) significantly
degraded. The goal of single image deraining algorithms is to
generate sharp images from a rainy image input, which can
potentially benefit both the human visual perceptual quality,
and many computer vision applications, such as intelligent
vehicles and outdoor surveillance systems (Sheng et al. 2020;
Tokuda et al. 2020).

The recent years have witnessed significant progress in
single image deraining. The progress in this field can be
attributed to various natural image priors (Sun et al. 2014;
Kang et al. 2012; Chen and Hsu 2013; Bossu et al. 2011) and
deep convolutional neural network (CNN)-based models (Fu
et al. 2017b; Qian et al. 2018; Zhang and Patel 2018). How-
ever, a fair comprehensive study of the problem, the existing
algorithms, and the performance metrics have been absent
so far, which is the goal of this paper. In this work, we put
our focus on image deraining techniques and how they have
been extended or applied to high-level vision systems based
on our proposed new benchmark. To the best of our knowl-
edge, this is the first comprehensive benchmark and the first
review in the literature that focuses on image deraining and
its corresponding applications.

This work is organized as follows. First, Sect. 2 review
the rainy image models and explain important background
concepts that will be necessary throughout the rest of the
paper. Next, Sect. 3 surveys the model-based and learning-
based single-image deraining approaches and the existing
datasets used in the rain removal literature. Next, Sect. 4 pro-
vides a comprehensive description as well as an analysis of
the proposed benchmark of multi-purpose image deraining
(MPID). Section 5 analyzes typical metrics and evaluation
protocols for the deraining methods and provides quantita-
tive results for them on the proposed benchmark. Finally,
Sect. 6 summarizes the paper by presenting a brief discus-
sion on the presented benchmark and enumerates potential
future research directions.

1.1 Our Contribution

Image deraining is a heavily ill-posed problem.Despitemany
impressive methods published in recent few years, the lack
of a large dataset and algorithm benchmarking makes it diffi-
cult to evaluate the progressmade, and how practically useful
those algorithms are. There are several unclear and unsatis-
factory aspects of current deraining algorithm development,
including but not limited to: (1) the modeling of rain is sim-

plified, i.e., each method considers and is evaluated with one
type of rain only (e.g., Kang et al. 2012; Chen and Hsu 2013;
Li et al. 2016, 2017; Jiang et al. 2017; Lei et al. 2017; Wei
et al. 2019; Ren et al. 2019) focus on rain streaks removal,
and (Qian et al. 2018; You et al. 2016) concentrate on remov-
ing raindrops); (2) most quantitative results are reported on
synthetic images, which often fail to capture the complex-
ity and characteristics of real rain. Although there are some
real deraining datasets are proposed, these databases lack
sufficient real-world images and without any semantic anno-
tation for diverse evaluations. (3) as a result of the last point,
the evaluation metrics have been mostly limited to (the full-
reference) PSNR and SSIM for image restoration purposes.
They may become poorly related when it comes to other task
purposes, such as human perception quality (Lai et al. 2016;
Li et al. 2019a) or high-level computer vision utility (Dai
et al. 2016, 2020; Sakaridis et al. 2018; Hahner et al. 2019).

In this paper, we aim to systematically evaluate state-of-
the-art single image deraining methods, in a comprehensive
and fair setting. To this end, we construct a large-scale bench-
mark, called Multi-Purpose Image Deraining (MPID). An
overview of MPID could be found in Table 3, and image
examples are displayed in Fig. 1. Compared with existing
synthetic sets, the MPID dataset covers a much larger diver-
sity of rain models (rain streak, raindrop, and rain and mist),
including both synthetic and real-world images for evalu-
ation, and featuring diverse contents and sources (for real
rainy images). In addition, as the first-of-its-kind efforts in
image deraining, we have annotated two sets of real-world
rainy images with object bounding boxes from autonomous
driving and video surveillance scenarios, respectively, for
task-specific evaluation.

Using the MPID benchmark, we evaluate eight state-
of-the-art single image deraining algorithms. We adopt a
wide range of full-reference metrics (PSNR and SSIM), no-
reference metrics (NIQE, BLIINDS-II, and SSEQ), as well
as human subjective scores to thoroughly examine the per-
formance of image deraining methods. A human subjective
study is also conducted. Furthermore, as image deraining
might be expected as a preprocessing step for mid- and
high-level computer vision tasks, we also evaluate current
algorithms in terms of their impact on subsequent object
detection tasks, as a “task-specific” evaluation criterion.
We reveal the performance gap in various aspects, when
these algorithms are applied on synthetic and real images.
By extensively comparing the state-of-the-art single image
deraining algorithms on the MPID dataset, we gain insights
into new research directions for image deraining.

In this paper, we extend our preliminary work (Li et al.
2019c) in the following aspects.

– Evaluations of more image deraining algorithms In Li
et al. (2019c),we evaluate six different derainingmethods
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Fig. 1 Example images from the MPID dataset. The proposed dataset contains both synthetic and real-wold rainy images of rain streak, raindrops,
and rain and mist. In addition, we also annotate two sets of real-world images with object bounding boxes from autonomous driving and video
surveillance scenarios

on the proposed multi-purpose image deraining (MPID)
dataset. In this manuscript, we also evaluate two very
recent image derainingwork of DAF-Net (Hu et al. 2019)
and STL (Wei et al. 2019), which perform better than
conventional deraining approaches on existing derain-
ing datasets. In particular, STL (Wei et al. 2019) is the
first semi-supervised learning network toward the image
deraining task.

– Extension of detection methods In Li et al. (2019c), we
use Faster R-CNN (FRCNN) (Ren et al. 2015), YOLO-
V3 (Redmon and Farhadi 2018), SSD-512 (Liu et al.
2016), and RetinaNet (Lin et al. 2018) to detect objects
after using a deraining algorithm. In this paper, we add a
new state-of-the-art detection model of CenterNet (Zhou
et al. 2019) to conduct the task-driven comparisons.
As a result, our employed detection methods including

tow-stage, one-stage anchor, and one-stage anchor-free
detection algorithms. In addition, we also found that the
recent CenterNet performs better than the conventional
deep detection models.

– Detailed results of object detection In addition to mAP
results reported in Li et al. (2019c), we further show all
the AP results in each object class for different deraining
algorithms for more detailed comparative analysis.

– Datasets survey In this paper, we summarize the existing
image draining datasets used tomeasure and compare the
performance of image deraining algorithms. We found
that existing datasets are either too small in scale or lim-
ited to one rain type, or lack sufficient real-world images
for diverse evaluations. In addition, none of them has any
semantic annotation nor consider any subsequent task
performance.

123



1304 International Journal of Computer Vision (2021) 129:1301–1322

– More analysis We add more analysis about different
deraining algorithms in terms of various evaluation cri-
teria (full- and no-reference objective, subjective, and
task-specific metrics) to show the current challenges of
the performance gap between synthetic and real-world
images. Based on the comprehensive results, we further
conclude some possible research directions for image
deraining in the future.

2 Rainy Image FormulationModels

In this section, we review the commonly-used rain synthe-
sis models in the literature. As a complicated atmospheric
process, rain could cause several different types of visi-
bility degradations, due to a magnitude of environmental
factors including raindrop size, rain density, and wind veloc-
ity. When a rainy image is taken, the visual effects of rain on
that digital image further hinges onmany camera parameters,
such as exposure time, depth of field, and resolution (Garg
and Nayar 2005). Most existing deraining works assume one
rain model (usually rain streak), which might have over-
simplified the problem. We group existing rain models in
literature into three major categories: rain streak, raindrop,
as well as rain and mist.

A rain streak image Rs can be modeled as a linear super-
imposition of the clean background scene B and the sparse,
line-shape rain streak component S:

Rs = B + S. (1)

Rain streaks S accumulated throughout the scene reduce the
visibility of the background B. This is the most common
model assumed by the majority of deraining algorithms.

Adherent raindrops (You et al. 2016) that fall and flow on
camera lenses or a window glasses can obstruct and/or blur
the background scenes. The raindrop degraded imageRd can
be modeled as the combination of the clean background B,
and the blurry or obstruction effect of the raindrops D in
scattered, small-sized local coherent regions:

Rd = (1 − M) � B + D. (2)

M is a binary mask and � means element-wise multiplica-
tion. In the mask, a pixel x is part of a raindrop region if
M(x) = 1, and otherwise belongs to the background.

Further, rainy images often contain both rain and mist
in real cases. In addition, distant rain streaks accumulated
throughout the scene reduce the visibility in a manner more
similarly to fog, creating a mist-like phenomenon in the
image background. Concerning this, we can define the rain
andmistmodel for the captured imageRm , basedon a compo-
sition of the rain streak model and the atmospheric scattering

haze model (McCartney 1976):

Rm = B � t + A (1 − t) + S, (3)

where S is the rain streak component; t and A are the
transmission map and atmospheric light that determines the
fog/mist component, respectively.

There are two main drawbacks of existing evaluation
approaches. First, synthetic rainy images usually fail to cap-
ture the characteristics of real degradation in rainy day. For
example, the models of (1) and (2) only consider one fac-
tor. Halder et al. (2019) recently proposed a physically-based
rendering method to improve the realism of these synthetic
rainy images. They used a more complex pipeline to simu-
late and insert rain streaks taking into account its amount to
generate a more convincing visual result. This method has
achieved the goal of creating visually appealing rainy images.
However, the method still only generates rain streaks with-
out considering the mist effects in a rainy image. Second,
existing deraining approaches use PSNR and SSIM to evalu-
ate image restoration performance, which does not correlate
well with human perception (Lai et al. 2016) and high-level
visual algorithms (Li et al. 2019a). The lack of human and
machine perceptual studies makes it difficult to compare the
performance of deraining algorithms. While numerous full-
and no-reference image quality metrics have been proposed,
it is unclear whether these metrics can be applied to measure
the quality of derained images.

3 RelatedWork

3.1 Overview of Deraining Algorithms

Early methods often require multiple frames for deraining
(Ren et al. 2017; Santhaseelan and Asari 2015; Jiang et al.
2017; You et al. 2016). Garg and Nayar (2004) proposed
a rain streak detection and removal method from a video
by taking the average intensity of the detected rain streaks
from the previous and subsequent frames. Garg and Nayar
(2005) further improved the performanceby selecting camera
parameters without appreciably altering the scene appear-
ance. However, those methods are not applicable to single
image deraining.

Compared to multi-frame based deraining approaches
which have temporal redundant knowledge, deraining from
a single image is more challenging since less information
is available. To address this problem, the design of sin-
gle image deraining algorithm has attracted more research
attention. The existing single image deraining methods can
be roughly divided into two categories: model-based (non-
deep-learning) and data-driven (deep-learning) approaches.
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There is a summary of single image rain removal methods in
Table 1.

