
International Journal of Computer Vision (2021) 129:1930–1953
https://doi.org/10.1007/s11263-020-01381-4

Learning Adaptive Classifiers Synthesis for Generalized Few-Shot
Learning

Han-Jia Ye1 · Hexiang Hu2 · De-Chuan Zhan1

Received: 21 December 2019 / Accepted: 3 September 2020 / Published online: 19 April 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Object recognition in the real-world requires handling long-tailed or even open-ended data. An ideal visual system needs to
recognize the populated head visual concepts reliably and meanwhile efficiently learn about emerging new tail categories
with a few training instances. Class-balanced many-shot learning and few-shot learning tackle one side of this problem, by
either learning strong classifiers for head or learning to learn few-shot classifiers for the tail. In this paper, we investigate the
problem of generalized few-shot learning (GFSL)—a model during the deployment is required to learn about tail categories
with few shots and simultaneously classify the head classes. We propose the ClAssifier SynThesis LEarning (Castle), a
learning framework that learns how to synthesize calibrated few-shot classifiers in addition to the multi-class classifiers of
head classes with a shared neural dictionary, shedding light upon the inductive GFSL. Furthermore, we propose an adaptive
version of Castle (aCastle) that adapts the head classifiers conditioned on the incoming tail training examples, yielding a
framework that allows effective backward knowledge transfer. As a consequence,aCastle can handleGFSLwith classes from
heterogeneous domains effectively. Castle and aCastle demonstrate superior performances than existing GFSL algorithms
and strong baselines on MiniImageNet as well as TieredImageNet datasets. More interestingly, they outperform previous
state-of-the-art methods when evaluated with standard few-shot learning criteria.

Keywords Image recognition · Meta learning · Generalized few-shot learning · Few-shot learning · Recognition with
heterogeneous visual domain

1 Introduction

Visual recognition for objects in the “long tail” has been an
important challenge to address (Wang et al. 2017; Liu et al.
2019; Kang et al. 2020; Zhou et al. 2020). We often have
a very limited amount of data on those objects as they are
infrequently observed and/or visual exemplars of them are
hard to collect. As such, state-of-the-art methods (e.g., deep

Han-Jia Ye and Hexiang Hu have contributed equally to this study.

B Han-Jia Ye
yehj@lamda.nju.edu.cn

Hexiang Hu
hexiangh@usc.edu

De-Chuan Zhan
zhandc@lamda.nju.edu.cn

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

2 University of Southern California, Los Angeles, USA

learning) can not be directly applied due to their notorious
demand of a large number of annotated data (Krizhevsky
et al. 2017; Simonyan and Zisserman 2014; He et al. 2016).

Few-shot learning (FSL) (Vinyals et al. 2016; Larochelle
2018) is mindful of the limited data per tail concept (i.e.,
shots), which attempts to address this challenging prob-
lem by distinguishing between the data-rich head categories
as seen classes and data-scarce tail categories as unseen
classes. While it is difficult to build classifiers with data from
unseen classes, FSL mimics the test scenarios by sampling
few-shot tasks from seen class data, and extracts inductive
biases for effective classifiers acquisition on unseen ones.
Instance embedding (Vinyals et al. 2016; Snell et al. 2017;
Rusu et al. 2019; Ye et al. 2020), model initialization (Finn
et al. 2017; Nichol et al. 2018; Antoniou et al. 2019), image
generator (Wang et al. 2018), and optimization flow (Ravi
and Larochelle 2017; Lee et al. 2019) act as popular meta-
knowledge and usually incorporates with FSL.

This type of learning makes the classifier from few-shot
learning for unseen classes difficult to be combined directly
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Fig. 1 A conceptual diagram comparing the Few-Shot Learning (FSL) and the Generalized Few-Shot Learning (GFSL).GFSL requires to extract
inductive bias from seen categories to facilitate efficiently learning on few-shot unseen tail categories, while maintaining discernability on head
classes

with the classifier from many-shot learning for seen classes,
however, the demand to recognizeall object categories simul-
taneously in object recognition is essential as well.

In this paper, we study the problem of Generalized
Few-Shot Learning (GFSL), which focuses on the joint clas-
sification of both data-rich and data-poor categories. Figure 1
illustrates the high-level idea of the GFSL, contrasting the
standard FSL. In particular, our goal is for the model trained
on the seen categories to be capable of incorporating the
limited unseen class examples, and make predictions for
test data in both the head and tail of the entire distribution of
categories.

One naive GFSL solution is to train a single classifier over
the imbalanced long-tail distribution (Hariharan andGirshick
2017; Wang et al. 2017; Liu et al. 2019; Zhou et al. 2020),
and re-balance it (Cui et al. 2019; Cao et al. 2019; Kang
et al. 2020). One main advantage of such a joint learning
objective over all classes is that it characterizes both seen
and unseen classes simultaneously. In other words, training
of one part (e.g., head) naturally takes the other part (e.g.,
tail) into consideration, and promotes the knowledge trans-
fer between classes. However, such a transductive learning
paradigm requires collecting the limited tail data in advance,
which is violated in many real-world tasks. In contrast to it,
our learning setup requires an inductivemodeling of the tail,
which is therefore more challenging as we assume no knowl-
edge about the unseen tail categories is available during the
model learning phase.

There are two main challenges in the inductive GFSL
problem, including how to construct the many-shot and few-
shot classifiers in the GFSL scenario and how to calibrate
their predictions.

First, the head and tail classifiers for aGFSLmodel should
encode different properties of all classes towards high dis-
cerning ability, and the classifiers for the many-shot part
should be adapted based on the tail concepts accordingly. For

example, if the unseen classes come fromdifferent domains,
the same single seen classifier is difficult to handle their
diverse properties and should not be left alone in this dynamic
process. Furthermore, as observed in the generalized zero-
shot learning scenario (Chao et al. 2016), a classifier performs
over-confident with its familiar concepts and fear to make
predictions for those unseen ones, which leads to a con-
fidence gap when predicting seen and unseen classes. The
calibration issue appears in the generalized few-shot learning
as well, i.e., seen and unseen classifiers have different con-
fidence ranges. We empirically find that directly optimizing
two objectives together could not resolve the problem com-
pletely.

To this end, we propose ClAssifier SynThesis LEarn-
ing (Castle), where the few-shot classifiers are synthesized
based on a neural dictionary with common characteristics
across classes. Such synthesized few-shot classifiers are then
used together with the many-shot classifiers, and learned
end-to-end. To this purpose, we create a learning scenario
by sampling a set of data instances from seen categories and
pretend that they come from unseen categories, and apply
the synthesized classifiers (based on the above instances)
as if they are many-shot classifiers to optimize multi-class
classification together with the remaining many-shot seen
classifiers. In other words, we construct few-shot classifiers
to not only perform well on the few-shot classes but also
to be competitive when used in conjunction with many-shot
classifiers of populated classes. We argue that such highly
contrastive learning can benefit the few-shot classification in
two aspects: (1) it provides high discernibility for its syn-
thesized classifiers. (2) it makes the synthesized classifier
automatically calibrated with the many-shot classifiers.

Taking steps further, we then propose the Adaptive ClAs-
sifier SynThesis LEarning (aCastle), with additional flex-
ibility to adapt the many-shot classifiers based on few-shot
training examples. As a result, it allows backward knowledge
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transfer (Lopez-Paz and Ranzato 2017)—new knowledge
learned from novel few-shot training examples can benefit
the existing many-shot classifiers. In aCastle, the neu-
ral dictionary is the concatenation of the shared and the
task-specific neural bases, whose elements summarize the
generality of all visual classes and the specialty of current
few-shot categories. This improved neural dictionary facili-
tates the adaptation of the many-shot classifiers conditioned
on the limited tail training examples. The adapted many-
shot classifiers in aCastle are then used together with the
(jointly) synthesized few-shot classifiers for GFSL classifi-
cation.

We first verify the effectiveness of the synthesized
GFSL classifiers over multi-domain GFSL tasks, where
the unseen classes would come from diverse domains.
aCastle can best handle such task heterogeneity due to its
ability to adapt the head classifiers. Next, we empirically
validate our approach on two standard benchmark datasets—
MiniImageNet (Vinyals et al. 2016) and TieredImageNet
(Ren et al. 2018). The proposed approach retains competitive
tail concept recognition performances while outperforming
existing approaches on generalized few-shot learning with
criteria from different aspects. By carefully selecting a pre-
diction bias from the validation set, those miscalibrated FSL
approaches or other baselines perform well in the GFSL sce-
nario. The implicit confidence calibration in Castle and
aCastle works as well as or even better than the post-
calibration techniques. We note that Castle and aCastle
are applicable for standard few-shot learning, which stays
competitive with and sometimes even outperforms state-
of-the-art methods when evaluated on two popular FSL
benchmarks.

Our contributions are summarized as follows:

– We propose a framework that synthesizes few-shot clas-
sifiers for GFSL with a shared neural dictionary, as well
as its adaptive variant that modifies seenmany-shot clas-
sifiers to allow the backward knowledge transfer.

– We extend an existing GFSL learning framework into an
end-to-end counterpart that learns and contrasts the few-
shot and the many-shot classifiers simultaneously, which
is observed beneficial to the confidence calibration of
these two types of classifiers.

– We empirically demonstrate that aCastle is effective in
backward transferring knowledge when learning novel
classes under the setting of multi-domain GFSL. Mean-
while, we perform a comprehensive evaluation of both
existing and our approaches with criteria from various
perspectives on multiple GFSL benchmarks.

In the rest sections of this paper, we first describe the
problem formulation of GFSL in Sect. 2, and then introduce
our Castle/aCastle approach in Sect. 3. We conduct thor-

ough experiments (see Sect. 4 for the setups) to verify the
the proposed Castle and aCastle across multiple bench-
marks.We first conduct a pivot study onmulti-domain GFSL
benchmarks (Sect. 5) to study the backward transfer capabil-
ity of different methods. Then we evaluate both aCastle
and Castle on popular GFSL (Sect. 6.3), and FSL bench-
marks (Sect. 6.4). Eventually, we review existing related
works in Sect. 7 and discuss the connections to our work.

2 ProblemDescription

We define a K -shot N -way classification task to be one with
N classes to make prediction and K training examples per
class for learning. The training set (i.e., the support set) is
represented as Dtrain = {(xi , yi )}NK

i=1 , where xi ∈ R
D is an

instance and yi ∈ {0, 1}N (i.e., one-hot vector) is its label.
Similarly, the test set (a.k.a. the query set) is Dtest, which
contains i.i.d. samples from the same distribution as Dtrain.

