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Abstract
Occlusion is probably the biggest challenge for human pose estimation in the wild. Typical solutions often rely on intrusive
sensors such as IMUs to detect occluded joints. To make the task truly unconstrained, we present AdaFuse, an adaptive
multiview fusion method, which can enhance the features in occluded views by leveraging those in visible views. The core
of AdaFuse is to determine the point-point correspondence between two views which we solve effectively by exploring the
sparsity of the heatmap representation. We also learn an adaptive fusion weight for each camera view to reflect its feature
quality in order to reduce the chance that good features are undesirably corrupted by “bad” views. The fusion model is trained
end-to-end with the pose estimation network, and can be directly applied to new camera configurations without additional
adaptation. We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU
Panoptic. It outperforms the state-of-the-arts on all of them. We also create a large scale synthetic dataset Occlusion-Person,
which allows us to perform numerical evaluation on the occluded joints, as it provides occlusion labels for every joint in the
images. The dataset and code are released at https://github.com/zhezh/adafuse-3d-human-pose.

Keywords Human pose estimation · Multiple camera fusion · Epipolar geometry

1 Introduction

Accurately estimating 3Dhumanpose frommultiple cameras
has been a longstanding goal in computer vision (Liu et al.
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2011; Bo and Sminchisescu 2010; Gall et al. 2010; Rhodin
et al. 2018; Amin et al. 2013; Burenius et al. 2013; Pavlakos
et al. 2017; Belagiannis et al. 2014). The ultimate goal is to
recover absolute 3D locations of the body joints in a world
coordinate system from multiple cameras placed in natural
environments. The task has attracted a lot of attention because
it can benefit many applications such as augmented and vir-
tual reality (Starner et al. 2003), human-computer-interaction
and intelligent player analysis in sport videos (Bridgeman
et al. 2019).

The task is often addressed by a simple two-step frame-
work. In the first step, it tries to detect the 2D poses in
all camera views, for example, by a convolutional neural
network (Cao et al. 2017; Xiao et al. 2018). Then in the
second step, it recovers the 3D pose from the multiview 2D
poses either by analytical methods (Burenius et al. 2013;
Pavlakos et al. 2017; Belagiannis et al. 2014; Qiu et al. 2019;
Amin et al. 2013) or by discriminative models (Iskakov et al.
2019; Tu et al. 2020). The camera parameters are usually
assumed known in these approaches. The development of
powerful network architectures such as Newell et al. (2016)
has notably improved the 2D pose estimation quality, which
in turn reduces the 3D error remarkably. For example, in Qiu
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Fig. 1 Our approach accurately detects the poses even though they are
occluded by leveraging the features in other views. The bottom three
rows are images from other view angles of the scene for readers to better
perceive the 3D poses of the actors

et al. (2019), the 3D error on Human3.6M (Ionescu et al.
2014) decreases significantly from 52 to 26mm.

However, obtaining small errors on benchmark datasets
does not imply that the task has been truly solved unless the
challenges such as background clutter, human appearance
variation and occlusion encountered in real world applica-
tions are well addressed. In fact, a growing amount of efforts
(Zhou et al. 2017; Ci et al. 2019; Yang et al. 2018; Rogez
and Schmid 2016; Pavlakos et al. 2018; Ci et al. 2020) have
been devoted to improving the pose estimation performance
in challenging scenarios, for example, by augmenting the
training dataset (Zhou et al. 2017; Yang et al. 2018; Varol
et al. 2017) with more images or by using more robust sen-
sors such as IMUs (Trumble et al. 2017). We will discuss
about this type of work in more details in Sect. 2.

In thiswork, we propose to solve the problem in a different
way bymultiview feature fusion. The approach is orthogonal
to the previous efforts. As shown in Fig. 1, our approach can
accurately detect the joints even when they are occluded in
certain views. The motivation behind our approach is that a
joint occluded in one viewmay be visible in other views. So it
is generally helpful to fuse the features at the corresponding
locations in different views. To that end, we present a flexible
multiview fusion approach termed AdaFuse. Figure 2 shows
the pipeline. It first uses camera parameters to compute the
point-line correspondence between a pair of views. Then it
“finds” the matched point on the line by exploring the spar-
sity of the heatmap representation without performing the

challenging point-point matching. Finally, the features of the
matchedpoints in different views are fused. The approach can
effectively improve the feature quality in occluded views. In
addition, for a new environment with different camera poses,
we can directly use AdaFuse without re-training as long as
the camera parameters are available. This improves the appli-
cability of the approach in real applications.

The performance of AdaFuse is further boosted by learn-
ing an adaptive fusion weight for each view to reflect its
feature quality. This weight is leveraged in fusion in order to
reduce the impact of low-quality views. If a joint is occluded
in one view, its features are also likely corrupted. In this case,
we hope to give a small weight to this view when perform-
ing multiview fusion such that the high-quality features in
the visible views are dominant, and are free from being cor-
rupted by low-quality features.We add some simple layers to
the pose estimation network to predict heatmap quality based
on the heatmap distribution and cross view consistency. We
observe in our experiments that the use of adaptive fusion
notably improves the performance.

We evaluate our approach on three public datasets includ-
ing Human3.6M (Ionescu et al. 2014), Total Capture (Trum-
ble et al. 2017) and CMU Panoptic (Joo et al. 2019). It
outperforms the state-of-the-arts demonstrating the effec-
tiveness of our approach. In addition, we also compare it
to a number of standard multiview fusion methods such as
RANSAC in order to give more detailed insights. We evalu-
ate the generalization capability of our approach by training
and testing on different datasets. We also create a synthetic
human pose dataset in which human are purposely occluded
by objects. The dataset allows us to perform evaluation on
the occluded joints.

The rest of the paper is organized as follows. In Sect. 2,
we discuss the related work on multiview 3D human pose
estimation with special focus on the approaches that aim to
improve the performance in challenging environments. Sec-
tion 3 introduces the basics for multiview feature fusion to
lay the groundwork for AdaFuse. Then we describe how we
learn adaptive weight for each camera view to reflect the fea-
ture quality, as well as the details of AdaFuse. In Sects. 5
and 6, we introduce the experimental datasets and results,
respectively. Section 7 concludes this work.

