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Abstract
Deep learning-based computer vision is usually data-hungry. Many researchers attempt to augment datasets with synthesized
data to improvemodel robustness. However, the augmentation of popular pedestrian datasets, such as Caltech andCitypersons,
can be extremely challenging because real pedestrians are commonly in low quality. Due to the factors like occlusions, blurs,
and low-resolution, it is significantly difficult for existing augmentation approaches, which generally synthesize data using 3D
engines or generative adversarial networks (GANs), to generate realistic-looking pedestrians. Alternatively, to access much
more natural-looking pedestrians, we propose to augment pedestrian detection datasets by transforming real pedestrians
from the same dataset into different shapes. Accordingly, we propose the Shape Transformation-based Dataset Augmentation
(STDA) framework. The proposed framework is composed of two subsequent modules, i.e. the shape-guided deformation and
the environment adaptation. In the first module, we introduce a shape-guided warping field to help deform the shape of a real
pedestrian into a different shape. Then, in the second stage, we propose an environment-aware blending map to better adapt
the deformed pedestrians into surrounding environments, obtaining more realistic-looking pedestrians and more beneficial
augmentation results for pedestrian detection. Extensive empirical studies on different pedestrian detection benchmarks show
that the proposed STDA framework consistently produces much better augmentation results than other pedestrian synthesis
approaches using low-quality pedestrians. By augmenting the original datasets, our proposed framework also improves the
baseline pedestrian detector by up to 38% on the evaluated benchmarks, achieving state-of-the-art performance.

Keywords Pedestrian detection · Dataset augmentation · Pedestrian rendering

1 Introduction

With the introduction of large-scale pedestrian datasets (Dol-
lár et al. 2009; Dollar et al. 2012; Zhang et al. 2017; Geiger
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et al. 2013), deep convolutional neural networks (DCNNs)
have achieved promising detection accuracy. However, the
trained DCNN detectors may not be robust enough due to
the issue that negative background examples greatly exceed
positive foreground examples during training. Recent stud-
ies have confirmed that DCNN detectors trained with the
limited foreground examples can be vulnerable to difficult
objects which have unexpected states (Huang and Ramanan
2017) and diversified poses (Alcorn et al. 2018).

To improve detector robustness, besides designing new
machine learning algorithms, many researchers attempted
to augment training datasets by generating new foreground
examples. For instance, Huang et al. (Huang and Ramanan
2017) used a 3D game engine to simulate pedestrians and
adapt them into the pedestrian datasets. Other studies (Ma
et al. 2018; Siarohin et al. 2018; Zanfir 2018; Ge et al. 2018)
attempted to augment the person re-identification datasets
by transferring the poses of pedestrians using generative
adversarial networks (GANs). Despite progress, it is still
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Fig. 1 We propose the shape transformation-based dataset augmen-
tation framework for pedestrian detection. In the framework, we
subsequently introduce the shape-guidedwarping field to deformpedes-
trians and the environment-aware blending map to adapt the deformed

pedestrians into background environments. Our proposed framework
can effectively generate more realistic-looking pedestrians for aug-
menting pedestrian datasets in which real pedestrians are usually in
low-quality. Best view in color

very challenging to adequately apply existing augmentation
approaches on the common pedestrian detection datasets.
First, synthesizing pedestrians using external platforms like
the 3D game engines may introduce a significant domain
gap between synthesized pedestrians and real pedestrians,
limiting the overall benefits for the generated pedestrians to
improve the model robustness for detecting real pedestrians.
Moreover, regarding the methods that utilize GANs to render
pedestrians, they generally require rich appearance details
from paired training images to help define the desired output
of generative networks during training procedures. However,
in common pedestrian detection datasets like Caltech (Dollar
et al. 2012) and CityPersons (Zhang et al. 2017), pedestri-
ans are usually in low quality due to the factors like heavy
occlusions, blurry appearance, and low-resolution caused by
small sizes. As a result, these available real pedestrians only
provide extremely limited amount of appearance details that
can be used for training generative networks. Without suf-
ficient description of the desired appearance of synthesized
pedestrians, we can show in our experiments that current
GAN-based methods only generate less realistic or even cor-
rupted pedestrians using very low-quality pedestrians from
common pedestrian detection datasets.

By addressing above issues,wepropose to augment pedes-
trian datasets by transforming real pedestrians from the same
dataset according to different shapes (i.e. segmentation
masks in this study) rather than rendering new pedestri-
ans. Our motivation comes from the following observations.
First, unlike existing methods that require sufficient appear-
ance details to define the desired output, it is much easier to
access rich pixel-level shape deformation supervision which
defines the deformation from a shape to another shape,
if only low-quality pedestrian examples are available in
the datasets. The learned deformation between shapes can

guide the deformation of appearances of the real pedestrians,
avoiding the requirement of detailed supervision information
to directly define the transformed appearances. In addi-
tion, since the shape information can naturally distinguish
foreground areas from background areas, we can simply
focus on adapting synthesized foreground appearances into
background environments, avoiding the rick of further gener-
ating unnatural background environments together with the
synthesized pedestrians as required in current GAN-based
approaches. Last but not the least, we find that transform-
ing real pedestrians based on different shapes can effectively
increase foreground sample diversity while still maintaining
the appearance characteristics of real pedestrians adequately.

Based on these observations, we devise a Shape Transfor-
mation based Dataset Augmentation (STDA) framework to
fulfill the pedestrian dataset augmentation task more effec-
tively. Figure 1 presents an overview of our framework.
In particular, the framework first deforms a real pedes-
trian into a similar pedestrian but with a different shape
and then adapts the shape-deformed pedestrians into sur-
rounding environments on the image to be augmented. In
the STDA framework, we introduce a shape-guided warp-
ing field, which is a set of vectors that define the warping
operation between shapes, to further define an appropriate
deformation between the shapes and the appearances of the
real pedestrians. Moreover, we introduce an environment-
aware blending map to help the shape-deformed pedestrians
better blend into various background environments, deliver-
ing more realistic-looking pedestrians on the image.

In this study, our key contributions are listed as follows:

– We propose a shape transformation-based dataset aug-
mentation framework to augment the pedestrian detec-
tion datasets and improve pedestrian detection accuracy.
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To the best of our knowledge, we are the first that apply
the shape-transformation-based data synthesis method-
ology for pedestrian detection.

– We propose the shape-guidedwarping field to help define
a proper shape deformation procedure. We also intro-
duce an environment-aware blending map to better adapt
the shape-transformed pedestrians into different back-
grounds, achieving better augmentation results on the
image.

– We introduce a shape constraining operation to improve
shape deformation quality. We also apply a hard pos-
itive mining loss to take advantage of the concepts of
hard mining technology and further magnify the benefits
of the synthesized pedestrians for improving detection
robustness.

– Our proposed framework is promising for generating
pedestrians, especially when using low-quality exam-
ples. Comprehensive evaluations on the famous Caltech
(Dollar et al. 2012) and CityPersons (Zhang et al. 2017)
benchmarks validate that our proposed framework can
generate more realistic-looking pedestrians than existing
methods using low-quality data.With pedestrian datasets
augmented by our framework, we promisingly boost the
performance of the baseline pedestrian detector, access-
ing superior performance to other cutting-edgepedestrian
detectors.

