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Abstract
Scene text recognition is an important task in computer vision. Despite tremendous progress achieved in the past few years,
issues such as varying font styles, arbitrary shapes and complex backgrounds etc. have made the problem very challenging.
In this work, we propose to improve text recognition from a new perspective by separating the text content from complex
backgrounds, thus making the recognition considerably easier and significantly improving recognition accuracy. To this end,
we exploit the generative adversarial networks (GANs) for removing backgrounds while retaining the text content . As
vanilla GANs are not sufficiently robust to generate sequence-like characters in natural images, we propose an adversarial
learning framework for the generation and recognition of multiple characters in an image. The proposed framework consists
of an attention-based recognizer and a generative adversarial architecture. Furthermore, to tackle the issue of lacking paired
training samples, we design an interactive joint training scheme, which shares attention masks from the recognizer to the
discriminator, and enables the discriminator to extract the features of each character for further adversarial training. Benefiting
from the character-level adversarial training, our framework requires only unpaired simple data for style supervision. Each
target style sample containing only one randomly chosen character can be simply synthesized online during the training.
This is significant as the training does not require costly paired samples or character-level annotations. Thus, only the input
images and corresponding text labels are needed. In addition to the style normalization of the backgrounds, we refine character
patterns to ease the recognition task. A feedback mechanism is proposed to bridge the gap between the discriminator and
the recognizer. Therefore, the discriminator can guide the generator according to the confusion of the recognizer, so that the
generated patterns are clearer for recognition. Experiments on various benchmarks, including both regular and irregular text,
demonstrate that our method significantly reduces the difficulty of recognition. Our framework can be integrated into recent
recognition methods to achieve new state-of-the-art recognition accuracy.
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1 Introduction

Recognizing text in the wild has attracted great interest in
computer vision (Ye and Doermann 2015; Zhu et al. 2016;
Yang et al. 2017; Shi et al. 2018; Yang et al. 2019a). Recently,
methods based on convolutional neural networks (CNNs)
(Wang et al. 2012; Jaderberg et al. 2015, 2016) have sig-
nificantly improved the accuracy of scene text recognition.
Recurrent neural networks (RNNs) (He et al. 2016b; Shi et al.
2016, 2017) and attention mechanism (Lee and Osindero
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Fig. 1 Examples of scene text with complex backgrounds, making
recognition very challenging

2016; Cheng et al. 2017, 2018; Yang et al. 2017) are also
beneficial for recognition.

Nevertheless, recognizing text in natural images is still
challenging and largely remains unsolved (Shi et al. 2018).
As shown in Fig. 1, text is found in various scenes, exhibit-
ing complex backgrounds. The complex backgrounds cause
difficulties for recognition. For instance, the complicated
images often lead to attention drift (Cheng et al. 2017) for
attention networks. Thus, if the complex background style
is normalized to a clean one, the recognition difficulty will
significantly decreases.

With the development of GANs (Johnson et al. 2016;
Cheng et al. 2019; Jing et al. 2019) in recent years, it is
possible to migrate the scene background from a complex
style to a clean style in scene text images. However, vanilla
GANs are not sufficiently robust to generate sequence-like
characters in natural images (Fang et al. 2019). As shown
in Fig. 2a, directly applying the off-the-shelf CycleGAN
fails to retain some strokes of the characters. In addition,
as reported by (Liu et al. 2018b), applying a similar idea of
image recovery to normalize the backgrounds for sequence-
like objects fails to generate clean images. As illustrated in
Fig. 2b, some characters on the generated images are cor-
rupted, which leads to misclassification. One possible reason
for this may be the discriminator is designed to focus on non-
sequential object with a global coarse supervision (Zhang
et al. 2019). Therefore, the generation of sequence-like char-
acters requires more fine-grained supervision.

One potential solution is to employ the pixel-wise super-
vision (Isola et al. 2017), which requires paired training
samples aligning at pixel level. However, it is impossible
to collect paired training samples in the wild. Furthermore,
annotating scene text images with pixel-wise labels can be
intractably expensive. To address the lack of paired data, it is
possible to synthesize a large number of paired training sam-
ples, because synthetic data is cheaper to obtain. This may
be why most state-of-the-art scene text recognition methods
(Cheng et al. 2018; Shi et al. 2018; Luo et al. 2019) only
use synthetic samples (Jaderberg et al. 2014a; Gupta et al.
2016) for training, as tens of millions of training data are
immediately available. However, experiments of (Li et al.
2019) suggest that there exists much room for improvement
in synthesis engines. Typically a recognizer trained using real

Fig. 2 Text content extraction of (a) CycleGAN, (b) (Liu et al. 2018b)
and (c) ourmethod.Ourmethod uses character-level adversarial training
and thus better preserves the strokes of every character and removes
complex backgrounds

data significantly outperforms the ones trained using syn-
thetic data due to the domain gap between artificial and real
data. Thus, to enable broader application, our goal here is to
improve GANs to meet the requirement of text image gener-
ation and address the unpaired data issue.

We propose an adversarial learning framework with an
interactive joint training scheme, which achieves success in
separating text content frombackground noises by using only
source training images and the corresponding text labels.
The framework consists of an attention-based recognizer and
a generative adversarial architecture. We take advantage of
the attention mechanism in the attention-based recognizer to
extract the features of each character for further adversarial
training. In contrast to global coarse supervisions, character-
level adversarial training provides guidance for the generator
in a fine-grained manner, which is critical to the success of
our approach.

Our proposed framework is a meta framework. Thus,
recent mainstream recognizers (Cheng et al. 2018; Shi et al.
2018; Luo et al. 2019; Li et al. 2019) equippedwith attention-
based decoders (Bahdanau et al. 2015) can be integrated into
our framework. As illustrated in Fig. 3, the attention-based
recognizer predicts amask for each character,which is shared
with the discriminator. Thus, the discriminator is able to focus
on every character and guide the generator to filter out vari-
ous background styles while retaining the character content.
Benefiting from the advantage of the attention mechanism,
the interactive joint training scheme requires only the images
and corresponding text labels,without requirement of charac-
ter bounding box annotation. Simultaneously, the target style
training samples can be simply synthesized online during the
training. As shown in Fig. 4, for each target style sample, we
randomly choose one character and simply render the char-
acter onto a clean background. Each sample contains a black
character on a white background or a white character on a
black background. The target style samples are character-
level, whereas the input style samples are word-level. The
unpaired training samples suggest our trainingprocess is flex-
ible.

