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Abstract
This paper studies vehicle ReID in aerial videos taken by Unmanned Aerial Vehicles (UAVs). Compared with existing
vehicle ReID tasks performed with fixed surveillance cameras, UAV vehicle ReID is still under-explored and could be
more challenging, e.g., aerial videos have dynamic and complex backgrounds, different vehicles show similar appearance,
and the same vehicle commonly show distinct viewpoints and scales. To facilitate the research on UAV vehicle ReID, this
paper contributes a novel dataset called UAV-VeID. UAV-VeID contains 41,917 images of 4601 vehicles captured by UAVs,
where each vehicle has multiple images taken from different viewpoints. UAV-VeID also includes a large-scale distractor
set to encourage the research on efficient ReID schemes. Compared with existing vehicle ReID datasets, UAV-VeID exhibits
substantial variances in viewpoints and scales of vehicles, thus requiresmore robust features. To alleviate the negative effects of
those variances, this paper also proposes a viewpoint adversarial training strategy and a multi-scale consensus loss to promote
the robustness and discriminative power of learned deep features. Extensive experiments on UAV-VeID show our approach
outperforms recent vehicle ReID algorithms. Moreover, our method also achieves competitive performance compared with
recent works on existing vehicle ReID datasets including VehicleID, VeRi-776 and VERI-Wild.

Keywords Vehicle re-identification · UAV · Viewpoint · Scale

1 Introduction

Vehicle re-identification (ReID) targets to match and identify
query vehicles across different cameras. With the capabil-
ity to accurately locate a specific vehicle, vehicle ReID is a
fundamental vision task in smart traffic surveillance. Exist-
ing vehicle ReID works are mainly conducted with videos
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taken by traffic surveillance cameras. Although their number
is already large in many cities, traffic surveillance cameras
show limited coverage because of their fixed locations and
limited viewpoints. In recent years, the Unmanned Aerial
Vehicles (UAVs) technology has been substantially improved
in terms of flight time, automatic control algorithm, andwire-
less image transmission, etc. For instance, the development
of automatic wireless UAV charging stations has created an
essential environment for continuous UAV operation. Com-
pared with fixed surveillance cameras, mobile cameras on
UAVs exhibit wider range of perspectives, as well as bet-
ter mobility, flexibility and convenience. For instance, it is
more efficient to collect traffic videos from a bird-eye view.
Meanwhile, UAVs could actively track and record specific
vehicles in both urban and highway scenarios. Due to those
advantages, more and more cities in the world start to adopt
UAVs in traffic surveillance. The advantages of UAV cam-
eras, as well as the fast development of UAV technology,
enable more efficient and active vehicle ReID. Besides that,
UAV vehicle ReID algorithms can be integrated into existing
ReID systems to achievemore intelligent traffic surveillance.
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Vision tasks in UAV videos are drawing increasing
attention from both industry and academia. Many UAV-
related video datasets have been released. For example,
Campus (Robicquet et al. 2016), CARPK (Hsieh et al.
2017) and UAV123 (Mueller et al. 2016) are collected by
UAVs. These datasets define vision tasks of human trajec-
tory analysis, object counting and tracking, respectively. Du
et al. (2018) constructed an UAV dataset for object detec-
tion, single object tracking, and multiple object tracking.
Avola et al. (2018) constructed an UAV dataset (UMCD)
for mosaicking and change detection. A new UAV aerial
video dataset (ManipalUAVid) for semantic segmentation
was presented by Girisha et al. (2019). Zhu et al. (2020)
and Zhu et al. (2018a) organized the UAV vision challenge
workshops on object detection and tracking in ICCV 2019
and ECCV 2018, respectively. To the best of our knowl-
edge, UAV vehicle ReID is still an under-explored task, and
there is a lack of public dataset. To facilitate the research
on this task, this work contributes a novel dataset called
UAV vehicle re-identification (UAV-VeID). UAV-VeID con-
tains 4601 vehicles, 41,917 annotated vehicle images and
16,850 query images. The covered scenarios involve com-
plex backgrounds, various viewpoints, different illumination
conditions and partial occlusions in the wild. We further
add a distractor set composed of 300K interference images
to encourage the research on efficient ReID schemes. We
believe this dataset is important because it is one of the first
UAV vehicle ReID datasets. Meanwhile, UAV vehicle ReID
is a key technique to achieveUAVvehicle tracking, searching

Fig. 1 Examples of vehicle images in vehicle ReID datasets, e.g., VeRi-
776 (Liu et al. 2016d) in (a), VehicleID (Liu et al. 2016a) in (b), Veri-
Wild (Lou et al. 2019) in (c), and UAV-VeID in (d, e), respectively

and matching in smart traffic surveillance. It also has a very
good potential to benefit other research on UAV video analy-
sis, because different vision tasks onUAVvideos face similar
challenges like flexible viewpoints, scales, and backgrounds
of objects.

UAV could record vehicles from flexible viewpoints, alti-
tudes, and under different illuminations. Figure 1 shows
examples of vehicle images taken by surveillance cameras
and UAV cameras, respectively. It is clear that, viewpoints
of surveillance cameras are relatively fixed, e.g., vehicle
images are generally taken from forward or rear views, where
license plates regions are visible. Differently, in UAV-VeID
the license plates are mostly invisible from bird-eye view.
Note that, license plate regions on VeRi-776 (Liu et al.
2016d, c), VehicleID (Liu et al. 2016a) and VERI-Wild (Lou
et al. 2019) are artificially occluded to encourage research on
discriminative appearance feature learning. Figure 1d shows
the variety of viewpoints in UAV-VeID. It is clear that, UAV
vehicle ReID is more challenging because of flexible view-
points, similar appearance and invisible details like headlight
and maker-logo from bird-eye view. However, vehicle ReID
in UAV videos is still feasible. Figure 1e illustrates some
details among different vehicles with the same model in
UAV-VeID. It can be observed that, those vehicles can be
distinguished by the stickers on the body and decorations
inside the vehicles. Therefore, UAV vehicle ReID involves
many new challenges. It requires more discriminative and
robust appearance features.

Existing methods on vehicle ReID commonly use Con-
volution Neural Network (CNN) to extract vehicle features
and adopt distance metric learning to optimize feature dis-
tance (Liu et al. 2016c, d; Yan et al. 2017; Shen et al. 2017;
Liu et al. 2018; Teng et al. 2018). Those algorithms perform
well on existing datasets, but may be not optimal for UAV
vehicle ReID. For instance, ignoring the variety of view-
points during feature learning is not reasonable for UAV
vehicle ReID, because vehicles under different viewpoints
usually show substantially different visual appearances. As
discussed in existing works (Chu et al. 2019), images of the
same vehicle under different viewpoints may show larger
distances than images of different vehicles under the same
viewpoint. Some recent works (Wang et al. 2017; Zhou and
Shao 2018; Khorramshahi et al. 2019; Chu et al. 2019; Teng
et al. 2020) consider viewpoint cues to enhance the feature
robustness. In addition, varied scales lead to different distri-
butions in feature space (Tan et al. 2018), makingmulti-scale
feature learning also important in ReID task. Therefore, it is
desirable to fuse multi-scale features and enhance the robust-
ness to scale variance. Some recent works (Teng et al. 2018;
He et al. 2019a) fuse local and global features for vehicle
ReID. Those works will be reviewed in Sect. 2

