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Abstract
Conditional image generation lies at the heart of computer vision and conditional generative adversarial networks (cGAN)
have recently become the method of choice for this task, owing to their superior performance. The focus so far has largely
been on performance improvement, with little effort in making cGANs more robust to noise. However, the regression (of the
generator) might lead to arbitrarily large errors in the output, which makes cGANs unreliable for real-world applications. In
this work, we introduce a novel conditional GAN model, called RoCGAN, which leverages structure in the target space of
the model to address the issue. Specifically, we augment the generator with an unsupervised pathway, which promotes the
outputs of the generator to span the target manifold, even in the presence of intense noise. We prove that RoCGAN share
similar theoretical properties as GAN and establish with both synthetic and real data the merits of our model. We perform a
thorough experimental validation on large scale datasets for natural scenes and faces and observe that our model outperforms
existing cGAN architectures by a large margin. We also empirically demonstrate the performance of our approach in the face
of two types of noise (adversarial and Bernoulli).

Keywords Conditional GAN · Unsupervised learning · Autoencoder · Robust regression · Super-resolution · Adversarial
attacks · Cross-noise experiments

1 Introduction

Image-to-image translation and more generally conditional
image generation lie at the heart of computer vision. Con-
ditional generative adversarial networks (cGAN) (Mirza and
Osindero 2014) have become a dominant approach in the
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field, e.g. in dense1 regression (Isola et al. 2017; Pathak et al.
2016; Ledig et al. 2017; Bousmalis et al. 2016; Liu et al.
2017; Miyato and Koyama 2018; Yu et al. 2018; Tulyakov
et al. 2018). The major focus so far has been on improv-
ing the performance; we advocate instead that improving the
generalization performance, e.g. as measured under intense
noise and test-time perturbations, is a significant topic with a
host of applications, e.g. facial analysis (Georgopoulos et al.
2018). If we aim to utilize cGAN or similar methods as a
production technology, they need to have performance guar-
antees even under large amount of noise. To that end, we
study the robustness of conditional GAN under noise.

Conditional Generative Adversarial Networks consist of
two modules, namely a generator and a discriminator. The
role of the generator role is to map the source signal, e.g.
prior information in the form of an image or text, to the target
signal. This mapping is completed in two steps: the source
signal is embedded into a low-dimensional, latent subspace,
which is then mapped to the target subspace. The generator

1 The output includes at least as many dimensions as the input,
e.g. super-resolution, or text-to-image translation. We cast conditional
image generation as a dense regression task; all the outcomes in this
work can be applied to any dense regression task.
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is implemented with convolutional or fully connected layers,
which are not invariant to (additive) noise. Thus, an input
signal that includes (small) additive noise might be mapped
arbitrarily off the target manifold (Vidal et al. 2017). In other
words, cGAN do not constrain the output to lie in the target
manifold which makes them liable to any input perturbation.

A notable line of research, that tackles sensitivity to noise,
consists in complementing supervision with an unsupervised
learning module. The unsupervised module forms a new
pathway that is trained on either the same, or different data
samples. The unsupervised pathway enables the network to
explore the structure that is not present in the labelled training
set, while implicitly constraining the output. The unsuper-
vised module is only required during the training stage, i.e.
it is removed during inference. In Rasmus et al. (2015) and
Zhang et al. (2016) the authors augment the original bottom
up (encoder) network with an additional top-down (decoder)
module. The autoencoder, i.e. the bottom-up and the top-
down modules combined, forms an auxiliary task to the
original classification. However, in contrast to classification
studied in Rasmus et al. (2015) and Zhang et al. (2016),
in dense regression both bottom-up and top-down modules
exist by default, therefore augmenting with an unsupervised
module is not trivially extended.

Motivated by the combination of supervised and unsu-
pervised modules, we propose a novel conditional GAN
model which implicitly constrains the latent subspace. We
coin this new model ‘robust conditional GAN’ (RoCGAN).
The motivation behind RoCGAN is to take advantage of the
structure in the target space of the model. We learn this struc-
ture with an unsupervised module which is included along
with our supervised pathway. Specifically, we replace the
original generator, i.e. encoder–decoder, with a two pathway
module (Fig. 1). Similarly to the cGAN generator, the first
pathway performs regression while the second is an autoen-
coder in the target domain (unsupervised pathway). The two
pathways share a similar network structure, i.e. each one
includes an encoder–decoder network. The weights of the
two decoders are shared to force the latent representations of
the two pathways to be semantically similar. Intuitively, this
can be thought of as constraining the output of our dense
regression to span the target subspace. The unsupervised
pathway enables the utilization of all the samples in the target
domain even in the absence of a corresponding input sam-
ple. During inference, the unsupervised pathway is no longer
required, therefore the testing complexity remains the same
as in cGAN.

In the following sections, we introduce our novel RoC-
GAN and study their theoretical/experimental properties
(Sect. 2). We prove that RoCGAN share similar theoretical
properties with the original GAN, i.e. convergence and opti-
mal discriminator (Sect. 2.5). An experiment with synthetic
data is designed to visualize the target subspaces and assess

our intuition (Sect. 2.6). We experimentally scrutinize the
sensitivity of the hyper-parameters and evaluate our model
in the face of intense noise (Sect. 3). Moreover, thorough
experimentation with both images from natural scenes and
human faces is conducted in different tasks to evaluate the
model. The experimental results demonstrate that RoCGAN
outperform consistently the baseline cGAN in all cases.