Moreover, we take a further step of the interactive joint
training scheme. In addition to the sharing of attentionmasks,
we proposed a feedback mechanism, which bridge the gap
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Fig. 3 Interactive joint training of our framework. The attention-based
recognizer shares the position and prediction of every character with
the discriminator, whereas the discriminator learns from the confusion
of the recognizer, and guides the generator so that it can generate clear
text content and clean background style to ease reading

between the recognizer and the discriminator. The discrim-
inator guides the generator according to the confusion of
the recognizer. Thus, the erroneous character patterns on the
generated images are corrected. For instance, the patterns
of the characters “C” and “G” are similar, which can easily
cause failed prediction of the recognizer. After the training
using our feedback mechanism, the generated patterns are
more discriminative, and incorrect predictions on ambigu-
ous characters can be largely avoided.

To summarize, our main contributions are as follows.

1) We propose a framework that separates text content from
complex background styles to reduce recognition dif-
ficulty. The framework consists of an attention-based
recognizer and a generative adversarial architecture. We
devise an interactive joint training of them, which is crit-
ical to the success of our approach.

2) The shared attention mask enables character-level adver-
sarial training.Thus, the unpaired target style samples can
be simply synthesized online. The training of our frame-
work requires only the images and corresponding text
labels. Additional annotations such as bounding boxes
or pixel-wise labels are unnecessary.

3) We further propose a feedback mechanism to improve
the robustness of the generator. The discriminator learns
from the confusion of the recognizer and guides the gen-
erator so that it can generate clear character patterns that
facilitate reading.

4) Our experiments demonstrate that mainstream recog-
nizers can benefit from our method and achieve new
state-of-the-art performance by extracting text content
from complex background styles. This suggests that our
framework is a meta-framework, which is flexible for
integration with recognizers.

Fig. 4 Training samples and generations. Left: Widely used training
datasets released by (Jaderberg et al. 2014a) and (Gupta et al. 2016).
Middle: Unpaired target style samples, which are character-level and
synthesized online. Right: Output of the generator

2 RelatedWork

In this section, we review the previous methods that are most
relevant to ours with respect to 2 categories: scene text recog-
nition and generative adversarial networks.

2.1 Scene Text Recognition

Overviews of the notable work in the field of scene text
detection and recognition have been provided by (Ye and
Doermann 2015) and (Zhu et al. 2016). The methods
based on neural networks outperform the methods with hand
crafted features, such as HOG descriptors (Dalal and Triggs
2005), connected components (Neumann and Matas 2012),
strokelet generation (Yao et al. 2014), and label embedding
(Rodriguez-Serrano et al. 2015), because the trainable neu-
ral network is able to adapt to various scene styles. For
instance, (Bissacco et al. 2013) applied a network with five
hidden layers for character classification, and (Jaderberg et al.
2015) proposed a CNN for unconstrained recognition. The
CNN-based methods significantly improve the performance
of recognition.

Moreover, the recognition models yield better robustness
when they are integrated with RNNs (He et al. 2016b; Shi
et al. 2016, 2017) and attention mechanisms (Lee and Osin-
dero 2016; Cheng et al. 2017, 2018; Yang et al. 2017). For
example, (Shi et al. 2017) proposed an end-to-end trainable
network using both CNNs and RNNs, namely CRNN. (Lee
and Osindero 2016) proposed a recursive recurrent network
using attention modeling for scene text recognition. (Cheng
et al. 2017) used a focusing attention network to correct atten-
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tion alignment shifts caused by the complexity or low-quality
of images. These methods have made great progress in reg-
ular scene text recognition.

With respect to irregular text, the irregular shapes intro-
ducemore backgroundnoise into the images,which increases
recognition difficulty. To tackle this problem, (Yang et al.
2017) and (Li et al. 2019) used the two-dimensional (2D)
attention mechanism for irregular text recognition. (Liao
et al. 2019b) recognized irregular scene text from a 2D
perspective with a semantic segmentation network. Addi-
tionally, (Liu et al. 2016), (Shi et al. 2016, 2018), and
(Luo et al. 2019) proposed rectification networks to transform
irregular text images into regular ones, which alleviates the
interference of the background noise, and the rectified images
become readable by a one-dimensional (1D) recognition net-
work. (Yang et al. 2019a) used character-level annotations
for supervision for a more accurate description for rectifica-
tion. Despite the many praiseworthy efforts that have been
made, irregular scene text on complex backgrounds is still
difficult to recognize in many cases.

2.2 Generative Adversarial Networks

With the widespread application of GANs (Goodfellow et al.
2014; Mao et al. 2017; Odena et al. 2017; Zhu et al. 2017),
font generation methods (Azadi et al. 2018; Yang et al.
2019b) using adversarial learning have been successful on
document images. These methods focus on the style of a
single character and achieve incredible visual effects.

However, our goal is to perform style normalization on
noisy background, rather than the font, size or layout. A fur-
ther challenge is to keep multiple characters for recognition.
That means style normalization of the complex backgrounds
of scene text images requires accurate separation between
the text content and background noise. Traditional bina-
rization/segmentation methods (Casey and Lecolinet 1996)
typically work well on document images, but fail to han-
dle the substantial variation in text appearance and the noise
in natural images (Shi et al. 2018). Style normalization of
background in scene text images remains an open problem.

Recently, several attempts on scene text generation have
taken a crucial step forward. (Liu et al. 2018b) guided the fea-
turemaps of anoriginal image towards those of a clean image.
The feature-level guidance reduces the recognition difficulty,
whereas the image-level guidance does not result in a signif-
icant improvement in text recognition performance. (Fang
et al. 2019) designed a two-stage architecture to generate
repeated characters in images. An additional 10k synthetic
images boost the performance, but more synthetic images
do not improve accuracy linearly. (Wu et al. 2019) edited
text in natural images using a set of corresponding synthetic
training samples to preserve the style of both background
and text. Thesemethods provided sufficient visualized exam-

Fig. 5 Attention decoder, which recurrently attends to informative
regions and outputs predictions

ples. However, the poor recognition performance on complex
scene text remains a challenging problem.

We are interested in taking a further step to enable recog-
nition performance to benefit from generation. Our method
integrates the advantages of the attention mechanism and
the GAN, and jointly optimizes them to achieve better
performance. The text content is separated from various
background styles, which are normalized for easier reading.

3 Methodology

We design a framework to separate text content from noisy
background styles, through an interactive joint training of an
attention-based recognizer and agenerative adversarial archi-
tecture. The shared attention masks from the attention-based
recognizer enable character-level adversarial training. Then,
the discriminator guides the generator to achieve background
style normalization. In addition, a feedback mechanism
bridges the gap between the discriminator and recognizer.
The discriminator guides the generator according to the con-
fusion of the recognizer. Thus, the generator can generate
clear character patterns that facilitate reading.