2 RelatedWork

We first review the related work on multiview 3D human
pose estimation in section 2.1. Then Sect. 2.2 summarizes
the techniques that are used to improve the in-the-wild per-
formance. Finally, in Sect. 2.3, we discuss the approaches on
consensus learning such as RANSAC. This is necessary for
multiple sensor fusion because the sensors could have con-
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Fig. 2 Overview of AdaFuse. It takes multiview images as input and
outputs 2D poses of all views jointly. It first uses a pose estimation
network to obtain 2D heatmaps for each view. Then on top of epipolar
geometry, the heatmaps from all camera views are fused. Finally, we

apply the SoftMax operator to suppress the small noises introduced in
fusion. Consequently, pose estimation in each view benefits from other
views

tradictory predictions and the outliers should be removed to
ensure the good fusion quality.

2.1 Multiview 3D Human Pose Estimation

We briefly classify the multiview 3D human pose estima-
tion methods into two classes. The first class is model-based
approaches which are also known as analysis-by-synthesis
approaches (Liu et al. 2011; Gall et al. 2010; Moeslund
et al. 2006; Sigal et al. 2010; Perez et al. 2004). They first
model human body by simple primitives such as sticks and
cylinders. Then the parameters of the model (i.e. poses) are
continuously updated according to the observations in mul-
tiview images until the model can be explained by the image
features. The resulted optimization problem is usually non-
convex. So expensive sampling techniques are often used.
The main difference among those approaches lies in the
adopted image features and the optimization algorithms. We
refer the interested readers to earlier survey papers such as
Moeslund et al. (2006).

The advantage of the model-based approaches lies in its
capability to handle occlusion because of the inherent struc-
ture prior embedded in human model. These approaches
aggregate the local features as evidence to infer the global
model parameters with the inherent human body structure as
constraints. So if a joint is occluded, it can still rely on other
joints to guess the possible locations that are consistent with
the prior. However, the model-based approaches get larger
3D errors than the model-free approaches due to the difficult
optimization problems.

The second class is model-free approaches (Qiu et al.
2019; Iskakov et al. 2019; Burenius et al. 2013; Pavlakos

et al. 2017; Dong et al. 2019; Amin et al. 2013; Belagiannis
et al. 2014; Xie et al. 2020) which often follow a two-step
framework. Theyfirst detect 2Dposes in images of all camera
views. Then with the aid of camera parameters, they recover
the 3D pose using either triangulation (Amin et al. 2013;
Iskakov et al. 2019) or pictorial structure models (Burenius
et al. 2013; Pavlakos et al. 2017; Dong et al. 2019). Recursive
pictorial structure model is introduced in Qiu et al. (2019) to
speed up the inference process. The authors in Iskakov et al.
(2019) also propose to use learnable triangulation (Hartley
and Zisserman 2003) for human pose estimation which is
more robust to inaccurate 2D poses. If the 2D poses are accu-
rate, the recovered 3D poses are guaranteed to be accurate
without worrying about being trapped in local optimum as
the model-based methods.

The development of more powerful network architec-
tures (Newell et al. 2016; Sun et al. 2019) has dramatically
improved the 2D pose estimation accuracy on benchmark
datasets, which in turn also decreases the 3D pose estima-
tion error. For example, on the most popular benchmark
Human3.6M (Ionescu et al. 2014), the 3D MPJPE error has
decreased to about 20mm which can meet the requirements
of many real-life applications.

2.2 Improving“In theWild” Performance

Sensors Occlusion is probably the biggest challenge for in-
the-wild scenarios. One straightforward solution is to use
additional sensors such as IMUs (Trumble et al. 2017) and
radio signals (Zhao et al. 2019), which are not impacted by
occlusion. For example, Roetenberg et al. (2009) place 17
IMUs at the rigid bones. If the measurements are accurate,
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the 3D pose is fully determined. In practice, however, the
accuracy is limited by the drifting problem. To that end, some
approaches (Trumble et al. 2017; von Marcard et al. 2018;
Gilbert et al. 2019; Malleson et al. 2017; Zhang et al. 2020)
propose to fuse images and IMUs to achieve more robust
pose estimation. Some works (Zhao et al. 2019; Li et al.
2019; Zhao et al. 2018) leverage the fact that wireless sig-
nals in the WiFi frequencies traverse walls and reflect off the
human body, and propose a radio-based system that can esti-
mate 2D poses even when persons are completely occluded
by walls. However, these approaches also have their own
problems. For example, how to effectively fuse visual and
inertial signals for IMU-based approaches? Besides, wear-
ing sensors on the body is intrusive, and is not acceptable in
some scenarios such as football games.On the other hand, the
WiFi-based solutions cannot deal with self-occlusion which
is a big limitation.
Data Augmentation Collecting more images for model train-
ing is an effective approach to improve the generalization
performance. For example in Zhou et al. (2017) andQiu et al.
(2019), the authors propose to use the MPII (Andriluka et al.
2014) and the COCO (Lin et al. 2014) datasets to help train
the 2D module of the 3D pose estimators which effectively
reduces the risk of over-fitting to simple training datasets.
However, annotating a sufficiently large pose dataset is
expensive and time consuming. So some approaches (Rogez
and Schmid 2016; Varol et al. 2017; Hoffmann et al. 2019;
Chen et al. 2016;Lassner et al. 2017) propose to generate syn-
thetic images. The main issue is to bridge the gap between
the synthetic and real images such that the model trained on
synthetic images can be applied to real images. To that end,
some approaches such as Peng et al. (2018) propose to use
generative adversarial networks to generate realistic images.
Spatial-Temporal Context Models Some approaches propose
to use spatial-temporal context models to jointly detect all
joints in a video sequence such that each joint can benefit
from other joints in the same or neighboring frames. Intu-
itively, if a body joint is occluded thus is difficult to be
detected according to its own appearance, they can use the
locations of other joints to guess the possible location. For
example, in a previous work (Cao et al. 2017; Kreiss et al.
2019), the authors propose to detect body parts, i.e. the links
connecting two joints, in addition to the individual joints.
This provides a chance to mutually enhance the detection
of the two linked joints. In Cheng et al. (2019) and Pavllo
et al. (2019)), temporal convolution is utilized to deal with
occlusion in current frames. Some works such as Qiu et al.
(2019) propose to establish the spatial correspondence across
multiple camera views, and leverage multi-view features for
robust joint detection. Significant performance improvement
has been achieved for the occluded joints on several bench-
mark datasets. Themain drawback of the approach (Qiu et al.
2019) is the lack of flexibility in practice since it needs to train

a separate fusion network for every possible camera place-
ment. Our work differs from Qiu et al. (2019) in that it can
be applied to new environments with different numbers of
cameras and different camera poses without additional adap-
tation. We will compare the two methods in the experiments.