3.1.1 Model-Driven Algorithms

The model-driven methods especially focus on sufficiently
utilizing and encoding physical properties of rain and prior
knowledge of background scenes into an optimization prob-
lem and designing rational algorithms to solve it. These
algorithms can be mainly divided into three main cat-
egories: filter based methods, low-rankand sparse-coding

based algorithms, and Gaussian Mixture Model (GMM)
based approaches, etc.

Filter based algorithms Zheng et al. (2013) presented a mul-
tiple guided filter based method using low frequency part
of a single image. Ding et al. (2016) designed a guided
L0 smoothing filter based on L0 gradient minimization to
remove rain streaks in a rainy image. Santhaseelan and Asari
(2015) first detected rain streaks based on phase congruence
features from input rainy videos, then the variation of fea-
tures from frame to frame is capitalized to remove rain from
videos.

Sparse coding based algorithms Many deraining methods
capitalized on clean image or rain type priors to remove rain
(Sun et al. 2014; Luo et al. 2015; Barnum et al. 2010). Kang
et al. (2012) decomposed an input image into its low- and
high-frequency components. Then they separated the rain
streak frequencies from the high-frequency layer via sparse
coding. Zhu et al. (2017) introduced a rain removal method
based on the prior that rain streaks typically span a narrow
range of directions. Chen and Hsu (2013) decomposed the
background and rain streak layers based on low-rank priors.

GMM based algorithms Li et al. (2016) used patch-based
priors for both the clean background and rain layers in the
form of Gaussian mixture models. Based on Li et al. (2016,
2017) further introduced a structure residue recovery step
to further separate the background residues and improve the
decomposition quality for image deraining.

However, all of the above approaches rely on handcrafted
image priors, which cannot hold in some real-world scenes.
As a result, these model-driven algorithms tend to have
unsatisfactory performances and generate some artifacts on
real-world images with complicated scenes and rain forms.

3.1.2 Data-Driven Algorithms

Recent methods often adopt the data-driven algorithms by
designing specific network architectures to learn network
parameters for attaining complex rain removal functions.
Most of these methods aim at certain insightful aspects of
rain removal and have their applicability and advantages on

some specific scenarios. We briefly discuss the popular deep
neural networks employed for image deraining in this sec-
tion.

CNN models A CNN architecture typically includes convo-
lutional layers, pooling layers and fully connected layers.
CNN is powerful in learning feature representation of differ-
ent abstraction levels from large-scale data.

Recently, CNNs have achieved dominant success for
image restoration (Ren et al. 2016; Zhang et al. 2017) includ-
ing single image deraining (Fu et al. 2017a; Eigen et al.
2013). Fu et al. (2017b) proposed a deep detail network
(DDN) for removing rain from single imageswith details pre-
serving. Yang et al. (2017) presented a CNN based method
to jointly detect and remove rain streaks, using a multi-
stream network to capture the rain streak component. A
density-awaremulti-streamdensely connected convolutional
neural network was introduced in Zhang and Patel (2018)
for joint rain density estimation and image deraining. Hu
et al. (2019) formulated a depth-guided attention mecha-
nism to learn depth-attentional features and regress a residual
map, and prepared a new dataset RainCityscapes for rain
removal. However, existing deep networks usually have an
enormous number of parameters. To remedy this, Fu et al.
(2020) proposed a lightweight deep network that is based on
the classical Gaussian-Laplacian pyramid for single image
deraining.

GAN models GAN is proposed to train generative mod-
els through a two-player game between a generator and a
discriminator. Specially, the generator aims to generate syn-
thesized data of the same distribution of real data, and tries
to fool the discriminator. Discriminator is trained to distin-
guish synthesized data from real samples. During training,
the generator and the discriminator compete with each other
and improve themselves to help the two players to generate
realistic derained images (Qian et al. 2018; Li et al. 2019b).

Qian et al. (2018) addressed a different problem of remov-
ing raindrops from single images by using visual attention
with a generative adversarial network (GAN). Zhang et
al. (2019) proposed a novel single image deraining method
called Image Deraining conditional generative adversarial
network (CGAN), which considers quantitative, visual and
also discriminative performance into the objective function.
Li et al. (2019b) proposed an integrated two-stage neural
network and novel streak-aware decomposition to adaptively
separate the image into a high-frequency component contain-
ing rain streaks and a low-frequency component containing
rain accumulation. Yu et al. (2020) proposed a fully end-
to-end image dehazing algorithm FD-GAN, which directly
outputs haze-free images without the estimation of interme-
diate parameters.

Semi/Unsupervised models Semi-supervised learning is a
learning paradigm concerned with the study of how comput-
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ers and natural systems such as humans learn in the presence
of both labeled and unlabeled data. While unsupervised
learning means learning by only unlabeled data, i.e., using
real captured rainy images with the corresponding ground
truths. Wei et al. (2019) firstly proposed a semi-supervised
transfer learning framework for single image rain removal.
They rationally formulate the residual between the expected
output clean images and their original noisy ones through
a likelihood term imposed on a parameterized distribution
designed based on the domain understanding for residuals.
Jin et al. (2019) proposed an unsupervised generative adver-
sarial network (UD-GAN) with self-supervised constraints
for image deraining.

Despite the progress of deep-learning-based approaches
compared with prior-based rain removal, their performance
hinge on the synthetic training data,whichmaybecomeprob-
lematic if real rainy images show a domain mismatch.

3.2 Datasets

In the computer vision field, widely accepted and commonly
used databases have achieved objective comparisons and pro-
moted scientific progress (Katrin et al. 2016; Szeliski et al.
2008; Schops et al. 2017). Several rainy image datasets were
also used tomeasure and compare the performance of derain-
ing algorithms. Li et al. (2016) introduced 12 images using
photo-realistic rendering techniques. Zhang et al. (2019) syn-
thesized a set of training and testing images with rain streak,
using the same way in Li et al. (2016). The training set con-
sists of 700 images and the testing set consists of 100 images.
In addition, Zhang et al. (2019) also collected a dataset of 92
real-world rainy images downloaded from the web for qual-
itative visual comparison. Qian et al. (2018) released a set
of clean and rain-drop corrupted image pairs, using a special
lens equipment. To address heavy rain removal problem, Li et
al. (2019b) created a new synthetic rain dataset named NYU-
Rain and another outdoor rain dataset on a set of outdoor
clean images, denoted as Outdoor-Rain. Specifically, they
provided a new synthetic data generation pipeline by synthe-
sizing the mist effect according to the scene depth. To make
the synthesized images more realistic, they also added Gaus-
sian blur on both the transmission map and the background
to simulate the effect of scattering in heavy rain scenar-
ios. Meanwhile, Wang et al. (2019) constructed a large-scale
real-world paired rain and clean dataset by a semi-automatic
method that incorporates temporal priors and human super-
vision.

We note that the recent work of Li et al. (2019b) and
Wang et al. (2019) are two large-scale rain removal datasets
with more realism than those from conventional deraining
datasets. However, the data from Li et al. (2019b) only
includes synthesized images, while the generated ground
truths in Wang et al. (2019) may contain some noise, blur,

and shaking due to the misalignment between neighboring
frames in the captured videos.We summarized the most used
datasets for image deraining in Table 2. As shown, existing
datasets are either too small in scale or limited to one rain
type (rain streaks or raindrops), or lack sufficient real-world
images for diverse evaluations. Although the recent proposed
Weather Kitti dataset (Halder et al. 2019) includes a large-
scale number of images, none of the existing databases has
any semantic annotation or subsequent task performance. In
contrast, our dataset contains synthetic, real-world, as well
as annotated rainy images for a comprehensive evaluation of
single image deraining algorithms. The images in our dataset
cover various rain types and scenarios and include actual
challenges and variations from the real world.

4 New Benchmark: Multi-purpose Image
Deraining (MPID)

We present a new benchmark as a comprehensive platform,
for evaluating single image deraining algorithms from a
variety of perspectives. Our evaluation angles range from
traditional PSNR/SSIM, to no-reference perception-driven
metrics and human subjective quality, to “task-driven met-
rics” (Li et al. 2019a; Kupyn et al. 2018) indicating how
well a target computer vision task can be performed on the
derained images. Fitting those purposes, we generate/collect
images in large scale, from both synthesis and real world
sources, covering diverse real-life scenes, and annotate them
when needed. The new benchmark, dubbed Multi-Purpose
Image Deraining (MPID), is introduced below in details.
An overview of MPID can be found in Table 3.

4.1 Training Sets: Three Synthesis Models

Following the three rain models in Sect. 1.1, we create three
training sets, named Rain streak (T), Rain drop (T) and Rain
and mist (T) sets (T short for “training”), respectively. All
three sets are synthesized in controlled settings from clean
images.1 All clean images used are collected from the web,
and we specifically pick those outdoor rain-free, haze-free
photos taken in cloudy daylight, so that the synthesized rainy
images look more realistic in terms of lighting condition
(for example, there will be no rainy photo in a sunny day-
light background). Specifically, we synthesize rainy images
according to the following two aspects. First, we follow
the common protocol used in Li et al. (2016), Zhang et al.
(2019) to generate rain streaks. We also noticed the wet
ground/overcast sky issue during data synthesis, and man-

1 Note that for Rain drop (T), the data generation used physical simu-
lation (Qian et al. 2018), i.e., with/without lens, rather than algorithm
simulation.
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Table 1 An overview of single-image deraining methods

Method Category Advantages Publication

Model-driven

Guided filter
(Zheng et al.
2013)

Filter The rain-removed image was acquired by taking
the minimum value of rainy image and the
coarse recovery image obtained by merging
low frequency part (LFP) of rainy image with
high frequency part (HFP) of rain-free image

Zheng et al. (2013)

Image
decomposition
(Kang et al.
2012)

Sparse coding The first automatic MCA-based image
decomposition framework is proposed. The
learning of the dictionary for decomposing rain
steaks is fully automatic and self-contained,
where no extra training samples are required

Kang et al. (2012)

DSC (Luo et al.
2015)

This approach provided a variational model,
together with a simple iterative numerical
method, and there is no any other image
processing module involved

Luo et al. (2015)

JCAS (Gu et al.
2017)

This work is to sparsely approximate the patches
of two layers by very high discriminative codes
over a learned dictionary with strong mutual
exclusivity property

Gu et al. (2017)

GMM (Li et al.
2016, 2017)

GMM This work uses simple patch-based priors for
both the background and rain layers which are
based on Gaussian mixture models and can
accommodate multiple orientations and scales
of the rain streaks.

