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Abstract
Cross-domain visual problems, such as image-to-image translation and domain adaptive object detection, have attracted
increasing attentions in the last few years, and also become new rising and challenging directions for the computer vision
community. Recently, despite enormous efforts of the field in data collection, there are still few datasets covering the instance-
level image-to-image translation and domain adaptive object detection tasks simultaneously. In this work, we introduce a
large-scale cross-domain benchmarkCDTD (contains 155,529 high-resolution natural images across four different modalities
with object bounding box annotations.A summary of the entire dataset is provided in the following sections.Dataset is available
at: http://zhiqiangshen.com/projects/INIT/index.html.) for the new instance-level translation and object detection tasks. We
provide comprehensive baseline results of the benchmark on both of these two tasks. Moreover, we proposed a novel instance-
level image-to-image translation approach called INIT and a gradient detach method for the domain adaptive object detection
to harvest and exert dataset’s function of the instance level annotations across different domains.
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1 Introduction

In realworld scenarios, generic vision tasks like image recog-
nition, object detection, image translation, etc., always face
severe challenges from variations in viewpoint, background,
object appearance, illumination, occlusion conditions, scene
change, etc. These unavoidable factors make these tasks
in domain-shift circumstance a challenging and new rising
research topic in the recent years. Also, domain change is a
widely-recognized, intractable problem that urgently needs
to break through in reality tasks, like video surveillance,
autonomous driving, etc. Consequently, a large-scale cross-
domain benchmark is urgently-needed for pushing this field
forward.

The recent emergence of large-scale image datasets in the
cross-domain circumstance like VisDA (Peng et al. 2017),
Office-Home (Venkateswara et al. 2017), Syn2real (Peng
et al. 2018), DomainNet (Peng et al. 2019) are mainly
focusing on the traditional classification or detection tasks,
thus they are not flexible to be applied to new raised tasks
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Fig. 1 Illustration of the motivation of our method. (1)MUNIT (Huang
et al. 2018)/DRIT (Lee et al. 2018) methods; (2) their limitation; and (3)
our solution for instance-level translation. More details can be referred
to the text

like image-to-image translation, especially the instance level
translation task. The motivation of this work is to build a
dataset that has instance-level annotations of images (every
instance has a bounding box coordinate and a semantic label)
under a large, unrestricted and real world scenarios across
different domains, in order to solve the instance-level image-
to-image translation and further extend to domain adaptive
object detection tasks.
Instance-level image-to-image translationImage-to-Image
(I2I) translation has become more and more important in
computer vision recently, since many vision and graphics
problems can be formulated as an I2I translation problem like
super-resolution, neural style transfer, colorization, etc. This
technique has also been adapted to the relevant fields such
as medical image processing (Zhang et al. 2018) to further
improve the medical volumes segmentation performance. In
general, Pix2pix (Isola et al. 2017) is regarded as the first uni-
fied framework for I2I translation which adopts conditional
generative adversarial networks (Mirza and Osindero 2014)
for image generation, while it requires the paired examples
during training process. A more general and challenging set-
ting is the unpaired I2I translation, where the paired data is
unavailable.

Several recent efforts (Zhu et al. 2017; Liu et al. 2017;
Huang et al. 2018; Lee et al. 2018;Almahairi et al. 2018) have
been made on this direction and achieved very promising
results. For instance, CycleGAN (Zhu et al. 2017) proposed
the cycle consistency loss to enforce the learning process
that if an image is translated to the target domain by learn-

ing a mapping and translated back with an inverse mapping,
the output should be the original image. Furthermore, Cycle-
GAN assumes the latent spaces are separate from the two
mappings. In contrast, UNIT (Liu et al. 2017) assumes two
domain images can be mapped onto a shared latent space.
MUNIT (Huang et al. 2018) and DRIT (Lee et al. 2018) fur-
ther postulate that the latent spaces can be disentangled to a
shared content space and a domain-specific attribute space.

However, all of these methods thus far have focused on
migrating styles or attributes onto the entire images. As
shown in Fig. 1 (1), theyworkwell on the unified-style scenes
or relatively content-simple scenarios due to the consistent
pattern across various spatial areas in an image, while this
is not true for the complex structure images with multiple
objects since the stylistic vision disparity between objects
and background in an image is always huge or even totally
different, as in Fig. 1 (2).

To address the aforementioned limitation, in this work
we present a method that can translate objects and back-
ground/global areas separately with different style codes as
in Fig. 1 (3), and still training in an end-to-end manner. The
motivation of our method is illustrated in Fig. 3. Instead
of using the global style, we use instance-level style vec-
tors that can provide more accurate guidance for visually
related object generation in target domain. We argue that
styles should be diverse for different objects, backgrounds
or global images, meaning that the style codes should not be
identical for the entire image. More specifically, a car from
“sunny” to the “night” domain should have different style
codes comparing to the global image translation between
these two domains. Our method achieves this goal by involv-
ing the instance-level styles.Given a pair of unaligned images
and object locations, we first apply our encoders to obtain
the intermediate global and instance level content and style
vectors separately. Then we utilize the cross-domain map-
ping to obtain the target domain images by swapping the
style/attribute vectors. Our swapping strategy is introduced
with more details in Sect. 4. The main advantage of our
method is the exploration and usage of object level styles,
which affects and guides the generation of target domain
objects directly. Certainly, we can also apply the global style
for target objects to enforce the model to learn more diverse
results.
Domain adaptive object detection As illustrated in Fig. 2,
unsupervised domain adaptive object detection aims to learn
a robust detector in the domain shift circumstance, where
the training (source) domain is label-rich with bounding
box annotations, while the testing (target) domain is label-
agnostic and the feature distributions between training and
testing domains are dissimilar or even totally different. Pre-
vious solutions on this problem usually design distribution
alignments on global and local level images by using an
adversarial loss. The alignments generally require additional
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Fig. 2 Illustration of domain-shift object detection in autonomous driv-
ing scenario. Images are from our CDTD dataset (Shen et al. 2019)

components or sub-networks to realize, which are trouble-
somely complicated and poorly interpretable. In this work,
we propose a simple training technique called gradient
detach that prevents the flow of gradients from context sub-
network through the detection backbone path, so that it can
learnmore discriminative representations between object and
global/context images, and focus more on the target areas.
After accompanying with the compatible stacked comple-
mentary losses by cutting in several auxiliary objectives in
different network stages, our method can automatically align
the distributions of source and target domains effectively.
We conduct experiments on the proposed dataset with two
baseline methods DA (Chen et al. 2018) and strong-weak
alignment (Saito et al. 2019), our results are consistently bet-
ter than the two baseline methods.

In summary, our contributions are four fold:

– We introduce a large-scale, multimodal, highly varied
and high-resolution cross domain dataset, containing
∼155k streetscape images across four domains. Our
dataset not only includes the domain category labels, but
also provides the detailed object bounding box annota-
tions, which will benefit the instance-level I2I translation
and domain adaptive object detection problems.

– We propel I2I translation problem step forward to
instance-level such that the constraints could be exploited
on both instance and global-level attributes by adopting
the proposed compound loss.

– We conduct extensive qualitative and quantitative exper-
iments to demonstrate that our approach can surpass the
baseline I2I translation methods. Our synthetic images
canbe evenbeneficial to other vision tasks such as generic
object detection, and further improve the performance.

– We propose a novel training strategy, gradient detach,
for the domain adaptive object detection task which sup-
presses gradients flowing back to the detection backbone.
To our best knowledge, this may be the first work to show
the effectiveness of gradient detach that can help to learn
better context representation for domain adaptive object

detection. In addition, we proposed to use multiple com-
plementary losses to help gradient detach training for
better optimization.

Apreliminary version (Shen et al. 2019) of thismanuscript
has been published in a previous conference CVPR 2019.
Compared to the previous conference paper, our major new
contributions are that we extend our dataset to domain adap-
tive object detection task, we propose a gradient detach based
stacked complementary losses approach to boost the previ-
ous state-of-the-art methods and achieve fairly competitive
performance. We also conduct additional experiments and
visualizations on the original instance-level image-to-image
translation task. Moreover, we include more description of
the dataset, the method for domain adaptive object detection
and more baseline results.