2.3 Consensus Learning

A fundamental problem in multi-sensor fusion is to detect
and remove outliers as the sensors may produce inconsis-
tent measurements. RANSAC (Fischler and Bolles 1981)
is the most commonly used outlier detection method. The
main assumption is that the dataset consists of inliers. It pro-
duces reasonable results onlywith a certain probabilitywhich
increases as the number of inliers. In practice, when the num-
ber of sensors is small, the probability of detecting the real
outliers is also small. For example, in multiview human pose
estimation, the number of cameras is only four to eight for
most benchmark datasets (Ionescu et al. 2014; Trumble et al.
2017). For such cases, we observe that RANSACmay not be
the best option.

In recent years, uncertainty learning (Kendall and Gal
2017; Gal and Ghahramani 2015; Lakshminarayanan et al.
2017; Zafar et al. 2019; Lakshminarayanan et al. 2017; Pleiss
et al. 2017) has attracted a lot of attention which is particu-
larly important for high-risk applications such as autonomous
driving andmedical diagnosis (Gal 2016;Ghahramani 2016).
Themain idea is that,when amodelmakes aprediction, it also
outputs a score reflecting the confidence of the prediction.
Consider an autonomous car that uses a neural network to
detect people. If the network is not confident about the predic-
tion, the car could probably rely on other sensors for making
the correct decision. Uncertainty is introduced to computer
vision inKendall andGal (2017),Kreiss et al. (2019),He et al.
(2019) and Ilg et al. (2018). Another branch of approaches
such as Guo et al. (2017) and Pleiss et al. (2017) propose
to learn uncertainty by calibration. They propose to train the
model such that the probability associated with the predicted
class label agreeswith its ground truth correctness likelihood.

The concept of uncertainty can be leveraged to reduce the
impact of outliers. For example, in Iskakov et al. (2019), the
authors propose to predict an uncertainty score for each joint
in each view. The score is used to weigh each view when
doing triangulation. This dramatically reduces the 3D pose
estimation error. Inspired by the success of uncertainty learn-
ing in computer vision tasks, we propose to learn uncertainty
for multiview feature fusion. The predicted uncertainty is
used as a weight when fusing multiview features. We show
this adaptive feature fusion could effectively improve the
fusion quality.
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Fig. 3 Illustration of the point-line correspondence in two views. For
an arbitrary point x in one view, the corresponding point x′ in another
view has to lie on the epipolar line I′. This is the core of AdaFuse for
finding corresponding points in other views

3 The Basics for Multiview Fusion

We first introduce the basics for multiview fusion to lay the
groundwork for AdaFuse. In particular, we discuss how to
establish the point-point correspondence between two views
such that the features correspond to the same 3D space point
can be fused together. The narrow baseline correspondence
can be solved efficiently by local feature matching. However,
in the context of multiview human pose estimation where
only a small number of cameras are placed far away from
each other, the local features cannot be robustly detected
and matched especially for texture-less human regions. This
poses a serious challenge.

To solve the problem,wepresent a coarse-to-fine approach
to find matched points. It first establishes the point-to-line
correspondence between two views by epipolar geometry,
and then implicitly determine the point-to-point correspon-
dence by exploring the sparsity of the heatmap representa-
tions. The approach notably simplifies the task because it
avoids the challenging step of finding the exact correspon-
dence. We first introduce epipolar geometry in Sect. 3.1 in
order to determine the point-to-line correspondence. Then in
Sect. 3.2, we describe how we adapt epipolar geometry to
perform multiview heatmap fusion. Finally, we discuss the
side effect caused by the simplified fusion strategy and our
solution in Sect. 3.3.

3.1 Epipolar Geometry

Let us denote a point in 3D space as X ∈ R4×1 as shown in
Fig. 3. This could be the location of a body joint in the context
of pose estimation. Note that homogeneous coordinate and
column vector are used to represent a point. The 3D point
is imaged in two camera views, at x = PX in the first, and
x′ = P′X in the second, where x and x′ ∈ R3×1 represent
2D points in images, P and P′ ∈ R3×4 are the projection
matrix for each camera. Since the two 2D points correspond
to the same 3D point and have the same semantic meanings,

x

I
I

(a) (b) (c)

Fig. 4 Epipolar geometry based heatmap fusion. For each location x in
the first view, we first compute the corresponding epipolar lines in the
other two views. Then we find the largest responses on the two lines,
respectively and add them to the original response at x

their features can be safely fused such that each view benefits
from the other view.

The epipolar geometry (Hartley and Zisserman 2003)
between two views is essentially the geometry of the inter-
section of the image planes with the pencil of planes having
the baseline as axis. The baseline is the line joining the cam-
era centersC1 andC2. In particular, for each location x in the
first view, it helps us to determine the location of the corre-
sponding point x′ in the second view without having to know
X.

We can see from Fig. 3 that the image points x and x′, the
3D pointX, and the camera centersC1 andC2 lie on the same
plane π . The plane intersects with the two image planes at
epipolar lines I and I′, respectively. In particular,

I′ = Fx

I = F�x′,
(1)

where F ∈ R3×3 is fundamental matrix which can be
derived from P and P′. Readers can refer to Hartley and
Zisserman (2003) for detail derivation. In addition, the rays
back-projected from x and x′ intersect at X, and the rays are
coplanar, lying in π . It is straightforward to derive that the
location of x′ which corresponds to x is guaranteed to lie
on the epipolar line I′. However, we have to leverage addi-
tional information such as appearance to determine the exact
location of x′ on I′.