Feature spaces corresponding to different viewpoints or
scales may distribute on different manifolds, which increase
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the difficulty of matching the same vehicle in UAV videos.
This motivates us to design a more effective feature learn-
ing strategy to reduce the distance between different feature
manifolds. Specifically, we introduce an adversarial train-
ing algorithm and a multi-scale feature embedding module.
The viewpoint adversarial training part consists of feature
generator block, Gradient Reversal Layer (GRL) block, and
a viewpoint discriminator, respectively. During adversarial
training, the view discriminator tries to predict the viewpoint
of the input vehicle from its feature vector. The feature gener-
ator tries to produce a viewpoint invariant feature and confuse
the discriminator. The multi-scale embedding module con-
sists of multi-scale feature extraction branch and multi-scale
consensus loss computation. With the multi-scale consensus
loss, the learned features under different scales becomemore
comparable, which in-turn enhances the robustness to scale
variances.

We conduct extensive experiments on UAV-VeID and
compare our method against many recent ones. Comparisons
show that our method achieves substantially better perfor-
mance. We further test our method on existing vehicle ReID
datasets, where it also shows competitive performance com-
pared with the state-of-the art. This indicates that our method
also works well on existing vehicle ReID datasets. The rea-
son could be because that, viewpoint and scale variances also
exist in existing datasets. We hence could conclude our con-
tributions into two aspects: (1) we contribute a large-scale
novel UAV-VeID dataset for UAV vehicle ReID. Compared
with existing vehicle ReID datasets, UAV-VeID defines a
more challenging and realistic vehicle ReID task. (2)We pro-
pose an easy-to-implement baseline algorithm to learn robust
and discriminative visual feature for UAVvehicle ReID. This
method shows promising performance on both UAV-VeID
and existing vehicle ReID datasets.

The remainder of this paper is organized as follows.
Section 2 reviews related works. Section 3 introduces the
UAV-VeIDdataset. Section4presents detaileddescriptions to
our algorithms. Section 5 summarizes experimental results,
followed by conclusions in Sect. 6.

2 RelatedWork

This work is closely related with vehicle ReID, adversarial
learning, and multi-scale feature embedding. This section
briefly reviews those three categories of works, respectively.

2.1 Vehicle ReID

Recent object re-identification works commonly use met-
ric loss, e.g., triplet loss (Schroff et al. 2015) to optimize
the distance of learned deep features. Large margin softmax
loss (Liu et al. 2016b) is a modified metric loss, which can

generate more discriminative features by encouraging angu-
lar decision margin between classes. Center loss (Wei et al.
2016) is another metric loss, which enlarges the inter-class
distance and decreases the intra-class distance. For vehi-
cle ReID task, deep networks can learn Coupled Clusters
Loss (CCL) (Liu et al. 2016a) to enhance the discrimi-
native power of learned deep features. Another work Bai
et al. (2018) proposes a group sensitive triplet embedding
approach to model the inter-class dissimilarity as well as the
intra-class invariance during neural network training. Most
of existing algorithms directly optimize the distance between
global features and donot consider the variance of viewpoints
and scales. The dramatically varied visual appearances may
degrade the effectiveness of metric learning algorithms. For
instance, the CNN training could be hard to converge if most
of the training samples are hard triplets, where the positive
and anchor show dramatically different appearances and the
negative shows similar appearance with the anchor.

Recently, regional attention learning strategies have been
adopted inmany vision tasks to enhance the feature or handle
themisalignment issues (Chen et al. 2016; Lu et al. 2016; Zhu
et al. 2018b; Li et al. 2018; Wei et al. 2017b). Many works
use attention model or local cues in vehicle ReID. A recent
work (Liu et al. 2018) proposes a Region-Aware deep Model
to jointly learn deep features from both the global appearance
and local regions. Teng et al. (2018) designed an attention
module to refine the featuremaps in CNN.Wang et al. (2017)
pre-trained a region proposal module to produce the response
maps of 20 vehicle key points, which are used to extract local
features to enhance feature discriminative power. Another
work (He et al. 2019a) integrates part and global information
and achieves good performance on vehicle ReID. However,
it needs an additional bounding box detection network for
part localization, which is hard to generalize to side-view
vehicle images. Most of part and attention based methods
combine regional with global features to obtain multi-scale
feature representations.

Besides distancemetric optimization and local cues learn-
ing, many works enhance the feature robustness by utilizing
viewpoint cues. For instance, Zhou and Shao (2018) pro-
posed a viewpoint-aware attention model and focus on
specific areas from different viewpoints. They design a
conditional generative network to infer a multi-view fea-
ture representation from a single-view input. It boosts the
robustness of visual feature to viewpoint variances, but is
complicated and difficult to train. Chu et al. (2019) learned
two metrics for similar viewpoints and different viewpoints
in two feature spaces, respectively. During inference, view-
point is firstly estimated and the corresponding metric is
used. Khorramshahi et al. (2019) proposed an orientation
conditioned key-point selection strategy, which is capable to
localize and focus on the most informative parts of the vehi-
cle. Teng et al. (2020) designed a multi-view branch network
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to produce more discriminative viewpoint invariant feature.
This paper alleviates the viewpoint variation influence with
an adversarial learning approach, which is easier to imple-
ment. We also design a multi-scale embedding scheme to
facilitate the multi-scale feature learning.

2.2 Adversarial Learning

Generative Adversarial Networks (GANs) has been widely
used in recent years for feature learning and person or vehi-
cle ReID (Wei et al. 2017a; Zhou and Shao 2018; Lou et al.
2019). For instance, Wei et al. (2017a) utilized GANs to
generate training samples from the available training set. It
relieves the expensive data annotations on new datasets and
makes it easy to train person ReID systems for different test-
ing domains. Some other works utilize the idea of adversarial
learning to facilitate CNN training. Lou et al. (2019) design
a feature distance adversary scheme to generate hard nega-
tive samples to facilitate ReID model training. Adversarial
learning is also commonly used for domain adaption (Ganin
and Lempitsky 2015; Ganin et al. 2016; Tzeng et al. 2017;
Pei et al. 2018; Long et al. 2018). Previous works (Ganin
and Lempitsky 2015; Ganin et al. 2016) propose a Gradient
Reversal Layer (GRL) to embed domain adaptation into the
representation learning procedure. The GRL does not affect
the forward propagation, but reverses the gradients during the
back-propagation. A Multi-Adversarial Domain Adaptation
(MADA) (Pei et al. 2018) approach is proposed for the fine-
grained alignment of different data distributions based on
multiple domain discriminators. Long et al. (2018) presented
conditional domain adversarial networks to exploit discrim-
inative information to assist adversarial adaptation. In this
work, we employ adversarial learning to learn visual features
robust to viewpoint changes. To the best of our knowledge,
this is an early work that use adversarial adaptation for fea-
ture learning in vehicle ReID.