2.1 Meta-Learning for Few-Shot Learning (FSL)

In many-shot learning, where K is large, a classification
model f : R

D → {0, 1}N is learned by optimizing over
the instances from the head classes:

E(xi ,yi )∈Dtrain�( f (xi ), yi )

Here f is often instantiated as an embedding function φ(·) :
R

D → R
d and a linear classifier � ∈ R

d×N : f (xi ) =
φ(xi )��. We do not consider the bias term in the linear
classifier in the following discussions, and the weight vector
of the class n is denoted as �n . The loss function �(·, ·)
measures the discrepancy between the prediction and the true
label.

On the other hand,Few-shot learning (FSL) faces the chal-
lenge in transferring knowledge across learning visual con-
cepts from head to the tail. It assumes two non-overlapping
sets of seen (S) and unseen (U) classes. During training,
it has access to all seen classes for learning an inductive
bias, which is then transferred to learn a good classifier on U
rapidly with a small K .

In summary, we aim to minimize the following expected
error in FSL:

EDU
train

E(x j ,y j )∈DU
test

[
�
(
f
(
x j ;D U

train

)
, y j

) ]
(1)

Given any unseen few-shot training set DU
train, the function

f in Eq. 1 maps DU
train to the classifiers of unseen classes,

which achieves low error of classifying instances in DU
test

via the inference f
(
x j ;DU

train

)
. Here instances in DU

test are
sampled from the same set of classes as DU

train.
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Since we do not have access to the unseen classes dur-
ing the model training, meta-learning becomes an effective
framework for FSL (Vinyals et al. 2016; Finn et al. 2017;
Snell et al. 2017) in the recent years. In particular, a K -shot
N -way task DS

train sampled from S is constructed by ran-
domly choosing N categories from S and K examples in
each of them. 1 The main idea of meta-learning is to mimic
the future few-shot learning scenario by optimizing a shared
f across K -shot N -way sampled tasks drawn from the seen
class sets S.

min
f

E(DS
train,DS

test)∼S E(x j ,y j )∈DS
test

[
�
(
f
(
x j ;DS

train

)
, y j

) ]

(2)

Equation 2 approximates the Eq. 1 with the seen class
data, and the meta-model f is applied to different few-shot
tasks constructed by the data of seen classes. Following this
split use of S, tasks and classes related to S are denoted
as “meta-training”, and called “meta-val/test” when they are
related to U . Similar to Eq. 1, a corresponding test set DS

test
is sampled from the N classes in S to evaluate the resulting
few-shot classifier f

(· ;DS
train

)
. Therefore, we expect the

learned classifier “generalizes” well on the training few-shot
tasks sampled from seen classes, to “generalize” well on
few-shot tasks drawn from unseen class set U . Once we
learned f , for a few-shot task DU

train with unseen classes U ,
we can get its classifier f

(· ;DU
train

)
as Eq. 2.

Specifically, one popular form of the meta-knowledge to
transfer between seen and unseen classes is the instance
embedding, i.e., f = φ, which transforms input examples
into a latent space with d dimensions (Vinyals et al. 2016;
Snell et al. 2017). φ is learned to pull similar objects close
while pushing dissimilar ones far away (Koch et al. 2015).
For a test instance x j , the embedding function φ makes a
prediction based on a soft nearest neighbor classifier:

ŷ j = f
(
x j ;Dtrain

)

=
∑

(xi ,yi )∈Dtrain

sim
(
φ(x j ), φ(xi )

) · yi

sim(φ(x j ), φ(xi )) measures the similarity between the test
instance φ(x j ) and each training instance φ(xi ). When there
is more than one instance per class, i.e., K > 1, instances in
the same class can be averaged to assist make a final decision
(Snell et al. 2017). By learning a good φ, important visual
features for few-shot classification are distilled, which helps
the few-shot tasks with classes from the unseen classes.

1 We use the super-scriptS andU to denote a set or an instance sampled
from S and U , respectively.

2.2 Meta-learning for Generalized Few-Shot
Learning (GFSL)

Different from FSL which neglects classification of the S
classes, Generalized Few-Shot Learning (GFSL) aims at
building a model that simultaneously predicts over S ∪ U
categories. As a result, such a model needs to deal with
many-shot classification from |S| seen classes along side
with learning |U | emerging unseen classes. 2 In inductive
GFSL, the model only has access to the head part S and is
required to extract knowledge which facilitates building a
joint classifier over seen and unseen categories once with
limited tail examples.

In GFSL, we require the function f to map from a few-
shot training set D U

train to a classifier classifying both seen
and unseen classes, whichmeans aGFSL classifier f should
have a low expected error as what follows:

EDU
train

E(x j ,y j )∈DS∪ U
test

[
�
(
f
(
x j ;D U

train,�S
)

, y j

) ]
(3)

Different from Eq. 1, in the GFSL setting, the meta-model f
generates classifier f

(·;D U
train,�S

)
through taking both the

unseen class few-shot training setD U
train and a class descrip-

tors set� S summarizing the information of the seen classes
as input. Besides, such classifier is able to tell instances from
the joint set of S ∪ U .

Similarly, we simulate many GFSL tasks from the seen
classes. At each time, we split the seen classes into a tail
split with classes C, and treat remaining |S| − |C| classes as
the head split. Eq. 3 is transformed into:

min
f

∑
C⊂S

∑
(x j ,y j )∼S

�
(
f
(
x j ;D C

train, 2S−C
)

, y j

)
(4)

In particular, the function f outputs a S-way classifier with
two steps: (1) For the tail split C, it follows what f does in
Section 2 and generates the classifiers of C using their few-
shot training examples D C

train. (2) For the head split S − C,
this function directly make use of the many-shot classifiers
of the S − C classes to generate the classifiers (instead of
asking for training examples of head split).

3 Method

There are two key components in Castle and aCastle.
First, it presents an effective learning algorithm that learns
many-shot classifiers and few-shot classifiers simultane-
ously, in an end-to-end manner. Second, it contains a classi-
fier composition model, which synthesizes classifiers for the

2 |S| and |U | denote the total number of classes from the seen and
unseen class sets, respectively.
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Fig. 2 Illustration of adaptive GFSL learning process of Castle and
aCastle. Different from the stationary learning process (l.h.s.) of Cas-
tle, aCastle (r.h.s.) synthesizes the GFSL classifiers for seen and

unseen classes in an adaptive manner—the many-shot classifiers of
head classes are also conditioned on the training instances from the tail
classes

tail classes using the few-shot training data, via querying a
learnable neural dictionary.

In Sect. 3.1, we utilize the objective in Eq. 3 that directly
contrasts many-shot classifiers with few-shot classifiers, via
constructing classification tasks over U ∪ S categories.
By reusing the parameters of the many-shot classifier, the
learned model calibrates the prediction ranges over head and
tail classes naturally. It enforces the few-shot classifiers to
explicitly compete against the many-shot classifiers in the
model learning, which leads to more discriminative few-shot
classifiers in the GFSL setting. In Sect. 3.2, we introduce
the classifier composition model uses a few-shot training
data to query the neural bases, and then assemble the target
“synthesized classifiers”. Castle sets a shared neural bases
across tasks, which keeps stationary many-shot classifiers
all the time; while with both shared and specific components
in the neural dictionary, the seen class classifiers will be
adapted based on its relationshipwith unseen class instances
in aCastle.

3.1 Unified Learning of Few-Shot andMany-Shot
Classifiers

In addition to transferring knowledge from seen to unseen
classes as in FSL, in generalized few-shot learning, the
few-shot classifiers is required to do well when used in
conjunction with many-shot classifiers. Suppose we have
sampled a K -shot N -way few-shot learning task D U

train,
which contains |U | visual unseen categories, a GFSL clas-
sifier f should have a low expected error as in Eq. 3

The set of “class descriptors” � of a classifier is a set
of vectors summarizes the characteristic of its target classes,
e.g., some preserved instances from those classes. For the
seen classes S, we set the descriptors as the union of the
weight vectors in the many-shot classifiers �S = {�s}s∈S
(i.e., the liner classifier over the embedding function φ(·)).

For each task, the classifier f predicts a test instance inD S∪U
test

towardsboth tail classesU andhead classesS. In otherwords,
based onD U

train and the class descriptors set of the many-shot
classifier �S , a randomly sampled instance in S ∪U should
be effectively predicted. In summary, a GFSL classifier gen-
eralizes its joint prediction ability to S ∪ U given D U

train and
�S during inference.

3.1.1 Neural Dictionary for Classifier Synthesis

We use neural dictionary to implement the joint prediction
f
(
x j ;D U

train,�S
)
in Eq. 3. A neural dictionary is a module

with a set of neural bases B, which represents its input as
a weighted combination of those bases based on their simi-
larities. To classify an instance during inference, the neural
dictionary takes partial or both of the limited tail instances
D U

train and the context of the seen classifiers descriptors set
�S into account, and synthesizes the classifier for the corre-
sponding classes with B. The details of the neural dictionary
will be described in the next subsection.

3.1.2 Unified Learning Objective

aCastle and its variants learn a generalizable GFSL clas-
sifier via training on the seen class set S. We sample a
“fake” K -shot N -way few-shot task from S, which contains
categories C. Given the “fake” few-shot task, we treat the
remaining S − C classes as the “fake” head classes, whose
corresponding many-shot classifier descriptors set is �S−C .
Then the GFSL model needs to build a classifier targets any
instance in C ∪ (S − C). As mentioned before, we synthesize
both the few-shot classifiers for C by WC = { wc | c ∈ C }
and the many-shot classifier �̂S−C = { �̂c | c ∈ S − C }
with a neural dictionary, so that the composition of one clas-
sifier will consider the context of others.
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Both the synthesizedmany-shot classifier (from the “fake”
many-shot classesS−C) �̂S−C and few-shot classifier (from
the “fake” few-shot classes C)WC are combined together to
form a joint classifier Ŵ = WC ∪ �̂S−C , over all classes in
S.

Finally, we optimize the learning objective as follows:

min
{φ,B,{�s },U,V}

∑
C⊂S

∑
(x j ,y j )∼S

�
(
Ŵ�φ

(
x j

)
, y j

)
(5)

In addition to the learnable neural bases B, U and V are
two projections in the neural bases to facilitate the syn-
thesis of the classifier, and there is no bias term in our
implementation. Despite that the few-shot classifiers WC
are synthesized using with K training instances, they are
optimized to perform well on all the instances from C and
moreover, to performwell against all the instances fromother
seen categories. The many-shot classifiers �S are not sta-
tionary, which are adapted based on the context of the current
few-shot instances (the adaptive GFSL classifier notion is
illustrated in Fig. 2). Note that WC and �̂S−C are synthe-
sized based on the neural dictionary, which serves as the
bridge to connect the “fake” few-shot class set C and the
“fake” many-shot class set (S − C).