In the context of multiview feature fusion, for every image
point x, we need to find the corresponding point x′ in the
second view so that we can fuse the features at x with those
at x′ and obtain more robust pose estimations. Since we do
not know the depth of X, it could move freely on the line
defined by the camera centerC1 and image point x. However,
we know that x′ cannot span the entire image plane but is
restricted to the line I′. In the following Sect. 3.2, we will
describe how we perform multiview feature fusion based on
epipolar geometry.
Sampson Distance In practice, usually we have 2D measure-
ments x and x′ corresponding to the same 3D location X
which is unknown. Due to measurement noise and errors,
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the line C1x and C2x′ might not intersect exactly at location
X. To obtain the optimal estimation for X, we search for X̂
subject to

d2Reproj = min
X̂

d2
(
x,PX̂

)
+ d2

(
x′,P′X̂

)
, (2)

where d(·) denotes Euclidean distance, dReproj represents
the reprojection distance between x and x′. Since there is
optimization process when obtaining dReproj , we adopt an
one-stepmethodwhich is its first-order approximation (Hart-
ley and Zisserman 2003). This approximation is also called
Sampson distance as

dSampson = x′�Fx
(Fx)21 + (Fx)22 + (

F�x′)2
1 + (

F�x′)2
2

, (3)

where F is fundamental matrix, the subscript 1 or 2 denotes
the first or second element of a vector. By using Sampson
distance, we can directly obtain distance between a pair of
locations without knowing the intermediate X̂. In AdaFuse,
we use Sampson distance to represent to what extent a pair
of 2D joint detections support each other.

3.2 Heatmap Fusion

Multiview fusion is applied to heatmaps rather than interme-
diate features as shown in Fig. 2. This is because heatmap has
the nice property of sparsity which can simplify the point-
point matching. A heatmap produces a per-pixel likelihood
for joint locations in the image. Specifically, it is generated as
a two-dimensionalGaussian distribution centered at the coor-
dinate of the joint. So it has a small number of large responses
near the joint location, and a large number of zeros at other
locations. See Fig. 4a for an example heatmap of the right
knee joint.

The sparse heatmaps allow us to safely skip the exact
point-point matching because the features at the “zero” loca-
tions on the epipolar line are not contributing to the feature
fusion. As a result, instead of trying to find the exact cor-
responding location in the other view, we simply select the
largest response on the epipolar line as the matched point.
This is a reasonable simplification because the correspond-
ing point usually has the largest response. For example, in
Fig. 4, for each locationx, wefirst compute the corresponding
epipolar lines in the other two camera views. Then we find
the largest responses on the two epipolar lines, respectively
and fuse them with the response at x.

Let us denote the heatmap in view v as Hv . The response
at the location x of the heatmap is denoted as Hv(x). The
corresponding epipolar line of x in view u is denoted as
Iu(x) which consists of a number of discrete locations on
the heatmap Hu . The epipolar line can be analytically com-

x

Ini�al heatmap Ini�al heatmap Ini�al heatmap

fused heatmap

heatmap a�er So�Max

Fig. 5 The ambiguity problem in our simplified multiview fusion
approach and our solution. We can see from the “fused heatmap” that
the correct location has the largest response which is as expected. How-
ever, for an incorrect location x, there is also a chance that the response
is also enhanced by at most one view. Fortunately, the correct location
will be enhanced more times (three times in this example) leading to
the largest response. So we apply the SoftMax operator to the fused
heatmap to reduce the responses at incorrect locations

puted based on the camera parameters for every location x.
Then we formulate multiview fusion as

Ĥ
v
(x) = λHv(x) + 1 − λ

N

N∑
u=1

max
x’∈Iu(x)

Hu(x′), (4)

where Ĥ denotes the fused heatmap and N is the number of
camera views which contribute to the fusion of current view.
The parameter λ balances the responses in the current and
other views.

3.3 Side Effect and Solution

One side effect caused by the simplified fusion model [i.e.
Eq. (4)] is that some background locations may be enhanced
undesirably. We visualize an example in the second row of
Fig. 5. We can see that many background pixels, for exam-
ple x, have non-zero responses which are caused by fusion.
This phenomenon happens because multiple epipolar lines
(in other views) may pass the ground truth joint location
which has large responses, and some of the epipolar lines
actually correspond to background pixels in the current view.
This is explained in Fig. 5. For a location x in the current view,
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Fig. 6 Network for learning adaptive fusion weights. The backbone
network for pose estimation is used to extract heatmaps Hv for each
view Iv . The heatmaps are fed to appearance embedding network and
geometry embedding network, respectively, to extract features, which
are concatenated and fed to aweight learning network to learn the fusion
weights which reflect the heatmap quality in each view. The weights
are used for multiview fusion

the corresponding epipolar lines in the other three views are
drawn in the first row. We can see that although x is not
at a meaningful joint location, the epipolar line in the first
view passes the ground truth knee joint and leads to a large
unexpected response for x.

Fortunately, there are patterns for the background pixels
that could be undesirably impacted. In general, the pixels that
are impacted by a high response location in another view
are guaranteed to lie on the same line. More importantly,
the lines that correspond to different views do not overlap.
It means, for a location x in the background, its response
can only be enhanced by at most one view. In contrast, the
location which corresponds to meaningful body joints will
be enhanced by multiple views. In other words, the correct
location is guaranteed to have the largest response for general
cases. So we take advantage of this observation and directly
apply the SoftMax operator to remove the small responses.
See the third row in Fig. 5 for the effect. We can see that only
the large responses around the joint location are preserved.

3.4 Implementation Details

It is worth noting that the above fusion method does not have
learnable parameters. So we only need to train the back-
bone network such as SimpleBaseline (Xiao et al. 2018) to
estimate pose heatmaps. The loss function for training the
backbone network is defined as MSE loss between the esti-
mated heatmaps and ground truth heatmaps. In the testing
stage, given the heatmaps estimated by SimpleBaseline, we
fuse them deterministically by our approach.

4 AdaptiveWeight for Multiview Fusion

The fusion strategy introduced in the previous section treats
all views evenly without considering the feature quality of
each view. Note that the fusion weight is 1−λ

N for the N views
in Eq. (4). However, the strategy is problematic in some cases
where the heatmaps of some camera views are incorrect. This
is because those features may undesirably mess up the fea-
tures in good views, leading to a completely incorrect 2D
pose estimation results.

To solve this problem, we present a weight learning net-
work to learn an adaptive weight for each view to faithfully
reflect its heatmap quality. It takes inputs of the heatmaps
of N -views extracted by the pose estimation network, and
regresses N weights ωu . Then multiview fusion is rewritten
to consider the weights as follows

Ĥ
v
(x) = ωvHv(x) +

N∑
u=1

ωu max
x’∈Iu(x)

Hu(x′), (5)

The prediction of the adaptive fusion weight ω is imple-
mented by a lightweight neural network as shown in Fig. 6.
On top of the heatmaps H provided by the pose estimation
network, we extract two types of information for making
the prediction. The first is the appearance embedding which
extracts information such as the distribution characteristics of
the heatmaps. The second is the geometry embedding which
considers the cross-view location consistency. The two terms
are complementary to each other. The proposedweight learn-
ing network can be joined with the pose estimation network
for end-to-end training without enforcing supervision on the
weights.