2.3 Multi-scale Embedding

Multi-scale visual cues are important for vision tasks such as
classification (Huang and Chen 2018), object detection (Li
et al. 2019), semantic segmentation (He et al. 2019b), crowd
counting (Liu et al. 2019a) and person ReID (Qian et al.
2017; Chang et al. 2018). Some works build image pyramid
or feature pyramid to learn multi-scale cues. Chang et al.
(2018); Qian et al. (2017) designed multi-stream building
blocks to learn multi-scale features for person ReID. Zhou
et al. (2019) designed a residual block composed of multiple
convolutional feature streams for omni-scale feature learn-
ing. This work employs dilated convolution in amulti-branch
architecture to obtain multi-scale features. The dilation oper-
ation alleviates the expensive scale pyramid construction
and effectively learns neurons with multi-scale receptive

fields. As shown in our experiments, this design effectively
learnsmulti-scale features and facilitates the learning of scale
invariance features, which is important for boost the ReID
accuracy in UAV-VeID.

3 UAV-VeID Dataset

This section first reviews existing vehicle ReID datasets, then
proceeds to introduce the UAV-VeID dataset.

3.1 Existing Datasets

Current vehicle ReID algorithms are mainly tested on two
benchmark datasets, i.e., VeRi-776 (Liu et al. 2016d) and
VehicleID (Liu et al. 2016a), respectively. A new vehicle
ReID dataset VERI-Wild (Lou et al. 2019) is also proposed in
2019. VeRi-776, VehicleID and VERI-Wild are all captured
by traffic surveillance cameras equipped on urban roads.

3.1.1 VeRi-776

Liu et al. (2016d, c) is collected from the traffic surveillance
scenarios, with 51,035 images of 776 vehicles in total. It is
split into 576 vehicles with 37,778 images for training and
200 vehicles with 11,579 images for testing. 1678 images
selected from the test set are used as query images. Most of
images are captured from the forward and backward view-
points. A small portion of vehicle images in VeRi-776 are
captured from the side-view.

3.1.2 VehicleID

Liu et al. 2016a consists of 26,267 vehicles and 221,763
images in total. It provides a training set with 100,182 images
from 13,164 vehicles and a test set with 20,038 images from
2400 vehicles. Vehicle images in VehicleID are either cap-
tured from the forward or the backward views.

3.1.3 VERI-Wild

Lou et al. (2019) is a large-scale vehicle ReID dataset con-
taining 416,314 vehicle images of 40,671 identities. It is
captured by a traffic surveillance camera system consisting
of 174 cameras across one month under unconstrained sce-
narios. The YOLO-v2 (Redmon and Farhadi 2017a) is used
to detect vehicle bounding boxes. It is randomly divided into
two parts for training and testing, i.e., 30,671 vehicles with
277,797 images for training and three subsets for testing.

Figure 1 illustrates several images from VeRi-776, Vehi-
cleID and VERI-Wild, respectively. Although current algo-
rithms have achieved high accuracy on those datasets, vehicle
ReID system might suffer from the limited coverage and
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flexility of fixed traffic surveillance cameras. Moreover,
artificially occluding license plate regions makes existing
datasets different from the ones in real scenarios. UAVvideos
have potential be applied for more realistic and active vehicle
ReID. The following parts proceed to introduce the UAV-
VeID dataset.

3.2 UAV-VeID

3.2.1 Data Collection

We simulate real scenarios as much as possible during
UAV videos collection. Specifically, UAV videos are col-
lected from different locations with distinct backgrounds
and lighting conditions, e.g., including highways, urban road
intersections, and parking lots, etc., as shown in Fig. 2a. For
vehicles at parking lots, we adopt various UAV sport modes
such as cruising and rotating to record vehicles. This strat-

egy introduces viewpoint and scale changes, aswell as partial
occlusions to images of the same vehicle. For moving vehi-
cles, we use two UAVs to simultaneously shoot videos from
different viewpoints and heights. This strategy introduces
viewpoint, scale, and background changes. The flying height
of UAVs ranges from 15 to 60 meters, leading to different
scales of vehicle images. The vertical angle of UAV cam-
era ranges from 40 to 80 degrees, which leads to different
viewpoints of vehicle images. The videos are recorded at 30
frames per second (fps), with the resolution of 2704 × 1520
pixels and 4096 × 2160 pixels, respectively. The UAV-VeID
is constructed from 80 video sequences selected from raw
UAV videos.

3.2.2 Annotation

We annotate vehicles from collected videos to construct the
UAV-VeID. In each video clip, 1 video frame is sampled

Fig. 2 Sample images from the UAV-VeID dataset. a The locations
for video collection, including urban road intersections, highways, and
parking lots.bExamples of annotated vehicle imageswith district view-

points and scales. c Examples of distractor images. UAV-VeID involves
variances of viewpoint, illumination, backgrounds, and scales, hence
could be a challenging dataset for vehicle ReID
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(a) (b) (c)

Fig. 3 Statistics on UAV-VeID dataset. a–c The statistics on image resolution, number of images per vehicle, as well as the viewpoint variance on
UAV-VeID, respectively

Table 1 Comparison between
UAV-VeID and existing vehicle
ReID datasets

Dataset VeRi-776 VehicleID VERI-Wild UAV-VeID

Identities 776 26,267 40,671 4601

Images 51,035 221,763 416,314 41,917

Distractors 0 0 0 300K

Cameras Fixed Fixed Fixed Mobile UAV

Views 3 2 Flexible Flexible

Occlusion No No Yes Yes

Background Fixed Fixed Flexible Flexible

Weather Fixed Fixed Flexible Flexible

Year 2016 2016 2019 –

every one second to construct a video frame dataset. The
dataset annotation is hence conducted based on those sample
video frames. When labeling the moving vehicles, we first
align videos from two UAVs in time, then match the same
vehicles from those two videos. To finish the vehicle anno-
tation, 6 domain experts are involved to manually locate and
annotate the identities of vehicles from each video frame.
The data annotation procedure takes 1000 man-hours and
finally results in a dataset containing 41,917 vehicle bound-
ing boxes of 4601 vehicles. Each vehicle is annotated by at
least two bounding boxes. The statistics ofUAV-VeIDdataset
are illustrated in Fig. 3. For instance, Fig. 3b shows that, most
of annotated vehicles have more than 3 bounding boxes.

In the setting of person and vehicle ReID tasks, training,
validation, and testing set do not share the same IDs. In other
words, IDs in the testing set are not included in the training
and validation sets. This setting makes the ReID task more
challenging and realistic, i.e., the trained ReIDmodel should
learn robust features and strong generalization ability towork
on unseen test samples. We follow this setting and randomly
divide UAV-VeID into three parts for training, validation and
testing, respectively. The training set contains 18,709 bound-
ing boxes of 1797 identities, the validation set contains 4150
bounding boxes of 596 identities and the test set contains
19,058 bounding boxes of 2208 identities, respectively. For
validation set and testing set in UAV-VeID, we randomly
select one image of each vehicle and put it into the gallery

set.Other images are used as queries.WecompareUAV-VeID
with existing datasets in Table 1. Figure 3 shows statistics of
bounding box size, number of images per vehicle, as well as
viewpoint variance on UAV-VeID. Compared with existing
datasets, UAV-VeID presents the following new properties:

– Flexible viewpoint and scale Taken by UAV cameras
from the air, vehicle images in UAV-VeID present more
flexible viewpoints, orientations, and scales, as shown
in the Fig. 2b. Figure 3c further shows the statistics of
viewpoint variances inUAV-VeID.Vehicles showdistinct
appearances under different viewpoints, making UAV-
VeID more challenging than existing datasets.