In this section, we first introduce the attention decoder in
mainstream recognizers. Then, we present a detailed descrip-
tion of the interactive joint training scheme.

3.1 Attention Decoder

To date the attention decoder (Bahdanau et al. 2015) has
become widely used in recent recognizers (Shi et al. 2018;
Luo et al. 2019; Li et al. 2019; Yang et al. 2019a). As
shown in Fig. 5, the decoder sequentially outputs predic-
tions (y1, y2..., yN ) and stops processing when it predicts an
end-of-sequence token ′′EOS′′ (Sutskever et al. 2014). At
time step t , output yt is given by

yt = softmax(Woutst + bout), (1)
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Fig. 6 Interactive joint training. The recognizer shares attention masks
with the discriminator, whereas the discriminator learns from the pre-
dictions of the recognizer and updates the generator using ground truth.

The shared attention masks work on feature maps, which we present in
the generated images for better visualization

where st is the hidden state at the t-th step. Then, we update
st by

st = GRU (st−1, (yt−1, gt )), (2)

where gt represents the glimpse vectors

gt =
n∑

i=1

(αt,ihi ),αt ∈ R
n, (3)

where hi denotes the sequential feature vectors. Vector αt is
the vector of attention mask, expressed as follows:

αt,i = exp(et,i )∑n
j=1(exp(et, j ))

, (4)

et,i = wTTanh(W s st−1 + Whhi + b). (5)

Here, Wout , bout , wT, W s , Wh and b are trainable parame-
ters. Note that yt−1 is the (t − 1)-th character in the ground
truth in the training phase, whereas it is the previously pre-
dicted output in the testing phase. The training set is denoted
as D = {Ii ,Yi } , i = 1...N . The optimization is to minimize
the negative log-likelihood of the conditional probability of
D as follows:

Lreg = −
N∑

i=1

|Yi |∑

t=1

log p(Yi,t | Ii ; θ), (6)

where Yi,t is the ground truth of the t-th character in Ii and
θ denotes the parameters of the recognizer.

3.2 Interactive Joint Training for Separating Text
from Backgrounds

As vanilla discriminator is designed for non-sequential
object with a global coarse supervision, directly employ-
ing a discriminator fails to provide effective guidance for
the generator. In contrast to apply a global discriminator, we
supervise the generator in a fine-grained manner, namely,
character-level adversarial learning, by taking advantage of
the attention mechanism. Training the framework at charac-
ter level also reduces the complexity of the preparation of
target style data. Every target style sample containing one
character can be easily synthesized online.

3.2.1 Sharing of Attention Masks

Given an image I as input, the goal of our generator G is
to generate a clean image I ′ without a complex background.
The discriminator D encodes the image I ′ as

E = Encode(I ′). (7)

With similar settings of the backbone in recognizer (e.g., ker-
nel size, stride size and padding size in the convolutional and
pooling layers), the encoder in the discriminator is designed
to output an embedding vector Ei with the same size as that of
hi in Eq. (3), which enables the recognizer to share attention
mask αt with the discriminator. After that, character-level
features of the generation are extracted by

Fgen,t =
n∑

i=1

(αt,i Ei ),αt ∈ R
n . (8)

The extracted character features are used for further adver-
sarial training.
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3.2.2 Unpaired Target Style Samples

Benefiting from our character-level adversarial learning, tar-
get style samples can be simply synthesized online. As
illustrated in Figs. 4 and 6, every target style sample contains
only a black character on awhite background or a white char-
acter on a black background. The characters are randomly
chosen. Following the previous methods for data synthesis
(Jaderberg et al. 2014a; Gupta et al. 2016), we collect fonts1

to synthesize the target style samples. The renderer is a simple
and publicly available engine2 that can efficiently synthesize
samples online. Owing to the diversity of the fonts, the font
sensitivity of the discriminator is thereby decreased, which
enables the discriminator to focus on the background styles.

Because there is only one character in a target style image,
we apply global average-pooling to the embedding features
for every target style sample It as follows:

Ftgt = averagePooling
(
Encode(It )

)
. (9)

The features of the t-th character in the generated image
Fgen,t and the target style sample Ftgt are prepared for the
following adversarial training.

3.2.3 Adversarial Training on Style

We use a style classifier in the discriminator to classify the
style of characters in the generated images as fake and the
characters in the target style samples as real. We use the 0−1
binary coding (Mao et al. 2017) for style adversarial training,
which is formulated as

min
D

Ls = EIt [
(
1 − Style(Ftgt )

)2] + EI ′,t
[
Style(Fgen,t )

2],

min
G

Ls = EI ′,t
[(
1 − Style(Fgen,t )

)2]
,

(10)

where Style(·) denotes the style classifier.
The advantages of character-level adversarial training are

threefold: (1) Because the background is complicated in a
scene text image, the background noise varies substantially
in different character regions. Considering the text string as
a whole and supervising the training in a global manner may
cause the failure of the generator, as discussed previously
in Sect. 1 and Fig. 2. Thus, we encourage the discrimina-
tor to inspect the generation in a more fine-grained manner,
namely, character-level supervision, which contributes to the
effective learning. (2) Training at character level brings a ben-
efit for the preparation of target style data. For the synthesis
of a text string, it is necessary to consider the text shape,
the space between neighboring characters and the rotation of

1 https://fonts.google.com
2 https://pillow.readthedocs.io/en/stable/reference/ImageDraw.html

every character (Jaderberg et al. 2014a; Gupta et al. 2016).
In contrast, we can simply synthesize only one character on
a clean background for every target style sample. Therefore,
our target style samples can be simply synthesized online dur-
ing the training. (3) The training is free of the need for paired
data. Because the attention mechanism decomposes a text
string into several characters and benefits the further training,
only input scene text images and corresponding text labels
are required. Hence, our framework is potentially flexible
enough to make full use of available data to gain robustness.

3.2.4 Feedback Mechanism

As our goal is to improve recognition performance, we are
not only interested in the styles of the backgrounds, but also
the quality of the generated content. Therefore, we use a
content classifier in the discriminator to supervise content
generation.

In contrast to the previous work auxiliary classifier GAN
(Odena et al. 2017), which used ground truth to supervise
the content classifier, our content classifier learns from the
predictions of the recognizer. This bridges the gap between
the recognizer and discriminator. The discriminator thus can
guide the generator according to the confusion of the rec-
ognizer. After the training with this feedback mechanism,
the generated patterns are more discriminative, which facili-
tates recognition. The details of the feedback mechanism are
present as follows.