2 RelatedWork

2.1 Pedestrian Detection

Pedestrian is critical in many applications such as robotics
and autonomous driving (Enzweiler and Gavrila 2008; Dol-
lár et al. 2009; Dollar et al. 2012; Zhang et al. 2016c) and
downstream tasks like tracking, scene segmentation, and key
point estimation (Chen et al. 2017, 2019; Zhang et al. 2020).
Traditional pedestrian detectors generally use hand-crafted
features (Viola et al. 2005; Ran et al. 2007) and adopt human
part-based detection strategy (Felzenszwalb et al. 2010b) or
cascaded structures (Felzenszwalb et al. 2010a; Bar-Hillel
et al. 2010; Felzenszwalb et al. 2008). Recently, by taking
advantages of large-scale pedestrian datasets (Dollár et al.
2009; Dollar et al. 2012; Zhang et al. 2017; Geiger et al.
2013; Loy et al. 2019), researchers have greatly improved the
pedestrian detection performance with DCNNs (Simonyan
and Zisserman 2014; He et al. 2016; Ouyang and Wang
2013;Ouyang et al. 2017). Among theDCNNdetectors, two-
stage detection pipelines (Ouyang andWang 2013; Ren et al.
2015; Li et al. 2018; Cai et al. 2016; Zhang et al. 2016b; Du
et al. 2017) usually perform better than single-stage detec-
tion pipelines (Liu et al. 2016; Redmon et al. 2016; Lin et al.
2018). Despite progress, the issue that foreground and back-

ground examples are extremely unbalanced in pedestrian
datasets still affects the robustness of the DCNN detectors
adversely. Current pedestrian detectors could still be fragile
to even small transformation of pedestrians. To tackle this
problem, many researchers tend to augment the datasets by
synthesizing new foreground data.

2.2 Simulation-based Dataset Augmentation

To achieve dataset augmentation, researchers have used 3D
simulation platforms to synthesize new examples for the
datasets. For example, (Lerer et al. 2016; Ros et al. 2016)
used a 3D game engine to help build new datasets. More
related studies used the 3D simulation platforms to aug-
ment pedestrian-related datasets. In particular, (Pishchulin
et al. 2011; Hattori et al. 2015) employed a game engine
to synthesize training data for pedestrian detection. In addi-
tion, (Huang and Ramanan 2017) applied a GAN to narrow
the domain gap between the 3D simulated pedestrians and
the natural pedestrians to augment pedestrian datasets, but
this method brings limited improvement on common pedes-
trian detection, suggesting that the domain gap is still large.
However, there is still a significant domain gap between
simulated pedestrians and real pedestrians. Such gap could
further pose negative effects on DCNN detectors, making
the augmented datasets deliver incremental improvements
on pedestrian detection.

2.3 GAN-based Dataset Augmentation

Recently, with several improvements (Radford et al. 2015;
Arjovsky et al. 2017; Gulrajani et al. 2017), GANs
(Goodfellow et al. 2014) have shown great benefits on
synthesis-based applications such as image-to-image trans-
lation (Isola et al. 2017; Liu et al. 2017a; Isola et al. 2017;
Zhu et al. 2017) and skeleton-to-image generation (Villegas
et al. 2017; Yan et al. 2017).

In the literature of person re-identification task, many
works attempted to transfer the poses of real pedestrians
to deliver diversified pedestrians for the augmentation. For
instance, (Liu et al. 2018;Ma et al. 2018; Siarohin et al. 2018;
Zanfir 2018; Ge et al. 2018; Zhang et al. 2017; Ma et al.
2017) introduced various techniques to transform the human
appearance according to 2D or 3D poses and improve the
person re-identification performance. (Vobecky et al. 2019)
proposed a novel approach to generate pedestrians accord-
ing to different poses. The synthesis results are promising and
rare pedestrian situations can be simulated. In practice, these
methods require accurate and reliable pose information or
paired training images that contain rich appearance details to
achieve successful transformation. However, existing widely
used pedestrian datasets like Caltech provide neither pose
annotations nor paired appearance information for training
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Pedestrian Shape/Mask Pose Pedestrian PoseShape/Mask

Fig. 2 Some examples showing that the shape estimation results are
more accurate than pose estimation results on low-quality images using
the same Mask RCNN model. Best view in color

GANs. Furthermore, in current pedestrian datasets, a large
number of small pedestrians whose appearances are usually
in low quality can make existing pose estimators difficult to
deliver reasonable predictions. Figure 2 shows some exam-
ples describing that the poses of low-quality pedestrians are
muchmore unstable than themasks estimated using the same
Mask RCNN (He et al. 2017) detector. As a result, it is quite
infeasible to seamlessly apply these pose transfer models for
augmenting current pedestrian datasets.

In pedestrian detection, some studies have introduced
specifically designed GANs for the augmentation. As an
example, (Ouyang et al. 2018b) modified the pix2pixGAN
(Isola et al. 2017) to make it more suitable for the pedestrian
generation, but this method lacks a particular mechanism
that helps produce diversified pedestrians and the method
still delivers poor generation results based on low-quality
data. In the study (Lee et al. 2018), authors introduced an
end-to-end trainable neural network to fulfill the task for
placing new pedestrian masks and vehicle masks in an urban
scene, but it does not generate transformedpedestrian appear-
ances to augment datasets. Also, (Liu et al. 2019) developed
an effective unrolling mechanism that jointly optimizes a
generative model and a detector to improve detection per-
formance by generating new data to datasets with limited
training examples. This approach directly generates pedes-
trian appearances from noise, while our method mainly
transforms the shapes of real pedestrians to achieve better
augmentation performance on low-quality data.

In this study, we propose that transforming pedestrians
from the original dataset by altering their shapes can pro-
duce diversified and much more lifelike pedestrians without
requiring rich appearance details for supervision.

3 Shape Transformation-based Dataset
Augmentation Framework

3.1 Problem Definition

Data augmentation technique, commonly formulated as
transformations of raw data, has been used to access the
vast majority of the state-of-the-art results in image recog-

nition. The data augmentation is intuitively explained as to
increase the training data size and as a regularizer that can
model hypothesis complexity (Goodfellowet al. 2016;Zhang
et al. 2016a; Dao et al. 2019). In particular, the hypothesis
complexity can be used to measure the generalization error,
which is the difference between the training and test errors, of
learning algorithms (Vapnik 2013; Liu et al. 2017b). Larger
hypothesis complexity usually implies a larger generaliza-
tion error and vice versa. In practice, a small training error
and a small generalization error is favoured to guarantee a
small test error. As a result, the data augmentation is espe-
cially useful for deep learning models which are powerful in
maintaining a small training error but has a large hypothesis
complexity. It has been empirically demonstrated that data
augmentation operations can greatly improve the generaliza-
tion ability of deep models (Cireşan et al. 2010; Dosovitskiy
et al. 2015; Sajjadi et al. 2016).

In this study, the overall goal is to devise a more effec-
tive dataset augmentation framework to improve pedestrian
detection models. The framework is supposed to generate
diversified and more realistic-looking pedestrian examples
to enrich the corresponding datasets in which real pedes-
trians are usually in very low-quality. We achieve this goal
by transforming real pedestrians into different shapes rather
than rendering new pedestrians. Firstly, using a deformation
operation, we properly transform the shapes of pedestrians
into various shapes to enrich the pedestrian appearances. The
deformation introduces appropriate noises to help regular-
ize deep models rather than existing methods like PS-GAN
(Ouyang et al. 2018b) that may distract deep models by
producing less realistic training examples. Secondly, we
apply adequate environment adaptation to better blend the
generated pedestrians into different background areas. This
minimizes the risk of producing obvious unnatural artifacts
that could affect performancewhile keeping the rich diversity
of generated pedestrian appearances. Therefore, our method
can be effective for regularizing the hypothesis complexity.
This is empirically justified by our experiments which show
that using our method to augment datasets can significantly
improve pedestrian detection performance of the baseline
model and out-perform other augmentation methods.