– More realistic task Different from existing vehicle ReID
datasets, vehicle images inUAV-VeIDare collected under
unconstrained conditions and are not artificially modi-
fied. It hence defines a more realistic vehicle ReID task.

– A large distractor set We introduce a large distractor set
consisting of falsely detected bounding boxes, as well as
vehicle images not belonging to the 4601 annotated iden-
tities. Sample images are shown in Fig. 2c. Adding the
distractor set encourages the research on more efficient
vehicle ReID.

– Introduction of a validation set We randomly divide
UAV-VeID into training set, validation set, and testing set,
respectively. Tuning algorithms on validation set rather
than the test set could make more reasonable experimen-
tal comparisons.

123



International Journal of Computer Vision (2021) 129:719–735 725

The following part proceeds to introduce our proposed
methods to learn robust features for UAV vehicle ReID.

4 Methodology

4.1 Formulation

To extract visual features robust to viewpoint variance, this
paper defines different viewpoints as distinct domains and
utilizes adversarial learning for feature training. Domain
adversarial learning has been successfully applied in trans-
fer learning (Ganin and Lempitsky 2014, 2015; Ganin et al.
2016; Tzeng et al. 2017; Pei et al. 2018; Long et al. 2018)
to reduce the distribution shift between the source and tar-
get domains. The adversarial learning can be regarded as a
two-player game, where the first player is the domain dis-
criminator trained to distinguish the source domain from the
target domain, and the second player is the feature extractor
fine-tuned to confuse the domain discriminator. Those two
players are simultaneously updated, leading to a stronger fea-
ture extractor robust to domain gap.

View adversarial learning involves three models to be
trained, i.e., feature extractorG, viewpoint discriminator Dv ,
and label predictor Dy . We use θ f , θv , and θy to denote their
parameters, respectively. To extract view-invariant features
f , parameters θ f of G are learned by maximizing the loss
of viewpoint discriminator Dv and minimizing the loss of
label predictor Dy . While parameters θv of Dv are learned
by minimizing the loss of the viewpoint discriminator. The
objective of view adversarial learning can be formulated as
the combination of two functions, i.e.,

E(θ f , θy, θv) = l(Dy(G(x; θ f ); θy), y)

− λl(Dv(G(x; θ f ); θv), v)

= Ly(θ f , θy) − λLv(θ f , θv),

(1)

where x is the input image, y is the annotated classification
label, and v is the viewpoint label, l(·) computes the loss
between predicted and groundtruth labels. Ly and Lv are loss
functions for label prediction and viewpoint classification,
respectively. λ is a trade-off parameter.

During the training procedure, optimized network param-
eters θ̂ f , θ̂y , θ̂v can be obtained as,

(θ̂ f , θ̂y) = arg min
θ f ,θy

E(θ f , θy, θ̂v),

(θ̂v) = argmax
θv

E(θ̂ f , θ̂y, θv).
(2)

The standard stochastic gradient solvers can be updated as,

θ f = θ f − γ

(
∂Ly

∂θ f
− λ

∂Lv

∂θ f

)
, (3)

θy = θy − γ
∂Ly

∂θy
, (4)

θv = θv − γ
∂Lv

∂θv

, (5)

where γ is the learning rate. The−λ in Eq. (3) represents the
Gradient Reverse Layer (GRL), which efficiently ensures the
learned features to be robust to viewpoint variances.

To learn scale invariant features, one possible solution is
to enforce features corresponding to different scales perform
similarly in vehicle ReID. We hence extract features cor-
responding to different scales and compute a Multi-Scale
Consensus Loss (MSCL) among them. Multi-scale features
can be extracted from inputs with different scales using the
same extractor, or from the same input using multi-scale fea-
ture extractors. Instead of taking multiple images as input,
our framework generates multi-scale features through paral-
lel branches with different dilation rates. Dilated convolution
with dilation rate d inserts d − 1 zeros between consecutive
filters. This operation efficiently enlarges the receptive field
without increasing the number of parameters and computa-
tions.

We hence implement multiple branches with different
dilation rates to extract multi-scale features from the same
input image. We denote features extracted with dilation rate
d > 1 as f ∗. With f and f ∗, the MSCL is defined as,

Ls =
B−1∑
b=1

Dim∑
m=1

| f (m) − f ∗
b (m)|2, (6)

where B is the number of branches computed with dilation
rate d ≥ 1, Dim is the dimension of feature f and f ∗, | · |2
computes the L2 distance.

It is easy to infer than, Ls would be minimized, if features
with different scales are similar for the same vehicle. This
essentially ensures features from each branch to be robust to
scale variances. In other words, f and f ∗ learn from each
other to assist scale-invariant feature learning. The following
parts present howwe implement Ly , Lv , and Ls with a CNN.

4.2 Implementation

To implement and optimize the formulation in Eq. (2) and
Eq. (6), we propose a viewpoint and scale consistency rein-
forcement framework illustrated in Fig. 4. As shown in the
figure, our framework consists of a main branch to learn
the vehicle feature f . Several side branches with different
dilation rates are implemented to learn feature f ∗. This part
introduces the implementations to those components.
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Fig. 4 Illustration of the proposed framework. For an input vehicle
image, the feature extractor G generates feature vector f . Multiple side
branches with dilation rate d > 1 are implemented to learn multi-scale
features f ∗. View discriminator Dv is connected to f by the GRL to

enhance its robustness to viewpoint variance. MSCL Ls is computed
between f and f ∗ to enhance the scale invariance. After training, the
side branches are discarded and the feature f is used for vehicle ReID

4.2.1 Scale Invariance Training

We use ResNet50 (He et al. 2016a) as the backbone network.
Different from the original ResNet50, two fully-connected
layers are inserted after the Global Average Pooling (GAP)
layer to learn the feature f . The first fully-connected layer
with 512 neurons plays the role of feature dimension reduc-
tion. The second fully-connected layer executes vehicle
identity categorization. For the multi-scale feature learn-
ing, we implement multi-branches, i.e., B branches, to learn
multi-scale representations. Each branch shares the same
structure with the original convolution branch, but has dif-
ferent dilation rates at the final convolutional block. For
ResNet50, each residual block consists of three convolutions
with kernel size 1× 1, 3× 3, and 1× 1, respectively, where
we set different dilation rates for the 3 × 3 convolution ker-
nel. As shown in Fig. 4, to enhance the efficiency, we only
change the dilation rate in the res5 stage. More details could
be found in Sect. 5.3. In Fig. 4, the main branch produces f
and side branches produce multi-scale features f ∗, allowing
for the computation of MSCL Ls with Eq. (6).