Li et al. (2016, 2017)

Data-driven

CNN (Eigen
et al. 2013)

Deep CNN This work trained a convolutional neural network
which learns how to map corrupted image
patches to clean ones, implicitly capturing the
characteristic appearance of dirt and water
droplets in natural images

Eigen et al. (2013)

Lightweight
CNN (Fu et al.
2020)

This work proposed a lightweight deep network
based on the classical Gaussian–Laplacian
pyramid for single image deraining

Fu et al. (2020)

JORDER (Yang
et al. 2017)

The first method to model the rain-streak binary
mask and jointly detect and remove rains from
single images. A contextualized dilated
network is used to obtain more context while
preserving rich local details

Yang et al. (2017)

DAF-Net (Hu
et al. 2019)

The work proposed a new dataset called Rain
Cityscapes and designed an end-to-end deep
neural network which can learn
depth-attentional features via a depth-guided
attention mechanism, and regress a residual
map to produce the rain-free image output

Hu et al. (2019)

PReNet (Ren
et al. 2019)

This work adopted intra-stage recursive
computation of ResNet to notably reduce
network parameters with unsubstantial
degradation, and took both stage-wise result
and original rainy image as input to each
ResNet

Ren et al. (2019)

FFA-Net (Xu
et al. 2020)

This work proposed an attention-based feature
fusion (FFA) structure, this structure can retain
shallow layers’ information and pass it into
deep layers

Xu et al. (2020)

123



1308 International Journal of Computer Vision (2021) 129:1301–1322

Table 1 continued

Method Category Advantages Publication

CGAN (Zhang
et al. 2019)

GAN A densely-connected generator sub-network that
is specifically designed for the single image
deraining task, without the use of any
additional post-processing

Zhang et al. (2019)

Attentive GAN
(Qian et al.
2018)

Attention map is injected into both the generative
and discriminative networks for learning to
attend raindrop regions and percept their
surroundings

Qian et al. (2018)

Heavy Rain
Restoration (Li
et al. 2019b)

This work introduced an integrated two-stage
neural network and an novel streak-aware
decomposition to adaptively separate the image
into components

Li et al. (2019b)

FD-GAN (Yu
et al. 2020)

This model can generator more natural and
realistic dehazed images with less color
distortion and fewer artifacts using
Fusion-discriminator which takes frequency
information as additional priors

Yu et al. (2020)

Semi-supervised
CNN (Wei
et al. 2019)

Semi/Unsupervised This work firstly proposed a semi-supervised
transfer learning framework which rationally
formulate the residual between the expected
output clean images and their original noisy
ones through a likelihood term imposed on a
parameterized distribution

Wei et al. (2019)

UD-GAN (Jin
et al. 2019)

UD-GAN is proposed to tackle the problems of
insufficient labeled-supervised constraints by
introducing self-supervised constraints from
the intrinsic statistics of unpaired rainy and
clean images

Jin et al. (2019)

Table 2 Summary of the most used datasets for image deraining

Name Number (train/test) Real/synthetic Year Resulotion (train) Annotations

Rain12 (Li et al. 2016) 12 Synthetic 2016 481 × 321 N/A

Rain100L (Yang et al. 2017) 1800/200 Synthetic 2017 481 × 321 N/A

Rain100H (Yang et al. 2017) 1800/200 Synthetic 2017 481 × 321 N/A

Rain14000 (Fu et al. 2017b) 9100/4900 Synthetic 2017 512 × 384 N/A

RainCityscapes (Hu et al. 2019) 9432/1188 Synthetic 2017 2048 × 1024 N/A

GAN-Pired-Dataset (Zhang et al. 2019) 700/192 Synthetic/real 2017 1024 × 384 N/A

Rain12000 (Zhang and Patel 2018) 12000/4000 Synthetic 2018 1024 × 512 N/A

RainDrop-Dataset (Qian et al. 2018) 861/307 Synthetic 2018 720 × 480 N/A

NYU-Rain (Li et al. 2019b) 13500/2700 Synthetic 2019 640 × 480 N/A

Outdoor-Rain (Li et al. 2019b) 9000/1500 Synthetic 2019 720 × 480 N/A

Weather Kitti (Halder et al. 2019) 7481 Synthetic 2019 1216 × 352 N/A

Weather Cityscapes (Halder et al. 2019) 2995 Synthetic 2019 1024 × 512 N/A

STL-Syn-Dataset (Wei et al. 2019) 147 Real 2019 253 × 199 to 1600 × 1200 N/A

Real Rain Dataset (Wang et al. 2019) 28500/1000 Real 2019 512 × 512 N/A

ually inspected/selected clear overcast images, on which we
synthesized rain. Second,we follow thewidely-accepted rou-
tine in Li et al. (2019a), Sakaridis et al. (2018), Ren et al.
(2016, 2018a, b, 2020) to generate mist. We first estimate

depth from clear overcast outdoor images, and then synthe-
sizing mist images as like in Ren et al. (2016).

The Rain streak (T) set contains 2,400 pairs of clean and
rainy images, where the rainy images are generated from the
clean ones using (1), with the identical protocol and hyper-
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Table 3 Overview of the proposed MPID dataset

Subset Number Real/synthetic Resolution Metrics Annotation

Training set

Rain streak (T) 2400 (pairs) Synthetic 512×384 / No

Raindrop (T) 861 (pairs) Synthetic 720×480 / No

Rain and mist (T) 700 (pairs) Synthetic 1280×720 / No

Testing set

Rain streak (S) 200 (pairs) Synthetic 640×480 PSNR, SSIM, NIQE, BLIINDS-II, SSEQ No

Rain streak (R) 50 Real 1024×681 to 1920×1080 NIQE, BLIINDS-II, SSEQ No

Raindrop (S) 149 (pairs) Synthetic 720×480 PSNR, SSIM, NIQE, BLIINDS-II, SSEQ No

Raindrop (R) 58 Real 720×480 NIQE, BLIINDS-II, SSEQ No

Rain and mist (S) 70 (pairs) Synthetic 720×1080 to 5312×2998 PSNR, SSIM, NIQE, BLIINDS-II, SSEQ No

Rain and mist (R) 30 Real 1024×681 to 2976×3968 NIQE, BLIINDS-II, SSEQ No

Task-driven evaluation set

RID 2495 Real 1920×990 to 4023×3024 mAP Yes

RIS 2048 Real 640×368 to 640×480 mAP Yes

parameters to Li et al. (2016), Zhang et al. (2019). The Rain
drop (T) set was borrowed from Qian et al. (2018)’s released
training set consisting of 861 pairs of clean and rain-drop
corrupted images, upon their authors’ consent. The Rain and
mist (T) set is synthesized by first adding haze using the
atmospheric scattering model: for each clean image, we esti-
mate depth using the algorithm in Liu et al. (2016), Li et al.
(2018) as recommended by Li et al. (2017), set different
atmospheric lights A by choosing each channel uniformly
randomly between [0.7, 1.0], and select β uniformly at ran-
dom between [0.6, 1.8]. Then from the synthesized hazy
version, we further add rain streaks in the same way as Rain
streak (T). We end up with 700 pairs for the Rain and mist
(T) set.

4.2 Testing Sets: From Synthetic to Real

Corresponding to three training sets, we generate three syn-
thetic testing set in the same way: denoted as Rain streak (S),
Rain drop (S), and Rain and mist (S) (S short for “synthetic
testing”), consisting of 200, 149, and 70 pairs, respectively.
On each testing set, we evaluate the restoration performance
of deraining algorithms, using classical PSNR and SSIM
metrics. Further, to predict the derained image’s perceptual
quality to human viewers, we introduce the usage of three no-
reference IQA models: naturalness image quality evaluator
(NIQE) (Mittal et al. 2013), spatial-spectral entropy-based
quality (SSEQ) (Liu et al. 2014), and blind image integrity
notator usingDCT statistics (BLIINDS-II) (Saad et al. 2012),
to complement the shortness of PSNR/SSIM. NIQE is a
well-known no-reference image quality score to indicate
the perceived “naturalness” of an image: a smaller score

indicates better perceptual quality. The score of SSEQ and
BLIINDS-II that we used range from 0 (worst) to 100 (best).2

Besides the three above synthetic test sets, we collect
three sets of real-world images, that fall into each of three
defined rain categories, to evaluate the deraining algorithms’
real-world generalization. The three sets, denoted as Rain
streak (R), Raindrop (R), and Rain and mist (R) (R short
for “real-world testing”), are collected from the Internet and
are carefully inspected to ensure that images in each set fit
the pre-defined rain type well. Due to the unavailability of
ground truth clean images in real world, we evaluate NIQE,
SSEQ, and BLIINDS-II on the three real-world sets. In addi-
tion, we also pick a small set of real-world images for human
subjective rating of derained results.

4.3 Task-Driven Evaluation Sets

As pointed out by a plenty of recent works (Wang et al.
2016; Liu et al. 2018, 2019, 2020; Scheirer et al. 2020;
Yang et al. 2020; Hahner et al. 2019), the performance of
high-level computer vision tasks, such as object detection
and recognition, will deteriorate in the presence of vari-
ous sensory and environmental degradation. In particular,
Sakaridis et al. (2018) studied the effect of image dehazing
on semantic segmentation by a synthesizedFoggyCityscapes
dataset with 20,550 images. This work carefully investi-
gated the practicability of image dehazing for semantic foggy

2 Note that in Liu et al. (2014) and Saad et al. (2012), a smaller
SSEQ/BLIINDS-II score indicates better perceptual quality.We reverse
the two scores (100 minus) to make their trends look consistent to full-
reference metrics: in our tables the bigger the two values, the better the
perceptual quality. We did not do the same to NIQE, because NIQE has
no bounded maximum value.
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scene understanding (SFSU) and found that image dehaz-
ing marginally advances SFSU in most cases. Dai et al.
(2016) evaluated several image super-resolution methods on
high-level vision tasks and concluded that super-resolution
approaches are usually helpful for other vision tasks. In these
cases, the low-level image processing methods improved the
performances on the high-level tasks. While deraining could
be used as pre-processing for many computer vision tasks
executed in the rainy conditions, there has been no system-
atic study on deraining algorithms’ impact on those target
tasks. The recent work of Halder et al. (2019) evaluated the
robustness of high-level tasks on rainy conditions. However,
the evaluation did not include a study on the usefulness of
deraining algorithms for the high-level tasks. We consider
the resulting task performance after deraining as an indirect
indicator of the deraining quality. Such a “task-driven” eval-
uation way has received little attention and can have great
implications for outdoor applications.

To conduct such task-driven evaluations, realistic anno-
tated datasets are necessary. To our best knowledge, there
has been no dataset available serving the purpose of evaluat-
ing deraining algorithms in task-driven ways. We therefore
collect two sets by our own: a Rain in Driving (RID) set
collected from car-mounted cameras when driving in rainy
weathers, and aRain in surveillance (RIS) set collected from
networked traffic surveillance cameras in rainy days.

For either set, we annotate object bounding boxes, and
evaluate object detection performance after applying derain-
ing. A summary with object statistics on both RID and RIS
sets can be found in Table 4. The two sets differ in many
ways: rain type, image quality, object size and angle, and
so on. They are representative of real application scenarios
where deraining may be desired.

Rain in Driving (RID) Set This set contains 2495 real rainy
images from high-resolution driving videos. As we observe,
its rain effect is closest to “raindrops” on camera lens. They
were captured in diverse real traffic locations and scenes dur-
ing multiple drives. We label bounding boxes for selected
traffic objects: car, person, bus, bicycle, and motorcycle, that
commonly appear on the roads of all images. Most images
are of 1920 × 990 resolution, with a few exceptions of 4023
× 3024 resolution.