Formally, suppose zi is an image patch containing a real
pedestrian in the dataset and si is its extracted shape or seg-
mentation mask. Here, we refer the shape or “mask” si of
a pedestrian zi as a set of labels, denoted as si (x, y) that
distinguish foreground areas from background areas within
the pedestrian patch, where (x, y) represent coordinates on
the image: si (x, y) = 1 for the location (x, y) being on the
foreground and si (x, y) = 0 for the location (x, y) being
on the background. Denote s j as a different shape which
can be obtained based on another real pedestrian’s shape.
In this study, we implement a shape transformation-based
dataset augmentation function, denoted as fST DA, to gener-
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Fig. 3 Overview of the proposed shape transformation-based dataset
augmentation framework for pedestrian datasets with low-quality
pedestrian data. In particular, we introduce the shape-guided warp-
ing field, Vi→ j , and the environment-aware blending map, (x, y), to
respectively help implement the shape-guided deformation and the envi-
ronment adaptation, obtaining the deformed shape swi→ j , the deformed

pedestrian zw
i→ j , and the transformation result zgeni→ j . By placing the

zgeni→ j into the I , we can effectively augment the original image. In
practice, we employ a U-Net to predict both of the Vi→ j and α(x, y).
Training losses for the U-Net include Lshape, Ladv , Lcyc, and Lhpm .
Best view in color

ate a new pedestrian by transforming a real pedestrian into a
new pedestrian with a more realistic-looking appearance but
with another shape s j for the augmentation:

zgeni→ j = fST DA(zi , si , s j , I ), (1)

where zgeni→ j is a patch containing the newly generated pedes-
trian zi by transforming its shape si into s j , and I is the image
to be augmented.

3.2 Framework Overview

In pedestrian detection datasets, it is difficult to access suffi-
cient appearance details to define the desired zgeni→ j , making
it extremely challenging to generate realistic-looking pedes-
trians using low-quality appearance. To properly implement
the fST DA, we decompose the pedestrian generation task
into two sub-tasks, i.e. shape-guided deformation and envi-
ronment adaptation. The first task focuses on varying the
appearances to enrich data diversity, and the second task
mainly adapts and blends the deformed pedestrians into dif-
ferent environments. More specifically, we first deform the
pedestrian image zi into a new one with similar appear-
ance but a different shape s j . We define the deformation
according to the transformation from si into s j . Then, we

adapt the deformed pedestrian image into some background
environments on the image I . Denote by fSD the func-
tion that implements the shape-guided deformation, and
denote by fE A the function that implements the environment
adaptation. The proposed framework implements fST DA as
follows:

fST DA(zi , si , s j , I ) = fE A( fSD(zi , si , s j ), I ). (2)

Figure 3 shows a detailed architecture of the proposed
framework. As illustrated in the figure, we introduce a shape-
guidedwarpingfield, denoted asVi→ j , to help implement the
shape-guided deformation function. The warping field is for-
mulated as the assignment of vectors on the image plane for
warping between shapes. With the help of Vi→ j , the defor-
mation between different shapes can guide the deformation
of appearances of real pedestrians. We also propose to apply
the environment-aware blendingmap to achieve environment
adaptation. We define the blending map as a set of weighting
parameters to fuse foreground pixel values with background
pixel values. We use α(x, y) to represent an entry of the
blendingmap located at position (x, y). After better adapting
the shape-deformed pedestrian into the background envi-
ronments, we obtain diversified and more realistic-looking
pedestrians to augment pedestrian detection datasets. In prac-
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Fig. 4 A detailed example of the shape-guided warping field Vi→ j
that deforms the shape si (colored in blue) into the shape s j (colored
in purple). (x, y) represent the 2D coordinates of a pixel on the image
plane. vi→ j (x, y) represent a vector that describes the 2D deformation
offsets. Best view in color

tice, we can employ a single end-to-end U-Net (Ronneberger
et al. 2015) to help fulfill the both sub-tasks in a single pass.
The employed network takes as input the pedestrian patch
zi , its shape si , the target shape s j , and a background patch
from I , and then predicts both of the Vi→ j and the α(x, y).
Although it is more intuitive to learn the shape-guided warp-
ingfield and the environment-aware blendingmap separately,
we simply find in practice that the U-Net has the ability to
learn the knowledge for both tasks jointly. The effects of
learning jointly and separately are the same. Learning jointly
greatly simplifies the processing framework and saves com-
putational resources and required parameters. Therefore, we
choose to fuse the learning of both functions by feeding all
the necessary input information to the U-Net at the same
time.

3.2.1 Shape-guided Deformation

In this study, we implement deformation according to
warping operations. In order to obtain a detailed description
about warping operations, we introduce the shape-guided
warping field to further help deform pedestrians. Denote by
vi→ j (x, y) the warping vector located at the (x, y) that helps
warp the shape si into the shape s j . The set of these warping
vectors, i.e. Vi→ j = {vi→ j (x, y)}, then forms a shape-
guided warping field. An example of this warping field can
be found in Fig. 4, where the warping field helps deform the
si (colored in blue) into the s j (colored in purple). Then, sup-
pose fwarp is the function that warps the input image patch
according to the predicted warping field, we then implement
the fSD by:

zw
i→ j = fSD(zi , si , s j ) = fwarp(zi ;Vi→ j ), (3)

Fig. 5 Anexample of the shape constraining operation. In particular,we
combine the shape s j with si based on aweighting function γ (y). c jy and

l jy respectively denote the middle point and the width of the foreground
areas on the line whose vertical offset is y and on the shape s j . ciy
and liy are the corresponding middle point and the width of foreground
areas on the shape si . The γ (y) is a linear function of y, controlling the
combination of si and s j . Best view in color

where zw
i→ j is the warped pedestrian zi according to the

shape s j . In practice, we define that each warping vector
vi→ j (x, y) is a 2D vector which contains the horizontal and
vertical displacements between the mapped warping point
and the original point located at (x, y). Thus,we canmake the
employed network directly predict theVi→ j . In addition, we
implement the fwarp with the help of bilinear interpolation,
since the bilinear interpolation can properly back-propagate
gradients from zw

i→ j toVi→ j , aiding the training effectively.
For more details about using bilinear interpolation for warp-
ing and training, we refer readers to (Jaderberg et al. 2015;
Dai et al. 2017).

To make the shape-guided warping field adequately
describe the deformation between shapes, we define that the
estimated warping field should warp the shape si into the
shape s j . Suppose swi→ j is the warped shape si according
to Vi→ j : swi→ j = fwarp(si ;Vi→ j ). Then, the desired warp-
ing field Vi→ j should make swi→ j as close to s j as possible.
Since si and s j can be easily obtained from the pedestrian
datasets, we are able to access sufficient pixel-level super-
vision to train the employed network. We mainly apply the
L1 distance, ||s j − swi→ j ||1, to measure the distance between
s j and swi→ j . The L1 distance can then be used as the train-
ing loss for the network to learn the desired warping field
that can help generate shape-transformed natural pedestrians
based on Eq. 3.