After minimizing the accumulated loss in Eq. 5 over mul-
tiple GFSL tasks, the learned model extends its discerning
ability tounseen classes so that has lowerror inEq. 3.During
inference, aCastle synthesizes the classifiers for unseen
classes based on the neural dictionary with their few-shot
training examples, and makes a joint prediction over S ∪ U
with the help of the adapted many-shot classifier �̂S .

3.1.3 Reuse Many-Shot Classifiers

We optimize Eq. 5 by using the many-shot classifier over S
to initialize the embedding φ. In detail, a |S|-way many-
shot classifier is trained over all seen classes with the
cross-entropy loss, whose backbone is used to initialize the
embeddingφ in theGFSLclassifier.Weempirically observed
that such initialization is essential for the prediction calibra-
tion between seen and unseen classes, more details could
be found in “Appendix 1” and “Appendix 4”.

3.1.4 Multi-classifier Learning

Anatural way tominimize Eq. 5 implements a stochastic gra-
dient descent step in each mini-batch by sampling one GFSL
task, which contains a K -shot N -way training set together
with a set of test instances (x j , y j ) from S. It is clear that
increasing the number of GFSL tasks per gradient step can
improve the optimization stability. Therefore, we propose
an efficient implementation that utilizes a large number of
GFSL tasks to compute gradients. Specifically, we sample

two sets of instances from all seen classes, i.e., DS
train and

DS
test. Then we construct a large number of joint classifiers

{Ŵz = Wz
C ∪ �̂

z
S−C | z = 1, . . . , Z} with different sets of

C, which is then applied to compute the averaged loss over
z using Eq. 5. Note that there is only one single forward
step to get the embeddings of the involved instances, and we
mimic multiple GFSL tasks through different random parti-
tions of the “fake” few-shot and “fake” many-shot classes. In
the scope of this paper, aCastle variants always use multi-
classifier learning unless it is explicitlymentioned.With this,
we observed a significant speed-up in terms of convergence
(see “Appendix 10” for the ablation study).

3.2 Classifier Composition with a Neural Dictionary

Neural dictionary is an essential module for classifier com-
position in aCastle variants. We describe the composition
of the neural dictionary and the way to synthesize tail classi-
fiers first, followed by the adaption of the head classifiers.
The neural dictionary formalizes both head and tail clas-
sifiers with common bases, which benefits the relationship
transition between classes. Furthermore, the neural dictio-
nary encodes the shared primitives for composing classifiers,
which serves as a kind of meta-knowledge to be transferred
across both the seen and the unseen classes.

Similar to Vaswani et al. (2017), we define a neural dic-
tionary as pairs of learnable “key” and “value” embeddings,
where each “key” and “value” is associated with a set of neu-
ral bases, which are designed to encode shared primitives for
composing the classifier of S∪U . Formally, the neural bases
contain two sets of elements:

B = Bshare

⋃
Bspecific

Bshare contains a set of |Bshare| learnable bases Bshare =
{b1,b2, . . . ,b|Bshare|}, and bk ∈ Bshare ∈ R

d . This part in
the neural dictionary is shared when synthesizing classifiers
for different kinds of tasks. Bspecific characterizes the local
information of the input to the neural dictionary, i.e., the
training setDtrain of the current few-shot taskwith tail classes
and the descriptors set of the many-shot classifier.

The key and value for the neural dictionary are generated
based on two linear projections U ∈ R

d×d and V ∈ R
d×d of

elements in the basesB. For instance, Ubk andVbk represent
the generated key and value embeddings. For a query to the
neural dictionary, it first computes the similarity (a.k.a. the
attention) with all keys (Ubk), and the corresponding output
of the query is the attention-weighted combination of all the
elements in the value set (Vbk).

In a “fake” K -shot N -way few-shot task from S, there are
C categories. Denote I

[
yi = c

]
as an indicator that selects

instances in the class c. To synthesize classifier for a class
c, we first compute the class signature as the embedding
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(a) (b)

Fig. 3 Illustration of Adaptive ClAssifier SynThesize LEarn-
ing (aCastle). A neural dictionary contains two types of neural
bases—the shared component and the task-specific component. During

the inference, both the prototype of the tail classes and the descriptors
of the seen classifier are input into the neural dictionary, and synthesize
the joint classifier over both seen and unseen categories

prototype, defined as the average embedding of all K shots
of instances (in a K -shot N -way task):3

pc = 1

K

∑
(xi ,yi )∈Dtrain

φ (xi ) · I [
yi = c

]
(6)

The specific component in the neural dictionary basesB is the
concatenation of the prototype of few-shot instances {pc} and
the linear classifier descriptors set�S−C over the embedding
φ, i.e.,

Bspecific = {pc | c ∈ C} ∪ �S−C (7)

We then compute the attention coefficients αc for assembling
the classifier of class c, via measuring the compatibility score
between the class signature and the key embeddings of the
neural dictionary,

αk
c ∝ exp

(
p�
c Ubk

)
,where k = 1, . . . , |B|

The coefficient αk
c is then normalized with the sum of com-

patibility scores over all |B| bases, which then is used to
convexly combine the value embeddings and synthesize the
classifier,

wc = pc +
|B|∑
k=1

αk
c · Vbk (8)

We formulate the classifier composition as a summation of
the initial prototype embedding pc and the residual com-
ponent

∑|B|
k=1 αk

c · Vbk . Such a composed classifier is then
�2-normalized and used for (generalized) few-shot classifi-
cation. Such normalization also fixes the scale differences in

3 More choices of Eq. 6 are investigated in “Appendix 9”.

the concatenation of the prototype and the descriptors set in
the specific neural bases in Eq. 7. The same classifier syn-
thesis process could be applied to the elements in the seen
class descriptors set�S−C , where a head classifier first com-
putes its similarity with the shared neural bases and the tail
prototypes, then adapts the classifier to �̂S−C with Eq. 8.
Therefore, the seen classifier is also synthesized conditioned
on the context of the unseen instances, which promotes the
backward knowledge transfer from unseen classes to the
seen ones.

Since both the embedding “key” and classifier “value” are
generated based on the same set of neural bases, it encodes a
compact set of latent features for a wide range of classes
in Bshare while leaving the task-specific characteristic in
Bspecific. We hope the learned neural bases contain a rich
set of classifier primitives to be transferred to novel compo-
sitions of emerging visual categories. Figure 3 demonstrates
the classifier synthesize process with the neural dictionary.

We denote the degenerated version with only the shared
neural bases B = Bshare as Castle, which makes a joint
prediction with the stationary many-shot classifier �S and
the synthesized few-shot classifier.

Remark 1 Changpinyo et al. (2016, 2020) take advantage of
the dictionary to synthesize the classifier for all classes in
zero-shot learning. Gidaris and Komodakis (2018) imple-
ment a GFSL model with two stages. After pre-training a
many-shot classifier, it freezes the embedding and composes
the tail classifier by convex combinations of the transforms
of the head classifier. Different from the previous approach
constructing a dictionary based on a pre-fixed feature embed-
ding, we use a learned embedding function together with the
neural dictionary, leading to an end-to-endGFSL framework.
Furthermore, different from Gidaris and Komodakis (2018)
keeping the head classifier stationary, we adapt them condi-
tioned on the tail classes, which could handle the diversity
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between class domains (as illustrated in Fig. 2). Compre-
hensive experiments to verify the effectiveness of such an
adaptive GFSL classifier could be found in Sects. 5 and 6.3.

Remark 2 The attention mechanism to synthesize the classi-
fier is similar to Vaswani et al. (2017), which is also verified
to be effective for adapting embeddings for few-shot learning
(Ye et al. 2020). Different from Vaswani et al. (2017), both
the specific and shared weights are included in the “key” and
“value” part of the neural dictionary. No additional normal-
ization strategies (e.g., layer normalization (Ba et al. 2016)
and temperature scaling (Guo et al. 2017)) are used in our
module.

4 Experimental Setups

This section details the experimental setups, including the
general data splits strategy, the pre-training technique, the
specifications of the feature backbone, and the evaluation
metrics for GFSL.

4.1 Data Splits

We visualize the general data split strategy in Fig. 4. There
are two parts of the dataset for standard meta-learning tasks.
The meta-training set for model learning (corresponds to the
seen classes), and the meta-val/test part for model evalu-
ation (corresponds to the unseen classes). To evaluate a
GFSL model, we’d like to augment the meta-training set
with new instances, so that the classification performance
on seen classes could be measured. During the inference
phase, a few-shot training set from unseen classes are pro-
vided with the model, and the model should make a joint
prediction over instances from both the head and tail classes.
We will describe the detailed splits for particular datasets in
later sections.

4.2 Pre-training Strategy

Before the meta-training stage, we try to find a good ini-
tialization for the embedding φ, and then we reuse such a
many-shot classifier as well as the embedding to facilitate the
training of a GFSL model. More details of the pre-training
stage could be found in “Appendix 1”. In later sections, we
will verify this pre-training strategy does not influence the
few-shot classification performance a lot, but it is essential
to make the GFSL classifier well-calibrated.

4.3 Feature Network Specification

Following the setting of most recent methods (Qiao et al.
2018; Rusu et al. 2019; Ye et al. 2020), we use ResNet vari-

ants (He et al. 2016; Bertinetto et al. 2019) to implement the
embedding backbone φ.4 Details of the architecture and the
optimization strategy are in “Appendix 2”.

4.4 EvaluationMeasures

We take advantage of the auxiliary meta-training set from
the benchmark datasets during GFSL evaluations, and an
illustration of the dataset construction can be found in Fig. 4.
The notation X → Y with X ,Y ∈ {S,U ,S ∪ U} means
computing prediction results with instances from X to labels
of Y . For example, S → S∪U means we first filter instances
come from the seen class set (x ∈ S), and predict them into
the joint label space (y ∈ S ∪ U). For a GFSL model, we
consider its performance with different measurements.

4.4.1 Few-Shot Accuracy

Following the standard protocol (Vinyals et al. 2016; Finn
et al. 2017; Snell et al. 2017; Ye et al. 2020), we sample
10,000 K -shot N -way tasks from U during inference. In
detail, we first sample N classes from U , and then sam-
ple K + 15 instances for each class. The first NK labeled
instances (K instances from each of the N classes) are used
to build the few-shot classifier, and the remaining 15N (15
instances from each of the N classes) are used to evaluate the
quality of such few-shot classifier. During our test, we con-
sider K = 1 and K = 5 as in the literature, and change N
ranges from {5, 10, 15, . . . , |U |} as a more robust measure.
It is noteworthy that in this test stage, all the instances come
from U and are predicted to classes in U (U → U).