The generatorG and discriminator D are updated by alter-
nately optimizing

min
D

Lc,D = E(I ,P),(It ,GT )[− log Content(GT |Ftgt )

− 1

|P|
|P|∑

t=1

logContent(Pt |Fgen,t )],
(11)

min
G

Lc,G = EI ,GT [− 1

|GT |
|GT |∑

t=1

logContent(GTt |Fgen,t )],

(12)

where GT denotes the ground truth of the input image I and
target style sample It . In addition, Content(·) is the content
classifier. Note that the discriminator learns from the pre-
dictions P on I of the recognizer, whereas it uses GT of I
to update the generator. This is an adversarial process that
is similar to that of GAN training (Goodfellow et al. 2014;
Mao et al. 2017; Odena et al. 2017; Zhu et al. 2017). They use
different labels for the discriminator and generator, but back-
propagate the gradient using the same parameters as those of
the discriminator. Alternately optimizing the discriminator
and generator achieves adversarial learning.
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There are some substitution errors in the predictions P
that are different from the GT . Therefore, the second term
of the right side in Eq. (11) can be formulated as content
adversarial training as

− 1

|P|
|P|∑

t=1

logContent(Pt |Fgen,t ) =

− 1

|P| [
|Preal |∑

i=1

logContent(Preal,i |Fgen,i )

+
|Pf ake|∑

j=1

logContent(Pf ake, j |Fgen, j )],

(13)

where Preal and Pf ake present the correct and incorrect pre-
dictions of the recognizer, respectively. Note that Preal ∪
Pf ake = P .

Since the discriminator with the content classifier learns
from the predictions of the recognizer, it guides the gener-
ator to correct erroneous character patterns in the generated
images. For instance, similar patterns such as ”C” and “G”,
or “O” and “Q”, may cause failed prediction of the recog-
nizer. If a “G” is transformed to look more like a “C” and the
recognizer predicts it to be a “C”, the discriminator will learn
that the pattern is a “C” and guide the generator to generate
a clearer “G”. We show more examples and further discuss
this issue in Sect. 4.

3.2.5 Interactive Joint Training

The pseudocode of the interactive joint training scheme is
presented in Algorithm 1. During the training of our frame-
work, we found that the discriminator often learns faster than
the generator. A similar problem has also been reported by
others (Berthelot et al. 2017;Heusel et al. 2017). TheWasser-
stein GAN (Arjovsky et al. 2017) uses more update steps for
the generator than the discriminator. We simply adjust the
number of steps according to a balance factor β ∈ (0, 1).
If the discriminator learns faster than the generator, then the
value of β decreases, potentially resulting in a pause during
the update steps for the discriminator. In practice, this trick
contributes to the training stability of the generator.

We first sample a set of input samples, and randomly syn-
thesize unpaired samples of target style. Then, the recognizer
makes predictions on the generated images and shares its
attention masks with the discriminator. To avoid the effects
of incorrect alignment between character features and labels
(Bai et al. 2018), we filter out some predictions using the
metrics of edit distance and string length. The correspond-
ing images are also filtered out. Only substitution errors exist
in the remaining predictions. Finally, the discriminator and

generator are alternately optimized to achieve adversarial
learning.

After the adversarial training, the generator can separate
text content from complex background styles. The gener-
ated patterns are clearer and easier to read. As illustrated
in Fig. 7, the generator works well on both regular text and
slanted/curved text. Because the irregular shapes of the text
introduce more surrounding background noise, the recog-
nition difficulty can be significantly reduced by using our
method.

4 Experiments

In this section, we provide the training details and report
the results of extensive experiments on various benchmarks,
including both regular and irregular text datasets, demon-
strating the effectiveness and generality of our method.

As paired text images in the wild are not available and
there exists great diversity in the number of characters and
image structure between the input images and our target
style images, popular GAN metrics such as the inception

Algorithm 1: Interactive joint training
1 Discriminator: D; Generator: G;
2 Batch size: B;
3 Balance factor: β (initialized as 1.0);
4 while not at the end of training do
5 Sample B training images as I , I ′ = G(I );
6 Randomly synthesize B target style samples as It ;
7 Obtain the predictions P on I ′;
8 Use I ′ and GT to update the recognizer: minLreg , and obtain

attention masks for the D;
9 Ichosen = ∅;

10 Pchosen = ∅;
11 GTchosen = ∅;
12 for i in 1 : B do
13 if length(Pi ) = length(GTi ) then
14 if edit distance of (Pi ,GTi ) ≤ 1 then
15 Ichosen ← Ichosen ∪ {I ′

i };
16 Pchosen ← Pchosen ∪ {Pi };
17 GTchosen ← GTchosen ∪ {GTi };
18 end
19 end
20 end
21 if Ichosen �= ∅ then
22 Generate a random number k ∈ [0, 1);
23 if k ≤ β then
24 Use Ichosen, Pchosen
25 to update the D: max

D
Ls , min

D
Lc,D ;

26 end
27 Use Ichosen,GTchosen
28 to update the G: min

G
Ls , min

G
Lc,G ;

29 β ← Ls+Lc,D
Ls+Lc,G

;

30 end
31 end
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Fig. 7 Generated images for (a) regular and (b) irregular text. Input
images are on the left and the corresponding generated images are on
the right. The text content is separated by the generator from the noisy
background styles. In the generated images, the font style tends to be
an average style

score (Salimans et al. 2016) and Fréchet inception distance
(Heusel et al. 2017) cannot be directly applied in our evalua-
tion. Instead, we use the word accuracy of recognition, which
is a more straightforward metric, and is of interest for our
target task, to measure the performance of all the methods.
Recall that our goal here is to improve recognition accuracy.

4.1 Datasets

4.1.1 SynthData

Which contains 6-million data released by (Jaderberg et al.
2014a) and 6-million data released by (Gupta et al. 2016),
is a widely used training dataset. Following the most recent
work for fair comparison, we select it as the training dataset.
Only word-level labels are used, but other extra annotation
is unnecessary in our framework. The model is trained using
only synthetic text images, without any fine-tuning for each
specific dataset.

IIIT5K-Words (Mishra et al. 2012) (IIIT5K) contains
3,000 cropped word images for testing. Every image has a
50-word lexicon and a 1,000-word lexicon. The lexicon con-
sists of the ground truth and some randomly picked words.

Street View Text (Wang et al. 2011) (SVT) was collected
from the Google Street View, and consists of 647 word
images. Each image is associated with a 50-word lexicon.
Many images are severely corrupted by noise and blur or
have very low resolutions.