Shape Constraining Operation: In practice, we observe
that if the target shape s j varies toomuchw.r.t. si , the obtained
warping field may distort the input pedestrians after warp-
ing, resulting in unnatural results that could degrade the
augmentation performance. To avoid this, we apply a shape
constraining operation on the target shape.

More specifically, we define the shape constraining oper-
ation as to constrain the target shape s j by combining it with
the input shape si according to aweighted function. The com-
bination is defined on the middle point and the width of the
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foreground areas in each horizontal line on the s j . Suppose
y is the vertical offset for a horizontal line on s j . We respec-

tively denote c jy and l
j
y as the middle point and the width of

the foreground areas on the line y. Similarly, we refer ciy and
liy to the middle point and width of foreground areas on the
si at line y. We then define the shape constraining operation
as:

{
c jy

′ = γ (y) c jy + (1 − γ (y)) ciy,

l jy
′ = γ (y) l jy + (1 − γ (y)) liy,

(4)

where c jy
′
and l jy

′
represent the center and with on the con-

strained mask, and γ (y) is the weight function w.r.t. y
controlling the strictness of the constraint. According to Eq.
4, the smaller weight value γ (y) can make the target shape
contribute less to the combination result and vice versa. We
set the parameter γ (y) to different values for different parts
of a body. In particular, we define γ (y) as a linear function
which increases from 0 to 1 with y varying from the top
to the bottom. Therefore, when y becomes larger, we make
the γ become larger accordingly. This allows more transfor-
mations for lower parts of a pedestrian body whose vertical
offsets y are large.

We formulate the shape constraining operation according
to Eq. 4 because we mainly hypothesize that varying more
for the lower body of a natural pedestrian is more acceptable
than varying more for the upper body. In particular, we find
that changing toomuch the upper body of a pedestrian would
generally require the change of the viewpoint for that pedes-
trian (e.g. from the side view to the front view) to obtain a
natural appearance. However, the warping operations do not
generate new image contents to generate the pedestrian in a
different viewpoint.

Figure 5 shows a visual example of the introduced shape
constraining operation when constraining s j according to
Eq. 4. We can observe that the proposed shape constraining
operation adequately constrains the s j by making the output
shape closer to si for the upper body of the pedestrian and
closer to s j for the lower body.

3.2.2 Environment Adaptation

After the shape-guided deformation, we place the deformed
pedestrians into the image I to fulfill augmentation.However,
directly pasting deformed pedestrians could sometimes pro-
duce significant appearance mismatch due to the issues like
the discontinuities in illumination conditions and imperfect
shapes predicted by the mask extractor. To refine the gener-
ated pedestrians according to the environments, we further
perform environment adaptation.

To properly blend a shape-deformed pedestrian into the
image I by considering surrounding environments, we intro-

duce an environment-aware blending map to help refine the
deformed pedestrians. We formulate this refinement proce-
dure as follows:

zgeni→ j = fE A(zw
i→ j , I ) = {zai→ j (x, y)}, (5)

where zai→ j (x, y) is the environment adaptation result
located at (x, y):

zai→ j (x, y) =
(
s j (x, y) · (x, y)

)
· zw

i→ j (x, y)

+
(
1 − s j (x, y) · (x, y))

)
· I (x, y), (6)

where (x, y) is an entry value of the environment-aware
blending map located at (x, y). Therefore, this refinement
procedure as described above represents that each out-
put pixel zai→ j (x, y) is a weighted combination of a pixel
zw
i→ j (x, y) from the shape deformed pedestrian patch and
a pixel I (x, y) from the original image. The combination
weight is computed by s j (x, y) · (x, y) where s j (x, y) is 1
for foreground areas and 0 for background areas. An example
of the estimated (x, y) can be found in Fig. 3.

In practice, it is difficult to define the desired refine-
ment result and the desired environment-aware blending
map. Therefore, we can not access appropriate supervision
information to train the employed network for environment
adaptation.Without supervision,we apply an adversarial loss
to facilitate the employed network to learn and blend the
deformed pedestrians into the environments effectively. Sim-
ilar to the shape-guidedwarping field, wemake the employed
network directly predict environment-aware blending map.
Note that we constrain the environment-aware blending map
to prevent changing the appearance of the deformed pedes-
trians toomuch. In particular, we adopt a shifted and rescaled
tanh squashing function to make the values of α(x, y) lie in
a range of 0.8 and 1.2.

3.3 Objectives

Since we employ a single network to predict both the shape-
guided warping field and the environment blending map, we
can unify the objectives for training.

First, to obtain a proper shape-guided warping field, we
introduce a shape deformation loss and a cyclic recon-
struction loss. The shape deformation loss ensures that the
predicted warping field satisfies the constrain as described in
Sect. 3.2.1. The cyclic reconstruction loss then ensures that
the deformed shape and pedestrian can be deformed back to
the input shape and pedestrian. Therefore, we define that the
shape deformation loss function Lshape for a pair of samples
i → j is as follows:

Lshape = E[||s j − swi→ j ||1], (7)
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and the cyclic loss is defined as follows:

Lcyc = E[||si − swj→i ||1 + ||zi − zw
j→i ||1], (8)

where swj→i is the deformation result of swi→ j according to si
and zw

j→i is the deformation result of zw
i→ j using the same

warping field for computing swj→i . As a result, the Eq. 7
describes the L1-based shape deformation loss, and the Eq. 8
form the cyclic reconstruction loss.

In addition, an adversarial loss, denoted as Ladv , is
included to make sure that the shape-guided deformation
and environment adaptation can help produce more realistic-
looking pedestrian patches. Similar with typical GANs, the
adversarial loss is computed by introducing a discriminator
D for the employed network:

Ladv = E[log D(z)] + E[log
(
1 − D(zgeni→ j )

)
], (9)

where z refers to any real pedestrian in the dataset.
Hard Positive Mining Loss: Since our final goal is to

improve the detection performance, we further apply a
hard positive mining loss to magnify the benefits of the
transformed pedestrians on improving detection robustness.
Inspired by the study of hard positive generation (Wang
et al. 2017), we attempt to generate pedestrians that are not
very easy to be recognized by a RCNN detector (Girshick
et al. 2014). Different from the study (Wang et al. 2017) that
additionally introduced an occlusion mask and the spatial
transformation operations to generate hard positives, we only
introduce a loss function to help the employed network learn
to produce harder positives for the RCNN detector. To com-
pute this loss, we additionally train a RCNN, denoted as R,
to distinguish pedestrian patches from background patches
which do not contain pedestrians inside. SupposeLhpm is the
hard positive mining loss, then we have:

Lhpm = E[log(1 − R(zgeni→ j ))] + E[log R(z)]
+E[log(1 − R(b))], (10)

where b refers to background image patches in the dataset.
Although hard mining is a well-developed technology, the
contribution brought byLhpm is to facilitate the synthesis for
pedestrian examples that are more difficult to detect but more
beneficial for training, which is different from common hard
mining approaches.

The major difference between the Lhpm and the Ladv is
that the R distinguishes between pedestrians patches and
background patches, while D in Ladv distinguishes between
true pedestrian patches and the shape-transformed pedestrian
patches.