4.4.2 Generalized Few-Shot Accuracy

Different frommany-shot and few-shot evaluations, the gen-
eralized few-shot learning takes the joint instance and label
spaces into consideration. In other words, the instances
come from S ∪ U and their predicted labels also in S ∪ U
(S ∪ U → S ∪ U). This is obviously more difficult than
the many-shot (S → S) and few-shot (U → U) tasks. Dur-
ing the test, with a bit abuse of notations, we sample K -shot
S + N -way tasks from S ∪ U . Concretely, we first sample
a K -shot N -way task from U , with NK training and 15N
test instances, respectively. Then, we randomly sample 15N
instances from S. Thus in a GFSL evaluation task, there are
NK labeled instances from U , and 30N test instances from
S ∪ U . We compute the accuracy of S ∪ U as the final mea-
sure. We abbreviate this criterion as “Mean Acc.” or “Acc.”
in later sections.

4 Our implementation will be publicly available on https://github.com/
Sha-Lab/aCASTLE.
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Fig. 4 The split of data in the generalized few-shot classification sce-
nario. In addition to the standard dataset likeMiniImagetnet (blue part),
we collect non-overlapping augmented head class instances from the
corresponding categories in the ImageNet (red part), to measure the

classification ability on the seen classes. Then in the generalized few-
shot classification task, few-shot instances are sampled from each of
the unseen classes, while the model should have the ability to predict
instances from both the head and tail classes (Color figure online)

Fig. 5 An illustration of the harmonic mean based criterion for GFSL
evaluation. S and U denotes the seen and unseen instances (x) and
labels (y) respectively. S ∪ U is the joint set of S and U . The notation
X → Y , X , Y ∈ {S,U,S ∪ U} means computing prediction results

with instances from X to labels of Y . By computing a performance
measure (like accuracy) on the joint label space prediction of seen and
unseen instances separately, a harmonic mean is computed to obtain
the final measure

4.4.3 Generalized Few-Shot1-Value

Since the problem becomes difficult when the predicted label
space expands from S → S to S → S∪U (and also U → U
to U → S ∪ U), the accuracy of a model will have a drop.
To measure how the classification ability of a GFSL model
changes when working in a GFSL scenario, Ren et al. (2019)
propose the �-Value to measure the average accuracy drop.
In detail, for each sampled GFSL task, we first compute its
many-shot accuracy (S → S) and few-shot accuracy (U →
U). Then we calculate the corresponding accuracy of seen
and unseen instances in the joint label space, i.e.,S → S∪U
and U → S ∪ U . The �-Value is the average decrease of
accuracy in these two cases. We abbreviate this criterion as
“�-value” in later sections.

4.4.4 Generalized Few-Shot Harmonic Mean

Directly computing the accuracy still gets biased towards the
populated classes, so we also consider the harmonic mean
as a more balanced measure (Xian et al. 2017). By com-
puting performance measurement such as top-1 accuracy for
S → S ∪ U and U → S ∪ U , the harmonic mean is used to

average the performance in these two cases as the final mea-
sure. In other words, denote the accuracy for S → S ∪ U
and U → S ∪ U as AccS and AccU , respectively, the value
2AccSAccU
AccS+AccU is used as a final measure. An illustration is in
Fig. 5. We abbreviate this criterion as “HM” or “HM Acc.”
in later sections.

4.4.5 Generalized Few-Shot AUSUC

Chao et al. (2016) propose a calibration-agnostic criterion for
generalized zero-shot learning. To avoid evaluating a model
influenced by a calibration factor between seen and unseen
classes, they propose to determine the range of the calibration
factor for all instances at first, and then plot the seen–unseen
accuracy curve based on different configurations of the cal-
ibration values. Finally, the area under the seen–unseen
curve is used as a more robust criterion. We follow Chao
et al. (2016) to compute theAUSUCvalue for sampledGFSL
tasks. We abbreviate this criterion as “AUSUC” in later sec-
tions.
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5 Pivot Study onMulti-domain GFSL

Wefirst present a pivot study to demonstrate the effectiveness
of aCastle, which leverages adaptive classifiers synthe-
sized for both seen and unseen classes. To achieve this, we
investigate two multi-domain datasets—“Heterogeneous”
and “Office-Home” with more challenging settings, where a
GFSL model is required to transfer knowledge in backward
direction (adapt seen classifiers based on unseen ones) to
obtain superior joint classification performances over hetero-
geneous domains.

5.1 Dataset

We construct a Heterogeneous dataset based on 5 fine-
grained classification datasets, namely AirCraft (Maji et al.
2013), Car-196 (Krause et al. 2013), Caltech-UCSD Birds
(CUB) 200-2011 (Wah et al. 2011), Stanford Dog (Khosla
et al. 2011), and Indoor Scenes (Quattoni and Torralba 2009).
Since these datasets have apparent heterogeneous semantics,
we treat images from different datasets as different domains.
20 classes with 50 images in each of them are randomly
sampled from each of the 5 datasets to construct the meta-
training set. The same sampling strategy is also used to
sample classes for model validation (meta-val) and evalu-
ation (meta-test) sets. Therefore, there are 100 classes for
meta-training/val/test sets, which contains 20 classes from
each fine-grained dataset. To evaluate the performance of a
GFSL model, we augment the meta-training set by sampling
another 15 images from the corresponding classes for each
of the seen classes.

We also investigate theOffice-Home (Venkateswara et al.
2017) dataset, which originates from a domain adaptation
task. There are 65 classes and 4 domains of images per class.
Considering the scarce number of images in one particu-
lar domain, we select three of the four domains, “Clipart”,
“Product”, and “Real World” to construct our dataset. The
number of instances in a class per domain is not equal. We
randomly sample 25 classes (with all selected domains) for
meta-training, 15 classes formeta-validation, and the remain-
ing 25 classes are used for meta-test. Similarly, we hold out
10 images per domain for each seen class to evaluate the
generalized classification ability of a GFSL model.

Note that in addition to the class label, images in these two
datasets are also equipped with at least one domain label. In
particular, classes in Heterogeneous dataset belong to a sin-
gle domain corresponding to “aircraft”, “bird”, “car”, “dog”,
or “indoor scene”, while the classes in Office-Home possess
images from all 3 domains, namely “Clipart”, “Product” and
“Real World”. An illustration of the sampled images (of dif-
ferent domains) from these two datasets is shown in Fig. 6.

The key difference to standard GFSL (cf. Sect. 6.3) is that
here the seen categories are collected frommultiple (hetero-

geneous) visual domains and used for training the inductive
GFSL model. During the evaluation, the few-shot training
instances of tail classes only come from one single domain.
With this key difference, we note that the unseen few-shot
classes are close to a certain sub-domain of seen classes and
relatively far away from the others. Therefore, a model capa-
ble of adapting its seen classifiers can take the advantages
and adapt itself to the domain of the unseen classes.

5.2 Baselines and ComparisonMethods

Besides Castle and aCastle, we consider two other base-
line models. The first one optimizes the Eq. 5 directly but
without the neural dictionary, which relies on both the (fixed)
linear classifier �S and the few-shot prototypes to make a
GFSL prediction (we denote it as “Castle−”); the second
one is DFSL (Gidaris and Komodakis 2018), which requires
a two-stage training of the GFSL model. It trains a many-
shot classifier with cosine similarity in the first stage. Then
it freezes the backbone model as feature extractor and opti-
mizes a similar form of Eq. 5 via composing new few-shot
classifiers as the convex combination of those many-shot
classifiers. It can be viewed as a degenerated neural dictio-
nary, where DFSL sets a size-|S| “shared” basesBshare as the
many-shot classifier �S . We observe that DFSL is unstable
to perform end-to-end learning. It is potentially because the
few-shot classifier composition uses many-shot classifiers as
bases, but those bases are optimized to both be good bases
and good classifiers, which can likely to be conflicting to
some degree. It is also worth noting that all the baselines
except aCastle only modify the few-shot classifiers, and
it is impossible for them to perform backward knowledge
transfer.

5.3 GFSL over Heterogeneous Dataset

The Heterogeneous dataset has 100 seen classes in the meta-
training set, 20 per domain. We consider the case where
during the inference, all of the tail classes come from one
particular domain. For example, the tail classes are different
kinds of birds, and we need to do a joint classification over
all seen classes from the heterogeneous domains and the
newly coming tail classes with limited instances. To mimic
the inference scenario, we sample “fake” few-shot tasks with
classes from one of the five domains randomly and contrast-
ing the discerning ability from the sampled classes w.r.t. the
remaining seen classes as in Eq. 5.

Note that we train DFSL strictly follows the strategy in
Gidaris and Komodakis (2018), and train other GFSL mod-
els with a pre-trained embedding and the multi-classifier
techniques to improve the training efficiency. Following
Xian et al. (2017), Schönfeld et al. (2019) and Gidaris and
Komodakis (2018), we compute the 1-Shot 5-Way GFSL
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Fig. 6 An illustration of the Heterogeneous and Office-Home dataset. Both datasets contain multiple domains. In the Heterogeneous dataset, each
class belongs to only one domain, while in Office-Home, a class has images from all three domains

Table 1 Generalized 1-shot classification performance (mean accuracy and harmonic mean accuracy) on (a) the Heterogeneous dataset with 100
Head and 5 Tail categories and (b) the Office-Home dataset with 25 Head and 5 Tail categories

Measures S ∪ U → S ∪ U S → S ∪ U U → S ∪ U HM Acc.

(a) Heterogeneous dataset

DFSL (Gidaris and Komodakis 2018) 48.13±0.12 46.33±0.12 48.25±0.22 47.27±0.12

Castle− 48.29±0.12 45.13±0.13 50.14±0.22 47.50±0.12

Castle 50.16±0.13 48.05±0.13 50.86±0.22 49.05±0.12

aCastle 53.01±0.12 56.18±0.12 49.84±0.22 52.81±0.13

(b) Office–Home dataset

DFSL (Gidaris and Komodakis 2018) 35.72±0.12 28.42±0.12 39.77±0.22 33.15±0.12

Castle− 35.74±0.13 27.93±0.13 42.59±0.22 33.73±0.13

Castle 35.77±0.13 29.03±0.13 42.46±0.22 34.48±0.13

aCastle 39.99±0.14 40.29±0.13 39.68±0.22 39.98±0.14

S → S ∪U and U → S ∪U denote the joint classification accuracy for seen class and unseen class instances respectively. Castle− is the variant
of Castle without using the neural dictionary
The highest mean accuracy and the highest harmonic mean accuracy are in bold

classification mean accuracy and harmonic mean accuracy
over 10,000 sampled tasks, whose results are recorded in
Table 1a. S → S ∪ U and U → S ∪ U denote the aver-
age accuracy for the joint prediction of seen and unseen
instances respectively.