4.1 The Appearance Embedding

The heatmap of each joint actually contains rich information
to infer its heatmap quality. For example, if the predicted
heatmap has a desired shape ofGaussian kernel, then inmany
cases, the heatmapquality is good. In contrast, if the predicted
heatmap has random and small responses all over the space
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Fig. 7 The appearance embedding network for predicting the fusion
weight. i is the index of camera views. The parameters in the network
are shared for all views and joints. See also Fig. 6 for how the appearance
embedding Ai is used for determining the fusion weight

Fig. 8 The geometry embedding network for predicting the fusion
weight. For each joint in each camera view (three views are shown
in this example), it generates a 256-dimensional embedding to reflect
the heatmap (pose) quality. Note that the FC is shared for all branches

(for example, when the joint is occluded), then the quality is
likely to be bad.

We propose a simple network to extract appearance
embeddings for each joint in each camera view. Figure 7
shows the network structure. Starting from the heatmapsHi ,
we apply a convolutional layer to extract features. Then the
features are down-sampled by average pooling and fed to
a Fully Connected (FC) layer for extracting the appearance
embeddings.Different joint types and camera views share the
same weights. We only show the network for a single view
and a single joint for simplicity. The appearance embedding
network is jointly learned end-to-end with the pose estima-
tion network.

4.2 The Geometry Embedding

The appearance embedding alone is not sufficient for some
challenging cases where the heatmaps have the desired shape
of Gaussian kernel but at the wrong locations. One such
example is when the left knee is detected at the location of
right knee which is usually known as the “double counting”
problem to the community. To solve this problem, we pro-
pose to leverage the location consistency information among
all camera views. Our core motivation is that the predicted
joint location in one camera view is more reliable if it agrees
with the locations in other views.

We implement this idea by ageometry embeddingnetwork
as shown in Fig. 8. Starting from the heatmaps H, we first
apply the “soft-argmax” operator (Sun et al. 2018) to obtain
the location (x, y) of the joint in each view. We also get
the heatmap response value s in that location to reflect its
confidence. Thenwe compute the Sampson distance (Hartley
and Zisserman 2003) disti↔ j between the current view and
other views to measure the correspondence or consistency

(a)

(b)

(c)

(d)

Fig. 9 We visualize the predicted fusion weights by the size of the
markers in the first column. A large marker denotes a larger weight.
The rest two columns show the poses estimated by HeuristicFuse and
AdaFuse, respectively. Our AdaFuse has clearly better estimations due
to the consideration of the feature quality in every view

error. A small disti↔ j means the joint locations in the two
views are consistent. Intuitively, the location that is consistent
with most views is more reliable. Finally, we propose to use a
FC layer to embed the Sampson distance into a feature vector.
The feature vectors of all camera pairs are then averaged to
obtain the final geometry embedding.

4.3 Weight Learning Network

We propose a simple network consisting of three FC lay-
ers to transform the concatenated appearance and geometric
embeddings to regress the final weight. It is worth noting
that we do not train the weight learning network indepen-
dently. Instead, we join it with the pose estimation network
to minimize the fused 2D heatmap loss without enforcing
intermediate supervision on the fusion weights. The first col-
umn in Fig. 9 shows some example weights predicted by our
approach. We can see that when the joints are occluded, and
are localized at incorrect locations, the corresponding fusion
weights are indeed smaller than other joints.
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Fig. 10 We show some typical images, ground-truth 2D joint locations
and the depth maps from theOcclusion-Person dataset. The joint repre-
sented by red “x” means it is occluded. The bottom row shows spacial
configuration of the eight cameras used in the dataset from different
view angles

Table 1 The statistics of the public multiview pose estimation datasets

Dataset Frames Cameras Occluded joints

Human3.6M 784k 4 –

Total Capture 236k 8 –

Panoptic 36k 31 –

Occlusion-Person 73k 8 20.3%

Only the Occlusion-Person dataset provides occlusion labels

5 Datasets andMetrics

We introduce the three datasets used for evaluation and the
corresponding metrics. We also describe how we construct
the synthetic person dataset Occlusion-Person which has a
large amount of human-object occlusion.

5.1 Datasets

The Human3.6M Dataset (Ionescu et al. 2014) It provides
synchronized images captured by four cameras. There are
seven subjects performing daily actions. We use a cross-
subject evaluation scheme where subjects 1, 5, 6, 7, 8 are
used for training and 9, 11 for testing. We also use the MPII
dataset (Andriluka et al. 2014) to augment the training data to
avoid over-fitting to the simple background. Since the MPII
dataset provides only monocular images, we only train the
backbone network before multiview fusion.
The Total Capture Dataset (Trumble et al. 2017) It pro-
vides synchronizedperson images capturedby eight cameras.
Following the dataset convention, the training set consists

of “ROM1,2,3”, “Freestyle1,2”, “Walking1,3”, “Acting1,2”
and “Running1” on subjects 1, 2 and 3. The testing set con-
sists of “Freestyle3 (FS3)”, “Acting3 (A3)” and “Walking2
(W2)” on subjects 1,2,3,4 and 5.
The CMU Panoptic Dataset (Joo et al. 2019) This recently
introduced dataset provides images captured by dozens of
cameras. We uniformly select six cameras to evaluate the
impact of the number of cameras on 3D pose estimation.
In particular, the cameras 1, 2, and 10 are firstly selected
to construct a 3-view experiment setting. Then the cameras
13, 3 and 23 are sequentially added to the previous three
cameras to construct a four, five and six view experiment
setting, respectively. We follow the practice of the previous
work (Xiang et al. 2019) to select the training and testing
sequences which consist of only one person. Since fewworks
have reported numerical results on this dataset, we only com-
pare our approach to the baselines.
The Occlusion-Person Dataset The previous benchmarks do
not provide occlusion labels for the joints in images which
prevents us from performing numerical evaluation on the
occluded joints. In addition, the amount of occlusion in the
benchmarks is limited. To address the limitations, we pro-
pose to construct this synthetic dataset Occlusion-Person.
We adopt UnrealCV (Qiu et al. 2017) to render multiview
images and depth maps from 3D models. In particular, thir-
teen human models of different clothes are put into nine
different scenes such as living rooms, bedrooms and offices.
The human models are driven by the poses selected from the
CMU Motion Capture database. We purposely use objects
such as sofas and desks to occlude some body joints. Eight
cameras are placed in each scene to render the multiview
images and the depth maps. The eight cameras are placed
evenly every 45 degree on a circle of two meters radius at
about 0.9 and 2.3 meters high, respectively. We provide the
3D locations of 15 joints as ground truth. Figure 10 shows
some sample images from the dataset and spacial configura-
tion of the cameras.