ICDAR 2003 (Lucas et al. 2003) (IC03) contains 251
scene images that are labeled with text bounding boxes.
For fair comparison, we discarded images that contain non-
alphanumeric characters or those have fewer than three
characters, following (Wang et al. 2011). The filtered dataset
contains 867 cropped images. Lexicons comprise of a 50-
word lexicon defined by (Wang et al. 2011) and a “full
lexicon”. The latter lexicon combines all lexicon words.

ICDAR2013 (Karatzas et al. 2013) (IC13) inheritsmost of
its samples from IC03. It contains 1,015 cropped text images.
No lexicon is associated with this dataset.

SVT-Perspective (Quy Phan et al. 2013) (SVT-P) contains
645 cropped images for testing. Images were selected from
side-view angle snapshots in Google Street View. Therefore,
most images are perspective distorted. Each image is associ-
ated with a 50-word lexicon and a full lexicon.

CUTE80 (Risnumawan et al. 2014) (CUTE) contains 80
high-resolution images taken of natural scenes. It was specif-
ically collected for evaluating the performance of curved text
recognition. It contains 288 cropped natural images for test-
ing. No lexicon is associated with this dataset.

ICDAR 2015 (Karatzas et al. 2015) (IC15) contains 2077
images by cropping the words using the ground truth word
bounding boxes. (Cheng et al. 2017) filtered out some
extremely distorted images and used a small evaluation set
(referred as IC15-S) containing only 1811 test images.

4.2 Implementation Details

As our proposed method is a meta-framework for recent
attention-based recognition methods (Shi et al. 2018; Luo
et al. 2019; Li et al. 2019; Yang et al. 2019a), recent recog-
nizers can be readily integrated with our framework. Thus
the recognizer implementation follows their specific design.
Here we present details of the discriminator, generator, and
training.

4.2.1 Generator

The generator is a feature pyramid network (FPN)-like (Lin
et al. 2017) architecture that consists of eight residual units.
Each residual unit comprises a 1 × 1 convolution followed
by two 3 × 3 convolutions. Feature maps are downsampled
by 2 × 2 stride convolutions in the first three residual units.
The numbers of output channels of the first four residual
units are 64, 128, 256, and 256, respectively. The last four
units are symmetrical with the first four, but we upsample
the feature map by simple resizing. We apply element-wise
addition to the output of the third and fifth units. At the top
of the generator, there are two convolution layers that have
16 filters and one filter, respectively.
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4.2.2 Discriminator

The encoder in the discriminator consist of 7 convolutional
layers that have 16, 64, 128, 128, 192 and 256 filters. Their
kernel sizes are all 3 × 3, except for the size of the last one,
which is 2 × 2. The first, second, fourth and sixth convolu-
tional layers are each followed by an average-pooling layer.
Using settings similar to those of the backbone in the rec-
ognizer (e.g., kernel size, stride size and padding size in
the convolutional and pooling layers), the output size of the
encoder can be controlled to meet the requirements of the
attention mask sharing of the recognizer. Both the style and
content classifiers in the discriminator are one-layer fully
connected networks.

4.2.3 Training

We use Adam (Kingma et al. 2015) to optimize the GAN.
The learning rate is set to 0.002. It is decreased by a factor
of 0.1 at epochs 2 and 4. In the interactive joint training, we
utilize the attention mechanism in the recognizer. Therefore,
an optimized attention decoder is necessary to enable the
interaction. To accelerate the training process, we pre-trained
the recognizer for three epochs.

4.2.4 Implementation

We implement our method using the PyTorch framework
(Paszke et al. 2017). The target style samples are resized
to 32 × 32. Input images are resized to 64 × 256 for the
generator and 32 × 100 for the recognizer. The outputs of
the generator are also resized to 32 × 100. When the batch
size is set to 64, the training speed is approximately 1.7 itera-
tions/sec. Our method takes an average of 1.1 ms to generate
an image using an NVIDIA GTX-1080Ti GPU.

4.3 Ablation Study

4.3.1 Experiment Setup

To investigate the effectiveness of separating text content
from noisy background styles, we conduct an ablation anal-
ysis by using a simple recognizer. The backbone of the
recognizer is a 45-layer residual network (He et al. 2016a),
which is a popular architecture (Shi et al. 2018). On the top

of the backbone, there is an attention-based decoder. In the
decoder, the number ofGRUhidden units is 256. The decoder
outputs 37 classes, including 26 letters, 10 digits, and a sym-
bol that represented “EoS′′. The training data is SynthData.
We evaluate the recognizer on seven benchmarks, including
regular and irregular text.

4.3.2 Input of the Recognizer

Westudy the contribution of ourmethodby replacing the gen-
erated imagewith the corresponding input image. The results
are listed in Table 1. The recognizer trained using SynthData
serves as a baseline. Compared to the baseline, the clean
images generated by our method boost recognition perfor-
mance. We observe that the improvement is more substantial
on irregular text. One notable improvement is an accuracy
increase of 6.6% on CUTE. One possible reason for this
is that the irregular text shapes introduce more background
noise than the regular ones. Because our method removes the
surrounding noise and extracts the text content for recogni-
tion, the recognizer can thus focus on characters and avoid
noisy interference.

With respect to regular text, the baseline is much higher
and there is less room for improvement, but our method also
shows advantages in recognition performance. The gain of
performance on several kinds of scene text, including low
quality images in SVT and real scene images in IC03/IC13,
suggests the generality our method. To summarize, the gen-
erated clean images of our proposedmethod greatly decrease
recognition difficulty.

4.3.3 Style Supervision

We study the necessity of style supervision by disabling
the style classifier in the discriminator. Without style adver-
sarial training, the background style normalization is only
weakly supervised by the content label. As shown in the Fig.
8, the generated images suffer from severe image degrada-
tion, which leads to poor robustness of the recognizer. The
quantitative recognition results of not using/using the style
supervision are presented in the second and third rowofTable
2. The significant gaps indicate that without the style super-
vision, the quality of the generated images is insufficient for
recognition training. Thus, the style adversarial training is
necessary and is used in the basic design of our method.

Table 1 Word accuracy on the
testing datasets using different
inputs The recognizer is trained
on the source and generated
images, respectively

Input image Regular text Irregular text

IIIT5K SVT IC03 IC13 SVT-P CUTE IC15

Source I 92.2 85.9 94.0 90.7 75.7 74.3 72.0

Generation I ′ 92.5 86.6 95.0 91.4 79.2 80.9 73.0

The best performing results are shown in bold font
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Fig. 8 Visualization of background normalization weakly supervised
by content label

4.3.4 Feedback Mechanism

We also study the effectiveness of the content classifier in the
discriminator and the proposed feedback mechanism. In this
experiment, we first disable the content classifier. Therefore,
there is no content supervision. Only a style adversarial loss
supervises the generator. The result is shown in the first row
in Table 2. The accuracy on the generated images decreases
to nearly zero.We observe that the generator fails to retain the
character patterns for recognition. As the content classifier is
designed for assessing the discriminability and diversity of
samples (Odena et al. 2017), it is important to guide the gen-
erator so that it can determine informative character patterns
and retain them for recognition. When the content super-
vision is not available, the generator is easily trapped into
failure modes, namely mode collapse (Salimans et al. 2016).
Therefore, the content supervision in the discriminator is nec-
essary.