The rest sections of this work are organized as follows. In
Sect. 2, we review the related work of our study. In Sect. 3,
we introduce the construction of the CDTD dataset and its
statistics.We also provide a feature-by-feature comparison to
other related datasets. In Sect. 4, we introduce the proposed
INIT method for instance-level image-to-image translation.
We propose to use the fine-grained local (instance) and global
styles on the target image spatially to translate the source
images. In Sect. 5, we introduce a gradient detach method
for the domain adaptive object detection task. The proposed
method prevents the flow of gradients from context sub-
network through the detection backbone path, so that it can
learnmore discriminative representations between object and
global/context images, and focus more on the target areas. In
Sect. 6weprovide extensive experiments and ablation studies
on our collected dataset of image-to-image translation task,
some baselines and our method results on domain adaptive
object detection task. Sect. 7 concludes this work.

2 RelatedWork

2.1 Cross Domain Datasets for Translation and
Object Detection

A variety of datasets have been collected for the purpose
of cross domain study. In image-to-image translation field,
the most commonly used ones are edge ↔ shoes (Isola
et al. 2017), Yosemite (summer ↔ winter) (Zhu et al. 2017),
Cityscapes (Cordts et al. 2016), while as shown in Table 1,
these datasets either are in low-resolution (e.g., edge ↔
shoes), or have limited scale, i.e., number of images is too
small (e.g., Cityscapes). In contrast, our dataset hasmore suf-
ficient images to explore the potential of proposed algorithm.
As shown in Table 2, the central weakness of current domain
adaptive object detection datasets is the scale in terms of the
number of images. In general, our dataset is about 15∼20×
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Sunny Night

Fig. 3 A natural image example of our I2I translation

larger than these existing ones with higher quality/resolution
of images.
Image-to-Image Translation The goal of I2I translation is
to learn themapping between two different domains. Pix2pix
(Isola et al. 2017) first proposes to use conditional generative
adversarial networks (Mirza and Osindero 2014) to model
the mapping function from input to output images. Inspired
by Pix2pix, some works further adapt it to a variety of rel-
evant tasks, such as semantic layouts → scenes (Karacan
et al. 2016), sketches→ photographs (Sangkloy et al. 2017),
etc. Despite popular usage, the major weaknesses of these
methods are that they require the paired training examples
and the outputs are single-modal. In order to produce mul-
timodal and more diverse images, BicycleGAN (Zhu et al.
2017) encourages the bijective consistencybetween the latent
and target spaces to avoid the mode collapse problem. A gen-
erator learns to map the given source image, combined with
a low-dimensional latent code, to the output during training.
While this method still needs the paired training data.

Recently, CycleGAN (Zhu et al. 2017) is proposed to
tackle the unpaired I2I translation problem by using the cycle
consistency loss. UNIT (Liu et al. 2017) further makes a
share-latent assumption and adopts Coupled GAN in their
method. To address multimodal problem, MUNIT (Huang
et al. 2018), DRIT (Lee et al. 2018), Augmented CycleGAN
(Almahairi et al. 2018), etc. adopt a disentangled represen-
tation to further learn diverse I2I translation from unpaired
training data.
Instance-level Image-to-Image Translation To the best of
our knowledge, there are so far very few efforts on the
instance-level I2I translation problem. Perhaps the most sim-
ilar to our work is the recently proposed InstaGAN (Mo
et al. 2019), which utilizes the object segmentation masks to
translate both an image and the corresponding set of instance
attributeswhilemaintaining the permutation invariance prop-
erty of instances. A context preserving loss is designed to
encourage model to learn the identity function outside of tar-
get instances. Themain differencewith ours is that instaGAN
cannot translate different domains for an entire image suffi-

ciently. They focus on translating instances and maintain the
outside areas, in contrast, our method can translate instances
and outside areas simultaneously and make global images
more realistic. Furthermore, InstaGAN is built on the Cycle-
GAN (Zhu et al. 2017), which is single modal, while we
choose to leverage theMUNIT (Huang et al. 2018) andDRIT
(Lee et al. 2018) to build our INIT, thus our method inherits
multimodal and unsupervised properties, meanwhile, pro-
duces more diverse and higher quality images.

Some other existing works (Ma et al. 2018; Li et al. 2018)
are more or less related to this paper. For instance, DA-GAN
(Ma et al. 2018) learns a deep attention encoder to enable
the instance-level translation, which is unable to handle the
multi-instance and complex circumstance. BeautyGAN (Li
et al. 2018) focuses on facial makeup transfer by employ-
ing histogram loss with face parsing mask. Mechrez et al.
Mechrez et al. (2018) proposed a contextual loss based on
the images’ context and semantics, which compared regions
with similar semantic information, meanwhile, considering
the context of the entire image.
Domain Adaptive Object Detection.Unsupervised domain
adaptation for recognition has been widely studied by a large
body of previous literature (Ganin et al. 2016; Long et al.
2016; Tzeng et al. 2017; PanaredaBusto andGall 2017;Hoff-
man et al. 2018;Murez et al. 2018; Zhao et al. 2019;Wu et al.
2019), our method more or less draws merits from them,
like aligning source and target distributions with adversar-
ial learning (domain-invariant alignment). However, object
detection is a technically different problem from classifica-
tion, since we would like to focus more on the object of
interests (regions).

Common approaches for tackling domain-shift object
detection aremainly in two directions: (i) training supervised
model and then fine-tuning on the target domain; or (ii) unsu-
pervised cross-domain representation learning. The former
requires additional instance-level annotations on target data,
which is fairly laborious, expensive and time-consuming. So
most approaches focus on the latter one but still have some
challenges. The first challenge is that the representations of
source and target domain data should be embedded into a
common space for matching the object, such as the hidden
feature space (Saito et al. 2019; Chen et al. 2018), input
space (Tzeng et al. 2018; Cai et al. 2019) or both of them
(Kim et al. 2019). The second is that a feature alignment or
matching operation or mechanism for source/target domains
should be further defined, such as subspace alignment (Raj
et al. 2015), H-divergence and adversarial learning (Chen
et al. 2018), MRL (Kim et al. 2019), Strong-Weak alignment
(Saito et al. 2019), universal alignment (Wang et al. 2019),
etc. In general, our proposed method in this work targets at
these two challenges, and it is also a learning-based align-
ment method across domains with an end-to-end framework.
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Fig. 4 Image samples from our benchmark grouped by their domain categories (sunny, night, cloudy and rainy). In each group, left are original
images and right are images with corresponding bounding box annotations

Table 1 Feature-by-feature comparison of popular I2I translation datasets

Datasets Paired Resolution Bbox annotations Modalities # images

edge↔shoes (Isola et al. 2017) � Low – {edge, shoes} 50,000

edge↔handbags (Isola et al. 2017) � Low – {edge, handbags} 137,000

CMP Facades (Radim Tyleček 2013) � HD – {facade, semantic map} 606

Yosemite (summer↔winter) (Zhu et al. 2017) ✗ HD – {summer, winter} 2127

Yosemite∗ (MUNIT) (Huang et al. 2018) ✗ HD – {summer, winter} 5638

Cityscapes (Cordts et al. 2016) � HD � { semantic, realistic} 3475

Transient Attributes (Laffont et al. 2014) � HD ✗ {40 transient attributes} 8571

Ours ✗ HD† � {sunny, night, cloudy, rainy} 155,529

Our dataset contains four relevant but visually-different domains: sunny, night, cloudy and rainy.
†indicates that the images in our dataset contain two types of resolutions: 1208×1920 and 3000×4000

Table 2 Comparison of popular domain adaptive object detection datasets

Datasets Resolution Modalities Train/test in source Train/test in target

Cityscapes (Cordts et al. 2016)→FoggyCityscapes (Sakaridis
et al. 2018)

HD {normal, foggy} 2975/500 2975/500

Cityscapes (Cordts et al. 2016)→KITTI (Geiger et al. 2012) HD {real, real} 2975/500 7481/7518

KITTI (Geiger et al. 2012)→Cityscapes (Cordts et al. 2016) HD {real, real} 7481/7518 2975/500

PASCAL∗ (Everingham et al. 2010)→Clipart1k (Inoue et al.
2018)