The occlusion label for each joint in an image is obtained
by comparing its depth value (available in the depth map),
to the depth of the 3D joint in the camera coordinate system.
If the difference between the two depth values is smaller
than 30cm, then the joint is not occluded. Otherwise, it
is occluded. Table 1 compares this dataset to the existing
benchmarks. In particular, about 20% of the body joints are
occluded in our dataset. We use 75% of the dataset for train-
ing and 25% for validation.

5.2 Metrics

2DMetricsThe Percentage of Correct Keypoints (PCK)met-
ric introduced in Andriluka et al. (2014) is commonly used
for 2D pose evaluation. PCKh@t measures the percentage
of the estimated joints whose distance from the ground-truth
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Table 2 The 2D pose estimation accuracy (PCKh@t) of the baseline methods and our approach on the Human3.6M dataset

Methods Root Belly Neck Nose Head Hip Knee Ankle Shlder Elbow Wrist Mean

NoFuse 95.8 77.1 60.4 86.4 86.2 79.3 81.5 58.6 65.1 78.3 70.1 74.8

HeuristicFuse 96.0 79.3 60.7 88.4 86.8 83.1 84.5 60.0 66.9 82.1 75.2 77.3

ScoreFuse 96.2 79.3 61.6 88.3 86.2 83.3 84.3 60.5 66.6 83.1 77.4 77.8

AdaFuse (Ours) 96.2 79.3 61.6 88.3 86.3 83.5 86.4 61.1 66.7 86.0 80.1 78.8

The best result for each column is highlighted in bold
We report results for each individual joint and the average over all joints

Table 3 The 3D pose estimation error (mm) of the baseline methods and our approach on the Human3.6M dataset

Methods Belly Neck Nose Head Hip Knee Ankle Shlder Elbow Wrist Mean

NoFuse 21.6 16.8 15.7 11.3 17.8 25.8 35.8 22.0 26.8 34.1 22.9

HeuristicFuse 21.6 16.8 15.7 11.0 17.9 23.0 32.7 21.9 25.0 25.7 21.0

ScoreFuse 21.4 16.7 15.8 10.9 18.3 21.3 30.8 21.8 23.3 23.2 20.1

RANSAC 21.6 16.8 15.7 11.2 17.9 23.9 34.6 22.0 25.8 28.2 21.8

AdaFuse (Ours) 21.3 16.7 15.8 10.9 18.3 20.6 30.2 21.8 21.3 21.1 19.5

The best result for each column is highlighted in bold

joints is smaller than t times of the head length. Following
the previous works, we report results when t is 1

2 . Since the
head length is not provided in the used three benchmarks, we
approximately set it to be 2.5% of the human bounding box
width for all benchmarks.
3DMetrics The 3D pose estimation accuracy is measured by
Mean Per Joint Position Error (MPJPE) between a ground
truth 3D pose y = [p31, · · · , p3M ] and an estimated 3D pose

ȳ = [ p̄31, · · · , ¯p3M ]: MPJPE = 1
M

∑M
i=1 ‖p3i − p̄3i ‖2 where

M is the number of joints in a pose. We do not align the
estimated 3D poses to the ground truth by Procrustes. This
is referred to as protocol 1 in some works (Martinez et al.
2017; Tome et al. 2018)

6 Experimental Results

We compare our approach to four baselines. The first is
NoFuse which estimates 2D poses independently for each
view without multiview fusion. The second isHeuristicFuse
which assigns a fixed fusion weight for each view according
toEq. (4). The parameterλ is set to be 0.5 by cross-validation.
The third baseline is ScoreFuse which uses the same formu-
lation as AdaFuse, i.e. Eq. (5), for feature fusion. It differs
from AdaFuse only in the way we compute ω. In particular,
ScoreFuse computesω as themaximumvalue of the heatmap
H. Our approach is denoted as AdaFuse which uses the pre-
dicted weight for fusion as in Eq. (5). All of the four methods
use triangulation (Hartley and Zisserman 2003) to estimate
3D pose from the multiview 2D poses. We also compare to a
baseline RANSAC which does not performmultiview fusion,
but uses RANSAC to remove the outliers in triangulation.

6.1 Results on Human3.6M

2D Pose Estimation Results The 2D pose estimation results
are presented in Table 2. All multiview fusion methods
remarkably outperform NoFuse. The improvement is most
significant for the Elbow and Wrist joints because they are
frequently occluded by human body. The results demonstrate
that multiview fusion is an effective strategy to handle occlu-
sion. AdaFuse achieves the highest average accuracy among
all fusionmethods validating that learning appropriate fusion
weights can effectively reduce the negative impact caused by
the features of low-quality views.
3D Pose Estimation Results Table 3 shows the 3D pose esti-
mation errors of the baselines and our approach. We can see
that NoFuse gets an average error of 22.9mm. This is a very
strong baseline whose error is only slightly larger than the
state-of-the-arts (see Table 4). On top of this strong baseline,
we observe that adding multiview fusion can further reduce
the 3D pose estimation errors.

HeuristicFuse gets a smaller error than NoFuse which is
consistent with the 2D results in Table 2. Themean error only
decreases by 1.9mm because most examples are relatively
easy leaving little space for improvement. However, signifi-
cant improvement is achieved for the challenging joints such
as Wrist. The ScoreFuse gets a smaller error than Heuristic-
Fuse. It means assigning small weights to low-quality views
helps improve the quality of the fused heatmaps. Finally, our
approach AdaFuse, which determines the fusion weight by
considering both appearance cues and geometry consistency,
notably decreases the average error to 19.5mm. Consider-
ing the baseline is already very strong, the improvement is
significant. We notice that AdaFuse achieves slightly worse
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results on a small number of joints such as hip and head.
This is mainly because these joints are rarely occluded in the
datasets so the 2D pose estimator can obtain very accurate
estimations for them. Further applying cross view fusion will
introduce small noise to heatmaps leading to slightly worse
2D pose estimation accuracy. But when occlusion occurs
which is often the case in practice, the benefit brought by
cross view fusion will be much more significant than the
harm caused by the small noise.