Rain in Surveillance (RIS) Set This set contains 2048 real
rainy images from relatively lower-resolution surveillance
video cameras. They were extracted from a total of 154
surveillance cameras in daytime, ensuring diversity in con-
tent (for example, we do not consider frames too close in
time). As we observe, its rain effect is closest to “rain and
mist” (many cameras have mist condensation during rain,
and the low resolution will also cause more foggy effects).
Specifically, we found very few bicycles in theRIS set, which
consists of common sense that one will not go cycling when

Table 4 Object statistics in RID and RIS sets

Categories Car Person Bus Bicycle Motorcycle

RID set 7332 1135 613 268 968

Categories Car Person Bus Truck Motorcycle

RIS set 11415 2687 488 673 275

it rains. Therefore, we annotated trucks rather than bicycles
in the RIS dataset. Finally, we selected and annotated the
most common objects in the traffic surveillance scenes: car,
person, bus, truck, andmotorcycle. The vast majority of cam-
eras have the resolution of 640 × 368, with a few exceptions
of 640 × 480.

We carefully selected images containing these objects in
the scene. We observed that rainy images tend to present
a lesser number of objects in the scene, which is a natural
disposition given that persons usually avoid getting out on the
street when it is raining. These efforts result in a rich base of
outdoor images in rainy and sunny weather conditions with
the most common objects annotated.

Adverse weather condition like rain and haze, affects
visual quality of images. Images captured in such condi-
tions are intrinsically degraded. This leads to computer vision
systems to have their performances decreased. Thus, tasks
like deraining and dehazing are extremely challenging and
important. Recently, many efforts have been made to remove
rainy and hazy effects or, at least, attenuate their impair-
ments. Despite the success of recent algorithms, a real rainy
scenario continues to constitute a demanding problem to han-
dle. We believe there is a gap between the synthetic rainy
datasets used so far for training the current models and real
rainy images. Hence, to improve on this task, we need to
consider real information from rainy scenes. Motivated by
this, we present a new dataset containing real rainy images
from surveillance video cameras.We further provide a sunny
set of images for evaluation and comparison in the object
detection task. In this way, deraining strategies might benefit
from promising results that image-to-image translation have
shown for domain adaptation.

5 Experimental Comparison

We evaluate eight representative state-of-the-art algorithms
on MPID: Gaussian mixture model prior (GMM) (Li et al.
2016), joint rain detection and removal (JORDER) (Yang
et al. 2017), deep detail network (DDN) (Fu et al. 2017b),
conditional generative adversarial network (CGAN) (Zhang
et al. 2019), density-aware image de-raining method using a
multistream dense network (DID-MDN) (Zhang and Patel
2018), depth-attentional features network (DAF-Net) (Hu
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Table 5 Average full- and no-reference evaluations results on synthetic rainy images

Degraded GMM (Li
et al.
2016)

JORDER
(Yang
et al.
2017)

DDN (Fu
et al.
2017b)

CGAN
(Zhang
et al.
2019)

DID-
MDN
(Zhang
and Patel
2018)

DeRaindrop
(Qian
et al.
2018)

DAF-Net
(Hu et al.
2019)

STL (Wei
et al.
2019)

Rain streak

PSNR ↑ 25.95 26.88 26.26 29.39 21.86 26.80 – 15.8370 26.7417

SSIM ↑ 0.7565 0.7674 0.8089 0.7854 0.6277 0.8028 – 0.3120 0.7359

SSEQ ↑ 70.24 67.46 73.70 75.95 70.02 60.05 – 66.0204 71.8536

NIQE ↓ 5.4529 4.4248 4.2337 3.9834 4.6189 4.8122 – 4.8352 5.1800

BLINDS-II ↑ 78.89 75.95 84.21 91.71 79.29 67.90 – 78.45 76.3571

Raindrops

PSNR ↑ 25.40 24.85 27.52 25.23 21.35 24.76 31.57 20.2375 21.4198

SSIM ↑ 0.8403 0.7808 0.8239 0.8366 0.7306 0.7930 0.9023 0.7319 0.6503

SSEQ ↑ 78.48 64.73 84.32 77.62 63.15 58.42 72.42 62.1607 83.3950

NIQE ↓ 3.8126 5.1098 4.3278 4.1462 3.3551 4.1192 5.0047 5.1996 3.6879

BLINDS-II ↑ 92.50 75.95 88.05 91.95 73.85 64.70 96.45 76.90 86.7778

Rain and mist

PSNR ↑ 26.84 29.37 30.37 32.98 22.44 28.77 – 17.0765 23.5496

SSIM ↑ 0.8520 0.8960 0.9262 0.9350 0.7636 0.8430 – 0.6526 0.7148

SSEQ ↑ 72.37 65.39 70.55 69.80 68.71 65.33 – 54.2606 81.8984

NIQE ↓ 3.4548 3.2117 2.8595 2.9970 2.8336 3.0871 – 7.0598 3.4893

BLINDS-II ↑ 82.95 74.90 83.75 85.75 80.20 76.35 – 53.45 92.0556

We use bold and underline to indicate the best and suboptimal performance, respectively

Table 6 Average no-reference evaluations results of derained results on real rainy images

Degraded GMM(Li
et al.
2016)

JORDER
(Yang
et al.
2017)

DDN (Fu
et al.
2017b)

CGAN
(Zhang
et al.
2019)

DID-
MDN
(Zhang
and Patel
2018)

DeRaindrop
(Qian
et al.
2018)

DAF-Net
(Hu et al.
2019)

STL (Wei
et al.
2019)

Rain streak

SSEQ ↑ 65.77 61.63 64.00 63.51 59.32 55.11 – 55.18 72.3867

NIQE ↓ 3.5236 3.2117 3.5371 3.5811 3.5374 5.1255 – 6.0403 3.7404

BLINDS-II ↑ 78.04 75.54 82.62 85.81 78.42 66.65 – 54.40 85.6111

Raindrops

SSEQ ↑ 78.23 64.77 69.26 67.62 62.18 60.65 79.83 67.86 73.0466

NIQE ↓ 3.8229 4.3801 3.6579 3.8290 4.4692 4.5631 3.5953 4.6526 4.1245

BLINDS-II ↑ 84.46 71.21 80.04 77.75 66.29 66.63 87.13 75.90 80.7222

Rain and mist

SSEQ ↑ 73.86 59.51 65.18 64.56 70.04 63.85 – 58.1319 80.8053

NIQE ↓ 3.2602 4.4808 3.3238 3.7261 2.9532 3.2260 – 6.8706 3.4411

BLINDS-II ↑ 84.00 62.70 78.62 81.67 84.91 76.08 – 53.3889 89.6667

We use bold and underline to indicate the best and suboptimal performance except the degraded inputs, respectively
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(a) Rainy input (b)GMM [10] (c) JORDER [44] (d) DDN [7]

(e) CGAN [47] (f) DID-MDN [9] (g) DAF-Net [24] (h) STL [14]

(a) Rainy input (b)GMM [10] (c) JORDER [44] (d) DDN [7]

(e) CGAN [47] (f) DID-MDN [9] (g) DAF-Net [8] (h) DeRaindrop [8]

(a) Rainy input (b)GMM [10] (c) JORDER [44] (d) DDN [7]

(e) CGAN [47] (f) DID-MDN [9] (g) DAF-Net [24] (h) STL [14]

Fig. 2 Visual comparisons of derained results on real images: rain streak (first image), raindrop (second image), and rain and mist (third image)

et al. 2019), semi-supervised transfer network (STL) (Wei
et al. 2019), and DeRaindrop (Qian et al. 2018). All except
GMM are state-of-the-art CNN-based deraining algorithms.

Evaluation Protocol The first seven models are specifically
developed for removing rain streaks,while the last one targets
at removing rain drops. Therefore, we compare them for rain
streak sets. Since DeRaindrop is the only recent published

method for raindrop removal, to provide more baselines for
its performance, we also re-train and evaluate the other five
models on the raindrop training dataset. In addition, we cre-
ate a cascaded pipeline, by first running each of the five rain
streak removal algorithms, followed by feeding into a dehaz-
ing model, as like in Yang et al. (2016), Li et al. (2019b).
Based on the rain and mist model in (3), we can remove the
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Table 7 Average subjective scores of derained results on 27 real images

Rainy GMM
(Li et al.
2016)

JORDER
(Yang
et al.
2017)

DDN
(Fu et al.
2017b)

CGAN
(Zhang
et al.
2019)

DID-
MDN
(Zhang
and Patel
2018)

DeRaindrop
(Qian
et al.
2018)

DAF-Net
(Hu et al.
2019)

STL
(Wei et al.
2019)

Rain streak 0.64 0.80 0.91 1.15 1.26 0.97 – 0.61 0.77

Raindrops 0.80 1.14 0.75 0.83 0.85 0.95 0.80 0.72 0.94

Rain and mist 0.44 1.00 0.70 0.90 1.22 1.40 – 0.52 0.86

additive rain streak first without the damage of haze in theory.
Therefore,wefirst remove rain for the rain andmist input then
restore clean image by feeding the derained result toMSCNN
(Ren et al. 2016), which is trained on the synthesized hazy
images based on the Middlebury stereo database (Scharstein
andSzeliski 2002).Thevery recentwork (Li et al. 2019b) also
demonstrates that using the combination strategy of derain-
ing first and then dehazing shows better performance than
dehazing first and then deraining. We choose the MSCNN
dehazing algorithm since recent dehazing studies (Li et al.
2019a; Liu et al. 2018) endorsed it both to produce the best
human-favorable, artifact-free dehazing results, and to ben-
efit subsequent high-level task in haze most. Such cascaded
pipeline can be tuned from end to end, and we freeze the
MSCNN part during tuning in order to focus on comparing
deraining components. All models will be re-trained on the
corresponding MPID training set, when evaluated on a cer-
tain rain type.

5.1 Objective Comparison

Wefirst compare the derained results on the synthetic images
using two full-reference (PSNR and SSIM) and three no-
reference metrics (NIQE Mittal et al. 2012, SSEQ Liu et al.
2014, and BLIINDS-II Saad et al. 2012).

As seen from Table 5, the results have high consensus
levels on synthetic data. First, the method of DDN (Fu et al.
2017b) by Fu et al. is the obvious winner on the rain streak
(S) set, followed by the approach of JORDER (Yang et al.
2017). Second, DerainDrop (Qian et al. 2018) performs the
best on the rain drop (S) set, especially significantly surpass-
ing the others in terms of full-reference of PSNR and SSIM,
as well as no-reference metric of BLINDS-II, showing that
its specific structure indeed suits the raindrop removal prob-
lem. Other rain streak removal models seem to even hurt
PSNR, SSIM and BLINDS-II, compared to the input rainy
images. For example, CGAN (Zhang et al. 2019) decreases
both PSNR and SSIM on the rain drop (S) set. The main
reason may be that GANs tend to generate some unrealistic
details in the scenes. Finally, for the rain and mist images,
DDN (Fu et al. 2017b) also perform consistently the best

according to PSNR and SSIM. Since STL (Wei et al. 2019) is
trained to adapt real unsupervised diverse rain types through
transferring from the supervised synthesized rain, this model
achieves the highest SSEQ and BLINDS-II values although
it performs worse in terms of full-reference metrics, which
is aligned with the emerging trend of semi-supervised or
unsupervised learning methods by using real-world training
images .