From the results in Table 1a, DFSL could not work well
due to its fixed embedding and restricted bases. Castle−
is able to balance the training accuracy of both seen and
unseen classes benefited from the pre-train strategy and the
unified learning objective, which achieves the highest joint
classification performance over unseen classes. The dis-
criminative ability is further improved with the help of the
neural dictionary. Castle performs better than its degener-
ated version, which verifies the effectiveness of the learned
neural bases. The neural dictionary encodes the common
characteristic among all classes for the GFSL classification,

so that Castle gets better mean accuracy and harmonic
mean accuracy than Castle−. Since aCastle is able to
adapt both many-shot and few-shot classifiers conditioned
on the context of the tail instances, it obtains the best GFSL
performance in this case. It is notable that aCastle gets
much higher joint classification accuracy for seen classes
than other methods, which validates its ability to adapt the
many-shot classifier over the seen classes based on the con-
text of tail classes.

5.4 GFSL over Office-Home Dataset

We also investigate the similar multi-domain GFSL classifi-
cation task over the Office-Home dataset. However, in this
case, a single class could belong to all three domains.We con-
sider the scenario to classify classes in a single domain and
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the domain of the classes should be inferred from the limited
tail instances. In other words, we train a GFSL model over
25 classes, and each class has 3 sets of instances correspond-
ing to the three domains. In meta-training, a 25-way seen
class classifier is constructed.During the inference, themodel
is provided by another 5-way 1-shot set of unseen class
instances from one single domain. The model is required to
output a joint classifier for test instances from the whole 30
classes whose domains are the same as the one in the unseen
class set.

Towards such amulti-domainGFSL task, we train aGFSL
model by keeping the instances in both the few-shot fake
tail task and corresponding test set from the same domain.
We use the same set of comparison methods and evaluation
protocols with the previous subsection. The mean accuracy,
harmonic mean accuracy, and the specific accuracy for seen
and unseen classes are shown in Table 1b.

Due to the ambiguity of domains for each class, the GFSL
classification over Office-Home gives rise to a more difficult
problem, while the results in Table 1b reveal a similar trend
with those in Table 1a. Since for Office-Home a single GFSL
model needs to make the joint prediction over classes from
multiple domains conditioned on different configurations of
the tail few-shot tasks, the stationary seen class classifiers are
not suitable for the classification over different domains. In
this case, aCastle still achieves the best performance over
different GFSL criteria, and gets larger superiority margins
with the comparison methods.

6 Experiments on GFSL

In this section,we design experiments on benchmark datasets
to validate the effectiveness of the Castle and aCastle in
GFSL (cf. Sect. 6.3). After a comprehensive comparisonwith
competitivemethods using various protocols, we analyze dif-
ferent aspects of GFSL approaches, and we observe the post
calibration makes the FSL methods strong GFSL baselines.
We verify that Castle/aCastle learn a better calibration
between seen and unseen classifiers, and the neural dic-
tionary makes Castle/aCastle persist its high discerning
ability with incremental tail few-shot instances. Finally, we
show that Castle/aCastle also benefit standard FSL per-
formances (cf. Sect. 6.4).

6.1 Datasets

Two benchmark datasets are used in our experiments. The
MiniImageNet dataset (Vinyals et al. 2016) is a subset of
the ILSVRC-12 dataset (Russakovsky et al. 2015). There are
totally 100 classes and 600 examples in each class. For eval-
uation, we follow the split of Ravi and Larochelle (2017) and
use 64 of 100 classes for meta-training, 16 for validation, and

20 for meta-test (model evaluation). In other words, a model
is trained on few-shot tasks sampled from the 64 seen classes
set duringmeta-training, and the best model is selected based
on the few-shot classification performance over the 16 class
set. The final model is evaluated based on few-shot tasks
sampled from the 20 unseen classes.

The TieredImageNet (Ren et al. 2018) is a more compli-
cated version compared with the MiniImageNet. It contains
34 super-categories in total, with 20 for meta-training, 6 for
validation (meta-val), and 8 for model testing (meta-test).
Each of the super-category has 10 to 30 classes. In detail,
there are 351, 97, and 160 classes for meta-training, meta-
validation, and meta-test, respectively. The divergence of the
super-concept leads to amore difficult few-shot classification
problem.

Since both datasets are constructed by images from
ILSVRC-12, we augment the meta-training set of each
dataset by sampling non-overlapping images from the corre-
sponding classes in ILSVRC-12. The auxiliarymeta-train set
is used to measure the generalized few-shot learning classi-
fication performance on the seen class set. For example, for
each of the 64 seen classes in theMiniImageNet, we collect
200 more non-overlapping images per class from ILSVRC-
12 as the test set for many-shot classification. The illustration
of the dataset split is shown in Fig. 4.

6.2 Baselines and Prior Methods

We explore several (strong) choices in deriving classifiers for
the seen and unseen classes, includingMulticlass Classifier
(MC) + kNN, which contains a |S|-way classifier trained on
the seen classes in a supervised learning manner as standard
many-shot classification, and its embedding with the nearest
neighbor classifier is used for GFSL inference; ProtoNet +
ProtoNet, where the embeddings trained byPrototypicalNet-
work (Snell et al. 2017) is used, and 100 training instances
are sampled from each seen category to act as the seen class
prototypes; MC + ProtoNet, where we combine the learning
objective of the previous two baselines to jointly learn the
MC classifier and feature embedding. Details of the methods
are in “Appendix 3”.

Besides, we also compare our approach with the L2ML
(Wang et al. 2017), Dynamic Few-Shot Learning without
forgetting (DFSL) (Gidaris and Komodakis 2018), and the
newly proposed Incremental few-shot learning (IFSL) (Ren
et al. 2019). For Castle, we use the many-shot classifiers
{�S}, cf. Sect. 3.1) for the seen classes and the synthesized
classifiers for the unseen classes to classify an instance into
all classes, and then select the prediction with the highest
confidence score. For aCastle, we adapt the head classifiers
to {�̂S} with the help of the tail classes.
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Table 2 Generalized Few-shot classification performance (mean accuracy, �-value, and harmonic mean accuracy) on MiniImageNet when there
are 64 Head and 5 Tail categories

Setups 1-Shot 5-Shot 1-Shot 5-Shot

Perf. Measures Mean Acc. ↑ � ↓ Mean Acc.↑ � ↓ Harmonic Mean Acc.↑
IFSL (Ren et al. 2019) 54.95±0.30 11.84 63.04±0.30 10.66 – –

L2ML (Wang et al. 2017) 46.25±0.04 27.49 45.81±0.03 35.53 2.98±0.06 1.12±0.04

DFSL (Gidaris and Komodakis 2018) 63.36±0.11 13.71 72.58±0.09 13.33 62.08±0.13 71.26±0.09

MC + kNN 46.17±0.03 29.70 46.18±0.03 40.21 0.00±0.00 0.00±0.00

MC + ProtoNet 45.31±0.03 29.71 45.85±0.03 39.82 0.00±0.00 0.00±0.00

ProtoNet + ProtoNet 50.49±0.08 25.64 71.75±0.08 13.65 19.26±0.18 67.73±0.12

Ours: Castle 67.13±0.11 10.09 76.78±0.09 9.88 66.22±0.15 76.32±0.09

Ours: aCastle 68.70±0.11 9.98 78.63±0.09 8.08 66.24±0.15 78.33±0.09

The highest mean accuracy, highest harmonic mean accuracy, and the lowest �-value are in bold

6.3 Main Results

We first evaluate all GFSL methods on MiniImageNet with
the criteria in Gidaris and Komodakis (2018) and Ren et al.
(2019), the mean accuracy over all classes (the higher the
better) and the �-value (the lower the better). An effective
GFSL approach not only makes prediction well on the joint
label space (with high accuracy) but also keeps its classifica-
tion ability when changing from many-shot/few-shot to the
generalized few-shot case (low �-value).

The main results are shown in Table 2. We found that
aCastle outperforms all the existing methods as well
as our proposed baseline systems in terms of the mean
accuracy. Meanwhile, when looked at the �-value, and
Castle variants are the least affected between predicting
for seen/usseen classes separately and predicting over all
classes jointly.

However, we find that either mean accuracy or �-value is
not informative enough to tell about a GFSL algorithm’s per-
formances. For example, a baseline system, i.e., ProtoNet +
ProtoNet performs better than IFSL in terms of 5-shot mean
accuracy but not�-value. This is consistentwith the observa-
tion inRen et al. (2019) that the�-value should be considered
together with the mean accuracy. In this case, how shall we
rank these two systems? To answer this question, we propose
to use another evaluation measure, the harmonic mean of the
mean accuracy for each seen and unseen category (Xian
et al. 2017; Schönfeld et al. 2019), when they are classified
jointly.

6.3.1 Harmonic Mean Accuracy Measures GFSL
Performance Better

Since the number of seen and unseen classes are most
likely to be not equal, e.g., 64 versus 5 in our cases, directly
computing the mean accuracy over all classes is almost
always biased. For example, a many-shot classifier that only

classifies samples into seen classes can receive a good per-
formance than one that recognizes both seen and unseen.
Therefore, we argue that harmonic mean over themean accu-
racy can better assess a classifier’s performance, as now
the performances are negatively affected when a classifier
ignores classes (e.g., MC classifier get 0% harmonic mean).
Specifically, we compute the top-1 accuracy for instances
from seen and unseen classes, and take their harmonicmean
as the performance measure. The results are included in the
right side of the Table 2.

We find the harmonic mean accuracy takes a holistic
consideration of the “absolute” joint classification perfor-
mance and the “relative” performance drop when classifying
towards the joint set. For example, the many-shot baseline
MC+kNN with good mean accuracy and high �-value has
extremely low performance as it tends to ignore unseen cat-
egories. Meanwhile, Castle and aCastle remain the best
when ranked by the harmonic mean accuracy against others.

6.3.2 Evaluate GFSL Beyond 5 UNSEEN Categories

Besides using harmonic mean accuracy, we argue that
another important aspect in evaluating GFSL is to go beyond
the 5 sampled unseen categories, as it is never the case in
real-world. On the contrary, we care most about the GFSL
with a large number of unseen classes, which also measure
the ability of the model to extrapolate the number of novel
classes in theunseen class few-shot task.To this end,we con-
sider an extreme case—evaluating GFSL with all available
seen and unseen categories over both MiniImageNet and
TieredImageNet, and report their results in Tables 3 and 4.