HD {real, cartoon} 16,551/15,943 1000/–

PASCAL∗ (Everingham et al. 2010)→WaterColor2k (Inoue
et al. 2018)

HD {real, artistic} 16,551/15,943 2000/–

GTA (Sim10K) (Johnson-Roberson et al. 2016)→Cityscapes
(Cordts et al. 2016)

HD { synthetic, real} 10,000/– 2975/500

Ours HD† {sunny, night, cloudy, rainy} Total: 155,529

*denotes the 2007+2012 trainval combination of PASCAL VOC dataset.
†indicates that the images in our dataset contain two types of resolutions: 1208×1920 and 3000×4000
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Table 3 Statistics (# images) of the entire dataset across four domains: sunny, night, rainy and cloudy

Domain Training (85%) Testing (15%) Total (100%)

Sunny 49,663 8764 58,427

Night 24,559 4333 28,892

Rainy 6041 1066 7107

Cloudy 51,938 9165 61,103

Total 132,201 23,328 155,529

The data is divided into two subsets: 85% for training and 15% for testing

3 CDTD: A Cross-Domain Dataset with
Instance Bounding-box Annotations

We introduce a large-scale street scene centric dataset
CDTD1 that addresses three core research problems in I2I
translation: (1) unsupervised learning paradigm, meaning
that there is no specific one-to-one mapping in the data; (2)
multimodal domains incorporation. Most existing I2I trans-
lation datasets provide only two different domains, which
limit the potential to explore more challenging tasks like
multi-domain incorporation circumstance. Our dataset con-
tains four domains: sunny, night, cloudy and rainy2 in a
unified street scene; and (3) multi-granularity (global and
instance-level) information. Our dataset provides instance-
level bounding box annotations, which can utilize more
details for learning a translation model. Table 1 shows a
feature-by-feature comparison among various I2I translation
datasets. We also visualize some examples of the dataset in
Fig. 4. For instance category, we annotate three common
objects in street scenes including: car, person, traffic sign
(speed limited sign). As our dataset covers multiple domains
with shared categories, so it is also suitable for the domain
adaptive object detection task.

3.1 Dataset summary

CDTD dataset consists of 155,529 images, among it, there
are 132,201 images for training and 23,328 images for test-
ing. The dataset contains four relevant but visually-different
domains: sunny, night, cloudy, rainy. The detailed statistics
(#images) of the entire dataset are shown in Table 3. All
the images are collected in Tokyo, Japan with SEKONIX
AR0231 camera. The whole collection process lasted about
3 months.

1 The abbreviation ofACross-Domain Benchmark forTranslation and
Detection tasks.
2 For safety, we collect the rainy images after the rain, so this category
looks more like overcast weather with wet road.

4 Instance-aware Image-to-Image
Translation

Unpaired Image-to-image Translation aims to learn a map-
ping between unaligned image pairs in diverse domains.
Recent advances in this field like MUNIT (Huang et al.
2018) and DRIT (Lee et al. 2018) mainly focus on disen-
tangling content and style/attribute from a given image first,
then directly adopting the global style to guide the model
to synthesize new domain images. However, this kind of
approaches severely incurs contradiction if the target domain
images are content-rich with multiple discrepant objects. In
this paper, we present a simple yet effective instance-aware
image-to-image translation approach (INIT), which employs
the fine-grained local (instance) and global styles to the tar-
get image spatially. The proposed INIT exhibits three import
advantages: (1) the instance-level objective loss can help
learn a more accurate reconstruction and incorporate diverse
attributes of objects; (2) the styles used for target domain of
local/global areas are from corresponding spatial regions in
source domain, which intuitively is a more reasonable map-
ping; (3) the joint training process can benefit both fine and
coarse granularity and incorporates instance information to
improve the quality of global translation. We observe that
our synthetic images can even benefit real-world vision tasks
like generic object detection.

More precisely, our goal is to realize the instance-aware
I2I translation between two different domains without paired
training examples.We build our framework by leveraging the
MUNIT (Huang et al. 2018) andDRIT (Lee et al. 2018)meth-
ods. To avoid repetition, we omit some innocuous details.
Similar to MUNIT (Huang et al. 2018) and DRIT (Lee
et al. 2018), our method is straight-forward and simple to
implement. As illustrated in Fig. 6, our translation model
consists of two encoders Eg, Eo (g and o denote the global
and instance image regions respectively), and two decoders
Gg,Go in each domain X or Y . Since we have the object
coordinates, we can crop the object areas and feed them into
the instance-level encoder to extra the content/style vectors.
An alternative method for object content vectors is to adopt
RoI pooling (Girshick 2015) from the global image content
features. Here we use image crop (object region) and share
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Fig. 5 Our content-style pair association strategy. Only coarse styles
can be applied to fine contents, the reversal of processing flow is not
allowed during training

the parameters for the two encoders, which is easier to imple-
ment.
Disentangle content and style on object and entire image.
As (Cheung et al. 2015; Mathieu et al. 2016; Huang et al.
2018; Lee et al. 2018), our method also decomposes input
images/objects into a shared content space and a domain-
specific style space. Take global image as an example, each
encode Eg can decompose the input to a content code cg
and a style code sg , where Eg = (Ec

g, E
s
g), cg = Ec

g(I ),
sg = Es

g(I ), I denotes the input image representation. cg
and sg are global-level content/style features.
Generate style code bank.We generate the style codes from
objects, background and entire images, which form our style
code bank for the following swapping operation and trans-
lation. In contrast, MUNIT (Huang et al. 2018) and DRIT
(Lee et al. 2018) use only the entire image style or attribute,
which is struggling to model and cover the rich image spatial
representation.
Associate content-style pairs for cyclic reconstruction.
Our cross-cycle consistency is performed by swapping
encoder-decoder pairs (dashed arc lines in Fig. 7). The
cross-cycle includes two modes: cross-domain (X ↔ Y)
and cross-granularity (entire image ↔ object). We illustrate
cross-granularity (image ↔ object) in Fig. 7, the cross-
domain consistency (X ↔ Y) is similar to MUNIT (Huang
et al. 2018) and DRIT (Lee et al. 2018). As shown in Fig. 5,
the swapping or content-style association strategy is a hier-
archical structure across multi-granularity areas. Intuitively,
the coarse (global) style can affect fine content andbe adopted
to local areas, while it’s not true if the process is reversed.
Following (Huang et al. 2018), we also use AdaIN (Huang
and Belongie 2017) to combine the content and style vectors,
which can be formulated as:

AdaIN(c, s) = σ(s)

(
c − μ(c)

σ (c)

)
+ μ(s) (1)

where c is the input content batch, s is a style input. μ(c),
σ(c) are the mean and standard deviation and AdaIN aims
to scale the normalized content input with σ(s), and shift it
with μ(s).

Incorporate Multi-Scale. It is technically easy to incorpo-
rate multi-scale advantage into the framework. We simply
replace the object branch in Fig. 7 with resolution-reduced
images. In our experiments, we use a 1/2 scale and original
size images as pairs to perform scale-augmented training.
Specifically, styles from the small size and original size
images can be performed to each other, and the generator
needs to learn multi-scale reconstruction for both of them,
which leads to more accurate results.
Reconstruction loss. We use self-reconstruction and cross-
cycle consistency loss (Lee et al. 2018) for both entire
image and object that encourage reconstruction of them.With
encoded c and s, the decoders should decode them back to
original input,

Î = Gg(E
c
g(I ), Es

g(I )), ô = Go(E
c
o(o), Es

o(o)) (2)

We can also reconstruct the latent distribution (i.e. content
and style vectors) as (Huang et al. 2018).