The effectiveness of the winners can be ascribed to the
two-step strategy of rain detection and removal, i.e., first
estimate a mask of rain streaks or raindrops, then remove
rain artifacts capitalized on the mask. We note that DDN
(Fu et al. 2017b) focuses on high frequency details dur-
ing training stage, while JORDER (Yang et al. 2017) also
first detects the locations of rain streak, then removes rain
based on the estimated rain streak regions. Coincidentally,
DeRaindrop (Qian et al. 2018) also uses an attentive gen-
erative network to learn about raindrop regions and their
surroundings first then derain images using the information
of the learnedmasks. Therefore, removing background inter-
ference and attentively focusing on rain regions seem to be
the main reason of the winners in Table 5. In addition, dif-
ferent from conventional deep learning methods which only
use supervised image pairs, the recent work of STL (Wei
et al. 2019) put real rainy images into the network training
process and therefore obtain the best performance in terms
of no-reference metrics.

We then show the derained results on the real-world
images in Table 6, using three no-reference metrics (NIQE,
SSEQ, and BLIINDS-II). Figure 2 shows three correspond-
ing visual comparison examples. The raindrop (R) and rain
and mist (R) sets show consistent results with their synthetic
cases: DerainDrop (Qian et al. 2018) and STL (Wei et al.
2019) rank top-two on the raindrop dataset, while STL (Wei
et al. 2019) still dominates on the rain andmist set. In particu-
lar, DerainDrop (Qian et al. 2018) ranks first in term of all the
three no-reference metrics, thanks to the raindrop attention
map learned by the attentive-recurrent network. However,
some different tendency is observed on the rain streak (R)
set: although DDN (Fu et al. 2017b) still obtain the highest
BLINDS-II value, it has a worse performance according to
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Table 8 Detection results on the RID sets

Rainy JORDER
(Yang et al.
2017)

DDN (Fu
et al.
2017b)

CGAN
(Zhang
et al. 2019)

DID-MDN
(Zhang and
Patel 2018)

DeRaindrop
(Qian et al.
2018)

DAF-Net
(Hu et al.
2019)

STL (Wei
et al. 2019)

mAP FRCNN (Ren et al. 2015) 16.52 16.97 18.36 23.42 16.11 15.58 8.79 6.97

YOLO-V3 (Redmon and
Farhadi 2018)

27.84 26.72 26.20 23.75 24.62 24.96 26.48 24.15

SSD-512 (Liu et al. 2016) 17.71 17.06 16.93 16.71 16.70 16.69 17.05 16.06

RetinaNet (Lin et al. 2018) 23.92 21.71 21.60 19.28 20.08 19.73 21.71 17.76

CenterNet (Zhou et al.
2019)

25.53 24.04 24.05 24.89 26.13 25.55 26.91 21.40

Person FRCNN (Ren et al. 2015) 18.73 16.14 17.53 21.01 16.31 16.71 16.01 12.56

YOLO-V3 (Redmon and
Farhadi 2018)

36.89 34.96 34.94 29.91 30.38 32.13 33.95 30.78

SSD-512 (Liu et al. 2016) 14.79 14.85 14.34 14.08 14.33 14.74 14.74 12.59

RetinaNet (Lin et al. 2018) 30.28 27.65 28.10 23.74 23.74 25.14 26.49 23.68

CenterNet (Zhou et al.
2019)

32.92 31.65 31.89 31.24 33.22 34.53 33.44 28.26

Bicycle FRCNN (Ren et al. 2015) 14.49 12.54 13.87 20.17 10.42 10.13 1.92 1.21

YOLO-V3 (Redmon and
Farhadi 2018)

15.06 16.73 14.55 12.48 12.82 13.20 16.03 15.22

SSD-512 (Liu et al. 2016) 13.34 12.63 12.85 12.16 11.11 12.47 11.36 11.74

RetinaNet (Lin et al. 2018) 17.83 15.46 15.65 13.51 14.18 14.17 13.93 14.20

CenterNet (Zhou et al.
2019)

14.79 13.26 13.88 13.93 13.24 13.92 14.75 14.37

Car FRCNN (Ren et al. 2015) 38.56 34.73 36.15 40.98 35.21 34.79 30.23 24.77

YOLO-V3 (Redmon and
Farhadi 2018)

65.98 63.59 63.28 60.31 62.65 62.05 65.01 61.27

SSD-512 (Liu et al. 2016) 46.01 44.13 44.60 45.00 43.23 41.55 44.60 42.33

RetinaNet (Lin et al. 2018) 54.99 51.07 50.83 48.98 51.62 48.49 54.18 43.18

CenterNet (Zhou et al.
2019)

60.20 58.18 56.64 62.13 66.25 60.78 68.43 54.87

Bus FRCNN (Ren et al. 2015) 12.37 12.40 13.81 17.82 11.48 11.58 3.52 3.47

YOLO-V3 (Redmon and
Farhadi 2018)

42.76 39.47 39.01 34.90 37.11 38.03 38.18 33.97

SSD-512 (Liu et al. 2016) 28.95 27.63 26.35 25.69 28.37 28.22 28.64 26.83

RetinaNet (Lin et al. 2018) 35.82 32.03 34.43 26.38 27.13 27.94 31.09 22.73

CenterNet (Zhou et al.
2019)

39.26 35.63 36.25 35.60 38.27 39.51 39.42 31.29

Motorbike FRCNN (Ren et al. 2015) 8.74 7.33 9.36 14.38 6.61 5.60 1.17 2.92

YOLO-V3 (Redmon and
Farhadi 2018)

6.33 5.54 5.39 4.89 4.74 4.34 6.16 4.00

SSD-512 (Liu et al. 2016) 3.17 3.15 3.44 3.31 3.16 3.13 3.79 3.07

RetinaNet (Lin et al. 2018) 4.59 4.04 4.58 3.10 3.81 2.63 4.27 3.05

CenterNet (Zhou et al.
2019)

5.59 5.53 5.82 6.33 6.59 4.87 5.61 3.92

the SSEQ and NIQE metrics. In contrast, STL (Wei et al.
2019) becomes the dominant winner on those real images
again as like in the rain and mist case, outperforming DDN
(Fu et al. 2017b) with a large margin in terms of SSEQ. As
we observed, since CGAN (Zhang et al. 2019) is most free
of physical priors or rain type assumptions, it has the largest
flexibility for re-training to fit different data. Its results is also
most photo-realistic due to the adversarial loss as shown in
Fig. 2, especially for the rain streak and the rain and mist in

the first and the third images. Additionally, the result might
also suggest a larger domain gap between synthetic and real
rain and mist data.

From Tables 5 and 6, we can observe that despite certain
discrepancy (e.g., when it comes to “bad performers”), the
metrics agree reasonably well on ranking top performers. For
example, the method of DeRaindrop is the clear winner, win-
ning two full-reference metrics on synthetic raindrop images
in Table 5 and three non-reference metrics on real-world
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Table 9 Detection results on the RIS set

Rainy JORDER
(Yang
et al.
2017)

DDN
(Fu et al.
2017b)

CGAN
(Zhang
et al.
2019)

DID-
MDN
(Zhang
and Patel
2018)

DeRaindrop
(Qian
et al. 2018

DAF-Net
(Hu et al.
2019)

STL
(Wei et al.
2019)

mAP

FRCNN (Ren et al. 2015) 22.68 21.41 20.76 18.02 18.93 19.97 13.02 6.35

YOLO-V3 (Redmon and Farhadi 2018) 23.27 20.45 21.80 18.71 21.50 20.43 14.52 11.22

SSD-512 (Liu et al. 2016) 8.19 7.94 8.29 7.10 8.21 8.13 6.20 2.35

RetinaNet (Lin et al. 2018) 12.81 10.71 10.39 9.36 10.33 10.85 15.33 8.60

CenterNet (Zhou et al. 2019) 23.35 24.01 22.77 20.21 23.61 20.94 16.95 9.90

Person

FRCNN (Ren et al. 2015) 14.65 14.51 14.02 10.69 11.37 12.77 6.57 4.28

YOLO-V3 (Redmon and Farhadi 2018) 21.25 20.18 20.33 15.18 18.43 16.73 6.31 5.59

SSD-512 (Liu et al. 2016) 13.05 11.78 11.33 8.32 11.80 9.70 7.24 1.57

RetinaNet (Lin et al. 2018) 10.59 8.81 8.15 6.22 7.22 8.61 8.84 3.99

CenterNet (Zhou et al. 2019) 20.20 22.04 18.99 15.24 20.35 14.67 8.80 4.89

Truck

FRCNN (Ren et al. 2015) 20.29 17.71 17.83 14.14 17.31 17.23 7.92 2.40

YOLO-V3 (Redmon and Farhadi 2018) 21.25 11.80 12.51 9.48 12.75 12.52 7.32 3.23

SSD-512 (Liu et al. 2016) 3.06 3.95 3.76 2.92 4.15 3.88 2.34 1.25

RetinaNet (Lin et al. 2018) 8.14 6.45 6.06 4.66 6.78 7.68 7.86 2.33

CenterNet (Zhou et al. 2019) 12.00 11.49 10.54 8.30 12.09 9.18 6.35 1.50

Car

FRCNN (Ren et al. 2015) 38.54 38.00 37.54 35.80 36.37 35.80 33.04 14.57

YOLO-V3 (Redmon and Farhadi 2018) 44.93 40.21 43.23 42.07 42.61 42.39 37.17 27.64

SSD-512 (Liu et al. 2016) 20.87 19.60 21.42 21.36 20.25 20.39 19.73 7.34

RetinaNet (Lin et al. 2018) 28.80 26.19 26.36 26.26 25.31 25.20 40.00 23.77

CenterNet (Zhou et al. 2019) 43.88 43.54 44.39 43.04 45.27 40.72 41.29 23.47

Bus

FRCNN (Ren et al. 2015) 29.85 26.77 25.41 22.08 23.28 27.04 7.49 6.44

YOLO-V3 (Redmon and Farhadi 2018) 29.63 25.40 25.55 21.85 27.79 25.87 16.36 15.97

SSD-512 (Liu et al. 2016) 1.96 2.29 2.24 2.01 1.87 3.79 1.81 1.39

RetinaNet (Lin et al. 2018) 11.29 8.67 7.88 6.30 9.04 9.10 12.44 11.26

CenterNet (Zhou et al. 2019) 31.31 30.54 29.68 27.09 33.04 29.34 21.00 16.66

Motorbike

FRCNN (Ren et al. 2015) 10.06 10.07 9.02 7.41 6.29 7.00 10.09 4.05

YOLO-V3 (Redmon and Farhadi 2018) 6.92 4.64 7.3 4.97 5.90 4.64 5.46 3.30

SSD-512 (Liu et al. 2016) 2.02 2.08 2.69 0.91 2.96 2.89 0.84 0.45

RetinaNet (Lin et al. 2018) 5.25 3.44 3.49 3.37 3.29 3.67 7.53 1.66

CenterNet (Zhou et al. 2019) 9.38 12.42 10.24 7.37 7.29 10.79 7.29 2.98

raindrop images in Table 6. In addition, the semi-supervised
method of STL (Wei et al. 2019) becomes the dominant win-
ner on those real images, especially in the rain and mist case,
which demonstrates that employing some real images as the
training data is able to deal with rain in real-world cases.