Together with the harmonic mean accuracy of all cat-
egories, we also report the tail classification performance,
which is a more challenging few-shot classification task (the
standard FSL results could be found in Sect. 6.4). In addition,
the joint classification accuracy for seen classes instances
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Fig. 7 Calibration’s effect to the 1-shot harmonic mean accuracy on
MiniImageNet. Baseline models improve a lot with the help of the cal-
ibration factor

(S → S ∪ U) and unseen classes instances (U → S ∪ U)
are also listed.

The methods without a clear consideration of head-tail
trade-off (e.g., ProtoNet+ProtoNet) fails to make a joint pre-
diction over both seen and unseen classes. We observe
that Castle and aCastle outperform all approaches in the
unseen and more importantly, the all categories section,
across two datasets.

6.3.3 Confidence Calibration Matters in GFSL

In generalized zero-shot learning, Chao et al. (2016) have
identified a significant prediction bias between classification
confidence of seen and unseen classifiers. We find a simi-
lar phenomena in GFSL. For instance, the few-shot learning
ProtoNet + ProtoNet baseline becomes too confident to pre-
dict on seen categories than unseen categories (The scale
of confidence is on average 2.1 times higher). To address this
issue, we compute a calibration factor based on the meta-
validation set of unseen categories, such that the prediction
logits are calibrated by subtracting this factor out from the
confidence of seen categories’ predictions. With 5 unseen
classes fromMiniImageNet, the GFSL results of all compar-
ison methods before and after calibration is shown in Fig. 7.
We observe a consistent and obvious improvements over
the harmonic mean accuracy for all methods. For example,
although the FSL approach ProtoNet neglects the classifica-
tion performance over seen categories outside the sampled
task during meta-learning, it gets even better harmonic mean
accuracy compared with the GFSL method DFSL (62.70%
vs. 62.38%) with such post-calibration, which becomes a
very strong GFSL baseline. Note that Castle and aCastle
are the least affected with the selected calibration factor. This
suggests thatCastle variants, learnedwith the unifiedGFSL
objective, have well-calibrated classification confidence and
does not require additional data and extra learning phase to
search this calibration factor.

Fig. 8 The 1-shot AUSUC performance with two configurations of
unseen classes onMiniImageNet. The larger the area under the curve,
the better the GFSL ability.

Moreover,weuse area under seen–unseen curve (AUSUC)
as ameasure of differentGFSL algorithms (Chao et al. 2016).
Here, AUSUC is a performancemeasure that takes the effects
of the calibration factor out. To do so, we enumerate through
a large range of calibration factors and subtract it from the
confidence score of seen classifiers. Through this process,
the joint prediction performances over seen and unseen cat-
egories, denoted as S → S ∪ U and U → S ∪ U , shall
vary as the calibration factor changes. For instance, when
the calibration factor is infinitely large, we measure a clas-
sifier that only predicts unseen categories. We denote this
as the seen–unseen curve. The 1-shot GFSL results with 5
unseen classes from MiniImageNet is shown in Fig. 8. As
a result, we observe that aCastle and Castle archive the
largest area under the curve, which indicates that Castle
variants are in general a better algorithm over others among
different calibration factors.

6.3.4 Robust Evaluation of GFSL

Other than the harmonic mean accuracy of all seen and
unseen categories shown in Tables 3 and 4, we study the
dynamic of how harmonic mean accuracy changes with an
incremental number of unseen tail concepts. In other words,
we show the GFSL performances w.r.t. different numbers
of tail concepts. We use this as a robust evaluation of each
system’s GFSL capability. In addition to the test instances
from the head 64 classes in MiniImageNet, 5 to 20 novel
classes are included to compose the generalized few-shot
tasks. Concretely, only one instance per novel class is used
to construct the tail classifier, combined with which the
model is asked to do a joint classification of both seen and
unseen classes. Figure 9 records the change of generalized
few-shot learning performance (harmonic mean) when more
unseen classes emerge. We omit the results of MC+kNN
and MC+ProtoNet since they bias towards seen classes and
get nearly zero harmonic mean accuracy in all cases. We
observe that aCastle consistently outperforms all baseline

123



International Journal of Computer Vision (2021) 129:1930–1953 1945

Fig. 9 Results of 1-shotGFSLharmonicmean accuracywith incremen-
tal number of unseen classes on MiniImageNet. Note MC+kNN and
MC+ProtoNet bias towards seen classes and get nearly zero harmonic
mean accuracy

Fig. 10 Post-calibrated results of 1-shot GFSL harmonic mean accu-
racy with incremental number of unseen classes onMiniImageNet. All
methods select the their best calibration factors from the meta-val data
split

approaches in each evaluation setup, with a clear margin.
We also compute the harmonic mean after selecting the best
calibration factor from the meta-val set (cf. Fig. 10). It is
obvious that almost all baseline models achieve improve-
ments and the phenomenon is consistent with Fig. 7. The
GFSL results of aCastle and Castle are almost not influ-
enced after using the post-calibration technique. aCastle
still persists its superiority in this case.

6.4 Standard Few-Shot Learning

Finally, we also evaluate our proposed approaches’ per-
formance on two standard few-shot learning benchmarks,
i.e., MiniImageNet and TieredImageNet dataset. In other
words, we evaluate the classification performance of few-
shot unseen class instances with our GFSL objective. We
compare our approaches with the state-of-the-art methods
in both 1-shot 5-way and 5-shot 5-way scenarios. We cite
the results of the comparison methods from their published
papers and remark the backbones used to train the FSLmodel
by different methods. The mean accuracy and 95% confi-
dence interval are shown in the Table 5 and Table 6.

It is notable that some comparison methods such as CTM
Li et al. (2019) are evaluated over only 600 unseen class
FSL tasks, while we test both Castle and aCastle over
10,000 tasks, leading to more stable results. Castle and
aCastle achieve almost the best 1-shot and 5-shot clas-
sification results on both datasets. The results support our
hypothesis that jointly learning with many-shot classifica-
tion forces few-shot classifiers to be discriminative.

7 RelatedWork and Discussion

Building a high-quality visual systemusually requires to have
a large scale of annotated training setwithmany shots per cat-
egory. Many large-scale datasets such as ImageNet have an
ample number of instances for popular classes (Russakovsky
et al. 2015; Krizhevsky et al. 2017). However, the data-scarce
tail of the category distributionmatters. For example, a visual
search engine needs to deal with the rare object of inter-
ests (e.g., endangered species) or newly defined items (e.g.,
new smartphone models), which only possesses a few data
instances. Directly training a system over all classes is prone
to over-fit and can be biased towards the data-rich categories
(Cui et al. 2019; Cao et al. 2019; Kang et al. 2020; Ye et al.
2020; Zhou et al. 2020).

Zero-shot learning (ZSL) (Lampert et al. 2014;Akata et al.
2013; Xian et al. 2017; Changpinyo et al. 2020) is a popular
idea for addressing learningwithout labeled data. By aligning
the visual and semantic definitions of objects, ZSL trans-
fers the relationship between images and attributes learned
from seen classes to unseen ones, so as to recognize a
novel instance with only its category-wise attributes (Chang-
pinyo et al. 2016, 2017). Generalized ZSL (Chao et al. 2016;
Schönfeld et al. 2019) extends this by calibrating a prediction
bias to jointly predict between seen and unseen classes. ZSL
is limited to recognizing objects with well-defined semantic
descriptions, which assumes that the visual appearance of
novel categories is harder to obtain than knowledge about
their attributes, whereas in the real-world we often get the
appearance of objects before learning about their character-
istics.

Few-shot learning (FSL) proposes a more realistic setup,
where we have access to a very limited number (instead of
zero) of visual exemplars from the tail classes (Li et al. 2006;
Vinyals et al. 2016). FSL meta-learns an inductive bias from
the seen classes, such that it transfers to the learning process
of unseen classes with few training data during the model
deployment. For example, one line of works uses meta-
learned discriminative feature embeddings (Snell et al. 2017;
Oreshkin et al. 2018; Rusu et al. 2019; Vuorio et al. 2019; Lee
et al. 2019; Ye et al. 2020) together with the non-parametric
nearest neighbor classifiers, to recognize novel classes given
a few exemplars. Another line of works chooses to learn the

123



1946 International Journal of Computer Vision (2021) 129:1930–1953

Table 5 Few-shot classification
accuracy on MiniImageNet with
different types of backbones

Setups Backbone 1-Shot 5-Way 5-Shot 5-Way

IFSL (Ren et al. 2019) ResNet-10 55.72±0.41 70.50±0.36

DFSL (Gidaris and Komodakis 2018) ResNet-10 56.20±0.86 73.00±0.64

ProtoNet (Snell et al. 2017) ResNet-12 61.40±0.12 76.56±0.20

TapNet (Yoon et al. 2019) ResNet-12 61.65±0.15 76.36±0.10

MTL (Sun et al. 2019) ResNet-12 61.20±1.80 75.50±0.90

MetaOptNet (Lee et al. 2019) ResNet-12 62.64±0.61 78.63±0.46

Feat (Ye et al. 2020) ResNet-12 66.78±0.20 82.05±0.14

SimpleShot (Wang et al. 2019) ResNet-18 62.85±0.20 80.02±0.14

CTM (Li et al. 2019) ResNet-18 64.12±0.82 80.51±0.13

LEO (Rusu et al. 2019) WRN 61.76±0.08 77.59±0.12

Ours: Castle ResNet-12 66.75±0.20 81.98±0.14

Ours: aCastle ResNet-12 66.83±0.20 82.08±0.14

Our methods are evaluated with 10,000 few-shot tasks
The highest mean accuracy values are in bold

Table 6 Few-shot classification
accuracy on TieredImageNet
with different types of
backbones

Setups Backbone 1-Shot 5-Way 5-Shot 5-Way

ProtoNet (Snell et al. 2017) ConvNet 53.31±0.89 72.69±0.74

IFSL (Ren et al. 2019) ResNet-18 51.12±0.45 66.40±0.36

DFSL (Gidaris and Komodakis 2018) ResNet-18 50.90±0.46 66.69±0.36

TapNet (Yoon et al. 2019) ResNet-12 63.08±0.15 80.26±0.12

MTL (Sun et al. 2019) ResNet-12 65.60±1.80 78.60±0.90

MetaOptNet (Lee et al. 2019) ResNet-12 65.99±0.72 81.56±0.63

Feat (Ye et al. 2020) ResNet-12 70.80±0.23 84.79±0.16

SimpleShot (Wang et al. 2019) ResNet-18 69.09±0.22 84.58±0.16

CTM (Li et al. 2019) ResNet-18 68.41±0.39 84.28±1.73

LEO (Rusu et al. 2019) WRN 66.33±0.05 81.44±0.09

Ours: Castle ResNet-12 71.14±0.02 84.34±0.16

Ours: aCastle ResNet-12 71.63±0.02 85.28±0.15

Our methods are evaluated with 10,000 few-shot tasks
The highest mean accuracy values are in bold

common optimization strategy (Ravi and Larochelle 2017;
Bertinetto et al. 2019) across few-shot tasks, e.g., the model
initialization to a pre-specified model configuration could be
adapted rapidly usingfixed steps of gradient descents over the
few-shot training data from unseen categories (Finn et al.
2017; Li et al. 2017; Nichol et al. 2018; Lee et al. 2018;
Antoniou et al. 2019). FSL has achieved promising results
in various domains such as visual recognition (Triantafil-
lou et al. 2017; Lifchitz et al. 2019; Das and Lee 2020),
domain adaptation (Dong and Xing 2018; Kang et al. 2018),
neural machine translation (Gu et al. 2018), data compres-
sion (Wang et al. 2018), and density estimation (Reed et al.
2018). Empirical studies of FSL could be found in (Chen
et al. 2019; Triantafillou et al. 2020).