ĉo = Ec
o(Go(co, sg)), ŝo = Es

o(Go(co, sg)) (3)

where co and sg are instance-level content and global-level
style features. Then, we can use the following formation to
learn a reconstruction of them:

Lk
recon = Ek∼p(k)

[∥∥∥k̂ − k
∥∥∥
1

]
(4)

where k can be I , o, c or s. p(k) denotes the distribution of
data k. The formation of cross-cycle consistency is similar
to this process and more details can be referred to (Lee et al.
2018).
Adversarial loss. Generative adversarial learning (Goodfel-
low et al. 2014) has been adapted to many visual tasks, e.g.,
detection (Nguyen et al. 2017; Bai et al. 2018), inpainting
(Pathak et al. 2016; Iizuka et al. 2017; Yu et al. 2018), ensem-
ble (Shen et al. 2019), etc. We adopt adversarial loss Ladv

where Dg
X , Do

X , Dg
Y and Do

Y attempt to discriminate between
real and synthetic images/objects in each domain.We explore
two designs for the discriminators: weight-sharing orweight-
independent for global and instance images in each domain.
The ablation experimental results are shown in Tables 4 and
5, we observe that shared discriminator is a better choice in
our experiments.
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Fig. 6 Overview of our instance-aware cross-domain I2I translation.
The whole framework is based on the MUNIT method (Huang et al.
2018), while we further extend it to realize the instance-level translation

purpose. Note that after content-style association, the generated images
will place in the target domain, so a translation back process will be
employed before self-reconstruction, which is not illustrated here

Full objective function. The full objective function of our
framework is:

min
EX ,EY ,GX ,GY

max
DX ,DY

L(EX , EY ,GX ,GY , DX , DY )

= λg(LgX + LgY ) + λcg (LcX
g + LcY

g ) + λsg (LsX
g + LsY

g )︸ ︷︷ ︸
global−level reconstruction loss

+ λo(LoX + LoY ) + λco (LcX
o + LcY

o ) + λso (LsX
o + LsY

o )︸ ︷︷ ︸
instance−level reconstruction loss

+ LXg
adv + LYg

adv︸ ︷︷ ︸
global−level GAN loss

+ LXo
adv + LYo

adv︸ ︷︷ ︸
instance−level GAN loss

(5)

where λg , λo, λcg , λcp , λsg , λso are weights that control the
importance of different reconstruction terms.

During inference time, we simply use the global branch
to generate the target domain images (See Fig. 6 upper-right
part) so that it is not necessary to use bounding box annota-
tions at this stage, and this strategy can also guarantee that
the generated images are harmonious.

Fig. 7 Illustration of our cross-cycle consistency process. We only
show cross-granularity (image↔ object), the cross-domain consistency
(X ↔ Y) is similar to the above paradigm

5 Domain Adaptive Object Detection

Unsupervised domain adaptive object detection aims to learn
a robust detector in the domain shift circumstance, where
the training (source) domain is label-rich with bounding
box annotations, while the testing (target) domain is label-
agnostic and the feature distributions between training and
testing domains are dissimilar or even totally different.

Following the common formulation of domain adaptive
object detection, we define a source domain X where anno-
tated bounding-box is available, and a target domainY where

123



International Journal of Computer Vision (2021) 129:761–780 769

Fig. 8 Gradient detach helps to amplify contrast between context and
object areas in domain adaptation scenario

only the image can be used in training process without any
labels (bounding box and category). Our purpose is to train a
robust detector that can adapt well to both source and target
domain data, i.e., we aim to learn a domain-invariant fea-
ture representation that works well for detection across two
different domains.

5.1 Gradient Detach Updating

In this section, we first introduce the detach strategy and
how it helps to prevent the flow of gradients from context
sub-network through the detection backbone path. Then we
introduce the whole framework that we incorporate detach-
based multi-objective learning on domain adaptive object
detection scenario.

We define a sub-network to generate the context infor-
mation from early layers of detection backbone. Intuitively,
instance and contextwill focus on perceptually different parts
of an image, so the representations fromeither of them should
also be discrepant. However, if we trainwith the conventional
joint process, the companion sub-network will be updated
simultaneously with the detection backbone, whichmay lead
to learning an indistinguishable representation/behavior from
these two parts. To this end, in this work we propose to
suppress gradients during backpropagation and force the rep-
resentation of context sub-network to be dissimilar to the
detection network, as shown in Algorithm 1. We then apply
an instance-context alignmentmodulewith detach-generated
context and backbone object representations for joint adap-
tation, as we elaborate in the following section. We find that
gradient detach can help to obtain more discriminative con-
text and object representations (see Fig. 8), and we show
empirical evidence that this path carries information with
diversity and hence gradients from this path getting sup-
pressed is superior for such task.
Detach-Based Multi-Objective Learning. As shown in
Fig. 9, we focus on the detach based complement objec-
tive learning and let S = {(x(X )

i , y(X )
i )} where x(X )

i ∈ Rn

denotes an image, y(X )
i is the corresponding bounding box

and category labels for sample x(X )
i , and i is an index. Each

label y(X ) = (y(X )
c , y(X )

b ) denotes a class label y(X )
c where c

is the category, and a 4-dimension bounding-box coordinate
y(X )
b ∈ R4. For the target domain we only use image data

for training, so T = {x(Y)
i }. We define a recursive function

for layers k = 1, 2, . . . ,K where we cut in complementary
losses:

Θ̂k = F (Zk) , and Z0 ≡ x (6)

where Θ̂k is the feature map produced at layer k, F is the
function to generate features at layerk andZk is input at layer
k. We formulate the complement loss of domain classifier k
as follows:

Lk

(
Θ̂

(X )
k , Θ̂

(Y)
k ;Dk

)
= L(X )

k (Θ̂
(X )
k ;Dk) + L(Y)

k (Θ̂
(Y)
k ;Dk)

= E

[
log

(
Dk

(
Θ̂

(X )
k

))]
+ E

[
log

(
1 − Dk

(
Θ̂

(Y)
k

))] (7)

where Dk is the k-th domain classifier or discriminator.
Θ̂

(X )
k and Θ̂

(Y)
k denote feature maps from source and target

domains respectively. Following (Chen et al. 2018; Saito et al.
2019), we also adopt gradient reverse layer (GRL) (Ganin
and Lempitsky 2015) to enable adversarial training where a
GRL layer is placed between the domain classifier and the
detection backbone network. During backpropagation, GRL
will reverse the gradient that passes through from domain
classifier to detection network.

For our instance-context alignment loss LILoss, we take
the instance-level representation and context vector as inputs.
The instance-level vectors are from RoI layer that each vec-
tor focuses on the representation of local object only. The
context vector is from our proposed sub-network that com-
bines hierarchical global features. We concatenate instance
features with same context vector. Since context informa-
tion is fairly different from objects, joint training detection
and context networks will mix the critical information from
each part, here we proposed a better solution that uses detach
strategy to update the gradients. We will introduce it with
details in the next section. Aligning instance and context rep-
resentation simultaneously can help to alleviate the variances
of object appearance, part deformation, object size, etc. in
instance vector and illumination, scene, etc. in context vec-
tor. We define di as the domain label of i-th training image
where di = 1 for the source and di = 0 for the target, so the
instance-context alignment loss can be further formulated as:

LILoss = − 1

NX

NX∑
i=1

∑
i, j

(1 − di ) logP(i, j)

− 1

NY

NY∑
i=1

∑
i, j

di log
(
1 − P(i, j)

) (8)
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Fig. 9 Overview of our domain adaptive object detection framework.
“RPN” is the region proposal network proposed in Faster RCNN (Ren
et al. 2015) for generating object proposals. “GRL” is the gradient
reverse layer (GRL) (Ganin and Lempitsky 2015) that the sign of the

gradient will be reversed by passing through the GRL layer to optimize
the base network, and the conventional gradient descent is applied for
training the domain classifiers at different layers. More details please
refer to Sect. 5

where NX and NY denote the numbers of source and target
examples. P(i, j) is the output probabilities of the instance-
context domain classifier for the j-th region proposal in the
i-th image. So our total SCL (stacked complementary losses)
objective LSCL can be written as:

LSCL =
K∑

k=1

Lk + LILoss (9)

Algorithm 1: Backward Pass of Our Detach Algorithm
1 INPUT: Gc is gradient of context network, Gd is the gradient of
detection network, Ldet is the detection objective, LSCL is the
complementary objective;

2 for t ← 1 to ntrain_steps do
3 1. Update context net by detection and instance-context

objectives: Ldet (w/o Lrpn)+LILoss
4 2. Gd ← stop-gradient(Gc;Ldet )
5 3. Update detection net by detection and complementary

objectives: Ldet+LSCL

5.2 Framework Overall

Our detection part is based on the Faster RCNN (Ren et al.
2015), including the Region Proposal Network (RPN) and
other modules. This is a conventional practice in many adap-

tive detection works. The objective of the detection loss is
summarized as:

Ldet = Lrpn + Lcls + Lreg (10)

whereLcls is the classification loss andLreg is the bounding-
box regression loss. To train the whole model using SGD, the
overall objective function in the model is:

min
F ,R

max
D

Ldet (F(Z),R) − λLSCL(F(Z),D) (11)

where λ is the trade-off coefficient between detection loss
and our complementary loss. R denotes the RPN and other
modules in Faster RCNN.