5.2 Subjective Comparison

We next conduct a human subjective survey to evaluate the
performance of image deraining algorithms. We follow a
standard setting that fits a Bradley–Terry model (Bradley
and Terry 1952) to estimate the subjective score for each
method so that they can be ranked, with the exactly same rou-
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(a) Rainy input (b) JORDER [44] (c) DDN [7] (d) CGAN [47]

(e) DID-MDN [9] (f) DeRaindrop [8] (g) DAF-Net [24] (h) Ground-truths

(a) Rainy input (b) JORDER [44] (c) DDN [7] (d) CGAN [47]

(e) DID-MDN [9] (f) DeRaindrop [8] (g) STL [14] (h) Ground-truths

Fig. 3 Visualization of object detection results with YOLO-V3 after applying different deraining algorithms on two images from the RID dataset

tine as described in previous similar works (Li et al. 2019a).
We select 10 images from Rain streak (R), 6 images from
Rain drop (R), and 11 images from Rain and mist (R), taking
all possible care to ensure that they have very diverse con-
tents and quality. Each rain streak or rain and mist image
is processed with each of the seven deraining algorithms
(except DerainDrop Qian et al. 2018), and the seven derain-
ing results, together with the original rainy image, are sent
for pairwise comparison to construct the winning matrix. For
a rain drop image, the procedure is the same except that it
will be processed by all eight methods of GMM (Li et al.
2016), JORDER (Yang et al. 2017), DDN (Fu et al. 2017b),
CGAN (Zhang et al. 2019), DID-MDN (Zhang and Patel
2018), DeRaindrop (Qian et al. 2018), DAF-Net (Hu et al.
2019), and STL (Wei et al. 2019).We collect the pair compar-
ison results of human subject studies from 11 human raters,
i.e., we use the paired comparison approach that requires
each human subject to choose a preferred image from a pair
of derained images. Despite the relatively small numbers of

raters, we observed good consensus and small inter-person
variances among raters, on same pairs’ comparison results,
which make scores trustworthy.

The subjective scores are reported in Table 7. Note that
we did not normalize the scores: so it is the score rank rather
than the absolute score values that makes sense here. On the
rain streak images, it seems that most human viewers prefer
CGAN first, and then DDN. As shown in the first row of Fig.
2, the derained result generated by CGAN is more smooth
than others. The main reason is that CGAN does not focus
on designing a good prior or a good framework, but focus
on ensuring the derained result should be indistinguishable
from its corresponding clear image to a given discriminator.
Therefore, CGAN generate derained results that is consistent
with the human vision. On the raindrop images, it is some-
how to our surprise that DerainDrop as well as other deep
learning-based models is not favored by users; instead, the
non-CNN-based GMMmethod, showed no advantage under
previous objective metrics, was highly preferred by users.
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(a) Rainy input (b) JORDER [44] (c) DDN [7] (d) CGAN [47]

(e) DID-MDN [9] (f) DAF-Net [24] (g) STL [14] (h) Ground-truths

(a) Rainy input (b) JORDER [44] (c) DDN [7] (d) CGAN [47]

(e) DID-MDN [9] (f) DAF-Net [24] (g) STL [14] (h)Ground-truths

Fig. 4 Visualization of object detection results with YOLO-V3 after applying different deraining algorithms on two images from the RIS dataset

We conjecture that the patch-based Gaussian mixture prior
can treat and remove both rain streaks and raindrops as “out-
liers”, and is less sensitive to training/testing data domain
difference. Finally on the rain and mist images, DID-MDN
receives the highest scores, while CGAN is next to it. This is
mainly thanks to incorporating the rain-density subnetwork
or GAN, that can provide more information of the scene
context and hence improve generalization to complex rain
conditions.

FromTables 5, 6 and 7, we can found that the off-the-shelf
no-reference perceptual metrics (SSEQ, NIQE, BLINDS-II)
do not align well with the real human perception quality of
deraining results. In fact, recent works (Choi et al. 2015)
already discovered similar misalignments, when applying
standard no-reference metrics to estimating defogging per-
ceptual quality, and proposed fog-specific metrics. Similar
efforts have not been found for deraining yet, and we expect
this worthy effort to take place in near future.

5.3 Task-Driven Comparison

Wefirst apply all deraining algorithms except GMM,3 to pre-
process the two task-driven testing sets of RID and RIS. Due
to their different rain characteristics, for the RID set, we use
deraining algorithms trained on the raindrop case; for theRIS
set, we use deraining algorithms trained on the rain and mist
case. We visually inspected the derained results and found
the rain to be visually attenuated after applying the selected
deraining algorithms.

We then study object detection performance on the
derained sets, using several state-of-the-art object detection
models: Faster R-CNN (FRCNN) (Ren et al. 2015), YOLO-
V3 (Redmon and Farhadi 2018), SSD-512 (Liu et al. 2016),
RetinaNet (Lin et al. 2018), andCenterNet (Zhou et al. 2019).
FRCNN is two-stage detection model, which recompute fea-
tures for each potential box, then classify those features.
YOLO-V3, SSD-512, RetinaNet are anchor-based one-stage
detectionmodelwhich slide a complex arrangement of candi-

3 We did not include GMM for the two sets, because (1) it did not yield
promising results when we tried to apply it to (part of) the two sets; (2)
it runs very slow, given we have two large sets.
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Table 10 Average no-reference evaluations results of derained results on RID images

JORDER
(Yang et al.
2017)

DDN (Fu
et al.
2017b)

CGAN
(Zhang
et al. 2019)

DID-MDN
(Zhang and
Patel 2018)

DeRaindrop
(Qian et al.
2018)

DAF-Net
(Hu et al.
2019)

STL (Wei
et al. 2019)

SSEQ ↑ 76.9894 74.1293 53.7457 49.0649 50.9312 41.1361 41.2826

NIQE ↓ 3.4373 4.3186 6.2422 7.2907 7.6729 11.2619 8.6634

BLINDS-II ↑ 86.1200 86.5510 51.0408 54.4388 51.0714 37.1500 50.1333

Table 11 Average no-reference evaluations results of derained results on RIS images

JORDER
(Yang et al.
2017)

DDN (Fu
et al.
2017b)

CGAN
(Zhang
et al. 2019)

DID-MDN
(Zhang and
Patel 2018)

DeRaindrop
(Qian et al.
2018)

DAF-Net
(Hu et al.
2019)

STL (Wei
et al. 2019)

SSEQ ↑ 54.8768 53.4738 53.3636 54.6423 54.2766 54.3034 59.7313

NIQE ↓ 6.11641 6.28624 5.02999 5.4222 5.80866 5.7002 3.9031

BLINDS-II ↑ 58.772 57.5176 60.8572 57.9191 69.0596 61.7041 77.1038

date anchor boxes, over the image and classify them directly
without specifying the box content. CenterNet is ancher-free
one-stage detection model which detects a pair of corners of
a bounding box and groups them to form the final detected
bounding box. These are representative detection models in
their respective fields. We compare all deraining algorithms
via the mean Average Precision (mAP) results achieved. It
is important to note that our primary goal is not to opti-
mize detection performance in rainy days, but to use a strong
detection model as a fixed, fair metric on comparing derain-
ing performance from a complementary perspective. In this
way, the object detectors should not be adapted for rainy or
derained images, and we use all authors’ pre-trained models
on the MS-COCO (Lin et al. 2014) dataset.

The underlying hypothesis behind this evaluation protocol
is: (1) an object detector trained on clean natural images will
perform the best when the input is also from the clean image
domain or close; (2) for detection in rain, the better the rain
is removed, the better an object detection model (trained on
clean images) will then perform. Such task-specific evalua-
tion philosophy followsKupyn et al. (2018), Li et al. (2019a).

Tables 8 and 9 report the mAP results and AP results in
each object class comparison for different deraining algo-
rithms, achieved using five different detection models, on
both RID and RIS sets. We find that quite aligned conclu-
sions could be drawn from the two sets.

Perhaps surprisingly at the first glance, we find that
almost all existing deraining algorithms will deteriorate the
detection performance compared to directly using the rainy
images, for YOLO-V3, SSD-512, and RetinaNet. Our obser-
vation concurs the conclusion of another recent study (on
dehazing) (Pei et al. 2018): since those deraining algo-

rithms were not trained/optimized towards the end goal of
object detection, they are unnecessary to help this goal, and
the deraining process itself might have lost discriminative,
semantically meaningful true information.

The two exceptions are FRCNN and CenterNet, where
deraining algorithms could help detection a bit particularly
on the RID dataset. However, the overall mAP results by
FRCNN are often the worst or second worst. That implies
a strong domain mismatch, suggesting that FRCNN results
might not be as reliable an indicator for deraining perfor-
mance as the others. In contrast, when combined with a
deraining algorithm, CenterNet is almost the best detection
methods on both RID and RIS datasets. Particularly, the cas-
caded manner of DAF-Net following the CenterNet achieves
better detection results on the RID set than others, and the
manner of DID-MDN following the CenterNet obtains the
optimal detection results on the RIS set. This demonstrates
that densely connected convolutional neural network based
on rain density could apply to surveillance images in rain.

Both results on RID and RIS sets in Tables 8 and 9 show
that YOLO-V3 achieves best detection performance, inde-
pendently of deraining algorithms applied. Figures 3 and 4
show detections using YOLO-V3 on the respectives rainy
images and their derained results for all deraining algorithms
considered in this comparison. Since both RID and RIS have
many small objects due to their relative long distance from
the camera, we believe that here YOLO-V3 benefits from
its new multi-scale prediction structure, that is known to
improve small object detection dramatically (Redmon and
Farhadi 2018).