FSL emphasizes on building models of the unseen
classes, while the simultaneous recognition of the many-

shot head categories in real-world use cases is also important.
Low-shot learninghas been studied in thismanner (Hariharan
andGirshick 2017;Wang et al. 2018;Gao et al. 2018;Ye et al.
2020; Liu et al. 2019). Themain aim is to recognize the entire
set of concepts in a transductive learning framework—during
the training of the target model, it has access to both the
(many-shot) seen and (few-shot)unseen categories. The key
difference with our Generalized Few-Shot Learning (GFSL)
is that we assume no access to unseen classes in the model
learning phase,which requires themodel to inductively trans-
fer knowledge from seen classes to unseen ones during the
model evaluation phase.

Some of the previous GFSL approaches (Hariharan and
Girshick 2017; Wang et al. 2018; Gao et al. 2018) apply
the exemplar-based classification paradigms on both seen
and unseen categories to resolve the transductive learning
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problem, which requires recomputing the centroids for seen
categories after model updates. Others (Wang et al. 2017;
Schönfeld et al. 2019; Liu et al. 2019) usually ignore the
explicit relationship between seen and unseen categories,
and learn separate classifiers. Ren et al. (2019) and Gidaris
and Komodakis (2018) propose to solve inductive GFSL
via either composing unseen with seen classifiers or meta-
leaning with recurrent back-propagation procedure. Gidaris
and Komodakis (2018) is the most related work to Cas-
tle and aCastle, which composes the tail classifiers by a
convex combination of the many-shot classifiers. Castle is
different from Gidaris and Komodakis (2018) as it presents
an end-to-end learnable framework with improved training
techniques, as well as it employs a shared neural dictionary
to compose few-shot classifiers. Moreover, aCastle further
relates the knowledge for both seen and unseen classes
by constructing a neural dictionary with both shared (yet
task-agnostic) and task-specific basis, which allows back-
ward knowledge transfer to benefit seen classifiers with new
knowledge of unseen classes. As we have demonstrated
in Sect. 5, aCastle significantly improves seen classifiers
when learning of unseen visual categories over heteroge-
neous visual domains.

8 Conclusion

A Generalized Few-Shot Learning (GFSL) model takes
both the discriminative ability of many-shot and few-shot
classifiers into account. In this paper, we propose the ClAs-
sifier SynThesis LEarning (Castle) and its adaptive variant
(aCastle) to solve the challenging inductive modeling of
unseen tail categories in conjunction with seen head ones.
Our approach takes advantage of the neural dictionary to
learn bases for composingmany-shot and few-shot classifiers
via a unified learning objective, which transfers the knowl-
edge from seen tounseen classifiers better. Our experiments
highlight aCastle especially fits the GFSL scenario with
tasks from multiple domains. Both Castle and aCastle
not only outperform existing methods in terms of various
GFSL criteria but also improve the classifier’s discernibility
over standard FSL. Future directions include improving the
architecture of neural dictionary and designing better fine-
tuning strategies for GFSL.
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Appendix A: Implementation Details

A.1 Pre-training Strategy

In particular, on MiniImageNet, we add a linear layer on
the backbone output and optimize a 64-way classification
problem on the meta-training set with the cross-entropy loss
function. Stochastic gradient descentwith initial learning rate
0.1 and momentum 0.9 is used to complete such optimiza-
tion. The 16 classes in MiniImageNet for model selection
also assist the choice of the pre-trained model. After each
epoch, we use the current embedding and measures the near-
est neighbor based few-shot classification performance on
the sampled few-shot tasks from these 16 classes. The most
suitable embedding function is recorded. After that, such a
learned backbone is used to initialize the embedding part
φ of the whole model. The same strategy is also applied to
the meta-training set of the TieredImageNet, Heterogeneous,
and Office-Home datasets, where a 351-way, 100-way, and
25-way classifiers are pre-trained.

A.2 Feature Network Specification

We followQiao et al. (2018); Rusu et al. (2019) when investi-
gating the multi-domain GFSL, where images are resized to
84×84×3. In concrete words, three residual blocks are used
after an initial convolutional layer (with stride 1 and padding
1) over the image, which have channels 160/320/640, stride
2, and padding 2. After a global average pooling layer, it
leads to a 640 dimensional embedding. While for the bench-
mark experiments on MiniImageNet and TieredImageNet,
we follow Lee et al. (2019) to set the architecture of ResNet,
which contains 12 layers and uses the DropBlock (Ghiasi
et al. 2018) to prevent over-fitting.

We use the pre-trained backbone to initialize the embed-
ding part φ of a model for Castle/aCastle and our
re-implemented comparison methods such as MC+kNN,
ProtoNet+ProtoNet, MC+ProtoNet, L2ML (Wang et al.
2017), andDFSL (Gidaris andKomodakis 2018).When there
exists a backbone initialization, we set the initial learning
rate as 1e-4 and optimize the model with Momentum SGD.
The learning rate will be halved after optimizing 2,000 mini-
batches. During meta-learning, all methods are optimized
over 5-way few-shot tasks, where the number of shots in a
task is consistent with the inference (meta-test) stage. For
example, if the goal is a 1-shot 5-way model, we sample
1-shot 5-way DS

train during meta-training, together with 15
instances per class in DS

test.
For Castle/aCastle, we take advantage of the multi-

classifier training technique to improve learning efficiency.
We randomly sample a 24-way task from S in each mini-
batch, and re-sample 64 5-way tasks from it. It is notable that
all instances in the 24-way task are encoded by the ResNet
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backbone with the same parameters in advance. Therefore,
by embedding the synthesized 5-way few-shot classifiers
into the global many-shot classifier, it results in 64 differ-
ent configurations of the generalized few-shot classifiers. To
evaluate the classifier, we randomly sample instances with
batch size 128 from S and compute the GFSL objective in
Eq. 5.

A.3 Baselines for GFSL Benchmarks

Here we describe some baseline approaches compared in the
GFSL benchmarks in detail.
(1) Multiclass Classifier (MC) + kNN A |S|-way classifier
is trained on the seen classes in a supervised learningmanner
as standard many-shot classification (He et al. 2016). Dur-
ing the inference, test examples of S categories are evaluated
based on the |S|-way classifiers and |U | categories are evalu-
ated using the support embeddings fromD U

train with a nearest
neighbor classifier. To evaluate the generalized few-shot clas-
sification task, we take the union of multi-class classifiers’
confidence and nearest neighbor confidence [the normalized
negative distance values as in Snell et al. (2017)] as joint
classification scores on S ∪ U .
(2) ProtoNet + ProtoNet We train a few-shot classifier (ini-
tialized by the MC classifier’s feature mapping) using the
Prototypical Network (Snell et al. 2017) (a.k.a. ProtoNet),
pretending they were few-shot. When evaluated on the seen
categories, we randomly sample 100 training instances per
category to compute the class prototypes. The class proto-
types of unseen classes are computed based on the sampled
few-shot training set. During the inference of generalized
few-shot learning, the confidence of a test instances is jointly
determined by its (negative) distance to both seen and
unseen class prototypes.
(3) MC + ProtoNet We combine the learning objective of
the previous two baselines ((1) and (2)) to jointly learn the
MC classifier and feature embedding. Since there are two
objectives for many-shot (cross-entropy loss on all seen
classes) and few-shot (ProtoNet meta-learning objective)
classification respectively, it trades off between many-shot
and few-shot learning. Therefore, this learned model can be
used as multi-class linear classifiers on the head categories,
and used as ProtoNet on the tail categories. During the infer-
ence, the model predicts instances from seen class S with
the MC classifier, while takes advantage of the few-shot pro-
totypes to discern unseen class instances. To evaluate the
generalized few-shot classification task, we take the union of
multi-class classifiers’ confidence and ProtoNet confidence
as joint classification scores on S ∪ U .
(4) L2MLWang et al. (2017) propose learning to model the
“tail” (L2ML) by connecting a few-shot classifier with the
corresponding many-shot classifier. The method is designed
to learn classifier dynamics from data-poor “tail” classes to

the data-rich head classes. SinceL2ML is originally designed
to learn with both seen and unseen classes in a transduc-
tive manner. In our experiment, we adaptive it to our setting.
Therefore, we learn a classifier mapping based on the sam-
pled few-shot tasks from seen class setS, which transforms a
few-shot classifier in unseen class setU inductively. Follow-
ingWang et al. (2017), we first train amany-shot classifierW
upon theResNet backbone on the seen class setS.Weuse the
same residual architecture as in Wang et al. (2017) to imple-
ment the classifier mapping f , which transforms a few-shot
classifier to a many-shot classifier. During the meta-learning
stage, a S-way few-shot task is sampled in each mini-batch,
which produces a S-way linear few-shot classifier Ŵ based
on the fixed pre-trained embedding. The objective of L2ML
not only regresses themapped few-shot classifier f (Ŵ ) close
to the many-shot one W measured by square loss, but also
minimizes the classification loss of f (Ŵ ) over a randomly
sampled instances from S. Therefore, L2ML uses a pre-
trained multi-class classifierW for those head categories and
used the predicted few-shot classifiers with f for the tail cat-
egories.

Appendix B: More Analysis on GFSL Bench-
marks

In this appendix, we do analyses to show the influence of
training a GFSL model by reusing the many-shot classifier
and study different implementation choices in the proposed
methods. We mainly investigate and provide the results
over Castle on MiniImageNet. We observe the results on
aCastle and other datasets reveal similar trends.