6 Experiments and Analysis

6.1 Instance-level Image-to-image Translation

We conduct experiments on our collected dataset (CDTD).
We also use COCO dataset (Lin et al. 2014) to verify the
effectiveness of data augmentation.
Implementation Details. Our implementation is based on
MUNIT3 with PyTorch (Paszke et al. 2017). For I2I trans-
lation, we resize the short side of images to 360 pixels due

3 https://github.com/NVlabs/MUNIT.
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Table 4 Diversity scores on our dataset. We use the average LPIPS distance (Zhang et al. 2018) to measure the diversity of generated images

Method Diversity

Sunny → Night Sunny→Rainy Sunny→Cloudy Average

UNIT (Liu et al. 2017) 0.067 0.062 0.068 0.066

CycleGAN (Zhu et al. 2017) 0.016 0.008 0.011 0.012

MUNIT (Huang et al. 2018) 0.292 0.239 0.211 0.247

DRIT (Lee et al. 2018) 0.231 0.173 0.166 0.190

INIT w/ Ds 0.330 0.267 0.224 0.274

INIT w/o Ds 0.324 0.238 0.177 0.246

Real Images 0.573 0.489 0.465 0.509

Table 5 Comparison of Conditional Inception Score (CIS) and Inception Score (IS). To obtain high CIS and IS scores, a model is required to
synthesis images that are more realistic, diverse with high-quality

CycleGAN
(Zhu et al. 2017)

UNIT
(Liu et al. 2017)

MUNIT
(Huang et al. 2018)

DRIT
(Lee et al. 2018)

INIT w/ Ds INIT w/o Ds

CIS IS CIS IS CIS IS CIS IS CIS IS CIS IS

sunny→night 0.014 1.026 0.082 1.030 1.159 1.278 1.058 1.224 1.060 1.118 1.083 1.120

night→sunny 0.012 1.023 0.027 1.024 1.036 1.051 1.024 1.099 1.045 1.080 1.024 1.104

sunny→rainy 0.011 1.073 0.097 1.075 1.012 1.146 1.007 1.207 1.036 1.152 1.034 1.146

rainy→sunny 0.010 1.090 0.014 1.023 1.055 1.102 1.028 1.103 1.060 1.119 1.059 1.124

sunny→cloudy 0.014 1.097 0.081 1.134 1.008 1.095 1.025 1.104 1.040 1.142 1.025 1.147

cloudy→sunny 0.090 1.033 0.219 1.046 1.026 1.321 1.046 1.249 1.016 1.460 1.006 1.363

Average 0.025 1.057 0.087 1.055 1.032 1.166 1.031 1.164 1.043 1.179 1.039 1.167

The bold numbers denote the best results when compared with baselines, results of different settings, or other state-of-the-art methods

Table 6 Mask-RCNN with ResNet-50-FPN (Lin et al. 2017) detection and segmentation results on MS COCO 2017 val set

COCO 2017 training COCO 2017 validation Object detection (%) Instance segmentation (%)

Real Synthetic Real Synthetic Avg. Precision, IoU Avg. Precision, mask

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

� � 37.7 59.2 40.8 34.3 56.0 36.2

� � 30.4 49.7 32.6 27.8 46.6 29.2

� � 30.0 50.0 31.6 27.2 46.5 28.0

� � 30.5 49.7 32.7 27.8 46.4 29.0

� � � 32.6↑2.1 52.6↑2.9 34.2↑1.5 29.0↑1.2 49.0↑2.6 29.8↑0.8

� � � 38.8↑1.1 60.2↑1.0 42.5↑1.7 35.2↑0.9 57.0↑1.0 37.4↑1.2

to the limitation of GPU memory. For COCO image syn-
thesis, since the training images (INIT dataset) and target
images (COCO) are in different distributions, we keep the
original size of our training image and crop 360×360 pixels
to train our model, in order to learn more details of images
and objects, meanwhile, ignore the global information. In
this circumstance, we build our object part as an independent
branch and each object is resized to 120×120 pixels during
training. We set the trade-off hyper-parameters to λg = 10,
λo = 10, λcg = 1, λcp = 1, λsg = 1, λso = 1 following
MUNIT (Huang et al. 2018).

6.1.1 Baselines

We perform our evaluation on the following four recent pro-
posed state-of-the-art unpaired I2I translation methods:

– CycleGAN (Zhu et al. 2017): CycleGAN contains
two translation functions (X → Y andX ← Y), and
the corresponding adversarial loss. It assumes that the
input images can be translated to another domain and
then can be mapped back with a cycle consistency
loss.
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– UNIT (Liu et al. 2017): TheUNITmethod is an exten-
sion of CycleGAN (Zhu et al. 2017) that is based
on the shared latent space assumption. It contains
two VAE-GANs and also uses cycle-consistency loss
(Zhu et al. 2017) for learning models.

– MUNIT (Huang et al. 2018): MUNIT consists of an
encoder and a decoder for each domain. It assumes
that the image representation can be decomposed
into a domain-invariant content space and a domain-
specific style space. The latent vectors of each
encoder are disentangled to a content vector and a
style vector. I2I translation is performed by swapping
content-style pairs.

– DRIT (Lee et al. 2018): The motivation of DRIT is
similar to MUNIT. It consists of content encoders,
attribute encoders, generators and domain discrimi-
nators for both domains. The content encoder maps
images into a shared content space and the attribute
encoder maps images into a domain-specific attribute
space. A cross-cycle consistency loss is adopted for
performing I2I translation.

6.1.2 Evaluation

We adopt the same evaluation protocol from previous unsu-
pervised I2I translation works and evaluate our method with
the LPIPS Metric (Zhang et al. 2018), Inception Score (IS)
(Salimans et al. 2016) and Conditional Inception Score (CIS)
(Huang et al. 2018).
LPIPSMetric.Zhang et al. proposedLPIPS distance (Zhang
et al. 2018) to measure the translation diversity, which has
been verified to correlate well with human perceptual psy-
chophysical similarity. Following (Huang et al. 2018), we
calculate the average LPIPS distance between 19 pairs of ran-
domly sampled translation outputs from 100 input images of
our test set. Following (Huang et al. 2018) and recommended
by Zhang et al. (2018), we also use the pre-trained AlexNet
(Krizhevsky et al. 2012) to extract deep features.

Results are summarized in Table 4, “INIT w/ Ds” denotes
we train our model with shared discriminator between entire
image and object. “INIT w/o Ds” denotes we build separate
discriminators for image and object. Thanks to the coarse
and fine styles we used, our average INIT w/ Ds score out-
performs MUNIT with a notable margin. We also observe
that our dataset (real image) has a very large diversity score,
which indicates that the dataset is diverse and challenging.
Inception Score (IS) and Conditional Inception Score
(CIS).We use the Inception Score (IS) (Salimans et al. 2016)
and Conditional Inception Score (CIS) (Huang et al. 2018)
to evaluate our learned models. IS measures the diversity
of all output images and CIS measures diversity of output
conditioned on a single input image, which is a modified IS
that is more suitable for evaluating multimodal I2I transla-

Fig. 10 Visualization of our synthetic images. The left group images
are from COCO and the right are from Cityscapes

Fig. 11 Visualization of multimodal results. We use randomly sam-
pled style codes to generate these images and the darkness are slightly
different across them