4.2.2 Viewpoint Adversarial Training

The view adversarial training is achieved by connecting a
view discriminator to the 512-D feature f through aGradient
Reversal Layer (GRL). We implement the view discrimi-
nators with two fully connected layers. During adversarial
training, the view discriminator, i.e., Dv in Fig. 4, tries to
predict the viewpoint of the input vehicle from its feature
vector. The learned feature f by G should be invariant to
viewpoint changes to confuse the Dv . The GRL is the key to
achieve adversarial training.During the forward propagation,
GRL acts as an identity transform. During the back propa-

gation in adversarial training, GRL takes the gradient from
the subsequent layers, multiplies it by−λ and passes it to the
preceding layers. This operation effectively achieves adver-
sarial training and has no parameters to learn. It is also simple
to implement GRL using existing deep learning packages.

During viewpoint adversarial training, the viewpoint clas-
sification loss Lv is defined as,

Lv = −
nv∑
i=1

[v(i) · log(v̂) + (1 − v(i)) · log(1 − v̂)], (7)

where v̂ and v refer to the predicted viewpoint probability
value and viewpoint label, respectively. nv denotes the num-
ber of viewpoint categories in the training set.

4.2.3 Training Loss

We train the framework in Fig. 4 with three loss functions.
The vehicle ID discriminator predicts the vehicle ID label
from the learned feature f and f ∗, and enforces images from
the same vehicle have more similar features than images of
different vehicles. We hence define the ID label prediction
loss Ly as:

Ly = Lc + λ1Lt , (8)

where Lc is the softmax cross entropy loss computed with
the ground truth ID label, and Lt is the triplet loss computed
on image triplets. λ1 is a weighting parameter.

The ID classification loss Lc is defined as:

Lc( f ) = −
nid∑
j=1

y( j) · log
(

exp(ωT
j f )∑nid

k=1 exp(ω
T
k f )

)
, (9)
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where f and y refer to the extracted feature vector and vehicle
ID label. nid denotes the number of vehicle categories in the
training set, and ωk denotes the classifier parameters of the
kth category. Note that, the ground truth label y is an one-hot
vector.

Triplet loss enforces one feature to be closer to another
feature from the same vehicle, than to a feature from any
other vehicles. The triplet loss is defined as,

Lt ( f
(a), f (p), f (n))

= max(0, | f (a), f (p)|2 − | f (a), f (n)|2 + m), (10)

where | · |2 represents the L2 distance, superscripts a, p, and
n denote the anchor sample, positive sample and negative
sample, respectively. m is a constant threshold value.

The final training loss function is defined as:

L = Lc + λ1Lt + λ2Lv + λ3Ls, (11)

where Ls is multi-scale consensus loss defined in Eq. (6),
and λ1, λ2, and λ3 are the weighting parameters.

4.2.4 Inference

After network training, we only keep the feature extractor G
for vehicle feature extraction and discard the side branches.
As shown in Fig. 4, G takes the global images as input and
outputs 512-D features, i.e., f . We use f as the final vehicle
feature and apply linear search and Euclidean Distance for
vehicle ReID.

5 Experiments

5.1 Experimental Settings

We use the mean Average Precision (mAP) and Cumulative
Match Curve (CMC) to evaluate ReID performance. UAV-
VeID, VeRi-776, VehicleID, and VERI-Wild are used for
experiments. We follow the standard experimental settings
provided by VeRi-776, VehicleID, and VERI-Wild, respec-
tively. For the VehicleID dataset, only the large query set
is evaluated since it has 2400 identities, and it is the most
challenging test set. During testing, one image is randomly
selected from one identity to generate a gallery set with 2400
images, the remaining 17,638 images are all used as query
(probe) images. The random selection process was repeated
for 10 times to obtain an average CMC result. For the VeRi-
776 dataset, we select 11,579 images as gallery set and the
remaining 1678 images are selected as probe images. The
selection is the same as Liu et al. (2016d).

Fig. 5 Examples of four defined viewpoint categories in UAV-VeID
dataset

5.2 Implementation Details

5.2.1 Viewpoint Annotation

Our view adversarial training module requires viewpoint
labels to train the view discriminator. Most of vehicles taken
by traffic surveillance cameras show front or rear views.
Differently, vehicles in UAV may show continuous views,
making it is hard to define and annotate all viewpoints. We
hence simply define four typical viewpoints for UAV-VeID
to verify the effectiveness of our method. We annotate all the
training vehicle images of UAV-VeID with four viewpoint
labels, i.e., front, rear, left, and right, respectively. Figure 5
shows examples from those four viewpoint categories in
UAV-VeID. Other vehicle ReID datasets like VehicleID (Liu
et al. 2016a) and VeRi-776 (Liu et al. 2016d) do not pro-
vide viewpoint annotations.Vehicles are captured fromeither
front or rear viewpoint in VehicleID, so we define front and
rear as the viewpoint labels. As for Veri-776 and VERI-Wild,
the number of side view images is relatively small. We com-
bine the left and right views as the same category (side), and
then label the viewpoint of each image as front, side, or rear,
respectively. To train the viewpoint classifier, we annotate all
vehicle images in VeRi-776 with front, rear and side labels.
Thenweuse annotated images to train a three-class viewpoint
classifier for VeRi-776 and VERI-Wild, respectively. A two-
class classifier for VehicleID is also trained using front and
rear view labels onVeRi-776. Because viewpoint recognition
is not a challenging task, we implement our viewpoint clas-
sifier based on VGG_CNN_M_1024 (Chatfield et al. 2014).

5.2.2 Training Details

We use ResNet50 as the backbone for vehicle feature learn-
ing. We remove the last spatial down-sampling operation
in the backbone network to increase the size of the feature
map (Sun et al. 2018). We initialize the ResNet50 with pre-
trained parameters on ImageNet and change the dimension of
the output layer to the number of identities in the training set.
We randomly sample P vehicles and K images of per vehicle
to constitute a training batch. Finally the batch size equals to
P × K . In this paper, we set P = 8 and K = 4. We resize
each image into 224 × 224, then perform random erasing
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Fig. 6 The viewpoint prediction accuracy evaluated on different per-
centages of training data. The red line denotes the results on VeRi-776
and the blue line denotes the results on UAV-VeID (Color figure online)

augmentation on VeRi-776, VehicleID and VERI-Wild. The
margin m of triplet loss is set to be 0.3. The initial learning
rate is set to 0.01 and is decreased by 0.1 at the 30th epoch,
60th epoch and 90th epoch respectively. Totally, there are 120
training epochs. Theweight decay factor is set to 0.0003. The
momentum is set as 0.9. The loss weights in Eq. (11) are set
to λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, respectively.