B.1 Reusing theMany-Shot Classifier Facilitates the
Calibration for GFSL

We compare the strategy to train Castle from scratch and
fine-tune based on themany-shot classifier.We show both the
results of 1-Shot 5-Way few-shot classification performance
and GFSL performance with 5 unseen tasks for Castle
when trained from random or with provided initialization.
From the results in Table 7, we find training from scratch
gets only a bit lower few-shot classification results with the
fine-tune strategy, but much lower GFSL harmonic mean
accuracy. Therefore, reusing the parameters in the many-
shot classifier benefits the predictions on seen and unseen
classes of a GFSL model. Therefore, we use the pre-trained
embedding to initialize the backbone.
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Table 7 The difference between training with a pre-trained backbone
or from scratch with 1-Shot 5-Way Tasks on MiniImageNet

Perf. Measures FSLMA GFSL HM

Castle w/ pre-train 66.83±0.21 66.22±0.15

Castle w/o pre-train 64.23±0.21 38.24±0.09

MA mean accuracy and HM harmonic mean accuracy

B.2 Comparison with One-Phase Incremental
LearningMethods

The inductive generalized few-shot learning is also related to
the one-phase incremental learning (Li and Hoiem 2018; Liu
et al. 2020), where a model is required to adapt itself to the
open set environment. In other words, after training over the
closed set categories, a classifier should be updated based
on the data with novel distributions or categories accord-
ingly. One important thread of incremental learning methods
relies on the experience replay, where a set of the closed set
instances is preserved and the classifier for all classes is opti-
mized based on the saved and novel few-shot data. In our
inductive GFSL, the Castle variants do not save seen class
instances and rely on the neural dictionary to adapt the clas-
sifier for a joint classification. Thus, Castle variants have
lower computational (time) costs during the inference stage.

Towards comprehensive comparisons, we also investigate
two popular incremental learning methods, i.e., LwF (Li and
Hoiem 2018) and iCARL (Li and Hoiem 2018). We ran-
domly save 5 images per seen class for both methods. By
combining the stored images and the newly given unseen
class images together, the model will be updated based on a
cross-entropy loss and a distillation loss (Hinton et al. 2015).
We tune the balance weight between the classification and
distillation loss, the initial learning rate for fine-tuning, and
the optimization steps for both methods over the validation
set. The harmonic mean accuracy in various evaluation sce-
narios over 10,000 tasks are listed in Table 8.

In our empirical evaluations, we find that incremental
learning methods can get better results than our baselines
since it fine-tunes the model with the distillation loss.
However, their results are not stable since there are many

hyper-parameters. Compared with these approaches, our
Castle variants still keep their superiority over all criteria.

B.3 Light-Weight Adaptation onCASTLE Variants

As shown in the previous subsection, directly fine-tuning the
wholemodel is prone to over-fit evenwith another distillation
loss. Inspired bySun et al. (2019) andLi et al. (2019),we con-
sider a light-weight fine-tune step based on the synthesized
classifier by Castle variants. In detail, we reformulate the
modelW�φ(x) asW�((1+scale)·φ(x)+bias), whereW is
the classifier output by the neural dictionary, the scale ∈ R

d

and bias ∈ R
d are additional learnable vectors, and 1 is a

size d vector with all values equal 1.
Given a few-shot task with unseen class instances, the

model will be updated in the following ways. 5 images per
seen class are randomly selected, after freezing the backbone
φ, the classifierW, the scale, and the bias are optimized based
on a cross-entropy loss over both stored seen and unseen
classes images. We tune the initial learning rate and the opti-
mization steps over the validation set.

The results of such model adaptation strategies are listed
in Table 9. With further model adaptation, both Castle and
aCastle could be improved.

B.4 Effects on the Neural Dictionary Size |B|
Weshow the effects of the dictionary size (as the ratio of seen
class size 64) for the standard few-shot learning (measured by
mean accuracy when there are 5 unseen classes) in Fig. 11.
We observe that the neural dictionary with a ratio of 2 or 3
works best amongst all other dictionary sizes. Therefore, we
fix the dictionary size as 128 across all experiments. Note that
when |B| = 0, ourmethod degenerates to case optimizing the
unified objective in Eq. 5 without using the neural dictionary
(the Castle− model in Sect. 5).

B.5 HowWell is Synthesized Classifiers Comparing
with Multi-class Classifiers?

To assess the quality of synthesized classifier, we made a
comparison against ProtoNet and also theMulti-class Classi-
fier on the head seen concepts. To do so, we sample few-shot

Table 8 Comparison between
Castle variants and the
incremental learning methods
on MiniImageNet

Classification on 5-Way 20-Way

Setups 1-Shot 5-Shot 1-Shot 5-Shot

LwF (Li and Hoiem 2018) 60.18±0.15 73.48±0.09 28.70±0.06 39.88±0.06

iCARL (Li and Hoiem 2018) 61.14±0.15 73.58±0.09 31.60±0.06 46.55±0.06

Castle 66.22±0.15 76.32±0.09 43.06±0.07 55.65±0.07

aCastle 66.24±0.15 78.33±0.09 43.63±0.08 56.33±0.06

The harmonic mean accuracy in different evaluation scenarios are recorded
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Table 9 The light-weight model
adaptation by fine-tuning the
scale and bias weights based on
the classifier initialization from
Castle variants

Classification on 5-Way 20-Way

Setups 1-Shot 5-Shot 1-Shot 5-Shot

Castle 66.22±0.15 76.32±0.09 43.06±0.07 55.65±0.07

Castle† 66.24±0.15 76.43±0.09 43.12±0.07 55.85±0.07

aCastle 66.24±0.15 78.33±0.09 43.63±0.08 56.33±0.06

aCastle† 66.33±0.15 78.93±0.09 43.68±0.08 56.42±0.06

The harmonic mean accuracy in different evaluation scenarios onMiniImageNet are recorded. The superscript
† denotes the method with another light-weight update step

Fig. 11 The 1-shot 5-way accuracy on unseen of MiniImageNet with
different size of dictionaries

Fig. 12 The 64-way multi-class accuracy on seen of MiniImageNet
with 1-shot trained model

training instances on each seen category to synthesize classi-
fiers (or compute class prototypes for ProtoNet), and then use
the synthesized classifiers/class prototypes solely to evaluate
multi-class accuracy. The results are shown in Fig. 12. We
observe that the learned synthesized classifier outperforms
over ProtoNet. Also, the model trained with unified learning
objective improves over the vanilla synthesized classifiers.
Note that there is still a gap left against multi-class classi-
fiers trained on the entire dataset. It suggests that the classifier
synthesis we learned is effective against using sole instance
embeddings.

Table 10 The performance with different choices of classifier syn-
thesize strategies when tested with 5-Shot 5-Way unsen Tasks on
MiniImageNet

Perf. Measures FSL Mean Acc. GFSL HM Acc.

Castle w/ Pre-AVG 81.98±0.20 76.32±0.09

Castle w/ Post-AVG 82.00±0.20 76.28±0.09

We denote the option compute embedding prototype and average syn-
thesized classifiers as “Pre-AVG” and “Post-AVG” respectively

B.6 Different Choices of the Classifier Synthesis

As in Eq. 6, when there is more than one instance per class
in a few-shot task (i.e., K > 1), Castle compute the aver-
aged embeddings first, and then use the prototype of each
class as the input of the neural dictionary to synthesize their
corresponding classifiers. Here we explore another choice
to deal with multiple instances in each class. We synthe-
size classifiers based on each instance first, and then average
the corresponding synthesized classifiers for each class. This
option equals an ensemble strategy to average the prediction
results of each instance’s synthesized classifier. We denote
the pre-average strategy (the one used in Castle) as “Pre-
AVG”, and the post-average strategy as “Post-AVG”. The
5-Shot 5-way classification results on MiniImageNet for
these two strategies are shown in Table 10. From the results,
“Post-AVG” does not improve the FSL and GFSL perfor-
mance obviously. Since averaging the synthesized classifiers
in a hindsight way costs more memory during meta-training,
we choose the “Pre-AVG” option to synthesize classifiers
when there are more than 1 shot in each class. In our experi-
ments, the same conclusion also applies to aCastle.

B.7 How isMultiple Classifiers Learning’s Impact over
the Training?

Both Castle and aCastle adopt a multi-classifier training
strategy (as described in Sect. 3), i.e., considering multiple
GFSL tasks with different combinations of classifiers in a
single mini-batch. In Table 11, we show the influence of the
multi-classifier training method based on their GFSL perfor-
mance (harmonic mean). It shows that with a large number
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Table 11 The GFSL
performance (harmonic mean
accuracy) change with different
number of classifiers (# of CLS)
when tested with 1-Shot 5-Way
unsen Tasks on MiniImageNet

# of Classifiers 1 64 128 256

Castle 64.53±0.15 65.61±0.15 66.22±0.15 66.72±0.15

Table 12 The performance gap
between Castle variants and a
kind of “many-shot” upper
bound (denoted as “UB”) on
MiniImageNet

Setups 5-Way 20-Way

Measures FSL GFSL FSL GFSL

Castle 81.98±0.14 76.32±0.09 56.97±0.06 43.06±0.07

aCastle 82.08±0.14 78.33±0.09 57.29±0.06 56.33±0.06

UB 87.08±0.10 80.23±0.09 68.25±0.05 68.72±0.12

The ability of FSL classification is measured by the mean accuracy, while the harmonic mean accuracy is
used as a criterion for GFSL. 5-Shot classification performance of Castle and aCastle are listed for a
comparison

of classifiers during the training, the performance of Cas-
tle asymptotically converges to its upper-bound. We find
aCastle shares a similar trend.

B.8 The Gap to the Performance“Upper Bound” (UB)

We focus on the (generalized) few-shot learning scenario
where there are only budgeted examples in the unseen class
tasks. To show the potential improvement space in such tasks,
we also investigate a kind of upper boundmodel where all the
available images are used to build the unseen class classifier
during the inference stage.

We implement the upper bound model based on the Pro-
toNet, and the results are in Table 12. Specifically, in the FSL
classification scenario, all the unseen class images except
those preserved for evaluation are used to build more pre-
cise prototypes, and the mean accuracy over 10,000 tasks are
recorded; in the GFSL classification scenario, the many-shot
unseen class images are utilized as well, and the calibrated
harmonic mean is used as the performance measure.

Since the upper bound takes advantage of all the available
training images for the few-shot categories, it performs better
than the few-shot Castle and aCastle in all the scenarios.
Thegapbetween the few-shot learningmethods and theupper
bound becomes larger whenmore unseen classes (ways) are
involved.
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