Then we enable the content classifier and replace the
supervision inLc with the ground truth. This setting is similar
to that of the auxiliary classifier GANs (Odena et al. 2017),
which use content supervision for discriminability and diver-
sity in the style adversarial training. After this process, the
generated text images contain text content for recognition.

Finally, we replace the content supervision with the pre-
dictions of the recognizer. The discriminator thus learns from
the confusion of the recognizer, and guides the generator so
that it can refine the character patterns to be easier to read.
Therefore, the adversarial training is more relevant to the
recognition performance. As shown in Table 2, the feedback
mechanism further improves the robustness of the generator
and benefits the recognition performance.

One interesting observation is that on the SVT-P testing
set, the accuracy on the source image (75.7% in Table 1) is
higher than that on the generated image with content super-
vision of the ground truth (75.0% in Table 2).We observe the

Fig. 9 Predictions of challenging samples in the SVT-P testing set.
Recognition errors are marked as red characters. Confusing and distinct
patterns are marked by red and green bounding boxes, respectively

Fig. 10 Comparison between the OTSU (Otsu 1979) and our method

source samples and find that most images are severely cor-
rupted by noise and blur. Some of them have low resolutions.
The characters in the generated samples are also difficult
to distinguish. After training with the feedback mechanism,
the generator is able to generate clear patterns that facilitate
reading, which boosts the recognition accuracy from 75.0 to
79.2%. As illustrated in Fig. 9, the predictions of “C” and
“N” are corrected to “G” and “M”, respectively. The clear
characters in the generated images are easier to read.

Table 2 Word accuracy on
generated images using variants
of content supervision for the
discriminator. Losses Ls and Lc
denote style loss and content
loss, respectively

Content supervision Adversarial loss Feedback mechanism Testing set

Ls Lc SVT-P CUTE IC15

None � × × Failed Failed Failed

Ground truth × � × 71.9 74.7 65.5

Ground truth � � × 75.0 78.4 72.5

Prediction of recognizer � � � 79.2 80.9 73.0

The best performing results are shown in bold font
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Table 3 Word accuracy on testing datasets using different transformation methods

Transformation Method Regular text Irregular text

IIIT5K SVT IC03 IC13 SVT-P CUTE IC15

Style normalization OTSU (Otsu 1979) 70.3 65.4 76.0 76.0 46.5 50.3 49.3

CycleGAN (Zhu et al. 2017) 43.6 21.3 37.0 35.9 14.6 18.8 18.0

Ours 92.5 86.6 95.0 91.4 79.2 80.9 73.0

+ Rectification Ours + ASTER (Shi et al. 2018) 94.0 90.0 95.6 93.3 81.6 85.1 78.1

Ours + ESIR (Zhan and Lu 2019) 94.1 90.6 96.0 94.2 82.2 87.8 78.5

The best performing results are shown in bold font

Table 4 Word accuracy on regular benchmarks

Method Add. IIIT5K SVT IC03 IC13

50 1k 0 50 0 50 Full 0 0

Yao et al. (2014) 80.2 69.3 – 75.9 – 88.5 80.3 – –

Jaderberg et al. (2014b) – – – 86.1 – 96.2 91.5 – –

Su and Lu (2014) – – – 83.0 – 92.0 82.0 – –

Rodriguez-Serrano et al. (2015) 76.1 57.4 – 70.0 – – – – –

Gordo (2015) 93.3 86.6 – 91.8 – – – – –

Jaderberg et al. (2015) 95.5 89.6 – 93.2 71.7 97.8 97.0 89.6 81.8

Jaderberg et al. (2016) 97.1 92.7 – 95.4 80.7 98.7 98.6 93.1 90.8

Shi et al. (2016) 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1 88.6

Lee and Osindero (2016) 96.8 94.4 78.4 96.3 80.7 97.9 97.0 88.7 90.0

Liu et al. (2016) 97.7 94.5 83.3 95.5 83.6 96.9 95.3 89.9 89.1

Shi et al. (2017) 97.8 95.0 81.2 97.5 82.7 98.7 98.0 91.9 89.6

Yang et al. (2017) � 97.8 96.1 – 95.2 – 97.7 – – –

Cheng et al. (2017) 98.9 96.8 83.7 95.7 82.2 98.5 96.7 91.5 89.4

Liu et al. (2018a) � – – 83.6 – 84.4 – – 91.5 90.8

Liu et al. (2018b) 97.3 96.1 89.4 96.8 87.1 98.1 97.5 94.7 94.0

Liu et al. (2018c) � 97.0 94.1 87.0 95.2 – 98.8 97.9 93.1 92.9

Cheng et al. (2018) 99.6 98.1 87.0 96.0 82.8 98.5 97.1 91.5 –

Bai et al. (2018) 99.5 97.9 88.3 96.6 87.5 98.7 97.9 94.6 94.4

Shi et al. (2018) 99.6 98.8 93.4 97.41 89.51 98.8 98.0 94.5 91.8

Luo et al. (2019) 97.9 96.2 91.2 96.6 88.3 98.7 97.8 95.0 92.4

Liao et al. (2019b) � 99.8 98.8 91.9 98.8 86.4 – – – 91.5

Li et al. (2019) – – 91.5 – 84.5 – – – 91.0

Zhan and Lu (2019) 99.6 98.8 93.3 97.4 90.2 – – – 91.3

Yang et al. (2019a) � 99.5 98.8 94.4 97.2 88.9 99.0 98.3 95.0 93.9

ASTER 99.1 97.9 93.5 98.0 88.6 98.8 98.0 94.7 92.0

+ Ours 99.1 98.0 94.0 98.3 90.0 98.8 98.1 95.6 93.3

+ Com. 99.6 98.7 95.4 98.9 92.7 99.1 98.8 96.3 94.8

ESIR 99.2 98.0 93.8 98.0 88.7 98.8 98.2 95.0 93.5

+ Ours 99.5 98.6 94.1 98.0 90.6 98.8 98.5 96.0 94.2

+ Com. 99.6 98.8 95.6 99.4 92.9 99.1 98.8 96.2 96.0

The best performing results are shown in bold font
1The result was corrected by the authors on https://github.com/bgshih/aster.
“50”, “1k” and “0” are lexicon sizes. “Full” indicates the combined lexicon of all images in the benchmarks. “Add.” means the method uses extra
annotations, such as character-level bounding boxes and pixel-level annotations. “Com.” is the proposed ensemble method that outputs prediction
of either source or generated image with higher confidence score
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4.4 Comparisons with GenerationMethods