Input

Recon

MUNIT

Ours

Fig. 12 Qualitative comparison on randomly selected instance level
results. The first row shows the input objects. The second row shows
the self-reconstruction results. The third and fourth rows show outputs
from MUNIT and ours, respectively

tion task. The detailed definition of CIS can be referred to
Huang et al. (2018).Wealso employwith InceptionV3model
(Szegedy et al. 2016) to fine-tune our classification model on
four domain category labels of our dataset. Other settings are
the same as Huang et al. (2018). It can be seen in Table 5 that
our results are consistently better than the baselines MUNIT
and DRIT.
Image Synthesis on Multiple Datasets The visualization
of our synthetic images is shown in Fig. 17. The left group
images are on COCO and the right are on Cityscapes. We
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Table 7 Improvement comparison on COCO detection with different image synthetic methods

COCO 2017 (%) IoU IoU0.5 IoU0.75

+Syn. (MUNIT Huang et al. 2018) +0.7 +0.4 +1.0

+Syn. (Ours) +1.1 +1.0 + 1.7

Table 8 Performance decline when training and testing on real image, and comparing to results on synthetic image

Metric Percentage (%)

COCO Det.&Seg. ↓19.1 & ↓19.0
Cityscapes mIoU&mAcc ↓ 2.6 & ↓2.4
The bold number denotes the best results when compared with baselines, results of different settings, or other state-of-the-art methods
We adopt PSPNet (Zhao et al. 2017) with ResNet-50 (He et al. 2016) on Cityscapes (Cordts et al. 2016) and obtain (real&real): mIoU: 76.6%,
mAcc: 83.1%; (syn.&syn.): 74.6%/81.1%

observe that the most challenging problem for multiple
datasets synthesis is the inter-class variance among them.

6.2 Data Augmentation for Detection &
Segmentation on COCO

We use Mask RCNN (He et al. 2017) framework for the
experiments.A synthetic copy of entireCOCOdataset is gen-
erated by our sunny→night model. We employ open-source
implementation of Mask RCNN4 for training the COCO
models. For training, we use the same number of training
epochs and other default settings including the learning rate
schedule, #batchsize, etc.

All results are summarized in Table 6, the first column
(group) shows the training data we used, the second group
shows the validation data where we tested on. The third and
fourth groups are detection and segmentation results, respec-
tively. We can observe that our real-image trained model
can obtain 30.4% mAP on synthetic validation images, this
indicates that the distribution differences between original
COCO and our synthetic images are not very huge. It seems
that our generation process is more likely to do photo-metric
distortions or brightness adjustment of images, which can
be regarded as a data augmentation technique and has been
verified the effectiveness for object detection in Liu et al.
(2016). From the last two rows we can see that not only
the synthetic images can help improve the real image testing
performance, but the real image can also boost the results of
synthetic images (both train and test on synthetic images).We
also compare improvement with different generation meth-
ods in Table 7. The results show that our object branch can
bring more benefits for detection task than the baseline. We
also believe that the proposed data augmentation method can
benefit to some limited training data scenarios like learning

4 https://github.com/facebookresearch/maskrcnn-benchmark.

detectors from scratch (Shen et al. 2017; Law andDeng 2018;
He et al. 2019; Duan et al. 2019).

We further conduct scene parsing on Cityscapes (Cordts
et al. 2016). However, we didn’t see obvious improve-
ment in this experiment. Using PSPNet (Zhao et al. 2017)
with ResNet-50 (He et al. 2016), we obtain mIoU: 76.6%,
mAcc: 83.1% when training and testing on real images and
74.6%/81.1% on both synthetic images. We can see that
the gaps between real and synthetic image are really small.
We conjecture this case (no gain) is because the synthetic
Cityscapes is too close to the original one. We compare the
performance decline in Table 8. Since the metrics are differ-
ent in COCO and Cityscapes, we use the relative percentage
for comparison. The results indicate that the synthetic images
may be more diverse for COCO since the decline is much
smaller on Cityscapes.

6.2.1 Analysis

QualitativeComparisonWequalitatively compareourmethod
with baseline MUNIT (Huang et al. 2018). Fig. 13 shows
example results on sunny→night.

We randomly select one output for each method. It’s obvi-
ous that our results are much more realistic, diverse with
higher quality. If the object area is small, MUNIT (Huang
et al. 2018) may fall into mode collapse and brings small
artifacts around object area, in contrast, our method can over-
come this problem through instance-level reconstruction.We
also visualize themultimodal results in Fig. 11with randomly
sampled style vectors. It can be observed that the various
degrees of darkness are generated across these images.
Instance GenerationThe results of generated instances are
shown in Fig. 12, our method can generate more diverse
objects (columns 1, 2, 6), more details (columns 5, 6, 7)
with even the reflection (column 7). MUNIT sometimes fails
to generate desired results if the global style is not suitable
for the target object (column 2).
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Fig. 13 Case-by-case comparison on sunny→night. The first row shows the input images. The second and third rows show random outputs from
MUNIT (Huang et al. 2018) and ours, respectively

Fig. 14 Visualizationof style distributionby t-SNE (Maaten andHinton
2008). The groupswith the same color are paired object andglobal styles
of same domain

Comparison ofLocal (Object) andGlobal StyleCodeDis-
tributions. To further verify our assumption that the object
and global styles are distinguishable enough to disentangle,
we visualize the embedded style vectors from our w/ Ds

model. The visualization is plotted by t-SNE tool (Maaten
and Hinton 2008). We randomly sample 100 images and
objects in the test set of each domain, results are shown in
Fig. 14. The same color groups represent the paired global
images and objects in the same domain. We can observe that
the style vectors of same domain global and object images
are grouped and separate with a remarkable margin, mean-
while, they are neighboring in the embedded space. This is
reasonable and demonstrates the effectiveness of our learning
process.

6.3 Domain Adaptive Object Object

Implementation Details. In all experiments, we resize the
shorter side of the image to 600 following (Ren et al. 2015;
Saito et al. 2019) with ROI-align (He et al. 2017). We train
the model with SGD optimizer and the initial learning rate is
set to 10−3, then divided by 10 after every 50,000 iterations.
Unless otherwise stated, we set λ as 1.0 and γ as 5.0, and

Fig. 15 Parameter sensitivity for the value of λ (left) and γ (right)
in adaptation from Cityscapes to FoggyCityscapes and from Sim10k
(Johnson-Roberson et al. 2016) to Cityscapes

we use K = 3 in our experiments (the analysis of hyper-
parameter K is shown in Table 11). We report mean average
precision (mAP) with an IoU threshold of 0.5 for evaluation.
Following (Chen et al. 2018; Saito et al. 2019), we feed one
labeled source image and one unlabeled target one in each
mini-batch during training. Our method is implemented on
PyTorch platform.

6.3.1 Baselines and Our Results

The baselines and our results are shown in Tables 9 and 10.
Following translation settings, we conduct experiments on
three domain pairs: sunny→night (s2n), sunny→rainy (s2r)
and sunny→cloudy (s2c). Since the training images in rainy
domain are much fewer than sunny, for s2r experiment we
randomly sample the training data in sunny set with the same
number of rainy set and then train the detector. It can be
observed that our method is consistently better than the base-
line methods. We did not provide the results of s2c (faster) as
we found that cloudy images are too similar to sunny in this
dataset (nearly the same), thus the non-adapted result is very
close to the adapted methods. Our code for domain adaptive
object detection is available at: https://github.com/harsh-99/
SCL.
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Table 9 Adaptive detection results on our CDTD dataset

Car Sign Person mAP

s2n Faster (Chen et al. 2018) 63.33 63.96 32.00 53.10

Strong-Weak (Saito et al. 2019) 67.43 64.33 32.53 54.76

Ours 67.92 65.89 32.52 55.44

Ours+INIT 69.72 66.87 33.87 56.80

Oracle 80.12 84.68 44.57 69.79

s2r Faster (Chen et al. 2018) 70.20 72.71 36.22 59.71

Strong-Weak (Saito et al. 2019) 71.56 78.07 39.27 62.97

Ours 71.41 78.93 39.79 63.37

Ours+INIT 71.70 79.23 41.52 64.15

Oracle 71.83 79.42 45.21 65.49

s2c Faster (Chen et al. 2018) – – – –

Strong-Weak (Saito et al. 2019) 71.32 72.71 43.18 62.40

Ours 71.28 72.91 43.79 62.66

Ours+INIT 73.13 72.98 44.82 63.64

Oracle 76.60 76.72 47.28 66.87

The bold numbers denote the best results when compared with baselines, results of different settings, or other state-of-the-art methods
“Ours+INIT” indicates that we train the INIT translation model first then generate the target domain images, after that, we train the gradient detach
detection model with the generated and original data