5.3 Ablation Studies

5.3.1 Accuracy of Viewpoint Prediction

Viewpoint prediction is important for our view adversarial
learning. We hence first conduct experiments to evaluate
the accuracy of viewpoint prediction. For UAV-VeID and
VeRi-776, we generate training and testing sets based on
our annotated viewpoint labels for viewpoint classification,
respectively. For UAV-VeID, the training set contains 18,709
images, and the rest 3742 images are used as the test set. For
VeRi-776, 30,222 images are used as training set and the rest
7556 images are used as the test set. Figure 6 summarizes the

Table 3 Performance of different viewpoint categories for the view-
point adversarial training on UAV-VeID validation set

Methods r=1 r=5 r=10 mAP

Baseline 83.52 95.97 98.13 89.01

3-View adversarial 85.71 97.68 98.76 90.97

4-View adversarial 86.05 98.03 99.01 91.29

Bold denotes the best performance

viewpoint classification accuracy using different portions of
training images for viewpoint classifier training. It is clear
that, using 25% training images could get reasonably good
label prediction accuracy, e.g., 98.29%onVeRI-776. Increas-
ing the number of training images does not bring substantial
performance gains. This could be because viewpoint classi-
fication is an easy task, i.e., only has 2–4 classes, thus does
not require a large training set. Therefore, our strategy does
not require too many efforts for viewpoint annotation.

5.3.2 Validity of Scale Invariance Training

Our scale invariance training involves an important parame-
ter, i.e., the branch number B. This part evaluates the validity
of our scale invariance training module, as well as the effects
of B. We test different variants of our scale invariance train-
ing strategy and summarize the results in Table 2, where (a)
denotes the baseline.

Table 2(b–e) summarizes the results of using two branches
with dilation rates 1 and 2, respectively. The comparison
between Table 2(d, e) shows the validity ofMSCL, i.e., train-
ing with MSCL leads to a better f than directly fusing f and
f ∗ together. This shows that MSCL effectively boosts the
feature performance. The comparison between Table 2(c,
e) shows that it is reasonable to learn different parameters
for different branches, rather than sharing the same parame-

Table 2 Validity of our scale
invariance training strategy

Dataset Dilation rate Weight-sharing MSCL Dim UAV-VeID Validation VeRi-776
Methods r=1 mAP r=1 mAP

(a) 1 – – 512 83.52 89.01 88.25 63.01

(b) 1, 2 � – 1024 85.73 90.29 88.51 64.33

(c) 1, 2 � � 512 86.21 91.06 88.72 64.56

(d) 1, 2 – – 1024 88.02 92.36 90.25 66.36

(e) 1, 2 – � 512 89.32 93.03 91.78 68.95

(f) 1, 2, 3 – – 1536 89.41 93.07 91.35 68.06

(g) 1, 2, 3 – � 512 91.32 94.76 92.96 72.18

(h) 1, 2, 3, 4 – � 512 91.33 94.28 93.01 72.29

Bold denotes the best performance
“Dilation Rate” shows the branch number B, and the dilations rates in each branch. “Weight-Sharing” denote
sharing the same parameters among different side branches. “MSCL” denotes using the trained f for ReID.
Without “MSCL” denotes fusing features from multiple branches for ReID. Each branch produces a 512-dim
feature
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ters. Similar conclusion can be drawn from the comparison
between Table 2(b, d).

We further introduce more branches and summarize the
results in Table 2(f–h). It is clear that, more branches is
beneficial for the performance improvement. As shown in
Table 2(e, g), introducing an extra branch boosts the rank-
1 accuracy from 89.32 to 91.32% on UAV-VeID validation
set. It is also interesting to observe from Table 2(f) that,
directly fusing features from three branches leads to a higher
dimensional feature, but could not substantially improve the
performance. Compared with Table 2(f, g) achieves better
performance with a lower-dimensional feature. This further
shows the validity of MSCL, which enhances feature f with
multi-scale features f ∗.

Table 2 also shows that, introducing too many branches
does not bring substantial performance gains, e.g., 3 branches
perform similarity with 4 branches. Therefore, we set the
branch number B as 3, and use the setting in Table 2(g)
to implement our scale invariance training in the following
experiments. The adopted setting achieves reasonably good
performance on both UAV-VeID and VeRi-776.

5.3.3 Validity of Viewpoint Adversarial Training

This part further tests the validity of viewpoint adversarial
training. We test the performance of different viewpoint cat-
egories for the viewpoint adversarial training on UAV-VeID
validation set. In Table 3, the Baseline is trained only using
cross entropy loss Lc and triplet loss Lt , without any view-
point information. 3-View Adversarial denotes our proposed
viewpoint adversarial training with 3 viewpoints, i.e., front,
rear and side. 4-ViewAdversarial denotes our proposed view-
point adversarial training with 4 viewpoints, i.e., front, rear,
left and right. It is clear that, 3-Viewpoint outperforms the
Baseline, e.g., improves baseline rank1 accuracy from 83.52
to 85.71%, but is still lower than the 86.05% of 4-Viewpoint.
Because the same vehicle might have different markers on
the left and right sides, it is more reasonable to divide side
viewpoint as two left and right viewpoints. In Table 4(a, b),
we summarize the performance without and with viewpoint
adversarial training onUAV-VeID,VeRi-776, andVehicleID.
Table 4(b) adds the view adversarial learning module to the

Table 5 Comparison with recent works on UAV-VeID test set

Methods r=1 r=5 r=10

VGG_CNN_M (Chatfield et al. 2014) 28.34 39.27 43.48

Siamese-Visual (Shen et al. 2017) 25.98 41.98 50.61

RAM (Liu et al. 2018) 45.26 59.35 64.07

SCAN (Teng et al. 2018) 40.49 53.74 60.55

GoogLeNet (Szegedy et al. 2015b) 45.23 64.88 70.38

CN-Nets (Yao et al. 2017) 55.91 76.54 82.46

VSCR (Ours) 70.59 88.33 92.51

Bold denotes the best performance

baseline. Based on the viewpoint attribute, we intend to learn
a viewpoint invariant feature representation. The compari-
son clearly shows that, view adversarial learning effectively
boosts the performance on UAV-VeID, VeRi-776, and Vehi-
cleID. Therefore, it is necessary to make use of viewpoint
information for vehicle feature representation learning.

Table 4(c) shows the performance of using scale invari-
ance training. The performance of combining viewpoint
adversarial training and scale invariance training is summa-
rized in Table 4(d). Table 4(b–d) show that, both of our two
training strategies are important for the performance gains,
and their combination, i.e., the VSCR leads to the best per-
formance. For example, VSCR achieves rank-1 accuracy of
91.98% onUAV-VeID validation set, significantly better than
the 83.52% of baseline. Our method also performs well on
existing datasets, e.g., Table 4b, c achieve rank-1 of 91.35%
and 92.96% on VeRi-776, better than the baseline 88.25%.
VSCR also achieves the best performance on existing vehicle
ReID datasets VeRi-776 and VehicleID.