Recently, a large body of literature (Shi et al. 2018; Luo
et al. 2019; Li et al. 2019; Yang et al. 2019a) has explored
the use of stronger recognizers to tackle the complications
in scene text recognition. However, there is little consider-
ation of the quality of the source images. The background
noise in the source image has not been addressed intensively
before. To the best of our knowledge, our method may be
the first image generation network that removes background
noise and retains text content to benefit recognition perfor-
mance. Although few literature proposed to address this issue
stated above, we find several popular generationmethods and
perform comparisons under fair experimental conditions. A
pre-trained recognizer used in the ablation study is adopted
in the comparisons. The recognizer is then be fine-tuned on
different kinds of generations.

First we use a popular binarizationmethod, namelyOTSU
method (Otsu 1979), to separate the text content from the
background noise by binarizing the source images. As shown
in Fig. 10, we visualize the binarized images and find that sin-
gle threshold value is not sufficiently robust to separate the
foreground and background in scene text images, because
the background noise usually follows multimodal distribu-
tion. Therefore, the recognition accuracy on the generation
of OTSU method falls behind ours in Table 3.

Then, we compare our method with generation methods.
Considering the high demand for data (pixel-level paired
samples) of pixel-to-pixel GANs (Isola et al. 2017), we treat
this kind of method as a potential solution when there is no
restriction of data. Here, we study the CycleGAN3 (Zhu et al.
2017). Before the training, we synthesize word-level clean
images as target style samples. The results shown in Table 3
and Fig. 11 suggest that modeling a text string with multi-
ple characters as a whole leads to poor retention of character
details. The last two rows in Fig. 11 are failed generations,
which indicate that the generator fails to model the relation-
ships of the characters. In Table 3, the recognition accuracy
on this kind of generation drops substantially.

Compared with previous methods, our method not only
normalizes noisy backgrounds to a clean style, but also gen-
erates clear character patterns that tend to be an average
style. The end-to-end training with the feedback mechanism
benefits the recognition performance.Wealso show the effec-
tiveness of the image rectification by integrating our method
with advanced rectification modules (Shi et al. 2018; Zhan
and Lu 2019). It can be seen that image rectifiers are still
significant for improving recognition performance.Thus, dif-
ferent from irregular text shape, noisy background style is
another challenge.

3 The official implementation is available on https://github.com/
junyanz/pytorch-CycleGAN-and-pix2pix

Fig. 11 Comparison between CycleGAN (Zhu et al. 2017) and our
method

4.5 Integration with State-of-the-Art Recognizers

As our method is a meta-framework, it can be integrated
with recent recognizers (Cheng et al. 2018; Shi et al. 2018;
Luo et al. 2019; Li et al. 2019; Yang et al. 2019a) equipped
with attention-based decoders (Bahdanau et al. 2015). We
conduct experiments using representative methods, namely
ASTER (Shi et al. 2018) and ESIR (Zhan and Lu 2019),
to investigate the effectiveness of our framework. The reim-
plementation results are comparable with those in the paper.
With respect to the dataset providing a lexicon, we choose the
lexicon word under the metric of edit distance. The results
of comparison with previous methods are shown in Tables 4
and 5. All the results of the previous methods are collected
from their original papers. If a method uses extra annota-
tions, such as character-level bounding boxes and pixel-level
annotations, we indicate this with “Add.”. For fair compari-
son, we perform a comparison with the method of (Li et al.
2019) by including the results of their model trained using
synthetic data.

Using the strong baseline of ASTER, we first evaluate the
contribution of our method on regular text as shown in Table
4. Although the baseline accuracy on these benchmarks is
high, thus no much room for improvement, our method still
achieves a notable improvement in lexicon-free prediction.
For instance, it leads to accuracy increases of 1.4% on SVT
and 1.3%on IC13. Some predictions corrected using our gen-
erations are shown in Fig. 12. Then, we reveal the superiority
of our method by applying it to irregular text recognition.
As shown in Table 5, our method significantly boosts the
performance of ASTER by generating clean images. The
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Table 5 Word accuracy on
irregular benchmarks

Method Add. SVT-P CUTE IC15-S IC15

50 Full 0 0 0 0

Shi et al. (2016) 91.2 77.4 71.8 59.2 – –

Liu et al. (2016) 94.3 83.6 73.5 – – –

Shi et al. (2017) 92.6 72.6 66.8 54.9 – –

Yang et al. (2017) � 93.0 80.2 75.8 69.3 – –

Cheng et al. (2017) 92.6 81.6 71.5 63.9 70.6 -

Liu et al. (2018a) � – – – – – 60.0

Liu et al. (2018b) – – 73.9 62.5 – –

Cheng et al. (2018) 94.0 83.7 73.0 76.8 – 68.2

Bai et al. (2018) – – – – 73.9 –

Shi et al. (2018) – – 78.5 79.5 76.1 –

Luo et al. (2019) 94.3 86.7 76.1 77.4 – 68.8

Liao et al. (2019b) � – – – 79.9 – –

Li et al. (2019) – – 76.4 83.3 – 69.2

Zhan and Lu (2019) – – 79.6 83.3 – 76.9

Yang et al. (2019a) � – – 80.8 87.5 – 78.7

ASTER 94.3 87.3 77.7 79.9 75.8 74.0

+ Ours 95.0↑0.7 90.1↑2.8 81.6↑3.9 85.1↑5.2 80.1↑4.3 78.1↑4.1

+ Com. 95.5 92.2 85.4 89.6 83.7 81.1

ESIR 94.3 87.3 79.8 83.7 79.3 77.1

+ Ours 95.0↑0.7 89.3↑2.0 82.2↑2.4 87.8↑4.1 81.1↑1.8 78.5↑1.4

+ Com. 95.8 91.5 85.1 91.3 83.9 81.4

The best performing results are shown in bold font
‘50” and “0” are lexicon sizes. “Full” indicates the combined lexicon of all images in the benchmarks. “Add.”
means the method uses extra annotations, such as character-level bounding boxes and pixel-level annotations.
“Com.” is the proposed ensemble method that outputs prediction of either source or generated image with
higher confidence score

Fig. 12 Predictions corrected by our method

ASTER integrated with our approach outperforms the base-
line by a wide margin on SVT (3.9%), CUTE (5.2%) and
IC15 (4.3%). This suggests that our generator removes the
background noise introduced by irregular shapes and further
reduces difficulty of rectification and recognition. It is note-
worthy that the ASTER with our method outperforms ESIR

Fig. 13 Failure cases. Top: source images. Bottom: generated images

(Zhan and Lu 2019) that uses more rectification iterations
(ASTER only rectifies the image once), which demonstrates
the significant contribution of our method. The performance
is even comparable with the state-of-the-art method (Yang
et al. 2019a), which uses character-level geometric descrip-
tors for supervision. Our method achieves a better trade-off
between recognition performance and data requirement.