RANSAC is the de facto standard for solving robust estima-
tion problems. As shown in Table 3, it outperforms NoFuse
by removing some outlier 2D poses in triangulation. How-
ever, it is not as effective as the multiview fusion methods
because the latter also attempt to refine, in addition to remov-
ing, the outlier poses. Another reason is that the number of
cameras in this task is small which reduces the chance of
finding the true outliers. In addition, we find that RANSAC is
very sensitive to the threshold used for determining whether
a data point is inlier or outlier. In our experiments, we set the
threshold by cross validation.

To better understand the improvement brought by Ada-
Fuse, we divide the testing samples of the Human3.6M
dataset into six groups according to the 3D errors ofNoFuse.
Then we compute the average error for each group. Figure 11
shows the results of various baselines. We can see that Ada-
Fuse achieves the most significant improvement when the
original error of NoFuse is large. However, even when the
pose estimations of NoFuse are already accurate, AdaFuse
can still reduce the error slightly.
Ablation Study on Fusion Weights One typical situation
where ScoreFuse fails is when the pose estimation net-
work generates large scores at inaccurate locations. In this
case, AdaFuse can outperform ScoreFuse by leveraging the
multiview geometry consistency. To support this conjecture,
we visualize some typical heatmaps and the corresponding
fusion weights predicted by the twomethods, respectively, in
Fig. 12. We find that the heatmap responses are large for the
four views although the locations are inaccurate for the first
and third view. ScoreFuse gives large weights for all views
which finally leads to a corrupted heatmap. In contrast, Ada-
Fuse identifies that the predicted locations in the first and
third view are inconsistent with the other two views in spite
of their large scores. So it decreases the weights to ensure the
good quality of the fused heatmap.

In addition, we also conduct ablation study on Ada-
Fuse by using only one of two embedding networks. When
we only use either the appearance embedding or geometry
embedding, the 3D errors increase to 20.3mm and 19.9mm,
respectively. Note that the improvement is actually much
larger on those challenging examples. The results validate
that the two embeddings are complementary.
Comparison to the State-of-the-arts Table 4 compares our
approach to the state-of-the-arts. We can see that our Ta
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Fig. 11 We divide the test set of Human3.6M into to six groups accord-
ing to the error of NoFuse. We compute the average error for every
baseline and every group, respectively
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Fig. 12 We visualize the weights predicted by the ScoreFuse and Ada-
Fuse, respectively. For example, in the first example (left sub-figure),
the pose estimation network generates a high response at the wrong
location for the first view. Consequently, ScoreFuse undesirably gives a
large weight. In contrast, AdaFuse gives a small weight by identifying
that its location are inconsistent with other views

approach outperforms all of them. Note that two approaches,
i.e. Triangulation and Volumetric, are used in Iskakov et al.
(2019) to lift 2D poses to 3D. The Triangulation approach is
more comparable to ours. Our approach AdaFuse decreases
the error of Iskakov et al. (2019) by about 13%(= 22.6−19.5

22.6 ).
The improvement is significant considering that the error of
the state-of-the-art is already very small.

6.2 Results on Panoptic

We evaluate the impact of the number of cameras on this
dataset. Figure 13 shows themean 3Derrorswhen three to six
cameras are used, respectively. In general, the error decreases
when more cameras are used for most baselines. However,
we observe that the error of NoFuse actually becomes larger
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Fig. 13 The 3D pose estimation errors on the Panoptic dataset when
different numbers of cameras are used

when the camera number increases from three to four. This
undesirable phenomenon happens because the new camera
view is very challenging thus the 2D pose estimation results
are inaccurate. However, for our approach AdaFuse, the neg-
ative impact of low-quality heatmaps in individual views is
limited due to the adaptive multiview fusion. We can see that
the error ofAdaFuse consistently decreaseswhen the number
of cameras increases. Since there is not a commonly adopted
evaluation protocol and very fewworks have reported results
on this new dataset, we do not compare our approach to the
other approaches.

6.3 Results on Occlusion-Person

2D Pose Estimation Results Table 5 shows the results on the
occluded joints. Only about 30.9% of the occluded joints
can be accurately detected by NoFuse. The result is reason-
able because the features of the occluded joints are severely
corrupted. All of the threemultiview fusionmethods remark-
ably improve the accuracy. In particular, more than 90% of
the occluded joints are correctly detected by AdaFuse. The
results demonstrate the advantages of our strategy for learn-
ing the fusion weights.
3DPose Estimation ResultsWe show the 3D pose estimation
error (mm) for each joint type in Table 6. NoFuse results in a
large error of 48.1mm. By improving the 2D pose estimation
results on the occluded joints, the 3D errors are also signifi-
cantly reduced, especially for the joints on the limbs such as
Ankles and Wrists. In particular, our approach decreases the
3D error significantly to 12.6mm.
Impact of Number of Occluded Views We also evaluate the
impact of the number of occluded views on this dataset.
In particular, we classify each joint into one of five groups
according to the number of occluded views, and report the
average joint error for each group, respectively. The results
are shown in Table 7. We can see that when the joints are vis-
ible in all views, the simple baseline NoFuse also achieves a
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Table 5 The 2D pose estimation
accuracy (PCKh@t) of the
baselines and our approach for
the occluded joints on the
Occlusion-Person dataset

Methods Hip Knee Ankle Shlder Elbow Wrist Avg

NoFuse 63.4 21.5 17.0 29.5 14.6 12.4 30.9

HeuristicFuse 76.9 59.0 73.4 63.5 49.0 54.8 65.0

ScoreFuse 90.9 88.6 88.1 86.0 93.2 86.8 89.8

AdaFuse 96.5 96.0 92.5 94.1 98.3 93.2 95.5

The best result for each column is highlighted in bold
We report results for each joint type individually, and also the average accuracy over all joint types

Table 6 The 3D pose estimation error (mm) of the baselines and our approach on the Occlusion-Person dataset

Occluded (%) Root Belly Neck Hip Knee Ankle Shlder Elbow Wrist Mean
14.3% 13.7% 7.6% 23.0% 25.0% 23.5% 16.8% 25.3% 21.7%