Table 10 More adaptive detection results on other translation of the CDTD dataset

Car Sign Person mAP

n2c Baseline (Chen et al. 2018) 61.36 53.91 34.35 49.87

Ours 62.21 55.21 36.6 51.34

n2r Baseline (Chen et al. 2018) 60.50 54.13 22.38 45.67

Ours 62.28 56.07 29.02 49.12

n2s Baseline (Chen et al. 2018) 60.06 50.43 33.47 48.12

Ours 60.73 56.09 35.2 50.67

c2n Baseline (Chen et al. 2018) 66.97 62.44 38.43 54.70

Ours 67.84 62.06 35.73 55.21

c2r Baseline (Chen et al. 2018) 71.04 70.84 38.01 59.96

Ours 71.10 77.47 38.01 62.19

c2s Baseline (Chen et al. 2018) 70.36 66.78 43.05 60.07

Ours 70.76 73.30 46.92 63.66

r2c Baseline (Chen et al. 2018) 66.75 57.11 32.71 52.19

Ours 68.93 63.27 34.02 55.41

r2n Baseline (Chen et al. 2018) 59.06 50.36 18.89 42.77

Ours 59.74 49.99 22.83 44.19

r2s Baseline (Chen et al. 2018) 64.20 55.22 32.13 50.52

Ours 62.35 57.20 36.89 52.15

The bold numbers denote the best results when compared with baselines, results of different settings, or other state-of-the-art methods

Table 11 Analysis of hype-parameter K in stacked complementary losses

Method K=2 K=3 K=4

from Cityscapes (Cordts et al. 2016) to Foggycityscapes (Sakaridis et al. 2018) 32.7 37.9 34.5

from PASCAL VOC (Everingham et al. 2010) to Clipart (Inoue et al. 2018) 39.0 41.5 39.3

from PASCAL VOC (Everingham et al. 2010) to Watercolor (Inoue et al. 2018) 54.7 55.2 53.4
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Table 12 Ablation study (%) on Cityscapes to FoggyCityscapes (we use 150 m visibility, the densest one) adaptation

Method Context L1 L2 L3 ILoss Detach AP on a target domain

Person Rider Car Truck Bus Train Mcycle Bicycle mAP

Faster (Non-adapted) 24.1 33.1 34.3 4.1 22.3 3.0 15.3 26.5 20.3

DA (CVPR’18) � 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

MAF (He and Zhang 2019) (ICCV’19) 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0

SW (Saito et al. 2019) (CVPR’19) � 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3

Diversify (Kim et al. 2019) (CVPR’19) 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6

SW (re-impl. w/ VGG16) � 30.0 40.0 43.4 23.2 40.1 34.6 27.8 33.4 34.1

SW (re-impl. w/ Res101) � 29.1 41.2 43.8 26.0 43.2 27.0 26.2 30.6 33.4

Ours w/o Context ✗ LS FL ✗ ✗ ✗ 29.6 42.2 43.4 23.1 36.4 31.5 25.1 30.5 32.7

✗ LS CE FL ✗ ✗ 29.0 41.4 43.9 24.6 46.5 28.5 27.0 32.8 34.2

✗ LS CE FL FL ✗ 28.6 44.0 44.2 25.2 42.9 31.1 27.4 33.0 34.5

Ours w/ Context � LS FL ✗ ✗ ✗ 28.5 42.6 43.8 23.2 41.6 24.9 28.3 30.3 32.9

� LS FL FL ✗ ✗ 28.6 41.8 43.8 27.9 43.3 24.0 28.7 31.3 33.7

� LS LS FL ✗ ✗ 28.8 45.5 44.3 28.6 44.6 29.1 27.8 31.4 35.0

� LS CE FL ✗ ✗ 29.6 42.6 42.6 28.4 46.3 31.0 28.4 33.0 35.3

� LS CE FL ✗ � 30.0 42.7 44.2 30.0 50.2 34.1 27.1 32.2 36.3

� LS FL FL FL ✗ 26.3 42.8 44.2 26.7 41.6 36.4 29.2 30.9 34.8

� LS LS FL FL � 29.5 43.2 44.2 27.0 42.1 33.3 29.4 30.6 34.9

� LS FL FL FL � 29.7 43.6 43.7 26.6 43.8 33.1 30.7 31.5 35.3

� LS CE FL CE ✗ 28.3 41.9 43.1 25.4 45.1 35.5 26.7 31.6 34.7

� LS CE FL FL ✗ 29.8 43.9 44.0 29.4 46.3 30.0 31.8 31.8 35.8

� LS CE FL CE � 29.0 42.5 43.9 28.9 45.7 42.4 26.4 30.5 36.2

� LS CE FL FL � 30.7 44.1 44.3 30.0 47.9 42.9 29.6 33.7 37.9

Ours w/ VGG16 � LS CE FL FL � 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9

Upper Bound (Saito et al. 2019) – – – – – – 33.2 45.9 49.7 35.6 50.0 37.4 34.7 36.2 40.3

The bold numbers denote the best results when compared with baselines, results of different settings, or other state-of-the-art methods
LS, Least-squares Loss; CE, Cross-entropy Loss; FL, Focal Loss; ILoss, Instance-Context Alignment Loss
The backbone network is ResNet-101

Fig. 16 Visualizations of our synthetic images on different source-target domain pairs. In each group, the first row is the reconstructed source
domain images, and the second row is the synthetic target domain images

123



International Journal of Computer Vision (2021) 129:761–780 777

Fig. 17 More examples of our synthetic images on sunny→cloudy and sunny→rainy. Note that as the rainy images in our dataset look more like
overcast weather with wet road, our results capture the attributes of training data very well
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6.3.2 Ablation Results of Gradient Detach

To thoroughly verify the effectiveness of each component
and generalization ability to other benchmarks of our pro-
posed gradient detach method, we further investigate each
component and design of our framework from Cityscapes
(Cordts et al. 2016) to FoggyCityscapes (Sakaridis et al.
2018). Both source and target datasets have 2975 images
in the training set and 500 images in the validation set. We
design several controlled experiments for this ablation study.
A consistent setting is imposed on all the experiments, unless
when some components or structures are examined. In this
study, we train models with the ImageNet (Deng et al. 2009)
pre-trained ResNet-101 as a mainly used backbone, we also
provide the results with pre-trained VGG16 model. We use
four types of loss functions in SCL: LS: Least-squares Loss;
CE: Cross-entropy Loss; FL: Focal Loss; ILoss: Instance-
Context Alignment Loss.
Focal Loss (FL). Focal loss LFL (Lin et al. 2017) is adopted
to ignore easy-to-classify examples and focus on those hard-
to-classify ones during training:

LFL (pt) = − f (pt) log (pt) , f (pt) = (1 − pt)
γ (12)

where pt = p if di = 1, otherwise, pt = 1 − p.
The results are summarized in Table 12. We present

several combinations of four complementary objectives
with their loss names and performance. We observe that
“LS|CE |FL |FL” obtains the best accuracywithContext and
Detach. It indicates that LS can only be placed on the low-
level features (rich spatial information and poor semantic
information) and FL should be in the high-level locations
(weak spatial information and strong semantic information).
For the middle location, CE will be a good choice. If
you use LS for the middle/high-level features or use FL
on the low-level features, it will confuse the network to
learn hierarchical semantic outputs, so that ILoss+detach
will lose effectiveness under that circumstance. This verifies
that domain adaptive object detection relies heavily on the
deep supervision, however, the diverse supervisions should
be adopted in a controlled and correct manner. Furthermore,
our proposed method performs much better than baseline
Strong-Weak (Saito et al. 2019) (37.9% vs. 34.3%) and other
state-of-the-arts.
Parameter Sensitivity on λ and γ . Figure 15 shows the
results for parameter sensitivity of λ and γ in Eqs. 11
and 12. λ is the trade-off parameter between SCL and detec-
tion objectives and γ controls the strength of hard samples
in Focal Loss. We conduct experiments on two adapta-
tions: Cityscapes → FoggyCityscapes (blue) and Sim10K
(Johnson-Roberson et al. 2016) → Cityscapes (red). On
Cityscapes → FoggyCityscapes, we achieve the best perfor-
mance when λ = 1.0 and γ = 5.0 and the best accuracy is

37.9%. On Sim10K→Cityscapes, the best result is obtained
when λ = 0.1, γ = 2.0.
Hyper-parameter K Analysis. Table 11 shows the results
for sensitivity of hyper-parameterK in Figure 9. This param-
eter controls the number of SCL losses and context branches.
It can be observed that the proposed method performs best
when K = 3 on all three datasets.