5.4 Comparison with RecentWorks

5.4.1 UAV-VeID

Table 5 compares our method with recent ReID and fine-
grained feature learning method on UAV-VeID test set.
Compared methods include Siamese-Visual (Shen et al.
2017), CN-Nets (Yao et al. 2017), RAM (Liu et al. 2018)
and SCAN (Teng et al. 2018), etc. We implement those

Table 4 Performance of different variants of our approach on UAV-VeID, VeRi-776, and VehicleID

Dataset UAV-VeID Validation VeRi-776 VehicleID
Methods r=1 r=5 r=10 mAP r=1 r=5 r=10 mAP r=1 r=5 r=10 mAP

(a) Baseline 83.52 95.97 98.13 89.01 88.25 94.69 96.55 63.01 66.96 77.39 82.73 71.27

(b) View adversarial 86.05 98.03 99.01 91.29 91.35 96.18 97.15 68.35 69.94 81.02 85.01 75.76

(c) Multi-scale 91.32 98.63 99.16 94.76 92.96 96.89 97.86 72.18 73.49 85.16 89.28 77.71

(d) VSCR 91.98 98.86 99.37 95.21 94.11 97.85 98.56 75.53 74.58 87.12 92.09 78.78

Bold denotes the best performance
VSCR (Viewpoint-Scale Consistency Reinforcement) denotes the proposed entire framework in Fig. 4
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Fig. 7 CMC curves of compared methods on UAV-VeID

algorithms with the code provided by their authors. It can
be observed that, our method achieves rank-1 accuracy of
70.59%, significantly outperforming existing ReID meth-
ods. It is interesting to observe that, existing vehicle ReID
method do not perform well on UAV-VeID. Both RAM (Liu
et al. 2018) and SCAN (Teng et al. 2018) extract addi-
tional regional features but perform poorly. This could be
because they are designed for vehicle ReID tasks on tradi-
tional surveillance videos and do not consider the viewpoint
variety and scale misalignment issues in UAV-VeID. CN-
Nets (Yao et al. 2017) is designed for fine-grained instance
retrieval and achieves rank-1 accuracy of 55.91%, which is
the best among competitors in Table 5. The CMC curves are
shown in Fig. 7.

We also experiment on the large distractor set. ReID per-
formances achieved with different numbers of distractors are
presented in Fig. 8. It is clear that, as more distractors are
added to the gallery set, the ReID accuracy drops. It is inter-
esting to see that, the performance drop of our methods is
slower than the baseline. This could be because our feature
is more robust to noises introduced by distracters. Figure 8
shows that, it is more challenging to perform UAV vehicle
ReID on the large-scale data.

5.4.2 VeRi-776

Table 6 summarizes comparisons with recent approaches on
VeRi-776. Among those compared methods RAM (Liu et al.
2018), SCAN (Teng et al. 2018), VAMI (Zhou and Shao
2018), FDA-Net (Lou et al. 2019), PRM(256 × 256) (He
et al. 2019a), and AAVER (Khorramshahi et al. 2019)
consider the local-part cues and design models to learn
local part sensitive features. VAMI (Zhou and Shao 2018),
AAVER (Khorramshahi et al. 2019), and VANet (Chu et al.
2019) consider viewpoint variation during the ReID model

Fig. 8 Rank-1 accuracy of our method (VSCR) and baseline on UAV-
VeID by adding different numbers of distractors

training. VAMI (Zhou and Shao 2018) adopts a viewpoint-
aware attention model to obtain multi-view feature repre-
sentation. AAVER (Khorramshahi et al. 2019) designs a
viewpoint conditioned part appearance path to capture local-
ized discriminative features on the corresponding viewpoint.
VANet (Chu et al. 2019) designs a two-branch network
to project a single input image into two feature spaces to
enhance the feature robustness to viewpoint variances. It can
be observed that, our method outperforms all of the competi-
tors at rank-1/mAP. For example, ourmethod achieves rank-1
accuracy of 94.11%, significantly better than the 84.27% of
FDA-Net (Lou et al. 2019), 89.78% of VANet (Chu et al.
2019) and 88.97% of AAVER (Khorramshahi et al. 2019) on
VeRi-776 dataset. Our method does not involve part feature
extraction or keypoint detection, thus could also be easier to
implement.

5.4.3 VehicleID

Table 7 summarizes comparisons with recent works on Vehi-
cleID. It is clear that, our method also shows competitive
performance. PRM(256 × 256) (He et al. 2019a) integrates
part and global cues and achieves similar performance to
ours. It uses input size 256×256 (larger than our 224×224),
which is helpful for achieving better performance.

5.4.4 VERI-Wild

Table 8 summarizes the results on VERI-Wild dataset. It
is clear that ResNet50 is a strong baseline, which already
achieves competitive performance. Although we use a strong
baseline, our method still substantially boosts the perfor-
mance. For example, it boosts the rank-1 accuracy from
78.02% to 86.29% on the large testing set of VERI-Wild,
which is significantly higher than the performance of previ-
ous methods. Tables 6, 7 and 8 show that, our method also
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Table 6 Comparison with
recent works on VeRi-776

Methods r=1 r=5 mAP Backbone

GoogLeNet (Yang et al. 2015) 52.12 66.79 17.81 GoogLeNet

FACT (Liu et al. 2016d) 50.95 73.48 18.49 GoogLeNet

FACT+STR (Liu et al. 2016d) 61.44 78.78 27.77 GoogLeNet

VGG+C+T (Zhang et al. 2017) 86.41 92.91 58.78 VGG_CNN_M

OIFE (Wang et al. 2017) 65.9 87.7 48.00 GoogLeNet†

OIFE+ST (Wang et al. 2017) 68.3 89.7 51.42 GoogLeNet†

Path-LSTM (Shen et al. 2017) 83.49 90.04 58.27 ResNet50

RAM (Liu et al. 2018) 88.6 94.0 61.5 VGG_CNN_M

SCAN (Teng et al. 2018) 82.24 90.76 49.87 VGG16

VAMI (Zhou and Shao 2018) 77.03 90.82 50.13 Self-design

VAMI+ST (Zhou and Shao 2018) 85.92 91.84 61.32 Self-design

MSVR (Kanac and Zhu 2018) 88.56 – 49.30 MobileNets

PVSS (Liu et al. 2019a) 90.58 97.14 62.62 ResNet50

FDA-Net (Lou et al. 2019) 84.27 92.43 55.49 VGG_CNN_M

PRM(256 × 256) (He et al. 2019a) 92.2 97.9 70.2 ResNet50

VANet (Chu et al. 2019) 89.78 95.99 66.34 ResNet50

AAVER (Khorramshahi et al. 2019) 88.97 94.70 61.18 ResNet50

VSCR (ours) 94.11 97.85 75.53 ResNet50

Bold denotes the best performance

Table 7 Comparison with
recent works on VehicleID

Methods r=1 r=5 mAP Backbone

GoogLeNet (Yang et al. 2015) 38.27 59.39 40.39 GoogLeNet

Mixed Diff+CCL (Liu et al. 2016a) 38.2 61.6 45.5 VGG_CNN_M

VGG+C+T (Zhang et al. 2017) 61.0 77.5 – VGG_CNN_M

CLVR (Kanacı et al. 2017) 50.6 68.00 – Inception-V3

OIFE+ST (Wang et al. 2017) 67.0 82.9 – GoogLeNet†

RAM (Liu et al. 2018) 67.7 84.5 – VGG_CNN_M

C2F (Guo et al. 2018) 51.4 72.2 53.0 GoogleNet

SCAN (Teng et al. 2018) 65.44 78.47 – VGG16

VAMI (Zhou and Shao 2018) 47.34 70.29 – Self-design

MSVR (Kanac and Zhu 2018) 63.02 73.05 – MobileNets

FDA-Net (Lou et al. 2019) 55.53 74.65 61.84 VGG_CNN_M

PRM(256 × 256) (He et al. 2019a) 74.2 86.4 – ResNet50

AAVER (Khorramshahi et al. 2019) 60.23 84.85 – ResNet50

VSCR (ours) 74.58 87.12 78.78 ResNet50

Bold denotes the best performance

achieves promising performance on existing vehicle ReID
datasets.