NoFuse 10.0 12.2 12.5 16.8 61.1 113.9 28.0 63.7 60.3 48.1

HeuristicFuse 8.8 10.7 11.5 14.2 21.1 19.2 17.5 23.6 24.1 18.0

ScoreFuse 8.4 12.6 12.6 14.7 17.5 17.1 16.1 13.2 16.9 15.0

RANSAC 8.6 11.2 11.7 12.9 18.8 17.9 17.1 14.5 19.7 15.5

AdaFuse (Ours) 7.2 10.6 11.6 11.7 13.8 15.7 14.2 9.9 14.4 12.6

The best result for each column is highlighted in bold
We report the result on each joint individually and also the average over all joints. The second row shows the percentage of the joints that are
occluded for each joint type

Table 7 The 3D pose estimation error (mm) of the baseline methods
and our approach on the Occlusion-Person dataset

Occluded Views 4 3 2 1 0
Percentage 2% 15% 38% 35% 10%

NoFuse 82.6 70.2 59.7 33.7 13.0

HeuristicFuse 30.5 19.9 15.9 13.5 11.1

ScoreFuse 25.0 18.1 15.2 13.4 12.6

RANSAC 36.5 24.5 19.4 14.3 11.7

AdaFuse (Ours) 21.7 14.8 12.5 11.5 10.8

The best result for each column is highlighted in bold
We group the the 3D joints by number of occluded views (8 views in
all). We show each group’s joint number percentage in the second row

very small error of 13.0mm. However, the error increases
dramatically to 82.6mm when four views are occluded.
Recall that there are eight views in total for this dataset. In
contrast, the multiview fusion methods, especially our Ada-

Fuse, achieves consistently smaller errors thanNoFuse.More
importantly, the error increase is much slower than NoFuse
when more camera views are occluded which validates the
robustness of our approach to occlusion.
Generalization Power The only learnable parameters in
our fusion approach are in the appearance embedding and
geometry embedding networks. In this section, we evalu-
ate whether the AdaFuse weight prediction network learned
on Occlusion-Person can be directly applied to the other
datasets. In particular, we append the AdaFuse weight pre-
diction network learned onOcclusion-Person to the 2D pose
estimators trained on each dataset itself as the final model
for evaluation. Table 8 shows the 3D pose estimation results
on various datasets. We find that the fusion network learned
on the synthetic Occlusion-Person dataset achieves simi-
lar performance on the three realistic datasets compared to
the networks learned on each of the target dataset, respec-
tively. The promising results validate that the fusion model

Table 8 The 3D pose estimation errors MPJPE (mm) when AdaFuse weight prediction network is trained on Occlusion-Person or directly trained
on the Evaluation dataset, respectively

Evaluation Dataset AdaFuse NoFuse HeuristicFuse ScoreFuse RANSAC
Trained on
Evaluation Dataset Occlusion-Person

Human3.6M 19.5 19.4 22.9 21.0 20.1 21.8

Panoptic 4 views 14.7 14.6 33.2 22.5 21.9 16.9

Panoptic 6 views 13.6 13.9 29.6 19.8 19.4 15.5

Total Capture 19.2 20.1 29.4 20.0 20.5 20.5

The 2D pose estimators for generating the initial heatmaps are trained on each Evaluation dataset separately
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Table 9 The 3D pose
estimation errors MPJPE (mm)
of different methods on the Total
Capture dataset

Methods IMUs Temporal Subjects(S1,2,3) Subjects(S4,5) Mean
W2 A3 FS3 W2 A3 FS3

(Trumble et al. 2017) � � 48.3 94.3 122.3 84.3 154.5 168.5 107.3

(Wei et al. 2016) 79.0 106.5 112.1 79.0 73.7 149.3 99.8

(Gilbert et al. 2019) � 19.2 42.3 48.8 24.7 58.8 61.8 42.6

(Trumble et al. 2018) � 13.0 23.0 47.0 21.8 40.9 68.5 34.1

(Qiu et al. 2019) 19 21 28 32 33 54 29

NoFuse 15.9 18.5 29.9 33.9 33.8 60.0 29.4

HeuristicFuse 7.8 11.6 19.6 23.3 26.9 44.8 20.0

ScoreFuse 9.7 13.1 19.9 23.9 27.2 41.4 20.5

RANSAC 8.4 11.6 20.5 23.3 27.2 45.7 20.5

AdaFuse (Ours) 7.2 10.8 18.5 22.8 26.6 42.9 19.2

The best result for each column is highlighted in bold

Fig. 14 We demonstrate some 3D pose estimation examples obtained by AdaFuse. The last row shows some failure cases

has strong generalization power. It is also worth noting that
our approach can naturally handle different numbers of cam-
eras for two reasons. First, the parameters in the appearance
embedding network and the geometry embedding network
are shared for all camera views. Second, the “Mean” opera-
tor in the geometry embedding networkmakes it independent
of the number of views as shown in Figure 7 and Figure
8. In summary, AdaFuse is ready to be deployed in new
environments of different camera poses without additional
adaptation.

6.4 Results on Total Capture

We report the 3D pose estimation results on the Total Capture
dataset in Table 9. It is worth noting that some methods also
use IMUs in addition to the multiview images. We can see
that our approach outperforms all of the previous methods.
We notice that the error of our approach is slightly larger
than LSTM-AE (Trumble et al. 2018) for the “W2 (walking)”
action of S4,5. We tend to think it is because LSTM can get
significant benefits when it is applied to periodic actions such
as “walking”. This is also observed independently in another
work (Gilbert et al. 2019).

We show some 3D pose estimation examples in Fig. 14.
In most cases, our approach can accurately estimate the 3D
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poses. One typical situation where the approach fails is when
2D pose estimation results are inaccurate for many camera
views. For example in the Panoptic dataset, when human
begin to enter the dome, they may be occluded in multiple
views. In this case, the heatmaps in each view are of low-
quality. Therefore the fused heatmapswill also have degraded
quality, leading to inaccurate 2D pose estimations.

7 Summary and FutureWork

We present a multiview fusion approach AdaFuse to handle
the occlusion problem in human pose estimation. AdaFuse
has practical values in that it is very simple and can beflexibly
applied to new environments without additional adaptation.
In addition, it can be combined with any 2D pose estimation
networks. We extensively evaluate the effectiveness of the
approach on three benchmark datasets. The approach out-
performs the state-of-the-arts remarkably. We also construct
a large scale human dataset which has severe occlusion to
promote more research along this direction. Our next step of
work is to leverage temporal information to further improve
the pose estimation accuracy.
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