Overall Loss. To sum up, the overall training objective
L of the network employed to help implement the proposed

framework can be written as follows:

L = ω1Lshape + ω2Lcyc + ω3Ladv + ω4Lhpm, (11)

where ω1, ω2, ω3, ω4 are the corresponding loss weights. In
general, we borrow the setting from the implementation of
pix2pixGAN1 and set the ω1 and ω3 to 100 and 1, respec-
tively. Since we find in the experiment that the network can
hardly learn a proper shape-guided warping field if ω2 is too
large, we empirically set the ω2 to a small value, i.e. 0.5, in
this study. Similarly, we also set ω4 to 0.5 to make the hard
positive mining loss contribute less to the overall objective.
In practice, the network is obtained by minimizing the over-
all lossL, the discriminator D is obtained by maximizing the
Ladv , and the R is obtained by maximizing the Lhpm .

3.4 Dataset Augmentation

When augmenting the pedestrian datasets with the proposed
framework, we attempted to sample more natural locations
and sizes to place the transformed pedestrians in the image.
Fortunately, pedestrian datasets deliver sufficient knowledge
encoded within bounding box annotations to define these
geometric statistics of a natural pedestrian. For example, in
the Caltech dataset (Dollár et al. 2009; Dollar et al. 2012), the
aspect ratio of a pedestrian is usually around 0.41. In addi-
tion, it is also possible to describe the bottom edge ybox and
the height hbox of an annotated bounding box for a pedestrian
using a linear model (Park et al. 2010): hbox = kybox + b,
where k and b are the coefficients. In the Caltech dataset
whose images are 480 by 640, the k and b are found to be
around 1.15 and -194.24. For each image to be augmented,
we sample several locations and sizes according to this lin-
ear model. To avoid sampling patches with inappropriate
background, we tend to constrain that the sampled boxes
should not be quite different from the neighboring boxes of
true pedestrians. For example, we tend to sample locations
around true pedestrians (within 100 pixels), and we constrain
the difference between the height of a sampled patch and the
height of its nearest true pedestrian to be within 20 pixels.
Then, for each sampled location and size, we run the pro-
posed framework and put the transformation result into the
image. Algorithm 1 describes the detailed pipeline of apply-
ing the proposed framework to augment pedestrians dataset.
Algorithm 2 describes in details how we sample a location
and a size in an image, which can reduce the risk of intro-
ducing inappropriate background by sampling around true
pedestrians.

1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Algorithm 1 Pedestrian Dataset Augmentation Pipeline
Require: Natural pedestrians {zi }, the corresponding shapes {si }, and

images from original dataset I = {I }.
Ensure: Augmented dataset images I;
1: for each image I ∈ I do
2: Uniformly sample a number n from the set {1, 2, 3, 4, 5};
3: for m = 1 : n do
4: Sample a location and a size according to Algorithm 2;
5: Sample a pedestrian patch zi , a shape s j from a different

pedestrian, and a background patch cropped from the sampled
location and size on I ;

6: Perform shape-guided deformation according toEq. 3 and then
perform environment adaptation according to Eq. 5, obtaining
zgeni→ j ;

7: Place the zgeni→ j into the image I according to the sampled
location and size;

8: end for
9: end for
10: return I

Algorithm 2 Pedestrian Sampling Strategy
Require: Locations and sizes of ground-truth pedestrians for a frame,

and the estimated k and b for computing pedestrian heights.
Ensure: Newly sampled location (x ′, y′) and size (w′, h′) for the same

frame;
1: while True do
2: if ground-truth pedestrians exist in current frame then
3: randomly sample a ground-truth pedestrian in the frame, and

obtain its location (x, y) and size (w, h);
4: randomly sample an offset (dx, dy) w.r.t. the (x, y) according

to a uniform distribution, such that
√
dx2 + dy2 ≤ 100;

5: compute the newly sampled location (x ′, y′) = (x, y) +
(dx, dy);

6: compute the height according to h′ = ky′ + b, and clip its
value such that |h′ − h| ≤ 20;

7: else
8: randomly sample a location (x ′, y′) in the image;
9: compute the height according to h′ = ky′ + b;
10: end if
11: compute the width according to w′ = αh′

(e.g. in Caltech,α = 0.41+U(−0.1,+0.1), whereU is a uniform
distribution);

12: if h′ is too small (e.g. less than 24 pixels) or
(x ′, y′, w′, h′) heavily overlaps with existing pedestrians (e.g.

IoU > 0.3)
then

13: continue;
14: else
15: break;
16: end if
17: end while
18: return (x ′, y′) and (w′, h′)

4 Experiments

We perform comprehensive evaluation for the proposed
STDA framework to augment pedestrian datasets. We use
the popular Caltech (Dollár et al. 2009; Dollar et al. 2012)
andCityPersons (Zhang et al. 2017) benchmarks for the eval-
uation.

Fig. 6 Detailed structure of the employed U-net. Best view in color.
Each blue rectangle represents a convolution. For each rectangle, num-
bers on the side represent resolution and number on the top represents
channel number

In this section, we will first present the overall dataset
augmentation results on evaluated datasets. Then, we will
validate the improvements in improving detection accuracy
of applying our proposed STDA framework to augment dif-
ferent datasets, comparing to other cutting-edge pedestrian
detectors. Subsequently, we perform detailed ablation stud-
ies on the STDA framework to analyze the effects of different
components in STDA on generating more realistic-looking
pedestrians and on improving detection accuracy.

4.1 Settings and Implementation Details

For evaluation, we consider the log-average miss rates (MR)
against different false positive rates as the major metric to
represent pedestrian detection performance. In the Caltech,
we follow the protocol of (Zhang et al. 2016b) and use around
42k images for training and 4024 images for testing. In the
Citypersons, as suggested in the original study, we use 2975
images for training and perform the evaluation on the 500
images from the validation set. We apply a Mask RCNN to
extract shapes on Caltech and use the annotated pedestrian
masks on Citypersons. To augment the datasets, for each
frame, we transform n pedestrians using our framework and
n is uniformly sampled from {1, 2, 3, 4, 5}. Thus, each image
has the number of positive pedestrians increased by 1 ∼ 5.

For the network employed to implement the framework,
we use the U-net architecture with 8 blocks. All the input and
output patches have a size of 256 × 256. Figure 6 shows the
detailed structure of the employed U-net. Then, both the D
as introduced in Eq. 9 and the R as introduced in Eq. 10 are
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CNNs with 3 convolutional blocks. During optimization, we
reduce the updating frequency of D and R to stabilize the
training, i.e. we update D and R once at every 40-th update
of the U-net. Learning rate is set to 1e − 5 and we perform
training with 80 epochs for a dataset.

We adopt aResNet50-based FPNdetector (Lin et al. 2017)
as our major baseline detector. When training this detector,
wemodified some default parameters according to the pedes-
trian detection task. First, for the region proposal network in
FPN, we follow the (Zhang et al. 2016b) and only use the
anchor with the aspect ratio of 2.44. We discard the 512x512
anchors in FPN because they do not contribute much to the
performance. In addition,we set the batch size as 512 for both
the Region Proposal Network (RPN) and the Regional-CNN
(RCNN) in FPN. To reduce of false positive rates of FPN, we
further set the foreground thresholds of RPN and RCNN to
0.5 and 0.7, respectively. During training, wemake the length
of the shorter size of input images as 720 for Caltech and as
1024 for CityPersons. Both FPN baseline and FPN trained
with our methods are pre-trained on MS COCO (Lin et al.
2014) dataset to gain proper prior knowledge about people.
We train the FPN detector on the Caltech with 3 epochs and
on the CityPersons with 6 epochs. In general, the final per-
formance of the baseline detector is 10.4%meanmiss rate on
Caltech test set and 13.9% mean miss rate on CityerPersons
validation set. Note that we weight the loss values for syn-
thesized pedestrians by a factor of 0.1, reducing the potential
biases towards generated pedestrians rather than real pedes-
trians.