After that, our method is integrated with a different
method ESIR to show the generalization. Based on the more
advanced recognizer, our method can achieve further gains.
For instance, the improvement is still notable on CUTE
(4.1%). As a result, the performance of the ESIR is also
significantly boost by our method.
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Table 6 Word accuracy on testing datasets when we use a little more real training data

Method Training data Regular text Irregular text

IIIT5K SVT IC03 IC13 SVT-P CUTE IC15-S IC15

ASTER Millions of synthetic data 93.5 88.6 94.7 92.0 77.7 79.9 75.8 74.0

+ 50k Real data 94.5 90.4 95.0 92.9 79.4 88.9 84.1 81.3

+ Ours Millions of synthetic data 95.4 92.7 96.3 94.8 85.4 89.6 83.7 81.1

+ 50k Real data 96.5 94.4 96.3 95.6 86.2 92.4 87.2 84.7

The best performing results are shown in bold font

4.5.1 Upper Bound of GAN

We are further interested in the upper bound of our method.
As our method is designed based on adversarial training, the
limitations of the GAN cause some failure cases. As illus-
trated inFigure 13, thewell-trainedgenerator fails to generate
character patterns on difficult samples, particularly when the
source image is of low quality and the curvature of the text
shape is too high. One possible reason is the mode-dropping
phenomenon studied by (Bau et al. 2019). Another reason
is the lingering gap observed by (Zhu et al. 2017) between
the training supervision of paired and unpaired samples. To
break this ceiling, one possible solution is to improve the syn-
thesis engine and integrate various paired lifelike samples for
training. Thismay lead to substantiallymore powerful gener-
ators, but heavily dependent on the development of synthesis
engines.

Inspired by recent work (Shi et al. 2018; Liao et al. 2019a),
it is possible to integrate several outputs of the system and
choose the most possible one to achieve performance gain.
Therefore, we proposed a simple yet effective method to
address the issue stated above. The source image and the cor-
responding generated image are concatenated as a batch for
network inference. Then, we choose the prediction with the
higher confidence. As shown in the last row in Tables 4 and 5
(noted as “+Com.”), this ensemblemechanism greatly boosts
the system performance, which indicates that the source and
generated images are complementary to each other.

4.6 More Accessible Data

In the experiments of comparing the proposed method with
previous recognition methods, we have used only synthetic
data for fair comparison. Here, we use the ASTER (Shi et al.
2018) to explore whether there is room for improvement in
synthesis engines.

Following (Li et al. 2019), we collect publicly available
real data for training. In contrast to synthetic data, real data
is more costly to collect and annotate. Thus, there are only
approximately 50k public real samples for training, whereas
there aremillions of synthetic data. As shown in Table 6, after
we add the small real training set to the large synthetic one,

the generality of both the baseline ASTER and our method
is further boosted. This suggests that synthetic data is not
sufficiently real and the model is still data-hungry.

In summary, our approach is able to make full use of real
samples in the wild to further gain robustness, because of the
training of our method requires only input images and the
corresponding text labels. Note that ourmethod trained using
only synthetic data even outperforms the baseline trained
using real data on most benchmarks, particularly on SVT-P
(↑6.0%). Therefore, noisy background style normalization is
a promising way to improve recognition performance.

4.7 Discussion

4.7.1 Generation in RGB Space or in Gray

The background noise and text content may be relative easier
to be separated in RGB colorful images. To this end, we
conduct an experiment to evaluate the influence ofRGBcolor
space. The target style samples are synthesized in random
color to guide the generation in RGB space. As shown in
Table 7, we find that the generation in RGB space cannot
outperform the generation in gray. Therefore, the key issue of
background normalization is not the color space, but the lack
of pixel-level supervision. Without fine-grained guidance at
pixel level, the generation is only guided by the attention
mechanism of the recognizer to focus informative regions.
Other noisy regions on the generated image are unreasonably
neglected.

4.7.2 Alignment Issue on Long Text

To tackle the lack of paired training samples, we exploit the
attention mechanism to extract every character for adversar-
ial training. However, there exists misalignment problems of
the attention mechanism (Cheng et al. 2017; Bai et al. 2018),
especially on long text. (Cong et al. 2019) conducted a com-
prehensive study on the attention mechanism and found that
the attention-based recognizers have poor performance on
text sentence recognition. Thus, our method still have scope
for performance gains on text sentence recognition. This is a
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Table 7 Comparisons of
generation in RGB space and in
gray

Space Regular text Irregular text

IIIT5K SVT IC03 IC13 SVT-P CUTE IC15-S IC15

Gray 95.4 92.7 96.3 94.8 85.4 89.6 83.7 81.1

RGB 95.2 92.3 96.3 95.6 85.3 88.9 83.7 81.1

The best performing results are shown in bold font

common issue of most attention mechanisms, which merits
further study.

5 Conclusion

We have presented a novel framework for scene text recogni-
tion from a brand new perspective of separating text content
from noisy background styles. The proposed method can
greatly reduce recognition difficulty and thus boost the
performance dramatically. Benefiting from the interactive
joint training of an attention-based recognizer and a gen-
erative adversarial architecture, we extract character-level
features for further adversarial training. Thus the discrim-
inator focuses on informative regions and provides effective
guidance for the generator. Moreover, the discriminator
learns from the confusion of the recognizer and further effec-
tively guides the generator. Thus, the generated patterns are
clearer and easier to read. This feedback mechanism con-
tributes to the generality of the generator. Our framework is
end-to-end trainable, requiring only the text images and cor-
responding labels. Because of the elegant design, our method
can beflexibly integratedwith recentmainstream recognizers
to achieve new state-of-the-art performance.

The proposed method is a successful attempt to solve the
scene text recognition problem from the brand new perspec-
tive of image generation and style normalization, which has
not been addressed intensively before. In the future, we plan
to extend the proposed method to deal with end-to-end scene
text recognition. How to extend our method to multiple gen-
eral object recognition is also a topic of interest.
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