7 Conclusion

In this work, we have introduced a large-scale cross-domain
dataset for the instance-level image-to-image translation and
domain adaptive object detection tasks. We presented INIT
method for instance-aware translation with unpaired training
data. Extensive qualitative and quantitative results demon-
strate that the proposed method can capture the details of
objects and produce realistic and diverse images. We also
addressed unsupervised domain adaptive object detection
through a novel training strategy, gradient detach, for the
convolutional neural networks. Our future work will focus
on exploring the domain-shift tasks from scratch, i.e., with-
out the pre-trained models (Shen et al. 2017, 2019; He et al.
2019; Zhu et al. 2019) to avoid involving bias from the pre-
trained dataset.

References

Almahairi, A., Rajeswar, S., Sordoni, A., Bachman, P., & Courville, A.
(2018). Augmented cyclegan: Learning many-to-many mappings
from unpaired data. In ICML.

Bai, Y., Zhang, Y., Ding, M., & Ghanem, B. (2018). Finding tiny faces
in the wild with generative adversarial network. In CVPR.

Cai,Q., Pan,Y.,Ngo,C.W., Tian,X.,Duan,L.,&Yao,T. (2019). Explor-
ing object relation in mean teacher for cross-domain detection. In
CVPR.

Chen, Y., Li, W., Sakaridis, C., Dai, D., & Van Gool, L. (2018). Domain
adaptive faster r-cnn for object detection in the wild. In CVPR

Cheung, B., Livezey, J. A., Bansal, A. K., & Olshausen, B.A. (2015).
Discovering hidden factors of variation in deep networks. In ICLR
workshop.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes
dataset for semantic urban scene understanding. In CVPR.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L. (2009).
Imagenet:A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition (pp. 248–
255). IEEE.

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019).
Centernet: Object detection with keypoint triplets. arXiv preprint
arXiv:1904.08189.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisser-
man, A. (2010). The pascal visual object classes (voc) challenge.
International Journal of Computer Vision,88(2), 303–338.

Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation
by backpropagation. In ICML.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Lavi-
olette, F., et al. (2016). Domain-adversarial training of neural

123

http://arxiv.org/abs/1904.08189


International Journal of Computer Vision (2021) 129:761–780 779

networks. The Journal of Machine Learning Research, 17(1),
2096–2030.

Geiger,A., Lenz, P.,&Urtasun,R. (2012).Arewe ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Girshick, R. (2015). Fast R-CNN. In ICCV.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,Warde-Farley, D.,

Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adver-
sarial nets. In NIPS.

He, K., Girshick, R., & Dollár, P. (2019). Rethinking imagenet pre-
training. In: Proceedings of the IEEE international conference on
computer vision (pp. 4918–4927).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN.
In ICCV.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR.

He, Z., & Zhang, L. (2019). Multi-adversarial faster-rcnn for unre-
stricted object detection. In ICCV.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros,
A., & Darrell, T. (2018). Cycada: Cycle-consistent adversarial
domain adaptation. In ICML.

Huang, X., & Belongie, S.J. (2017). Arbitrary style transfer in real-time
with adaptive instance normalization. In ICCV.

Huang, X., Liu, M.Y., Belongie, S., & Kautz, J. (2018). Multimodal
unsupervised image-to-image translation. In ECCV.

Iizuka, S., Simo-Serra, E., & Ishikawa, H. (2017). Globally and locally
consistent image completion. ACM Transactions on Graphics
(ToG), 36(4), 1–14.

Inoue,N., Furuta, R., Yamasaki, T.,&Aizawa,K. (2018). Cross-domain
weakly-supervised object detection through progressive domain
adaptation. In CVPR.

Isola, P., Zhu, J.Y., Zhou, T., & Efros, A.A. (2017). Image-to-image
translation with conditional adversarial networks. In IEEE confer-
ence on computer vision and pattern recognition.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K.,
& Vasudevan, R. (2016). Driving in the matrix: Can virtual worlds
replace human-generated annotations for real world tasks? arXiv
preprint arXiv:1610.01983.

Karacan, L., Akata, Z., Erdem, A., & Erdem, E. (2016). Learning to
generate images of outdoor scenes from attributes and semantic
layouts. arXiv preprint arXiv:1612.00215.

Kim, T., Jeong, M., Kim, S., Choi, S., & Kim, C. (2019). Diversify and
match: A domain adaptive representation learning paradigm for
object detection. In CVPR.

Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classi-
fication with deep convolutional neural networks. In NIPS.

Laffont, P. Y., Ren, Z., Tao, X., Qian, C., & Hays, J. (2014). Tran-
sient attributes for high-level understanding and editing of outdoor
scenes. ACM Transactions on Graphics Proceedings of SIG-
GRAPH, 33(4), 1–11.

Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired
keypoints. In ECCV.

Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., & Yang, M.H. (2018).
Diverse image-to-image translation via disentangled representa-
tions. In ECCV.

Li, T., Qian, R., Dong, C., Liu, S., Yan, Q., Zhu, W., & Lin, L. (2018).
Beautygan: Instance-level facial makeup transfer with deep gen-
erative adversarial network. In 2018 ACM multimedia conference
on multimedia conference (pp. 645–653). ACM.

Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., & Belongie,
S.J. (2017). Feature pyramid networks for object detection. In
CVPR.

Lin, T.Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss
for dense object detection. In ICCV.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common
objects in context. In ECCV.

Liu,M.Y., Breuel, T., &Kautz, J. (2017). Unsupervised image-to-image
translation networks. In NIPS.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., &
Berg, A.C. (2016). SSD: Single shot multibox detector. In ECCV.

Long, M., Zhu, H., Wang, J., & Jordan, M.I. (2016). Unsupervised
domain adaptation with residual transfer networks. In Advances in
neural information processing systems.

Ma, S., Fu, J., Chen, C.W., & Mei, T. (2018). Da-gan: Instance-level
image translation by deep attention generative adversarial net-
works. In CVPR.

Maaten, L.v.d., &Hinton, G., (2008). Visualizing data using t-sne. Jour-
nal of Machine Learning Research, 9, 2579–2605.

Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., &
LeCun, Y. (2016). Disentangling factors of variation in deep rep-
resentation using adversarial training. In NIPS

Mechrez, R., Talmi, I., & Zelnik-Manor, L. (2018). The contextual loss
for image transformation with non-aligned data. In Proceedings of
the European conference on computer vision (ECCV), 768–783.

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784.

Mo, S., Cho, M., & Shin, J. (2019). Instance-aware image-to-image
translation. In International conference on learning representa-
tions. https://openreview.net/forum?id=ryxwJhC9YX.

Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., & Kim, K.
(2018) Image to image translation for domain adaptation. InCVPR.

Nguyen, V., Vicente, Y., Tomas, F., Zhao, M., Hoai, M., & Samaras, D.
(2017). Shadow detection with conditional generative adversarial
networks. In ICCV.

Panareda Busto, P., & Gall, J. (2017). Open set domain adaptation. In
ICCV.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic
differentiation in pytorch. In NIPS workshop.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A.
(2016). Context encoders: Feature learning by inpainting. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2536–2544).

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019).
Moment matching for multi-source domain adaptation. In Pro-
ceedings of the IEEE international conference on computer vision
(pp. 1406–1415).

Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., & Saenko,
K. (2017). Visda: The visual domain adaptation challenge. arXiv
preprint arXiv:1710.06924.

Peng, X., Usman, B., Saito, K., Kaushik, N., Hoffman, J., & Saenko,
K. (2018). Syn2real: A new benchmark forsynthetic-to-real visual
domain adaptation. arXiv preprint arXiv:1806.09755.
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