For the hyper parameters introduced in this study, like the
loss weights of cyclic loss and hard positive mining loss, we
mainly select them by performing grid search according to
the quality of generated pedestrians and the performance of
improved detectors.

In addition to FPN, we further adopt aMSCNN (Cai et al.
2016) as another baseline to evaluate our method more com-
prehensively. We use the released source codes to implement
the MS CNN and use similar weight loss for synthesized
pedestrians to train MS CNN with the proposed STDA.

4.2 Dataset Augmentation Results

We first present the pedestrian synthesis results of applying
our STDA framework to augment pedestrian datasets.

4.2.1 Pedestrian Synthesis Results

In Fig. 7, we illustrate the dataset augmentation results
on both the evaluated Caltech dataset and citypersons
dataset. Even if some of the pedestrians are blurry and
lack rich appearance details, we can observe that the shape
transformed pedestrians can still be naturally blended into
the environments of the image, obtaining very realistic-

looking pedestrians for dataset augmentation. Furthermore,
the STDA can also produce pedestrians in uncommon walk-
ing areas, such as in the middle areas of the street. This can
increase the irregular foreground examples for pedestrian
detection, and the model can be more robust in detecting
pedestrians after augmentation. Moreover, with a similar
geometry arrangement with real pedestrians, the illustrated
results can demonstrate that the proposed STDA framework
is effective in generating pedestrians in a similar domainwith
real pedestrians. Besides, our method can produce occlusion
cases, e.g. by overlapping the generated pedestrians over real
pedestrians, which can promisingly increase the amount of
occlusion cases for training and thus improve the detection
robustness for occlusions.

In addition, we also compare our method with another
recently published powerfulGAN-based data rendering tech-
nique, i.e. PS-GAN (Ouyang et al. 2018b), using the same
background patches. We implement the PS-GAN with the
codes released by its authors and follow the original training
scripts to train the model. However, the original PS-GAN
does not include training datasets. For fair comparison, we
modified its training scripts to include the same training data
as used in our method. As mentioned in the paper, there are
plenty of very low-quality pedestrians in our training data.
Furthermore, since we discarded irregular shapes according
to predicted confidence scores of the Mask RCNN, the num-
ber of obtained pedestrians for training is relatively small.
Training schemes for both our study and the PS-GAN are
kept the same. Figure 8a shows some pedestrian synthesis
results using existing GANs. We can find that the com-
pared GAN-based method produces very blurry pedestrians.
Besides, the generated backgrounds can be also unnatural
and distorted. There could be a few reasons why the com-
pared PS-GAN works badly. First, since PS-GAN generates
pedestrians without conditioning on the quality of training
examples, the mix of high-quality data and very low-quality
data as used by us could confuse the PS-GAN during train-
ing and affect the quality of generated pedestrians. Also,
since the number of pedestrians used here for training is
relatively small, it is difficult to train the PS-GAN very thor-
oughly. On the contrary, as shown in Fig. 8b, our proposed
STDA framework can effectively generate much more real-
istic and natural-looking pedestrians in different background
patches. Our method achieves significantly lower score than
PS-GAN, meaning that the STDA-generated pedestrians are
much more similar to the true data. This illustrates its supe-
riority over the GAN-based data rendering methods.

4.2.2 Improvements for Pedestrian Detection

Caltech: To evaluate the augmentation results of our pro-
posed STDA framework, we first perform the evaluation
on the test set of the Caltech benchmark. We evaluate the
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Fig. 7 Dataset augmentation results of the proposed STDA on images from Caltech (top 2 rows) and CityPersons (bottom 3 rows), respectively.
Light green bounding boxes indicate the synthesized pedestrians. The presented image patches are cropped and zoomed to better illustrate the
details. Best view in color

performance gains with respect to the baseline detector to
demonstrate the effectiveness. Figure 9 shows the detailed
performance of our method comparing to other cutting-
edge methods (Ouyang et al. 2018a; Zhang et al. 2018b;
Cai et al. 2016; Li et al. 2018; Zhang et al. 2016b, 2017;
Du et al. 2017; Brazil et al. 2017; Lin et al. 2018). In
particular, our framework improves around 30% miss rate

over the baseline FPN. By further applying the multi-scale
testing, we can achieve 38% improvement, significantly out-
performing other cutting-edge pedestrian detectors. More-
over, our method also delivers 3 points’ improvements over
another baseline detector, MS CNN. Using the multi-scale
testing forMSCNN, ourmethod further improves 3.8 points,
obtaining the lowest averagemiss rates 6.1%. This shows that

123



1132 International Journal of Computer Vision (2021) 129:1121–1138

(a)

(b)

Fig. 8 Pedestrian synthesis results of STDA, comparing to another
cutting-edge GAN-based data generation method. Synthesized pedes-
trians are in the middle of each image patch and background patches
are kept the same. Best view in color

our method can consistently improve different trained detec-
tors.

We also present qualitative results of whether using our
method on the FPN detector in Fig. 11. With limited training
examples in existing datasets, we can find in the figure that
the baseline FPN detector produced inaccurate results (first
column), false positives (second column), or false negatives
(their column). On the contrary, the FPN trained with our
method can correctly detect pedestrians in the correspond-

Fig. 9 Effects of the proposed STDA framework for augmenting the
Caltech pedestrian dataset, comparing to other cutting-edge pedestrian
detectors. “+” means multi-scale testing

Fig. 10 Effects of the proposed STDA framework for augmenting
the Caltech pedestrian dataset, comparing to other pedestrian synthe-
sis methods such as random pasting, PoseGen (Ma et al. 2017), and
PS-GAN (Ouyang et al. 2018b). We also compare our partial method,
“STDA w-o SD”, that only blends pedestrians into environments with-
out shape deformation for ablation study

ing images by providing more accurate boxes and less false
predictions. This further demonstrates that our method is
effective for improving detection performance by including
more diversified training examples.