5.5 Visualization

We further shows some visualizations to demonstrate the
validity of our methods. Figure 9 shows the response of res5c
feature maps in the ResNet50 backbone, which indicates the
focused regions by the learned neural network. Response
maps of baseline and our VSCR (the first branch) are com-

pared in the second and third rows, respectively. It could be
observed that, the activated regions of our VSCR contain
more discriminative details, than the ones of the baseline
model. This indicates that, our training strategies, i.e., the
scale invariance training and viewpoint adversarial training,
are effective in capturing discriminative cues from vehicle
image.

Figure 10 visualizes image feature distribution of 20 vehi-
cles randomly sampled from the UAV-VeID test set. Features
extracted by baseline and our VSCR are compared. It is clear
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Table 8 Comparison with recent works on VERI-Wild

Settings Small Medium Large Backbone
Methods r=1 r=5 mAP r=1 r=5 mAP r=1 r=5 mAP

GoogLeNet (Yang et al. 2015) 57.16 75.13 24.27 53.16 71.1 24.15 44.61 63.55 21.53 GoogLeNet

Triplet (Schroff et al. 2015) 44.67 63.33 15.69 40.34 58.98 13.34 33.46 51.36 9.93 GoogLeNet

Softmax (Liu et al. 2016d) 53.4 75.03 26.41 46.16 69.88 22.66 37.94 59.89 17.62 GoogLeNet

CCL (Liu et al. 2016a) 56.96 75.0 22.50 51.92 70.98 19.28 44.6 60.95 14.81 VGG_CNN_M

HDC (Yuan et al. 2017) 57.1 78.93 29.14 49.64 72.28 24.76 43.97 64.89 18.30 GoogLeNet

GSTE (Bai et al. 2018) 60.46 80.13 31.42 52.12 74.92 26.18 45.36 66.5 19.50 VGG_CNN_M

Unlabled GAN (Zhu et al. 2017) 58.06 79.6 29.86 51.58 74.42 24.71 43.63 65.52 18.23 Self-design

FDA-Net (Lou et al. 2019) 64.03 82.8 35.11 57.82 78.34 29.80 49.43 70.48 22.78 VGG_CNN_M

Baseline (ours) 88.32 92.08 67.66 82.86 90.34 63.16 78.02 87.29 56.56 ResNet50

VSCR (ours) 93.13 97.70 75.79 89.68 96.56 70.47 86.29 94.60 64.19 ResNet50

Bold denotes the best performance

Fig. 9 Responses of feature maps generated by Grad-CAM (Ram-
prasaath et al. 2017). The second and third row shows responses of
feature maps generated by baseline and our method, respectively. As
shown in the examples, our method captures more discriminative cues

(a) (b)

Fig. 10 Visualization with t-SNE for feature distribution of 20 vehi-
cles (best viewed in color). a, b Visualize the distribution of features
extracted by the baseline and our VSCR, respectively. 20 vehicles are
randomly sampled from the UAV-VeID testset

Fig. 11 Sample vehicle ReID results on UAV-VeID. For each example,
top-10 returned results of baseline and our VSCR are shown in the first
and second row, respectively. Blue boxes are query vehicles, red and
green boxes denote false positives and true positives, respectively. For
each query, there is only one true positive in the gallery set (Color figure
online)

that, VSCR features of the same vehicle are closer to each
other than the baseline feature, indicating the better robust-
ness to variances of viewpoints and scales.

We demonstrate some vehicle ReID results on UAV-VeID
and VeRi-776 in Figs. 11 and 12, respectively, where the
baseline and the VSCR are compared. From Fig. 11, we can
see that there exist lots of similar vehicles for each query in
the gallery set. Meanwhile, the true positive exhibit different
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Fig. 12 Sample vehicle ReID results on VeRi-776. For each example,
top-10 returned results of baseline and our VSCR are shown in the
first and second row, respectively. Blue boxes are query vehicles. Red
and green boxes denote false positives and true positives, respectively
(Color figure online)

viewpoints to the query. The baseline method is not effec-
tive in distinguishing those false positives. Compared with
the baseline method, our VSCR method is more discrimina-
tive in identifying the same vehicle. It demonstrates that, our
method learns more discriminative and robust vehicle fea-
tures. Similar conclusions could be drawn from visualized
results in Fig. 12.

5.6 Discussion

At present, the research on object ReID is mainly focused on
person and vehicle ReID in fixed surveillance cameras. Com-
pared with fixed cameras, cameras on UAVs are more active
and flexible, thus are more suited for smart traffic surveil-
lance. UAV person ReID is another interesting and valuable
task. It faces similar challenges with UAV vehicle ReID. For
instance, the same person would show substantially different
viewpoints and scales in cameras of different UAVs. There-
fore, UAV person ReID model also needs high robustness to
viewpoint and scale changes. This work effectively alleviates
viewpoint and scale variances in UAV vehicle images. Our
methods thus could also be applied to other ReID tasks in
UAV videos like person ReID. In our future work we will
collect a large scale UAV person image dataset to verify the
effectiveness of our method.

Different from existing vehicle ReID datasets taken by
surveillance cameras, UAV-VeID is taken by UAVs from a

bird-eye view, where the license plates are mostly invisible.
This leads to difficulty in manually annotating vehicles at
different times and locations. To make the dataset collection
possible, as well as to simulate the real scenario as much
as possible, we adopted two strategies to take UAV videos:
(1) record moving vehicles at different locations and lighting
conditions, and (2) record vehicles at parking lots from dif-
ferent viewpoints and heights. Those two strategies as well
as different shooting locations and times as shown in Fig. 2
simulate considerable variances in real scenario, meanwhile
make the data annotation feasible. However, compared with
the real data in UAV scenario, UAV-VeID still shows weak-
nesses like similar backgrounds and illuminations for image
of the same vehicle. More efforts are still needed to construct
realistic datasets, e.g., shoot and annotate the same vehicle
at different locations and times. One possible strategy is to
record vehicles at different locations on a road by multiple
UAVs, where extra spatial and temporal relationships can
be recorded to assist the data annotation. Meanwhile, unsu-
pervised training algorithms (e.g., Wang et al. 2019; Wang
and Zhang 2020) can be developed to assist data annotation.
These will be considered in our future work.

6 Conclusion

This work contributes a novel UAV-VeID dataset, which
defines a more challenging and realistic vehicle ReID task
in UAV videos. The UAV-VeID is expected to facilitate the
development and evaluation of the vehicle ReID methods
in the wild. To alleviate the negative effects of viewpoint
and scale variations in vehicle images, we propose a view
adversarial training strategy and a scale invariance train-
ing method to promote the robustness and discriminative
power of learned deep features. Extensive experiments on
UAV-VeID and existing vehicle ReID datasets show that, our
approach achieves competitive performance compared with
recent works.
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