We further notice a weak correlation in comparing the
mAP resultswith the full- and no-reference evaluation results
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on RID (Tables 8, 10) and RIS (Tables 9, 11) images. We
can observe this taking STL (Wei et al. 2019) as an exam-
ple. Despite having obtained the highest SSEQ, NIQE, and
BLINDS-II scores on the RIS dataset in Table 11, STL (Wei
et al. 2019) has almost the lowest mAP values between all
deraining approaches for all detection models performances
in Table 9. The main reason may be that the unsupervised
training strategy in Wei et al. (2019) is able to output images
with sharp edge and contrast information close to real-world
images, which consists of the features (e.g., high-frequency
details and image edges) in no-reference metrics. However,
the derained results by STL have some blocking artifacts as
shown in Fig. 4g, which result in the lower detection result
by detection models. Besides that, the two best deraining
competitors (DAF-Net and DID-MDN) in terms of detec-
tion metric did not achieve best results in any no-reference
evaluation metric.

All the results on real-world data experiments in terms of
non-reference and the proposed task-specificmetrics demon-
strate that deraining could be further complicated when
entangledwith other practical degradation. There is no single
metric in perfect tunewith the human subjective score. There-
fore, when designing a deraining algorithm, one needs to be
clear about the end purpose. No-reference metrics are more
appropriate when measuring the visual effect of real-world
images, while the proposed task-specific metric is more reli-
able for high-level machine task performance.

6 Conclusions and FutureWork

This paper proposes a new large-scale benchmark and
presents a thorough survey of state-of-the-art single image
deraining methods. Based on our evaluation and analysis,
we present overall remarks and hypotheses below, which we
hope can shed some light on future deraining research:

• Rain types are diverse and call for specialized models.
Certain models or components are revealed to be promis-
ing for specific rain types, e.g., rain detection/attention,
GANs, and priors like patch-level GMM. We also advo-
cate a combination of appropriate priors and data-driven
methods. While the state-of-the-art image deraining
methods can recover satisfactory sharp images on those
standard benchmark datasets, they tend to fail on real-
world rainy images. The main reason is that real-world
images are often degraded by several factors other than
a single rainy type, such as low-resolution, low-light,
noise, and blur (Kupyn et al. 2019). To deal with the real
complicated, varying rains, one might need to consider
a mixture model of experts. Another practically useful
direction is to develop scene-specific deraining, e.g., for
traffic surveillance views.

• There is no single best deraining algorithm under all
metrics. The most popular evaluation metrics for image
deraining are still PSNR and SSIM. They directly com-
pare the pixel differences between derained images and
the ground-truths when available. However, PSNR and
SSIM cannot measure the perceptual quality precisely.
Therefore, when designing a deraining algorithm, one
needs to be clear about its end purpose. In addition,
since the classical perceptual metrics themselves might
be problematic to evaluate deraining, developing new
metrics could be as important as new algorithms.

• Algorithms trained on synthetic paired data may gen-
eralize poorly to real data, especially on complicated
rain types such as rain and mist. Semi-supervised learn-
ing (Wei et al. 2019), domain generalization (Chen et al.
2020), or unpaired training (Zhu et al. 2017; Jiang et al.
2019) can take advantage of real data even without clean
ground truth. They can potentially boost no-reference
metrics and could be interesting to explore.A recentwork
(Yasarla et al. 2020) seems to make meaningful progress
along this direction.

• Existing deraining algorithms are ineffective in dealing
with different rain types due to domain gaps between
these synthetic images and real-world rainy images, as
the rain models (e.g., rain streak, rain drop, and rain &
mist) are oversimplified.Therefore,we advocate formore
research attention on a bettermodel design to handle rains
in a complex and mixed scene.

• No existing deraining method seems to directly help
detection. Thatmay encourage the community to develop
new robust algorithms to account for high-level vision
problems on real-world rainy images. On the other hand,
to realize the goal of robust detection in rain does not
have to adopt a de-raining pre-processing; there are other
domain adaptation type options, e.g., Chen et al. (2018),
which we will discuss in future work.

.

Acknowledgements This work is supported by the Supported by the
National Key R&D Program of China under Grant 2019YFB1406500,
National Natural Science Foundation of China (Nos. 61802403,
U1605252, U1736219), Beijing Education Committee Cooperation
Beijing Natural Science Foundation (No. KZ201910005007), Beijing
Nova Program (No. Z201100006820074), Beijing Natural Science
Foundation (No. L182057), Peng Cheng Laboratory Project of Guang-
dongProvincePCL2018KP004,Elite Scientist SponsorshipProgramby
the Beijing Association for Science and Technology, CAPES, CNPq,
and the Funding Agency FAPESP (No. 15/22308-2).

References

Barnum, P. C., Narasimhan, S., & Kanade, T. (2010). Analysis of rain
and snow in frequency space. International Journal of Computer
Vision, 86(2–3), 256.

123



1320 International Journal of Computer Vision (2021) 129:1301–1322

Bossu, J., Hautière, N., & Tarel, J.-P. (2011). Rain or snow detection
in image sequences through use of a histogram of orientation of
streaks. International Journal ofComputerVision,93(3), 348–367.

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete
block designs: I. The method of paired comparisons. Biometrika,
39(3/4), 324–345.

Chen, W., Yu, Z., Wang, Z. & Anandkumar, A. (2020). Automated
synthetic-to-real generalization. arXiv preprintarXiv:2007.06965.

Chen, Y., Li, W., Sakaridis, C., Dai, D., & Van Gool, L. (2018). Domain
adaptive faster r-cnn for object detection in the wild. In IEEE
conference on computer vision and pattern recognition (pp. 3339–
3348).

Chen, Y.-L. & Hsu, C.-T. (2013). A generalized low-rank appearance
model for spatio-temporally correlated rain streaks. In IEEE inter-
national conference on computer vision (pp. 1968–1975).

Choi, L. K., You, J., & Bovik, A. C. (2015). Referenceless prediction
of perceptual fog density and perceptual image defogging. IEEE
Transactions on Image Processing, 24(11), 3888–3901.

Dai, D., Sakaridis, C., Hecker, S., Gool, V., & Luc,. (2020). Curriculum
model adaptation with synthetic and real data for semantic foggy
scene understanding. International Journal of Computer Vision,
128(5), 1182–1204.

Dai, D., Wang, Y., Chen, Y., & Van Gool, L. (2016). Is image super-
resolution helpful for other vision tasks? In Winter conference on
applications of computer vision. IEEE.

Ding, X., Chen, L., Zheng, X., Huang, Y., & Zeng, D. (2016). Sin-
gle image rain and snow removal via guided l0 smoothing filter.
Multimedia Tools and Applications, 75(5), 2697–2712.

Eigen, D., Krishnan, D., & Krishnan, R. (2013). Restoring an image
taken through a window covered with dirt or rain. In IEEE inter-
national conference on computer vision.

Fu, X., Huang, J., Ding, X., Liao, Y., & Paisley, J. (2017a). Clearing the
skies: A deep network architecture for single-image rain removal.
IEEE Transactions on Image Processing, 26(6), 2944–2956.

Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., & Paisley, J. (2017b).
Removing rain from single images via a deep detail network. In
IEEE conference on computer vision and pattern recognition.

Fu, X., Liang, B., Huang, Y., Ding, X., & Paisley, J. W. (2020).
Lightweight pyramid networks for image deraining. IEEE Trans-
actions on Neural Networks and Learning Systems, 31(6), 1794–
1807.

Garg, K. & Nayar, S. K. (2004). Detection and removal of rain from
videos. In IEEE conference on computer vision and pattern recog-
nition.

Garg, K., & Nayar, S. K. (2005). When does a camera see rain? In IEEE
International conference on computer vision.

Gu, S., Meng, D., Zuo, W., & Zhang, L. (2017) Joint convolutional
analysis and synthesis sparse representation for single image layer
separation. In IEEE international conference on computer vision
(pp. 1717–1725).

Hahner, M., Dai, D., Sakaridis, C., Zaech, J.-N., &Van Gool, L. (2019).
Semantic understanding of foggy scenes with purely synthetic
data. In Intelligent transportation systems conference (pp. 3675–
3681).

Halder, S. S., Lalonde, J.-F., & de Charette, R. (2019). Physics-based
rendering for improving robustness to rain. In IEEE international
conference on computer vision (pp. 10203–10212).

Hu, X., Fu, C.-W., Zhu, L. & Heng, P.-A. (2019). Depth-attentional
features for single-image rain removal. In IEEE conference on
computer vision and pattern recognition (pp. 8022–8031).

Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., &Wang, Y. (2017).
A novel tensor-based video rain streaks removal approach via
utilizing discriminatively intrinsic priors. In IEEE conference on
computer vision and pattern recognition.

Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen,
X., Yang, J., Zhou, P., & Wang, Z. (2019). Enlightengan:

Deep light enhancement without paired supervision. arXiv
preprintarXiv:1906.06972.

Jin, X., Chen, Z., Lin, J., Chen, Z., & Zhou, W. (2019). Unsupervised
single image deraining with self-supervised constraints. In IEEE
international conference on image processing (pp. 2761–2765).

Kang, L.-W., Lin, C.-W., & Fu, Y.-H. (2012). Automatic single-
image-based rain streaks removal via image decomposition. IEEE
Transactions on Image Processing, 21(4), 1742.

Katrin, H., Ole, J., Daniel, K., & Bastian, G. (2016). A dataset and
evaluation methodology for depth estimation on 4d light fields. In
Asian conference on computer vision (pp. 19–34).

Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., & Matas, J.
(2018). Deblurgan: Blind motion deblurring using conditional
adversarial networks. In IEEE conference on computer vision and
pattern recognition (pp. 8183–8192).

Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2:
Deblurring (orders-of-magnitude) faster and better. In Proceed-
ings of the IEEE international conference on computer vision (pp.
8878–8887).

Lai, W.-S., Huang, J.-B., Hu, Z., Ahuja, N., & Yang, M.-H. (2016).
A comparative study for single image blind deblurring. In IEEE
conference on computer vision and pattern recognition (pp. 1701–
1709).

Lei, Z., Fu, C.-W., Dani, L., & Heng, P.-A. (2017). Joint bilayer
optimization for single-image rain streak removal. In IEEE inter-
national conference on computer vision.

Li, B., Peng,X.,Wang,Z.,Xu, J.&Feng,D. (2017).Aod-net:All-in-one
dehazing network. In IEEE international conference on computer
vision (pp. 4770–4778).

Li, B., Peng, X.,Wang, Z., Xu, J., & Feng, D. (2018). End-to-end united
video dehazing and detection. In AAAI conference on artificial
intelligence.

Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., et al. (2019a).
Benchmarking single-image dehazing and beyond. IEEE Trans-
actions on Image Processing, 28(1), 492–505.

Li,R.,Cheong,L.-F.&Tan,R.T. (2019b).Heavy rain image restoration:
Integrating physics model and conditional adversarial learning. In
IEEE conference on computer vision and pattern recognition (pp.
1633–1642).

Li, S., Iago Araujo, B., Ren, W., Wang, Z., Tokuda, E. K., Junior, R. H.,
Cesar-Junior, R., Zhang, J., Guo, X., & Cao, X. (2019c). Single
image deraining: A comprehensive benchmark analysis. In IEEE
conference on computer vision and pattern recognition (pp. 3838–
3847).