In Fig. 10, we also compare our framework with some
other augmentation methods, including Pasting that directly
pastes real pedestrians randomly, PS-GAN (Ouyang et al.
2018b) that generates pedestrian patches based on a
pix2pixGAN (Isola et al. 2017) pipeline, and our method
that only blends real pedestrians without shape deformation.
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(b)

(a)

Fig. 11 Comparison of qualitative results about whether applying our
method for dataset augmentation. Red boxes are ground-truths. Green
dotted boxes are detection results. Best view in color

We can find that the three other compared methods can also
slightly improve the baseline detector, suggesting that aug-
menting pedestrian datasets with synthesized pedestrians is
useful for improving detection accuracy. However, due to the
unnatural pedestrians synthesized based on low-quality data
as presented in Fig. 8a, improvements brought by PS-GAN
is very limited. Even random pasting real pedestrians can
deliver a slightly better improvements using low-quality data.
Moreover, we can also observe that the compared methods
have higher false positives per image than the baseline detec-
tor at low miss rates, suggesting that the baseline detector
may be distracted by unnatural pedestrians to some extents.
Comparing to the other compared pedestrian synthesis meth-
ods, the performance gain brought by our proposed STDA
is much more significant with respect to the baseline detec-
tor, confirming that our proposed framework is much more
effective in augmenting pedestrian datasets using low-quality
pedestrian data. Furthermore, with themore realistic-looking
pedestrians synthesized by STDA, the augmented dataset can
consistently improve the baseline detector at all presented
false positives per image. To further validate the idea of
deforming the shapes of pedestrians to augment datasets,
we perform another ablation study to evaluate our method
that only blends real pedestrians into environments without
deforming their shapes. The results are also presented in Fig.
10. It shows that dataset augmentation without using shape
deformation delivers worse performance than our complete
method, even though it improves random pasting perfor-
mance. This demonstrates that the shape deformation, which

Table 1 Performance on occluded (OCC) pedestrians on Caltech test
set. Best results are highlighted in bold. “+” means multi-scale testing

Methods/MR(%) OCC (heavy) OCC (partial)

UDN+ (Ouyang et al. 2018a) 70.3 28.2

FasterRCNN+ATT (Zhang et al. 2018b) 45.2 22.3

SA-FastRCNN (Li et al. 2018) 64.4 24.8

RPN+BF (Zhang et al. 2016b) 74.4 24.2

AdaptFasterRCNN (Zhang et al. 2017) 57.6 26.5

F-DNN+SS (Du et al. 2017) 53.8 15.1

GDFL (Lin et al. 2018) 43.2 16.7

SDS-RCNN (Brazil et al. 2017) 58.5 14.9

FPN (baseline) (Lin et al. 2017) 59.3 22.9

MS-CNN (baseline) (Cai et al. 2016) 59.9 19.2

FPN w STDA (ours) 41.9 17.2

FPN w STDA+ (ours) 43.5 12.4

MS-CNN w STDA (ours) 39.8 13.6

MS-CNN w STDA+ (ours) 40.1 11.7

enhances the diversity of synthetic pedestrians, is important
to improve detection performance.

Besides overall performance,we also present performance
on specific detection attributes. For example, Table 1 shows
the detection accuracy on pedestrians with partial or heavy
occlusions. According to the statistics, we can find that the
proposed STDA can effectively reduce the average miss rate
of the baseline detector for both partial and heavy occluded
pedestrians, achieving favorable performance comparing to
other cutting-edge pedestrian detectors. This confirms that
synthesizing pedestrians with occlusions using our proposed
STDA framework can promisingly help improve the detec-
tion robustness and accuracy of occluded pedestrians in test
set. In addition, we also evaluate the performance of applying
STDA to augment the Caltech on pedestrians with different
aspect ratios in the Table 2. In particular, for the detection on
the pedestrians with “typical” aspect ratios, our proposed
framework is able to boost the performance of the base-
line detector by up to 41%. When detecting the pedestrians
with “a-typical” aspect ratios, our method also promisingly
improves the baseline performance, obtaining the highest
average miss rate among compared pedestrian detectors.
These results demonstrate that our framework can produce
rich diversified and beneficial pedestrians for the augmen-
tation. Furthermore, Table 3 shows detection performance
of pedestrians at medium or far distances. It shows that our
method improves greatly on pedestrians at both distances.
Since “far” pedestrians usually have small sizes (e.g. bound-
ing box heights are less than 80 pixels), our method shows to
be beneficial for enhancing detectors’ performance on small
pedestrians that are originally difficult to detect.

123



1134 International Journal of Computer Vision (2021) 129:1121–1138

Table 2 Performance on pedestrians with diversified aspect ratios (AR)
on Caltech test set. Best results are highlighted in bold. “typical” means
the pedestrians with normal aspect ratios; “a-typical” means the pedes-
trians with unusual aspect ratios; “+” means multi-scale testing

Methods/MR(%) AR(typical) AR(a-typical)

UDN+ (Ouyang et al. 2018a) 7.8 14.9

FasterRCNN+ATT (Zhang et al. 2018b) 6.0 19.4

SA-FastRCNN (Li et al. 2018) 5.7 15.8

RPN+BF (Zhang et al. 2016b) 6.0 14.5

AdaptFasterRCNN (Zhang et al. 2017) 5.0 16.2

F-DNN+SS (Du et al. 2017) 5.1 13.3

GDFL (Lin et al. 2018) 4.5 14.7

SDS-RCNN (Brazil et al. 2017) 4.6 11.7

FPN (baseline) (Lin et al. 2017) 6.6 15.7

MS-CNN (baseline) (Cai et al. 2016) 6.3 15.7

FPN w STDA (ours) 4.5 11.3

FPN w STDA+ (ours) 3.9 9.9

MS-CNN w STDA (ours) 4.3 11.2

MS-CNN w STDA+ (ours) 3.4 9.8

Table 3 Performance onpedestrianswith different distances onCaltech
test set. Best results are highlighted in bold. “far” means the pedestri-
ans at longer distances; “medium” means the pedestrians at medium
distances; “+” means multi-scale testing

Methods/MR(%) AR(medium) AR(far)

UDN+ (Ouyang et al. 2018a) 53.8 100

FasterRCNN+ATT (Zhang et al. 2018b) 40.7 90.9

SA-FastRCNN (Li et al. 2018) 51.8 100

RPN+BF (Zhang et al. 2016b) 53.9 100

AdaptfasterRCNN (Zhang et al. 2017) 48.5 99.8

F-DNN+SS (Du et al. 2017) 33.1 77.4

GDFL (Lin et al. 2018) 32.5 71.0

SDS-RCNN (Brazil et al. 2017) 50.9 100

FPN (baseline) (Lin et al. 2017) 40.3 82.4

MS-CNN (baseline) (Cai et al. 2016) 49.1 97.2

FPN w STDA (ours) 32.6 74.4

FPN w STDA+ (ours) 31.3 70.9

MS-CNN w STDA (ours) 32.8 76.9

MS-CNN w STDA+ (ours) 31.5 75.3

CityPersons: In this section, we also report the perfor-
mance on the validation set of CityPersons. The experiment
settings are similar to the evaluation for the Caltech dataset
except that image sizes are 1024 × 2048 for training and
testing.

Table 4 presents the detailed statics of the evaluated meth-
ods. We can find that our framework effectively augments
the original dataset and improves the performance of the
baseline FPN detector. Besides, our approach also improves

Table 4 Performance on the validation set of CityPersons. Best results
are highlighted in bold. “+’ means multi-scale testing

Method/MR% Reasonable Heavy Partial Bare

Citypersons (Zhang et al. 2017) 15.4 – – –

TLL (Song et al. 2018) 14.4 52.0 15.9 9.2

RepultionLoss (Wang et al. 2018) 13.2 56.9 16.8 7.6

OR-CNN (Zhang et al. 2018a) 12.8 55.7 15.3 6.7

FPN (baseline) (Lin et al. 2017) 13.9 52.9 15.4 8.5

MS CNN (baseline) (Cai et al. 2016) 13.2 51.4 13.9 8.2

FPN w STDA (ours) 11.0 44.1 11.3 6.4

FPN w STDA+ (ours) 10.2 41.9 10.5 5.8

MS CNN w STDA (ours) 10.6 43.4 10.6 6.3

MS CNN w STDA+ (ours) 10.0 41.3 9.9 5.6

the MS CNN promisingly. The MS CNN trained with our
approach achieves the highest single model and multi-scale
testing results among compared detectors. By achieving
state-of-the-art performance with our proposed framework,
we can validate that our proposed framework can consis-
tently augment different pedestrian datasets with low-quality
pedestrian data.

4.3 Ablation Studies

In this section, we perform comprehensive component analy-
sis of the proposed STDA framework for both the pedestrian
generation and the pedestrian detection augmentation, using
the low-quality pedestrians inCaltech dataset and theCaltech
benchmark for training.

4.3.1 Qualitative Study

We first evaluate the qualitative effects of different com-
ponents in the STDA framework for the pedestrian gen-
eration task. In particular, we start the experiments from
only using the shape-guided deformation supervised by
Lshape for pedestrian generation. Then, we gradually add
the shape-constraining operation, cyclic reconstruction loss
Lcyc, adversarial loss Ladv , environment-aware blending
map e(x, y), and hard positive mining loss Lhpm to help
generate pedestrians.We present the effects of different com-
ponents by generating pedestrians based on low-quality real
pedestrian data in the Fig. 12. According to the presented
results, we can observe that the quality of the generated
pedestrians is progressively improved by introducing more
components, demonstrating the effectiveness of the differ-
ent components in STDA framework. More specifically, the
shape constraining operation can first help the deformation
operation produce less distorted pedestrians. Then, by adding
the cyclic loss Lcyc and adversarial loss Ladv , the obtained
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Fig. 12 Visual effects of
different components in the
proposed STDA framework.
“SC” means shape constraining
operation; “EBM” means
environment-aware blending
map; “HPM” means hard
positive mining. Best view in
color

Fig. 13 Visual effects of different sampling strategies to place synthesized pedestrians. True pedestrians are highlighted in red boxes. Sampled
pedestrians are highlighted in green boxes. Frames are zoomed for better illustration. Best view in color

pedestrians become more realistic-looking in details. Sub-
sequently, the introduced environment-aware blending map
trained by Lebm helps the transformed pedestrians better
adapt into the background image patch. Lastly, the Lhpm

can slightly change some appearance characteristics, such
as illumination or color, to make the pedestrians less dis-
tinguishable from the environments, which actually further
improve the pedestrian generation results.

In addition, we also evaluate the effects of pedestrian sam-
pling strategy as described in Sect. 3.4 and Algorithm 2. The
qualitative results are presented in Fig. 13. We compared
three different schemes for sampling locations and sizes to
place synthesized pedestrians: (a) we sample pedestrians in
the image pure randomly; (b) we sample pedestrians in the

image only according to the linear model; (c) we sample
pedestrians according to the linearmodel and true pedestrians
as described in Algorithm 2. From the presented results, we
can find that scheme (a) will generate unnatural locations and
sizes, making the synthesized pedestrians being placed into
inappropriate background areas. Then, scheme (b) improves
the effects of (a) promisingly, but the sampled sizes are still
sub-optimal. The scheme (c) has the best sampling quality
and can generatemore appropriate locations and sizes, reduc-
ing the risk of including inappropriate background contents
significantly.

Lastly, we compared different learning strategies for the
proposed network, including the separate learning and the
joint learning. The joint learning trains the network to pre-
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(a) (b) (c) (d)

Fig. 14 Visual effects of different learning strategies for training our
developed network. Best view in color

Table 5 Effects of different components in the proposed STDA frame-
work on the selected validation set on Caltech dataset. “SC” means
shape constraining operation; “EBM”means environment-aware blend-
ing map; “HPM” means hard positive mining

Baseline Lshape SC Lcyc Ladv EBM HPM MR%

✓ 10.77

✓ ✓ 10.58

✓ ✓ ✓ 10.31

✓ ✓ ✓ ✓ 9.03

✓ ✓ ✓ ✓ ✓ 8.56

✓ ✓ ✓ ✓ ✓ ✓ 7.73

✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.49

dict both shape-guided warping field and environment-aware
blending map at the same time, while the separate learning
trains two independent networks to predict the shape-guided
warping field and environment-aware blending map, respec-
tively. Figure 14 shows the synthesis results of using two
learning strategies. We can find that both learning strategies
produces identical synthesis performance, illustrating that
the developed network for synthesizing pedestrians is insen-
sitive to learning schemes.

4.3.2 Quantitative Study

To perform ablation studies, we split the training set of Cal-
tech into one smaller training set and one validation set.More
specifically, we collect the frames from the first four sets in
the training as training images, while the frames from the last
set are considered as validation images.We sample every 30-
th frame in the overall dataset to set up the training/validation
set. Note that this setting of training/validation set is ONLY
used for ablation study.

Table 5 presents the detailed results. We can find that
each of the introduced component, including shape con-
straining operation (SC), cyclic loss (Lcyc), adversarial loss
(Ladv), the environment-aware blending map (EBM), and

Table 6 Effects of using different sampling strategies to place syn-
thesized pedestrians on the selected validation set on Caltech dataset.
Compared strategies include: (a) Sample pedestrians pure randomly; (b)
Sample pedestrians according to the linear model; (c) Sample pedestri-
ans according to the linear model and true pedestrians

(a) (b) (c)

MR% 8.07 7.68 7.49

the hard positive mining (HPM), can all contribute a promis-
ing average miss rate reduction. In particular, the cyclic
and adversarial loss that helps better deform pedestrians
and the environment-aware blending map that helps bet-
ter adapt deformed pedestrians can both greatly boost the
benefits of synthesized pedestrians on improving detection
accuracy. The proposed hard positive mining scheme can
further improve the detection accuracy, demonstrating its
effectiveness in dataset augmentation. Based on the qualita-
tive analysis as shown in Fig. 12, we can further conclude that
augmenting pedestrian datasets with more realistic-looking
pedestrians can deliver better improvements on detection
accuracy.

We also studied the influence of different sampling strate-
gies on the detection performance. Table 6 shows the results.
We can find that pure random sampling that may introduce
inappropriate background areas for synthesized pedestrians
offers limited help for the detection performance. Introducing
the linearmodel to sample locations and sizes for synthesized
pedestrians then improves random sampling promisingly,
indicating that the linear model provides a more reasonable
way to place synthesized pedestrians. By further considering
true pedestrians, we obtained the best performance, illustrat-
ing that using both the linear model and true pedestrians tend
to avoid unnatural background areas for inserting synthesized
pedestrians.

We further studied the effects of different learning strate-
gies, i.e. the joint learning and the separate learning, on the
selected validation set of Caltech dataset. The joint learning
which is applied in our major implementation has a detec-
tion score of 7.49% log-average miss rate on the validation
set. The separate learning then achieves a similar detection
score which is 7.51% log-average miss rate on the validation
set. This shows that the synthesis results brought by separate
learning have nearly the same benefits for improving detec-
tion compared to the joint learning.

5 Conclusions

In this study, we present a novel shape transformation-
baseddataset augmentation framework to improvepedestrian
detection. The proposed framework can effectively deform
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natural pedestrians into a different shape and can adequately
adapt the deformed pedestrians into various background
environments. Using low-quality pedestrian data available in
the datasets, our proposed framework produces much more
lifelike pedestrians than other cutting-edge data synthesis
techniques. By applying the proposed framework on the two
different well-known pedestrian benchmarks, i.e. Caltech
andCityPersons,we improve the baseline pedestrian detector
with a great margin, achieving state-of-the-art performance
on both of the evaluated benchmarks.
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