Li, Y., Tan, R. T., Guo, X., Lu, J., & Brown, M. S. (2016). Rain streak
removal using layer priors. In IEEE conference on computer vision
and pattern recognition (pp. 2736–2744).

Li, Y., Tan, R. T., Guo, X., Lu, J., & Brown, M. S. (2017). Single image
rain streak decomposition using layer priors. IEEE Transactions
on Image Processing, 26(8), 3874–3885.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., &Dollár, P. (2018). Focal loss
for dense object detection. IEEE transactions on pattern analysis
and machine intelligence.

Lin, T.-Y., Maire, M., Belongie, S. J., Hays, J., Perona, P. Ramanan, D.,
Piotr. Dollár, C., & Zitnick, L. (2014). Microsoft coco: Common
objects in context. InEuropean conference on computer vision (pp.
740–755).

Liu,D.,Cheng,B.,Wang,Z., Zhang,H.,&Huang,T. S. (2019). Enhance
visual recognition under adverse conditions via deep networks.
IEEE Transactions on Image Processing, 28(9), 4401–4412.

Liu, D., Wen, B., Jiao, J., Liu, X., Wang, Z., & Huang, T. S. (2020).
Connecting image denoising and high-level vision tasks via deep
learning. IEEETransactions on ImageProcessing, 29, 3695–3706.

Liu, D.,Wen, B., Liu, X.,Wang, Z., &Huang, T. S. (2018).When image
denoisingmeets high-level vision tasks: A deep learning approach.

123



International Journal of Computer Vision (2021) 129:1301–1322 1321

In International joint conferenceonartificial intelligence (pp. 842–
848).

Liu, F., Shen, C., Lin, G., & Reid, I. (2016). Learning depth from
single monocular images using deep convolutional neural fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(10), 2024–2039.

Liu, L., Liu, B., Huang, H., & Bovik, A. C. (2014). No-reference image
quality assessment based on spatial and spectral entropies. Signal
Processing: Image Communication, 29(8), 856–863.

Liu,W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg,
A. C. (2016). Ssd: Single shot multibox detector. In European
conference on computer vision (pp. 21–37).

Liu, Y., Zhao, G., Gong, B., Li, Y., Raj, R., Goel, N., Kesav, S.,
Gottimukkala, S., Wang, Z., Ren,W., et al. (2018). Improved tech-
niques for learning to dehaze and beyond: A collective study. arXiv
preprintarXiv:1807.00202.

Luo, Y., Xu, Y., & Ji, H. (2015). Removing rain from a single image via
discriminative sparse coding. In IEEE international conference on
computer vision.

McCartney, E. J. (1976). Optics of the atmosphere: Scattering by
molecules and particles (p. 421). New York: Wiley.

Mittal, A., Soundararajan, R., & Bovik, A. C. (2012). Making a “com-
pletely blind” image quality analyzer. IEEE Signal Processing
Letters, 20(3), 209–212.

Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a “com-
pletely blind” image quality analyzer. IEEE Signal Processing
Letters, 20(3), 209–212.

Pei, Y., Huang, Y., Zou, Q., Lu, Y., & Wang, S. (2018). Does haze
removal help cnn-based image classification? arXiv:1810.05716.

Qian, R., Tan, R. T., Yang,W., Su, J., & Liu, J. (2018). Attentive genera-
tive adversarial network for raindrop removal from a single image.
In IEEE conference on computer vision and pattern recognition.

Redmon, J. & Farhadi, A. (2018). Yolov3: An incremental improve-
ment. arXiv:1804.02767.

Ren, D., Zuo, W., Hu, Q., Zhu, P., & Meng, D. (2019). Progressive
image deraining networks: A better and simpler baseline. In IEEE
conference on computer vision and pattern recognition (pp. 3937–
3946).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems (pp. 91–99).

Ren,W., Liu, S., Zhang, H., Pan, J., Cao, X., &Yang,M.-H. (2016). Sin-
gle image dehazing via multi-scale convolutional neural networks.
In European conference on computer vision.

Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., & Yang, M.-
H. (2018b). Gated fusion network for single image dehazing. In
IEEE conference on computer vision and pattern recognition (pp.
3253–3261).

Ren, W., Pan, J., Zhang, H., Cao, X., & Yang, M.-H. (2020). Single
imagedehazingviamulti-scale convolutional neural networkswith
holistic edges. International Journal of Computer Vision, 128(1),
240–259.

Ren,W., Tian, J.,Han,Z.,Chan,A.,&Tang,Y. (2017).Videodesnowing
and deraining based onmatrix decomposition. In IEEE conference
on computer vision and pattern recognition.

Ren, W., Zhang, J., Xiangyu, X., Ma, L., Cao, X., Meng, G., et al.
(2018a). Deep video dehazing with semantic segmentation. IEEE
Transactions on Image Processing, 28(4), 1895–1908.

Saad, M. A., Bovik, A. C., & Charrier, C. (2012). Blind image quality
assessment: A natural scene statistics approach in the dct domain.
IEEE Transactions on Image Processing, 21(8), 3339–3352.

Sakaridis, C., Dai, D., Gool, V., & Luc,. (2018). Semantic foggy scene
understanding with synthetic data. International Journal of Com-
puter Vision, 126(9), 973–992.

Santhaseelan, V., & Asari, V. K. (2015). Utilizing local phase informa-
tion to remove rain from video. International Journal of Computer
Vision, 112(1), 71–89.

Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International
Journal of Computer Vision, 47(1–3), 7–42.

Scheirer,W., VidalMata, R., Banerjee, S., RichardWebster, B., Albright,
M, Davalos, P., McCloskey, S., Miller, B., Tambo, A., Ghosh, S.,
et al. (2020).Bridging the gapbetween computational photography
and visual recognition. In IEEE transactions on pattern analysis
and machine intelligence.

Schops, T., Schonberger, J. L., Galliani, S., Sattler, T., Schindler, K.,
Pollefeys,M.&Geiger, A. (2017). Amulti-view stereo benchmark
with high-resolution images and multi-camera videos. In IEEE
conference on computer vision and pattern recognition (pp. 3260–
3269).

Sheng, H., Zheng, Y., Ke, W., Dongxiao, Yu., Cheng, X., Lv, W., et al.
(2020). Mining hard samples globally and efficiently for person
re-identification. IEEE Internet of Things Journal, 7(10), 9611–
9622.

Sun, S.-H., Fan, S.-P., & Wang, Y.-C. F. (2014). Exploiting image
structural similarity for single image rain removal. In IEEE inter-
national conference on image processing (pp. 4482–4486).

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V.,
Agarwala, A., et al. (2008). A comparative study of energy
minimizationmethods formarkov randomfieldswith smoothness-
based priors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(6), 1068–1080.

Tokuda, E.K., Lockerman,Y., Ferreira, G. B.A., Sorrelgreen, E., Boyle,
D., Cesar-Jr, R. M., et al. (2020). A new approach for pedestrian
density estimation using moving sensors and computer vision.
ACM Transactions on Spatial Algorithms and Systems (TSAS),
6(4), 1–20.

Wang, T., Yang,X.,Xu,K., Chen, S., Zhang,Q.,&Lau, R.W.H. (2019).
Spatial attentive single-image deraining with a high quality real
rain dataset. In IEEE conference on computer vision and pattern
recognition.

Wang, Z., Chang, S., Yang, Y., Liu, D., & Huang, T. S. (2016). Study-
ing very low resolution recognition using deep networks. In IEEE
conference on computer vision and pattern recognition (pp. 4792–
4800).

Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y. (2019). Semi-supervised
transfer learning for image rain removal. In IEEE conference on
computer vision and pattern recognition.

Xu Q., Wang, Z., Bai, Y., Xie, X., & Jia,H. (2020). Ffa-net: Feature
fusion attention network for single image dehazing. InConference
on artificial intelligence.

Yang, W., Tan, R. T., Feng, J., Liu, J., Guo, Z., & Yan, S. (2016). Joint
rain detection and removal via iterative region dependent multi-
task learning. CoRR, abs/1609.07769, 2(3).

Yang, W., Tan, R. T., Feng, J., Liu, J., Guo, Z., & Yan, S.(2017). Deep
joint rain detection and removal from a single image. In IEEE
conference on computer vision and pattern recognition.

Yang, W., Yuan, Y., Ren, W., Liu, J., Scheirer, W. J., Wang, Z., et al.
(2020). Advancing image understanding in poor visibility envi-
ronments: A collective benchmark study. IEEE Transactions on
Image Processing, 29, 5737–5752.

Yasarla, R., Sindagi, V. A., & Patel, V. M. (2020). Syn2real transfer
learning for image deraining using gaussian processes. InProceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 2726–2736).

You, S., Tan,R. T.,Kawakami, R.,Mukaigawa,Y.,& Ikeuchi,K. (2016).
Adherent raindropmodeling, detection and removal in video. IEEE
Transactions on Pattern Analysis andMachine Intelligence, 38(9),
1721–1733.

123

http://arxiv.org/abs/1810.05716
http://arxiv.org/abs/1804.02767


1322 International Journal of Computer Vision (2021) 129:1301–1322

Yu, Y., Liu, Y., Zhang, H., Chen, S., & Qiao, Y. (2020). FD-GAN: Gen-
erative adversarial networks with fusion-discriminator for single
image dehazing. In Conference on artificial intelligence.

Zhang, H.&Patel, V.M. (2018). Density-aware single image de-raining
using a multi-stream dense network. In IEEE conference on com-
puter vision and pattern recognition.

Zhang, H., Sindagi, V., & Patel, V. M. (2019). Image de-raining using a
conditional generative adversarial network. In IEEE transactions
on circuits and systems for video technology.

Zhang, K., Zuo, W., Gu, S., & Zhang, L. (2017) Learning deep CNN
denoiser prior for image restoration. In IEEE conference on com-
puter vision and pattern recognition.

Zheng, X., Liao, Y., Guo, W., Fu, X., & Ding, X. (2013). Single-
image-based rain and snow removal using multi-guided filter. In
International conference on neural information processing.

Zhou, X., Wang, D., Krähenbühl, P. (2019). Objects as points.
arXiv:1904.07850.

Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. (2017). Unpaired image-
to-image translation using cycle-consistent adversarial networks.
arXiv preprint.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1904.07850

	A Comprehensive Benchmark Analysis of Single Image Deraining: Current Challenges and Future Perspectives
	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Rainy Image Formulation Models
	3 Related Work
	3.1 Overview of Deraining Algorithms
	3.1.1 Model-Driven Algorithms
	3.1.2 Data-Driven Algorithms

	3.2 Datasets

	4 New Benchmark: Multi-purpose Image Deraining (MPID)
	4.1 Training Sets: Three Synthesis Models
	4.2 Testing Sets: From Synthetic to Real
	4.3 Task-Driven Evaluation Sets

	5 Experimental Comparison
	5.1 Objective Comparison
	5.2 Subjective Comparison
	5.3 Task-Driven Comparison

	6 Conclusions and Future Work
	Acknowledgements
	References