Our contributions are summarized as following:

– We introduce RoCGAN that leverage structure of the tar-
get space and promote robustness in conditional image
generation and dense regression tasks.

– We scrutinize the model’s performance under the effect
of noise and adversarial perturbations. This robustness
analysis had previously not been studied in the context
of conditional GAN.

– A thorough experimental analysis for different tasks is
conducted. We outline how RoCGAN performs with lat-
eral connections from encoder to decoder. The source
code is made freely available for the community2.

Our preliminary work in Chrysos et al. (2019b) shares the
same underlying idea, however this version is significantly
extended. Initially, all the experiments have been conducted
from scratch based on the new Chainer (Tokui et al. 2015)
implementation2. The task of super-resolution is introduced
in this version, while the noise and adversarial perturba-
tions are categorized and extended, e.g. iterative attack case.
Lastly, the manuscript is significantly modified; the experi-
mental section is written from scratch, while other parts like
related work or method section are extended substantially.

In this section, we introduce the related literature on con-
ditional GAN and the lines of research related to our work.

Adversarial attacks (Szegedy et al. 2014; Yuan et al. 2017;
Samangouei et al. 2018) is an emerging line of research
that correlates with our goal. Adversarial attacks are mostly
applied to classification tasks; the core idea is that perturbing
input samples with a small amount of noise, often imper-
ceptible to the human eye, can lead to severe classification
errors. The adversarial attacks are an active field of studywith
diverse clustering of the methods (Kurakin et al. 2018), e.g.
single/multi-step attack, targeted/non-targeted, white/black
box. Several techniques ‘defend’ against adversarial pertur-
bations. A recent example is the Fortified networks of Lamb
et al. (2018) which uses Denoising Autoencoders (Vincent
et al. 2008) to ensure that the input samples do not fall off
the target manifold. Kumar et al. (2017) estimate the tangent
space to the target manifold and use that to insert invari-
ances to the discriminator for classification purposes. Even
though RoCGAN share similarities with those methods, the

2 https://github.com/grigorisg9gr/rocgan.
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Fig. 1 The mapping process of the generator of the baseline cGAN
(a) and our model (b). a The source signal is embedded into a low-
dimensional, latent subspace, which is then mapped to the target
subspace. The lack of constraints might result in outcomes that are

arbitrarily off the target manifold. b On the other hand, in RoCGAN,
steps 1b and 2b learn an autoencoder in the target manifold and by shar-
ing the weights of the decoder, we restrict the output of the regression
(step 2a). All figures in this work are best viewed in color

scope is different since (a) the output of our method is high-
dimensional3 and (b) adversarial examples are not extended
to dense regression.4

Except for the study of adversarial attacks, combining
supervised and unsupervised learning has been used for
enhancing the classification performance. In the Ladder net-
work Rasmus et al. (2015) the authors adapt the bottom-up
network by adding a decoder and lateral connections between
the encoder (original bottom-up network) and the decoder.
During training they utilize the augmented network as two
pathways: (i) labelled input samples are fed to the initial
bottom-up module, (ii) input samples are corrupted with
noise and fed to the encoder–decoder with the lateral connec-
tions. The latter pathway is an autoencoder; the idea is that it
can strengthen the resilience of the network to samples out-
side the input manifold, while it improves the classification
performance.

The effect of noise in the source or target distributions
has been the topic of several works. Lehtinen et al. (2018)
demonstrate that zero-mean noise in the target distribution
does not deteriorate the training, while it might even lead
to an improved generalization. The seminal AmbientGAN
of Bora et al. (2018) introduces a method to learn from par-
tial or noisy data. They use a measurement function f to

3 In the classification tasks studied, e.g. the popular ImageNet (Deng
et al. 2009), there are up to a thousand classes. On the other hand, our
output includes tens or hundreds of thousands of dimensions.
4 The robustness in our case refers to being resilient to changes in the
distribution of the labels (label shift) and training set (covariance shift)
(Wang et al. 2017).

simulate the corruption in the output of the generator; they
prove that the generator will learn the clean target distribu-
tion. The differences with our work are twofold: (a) we do
not have access to the corruption function, (b) we do have a
prior signal to condition the generator. The works of Li et al.
(2019) and Pajot et al. (2019) extend the AmbientGAN with
additional cases. Kaneko et al. (2019) and Thekumparampil
et al. (2018) study cGAN when the labels are discrete, cat-
egorical distributions; they include a noise transition model
to clean the noisy labels. Kaneko and Harada (2019) extend
the idea to image-to-image translation, i.e. when in addi-
tion to the conditional source image, there is a categorical,
noisy label. The twomain differences from our work are that:
(a) we do not have categorical labels, (b) we want to con-
strain the output of the generator to lie in the target space. A
common difference between the aforementioned works and
ours is that they do not assess the robustness in the face of
adversarial perturbations. Gondim-Ribeiro et al. (2018) con-
duct a study with adversarial perturbations in auto-encoders
and conclude that auto-encoders are well-equipped for such
attacks. Kos et al. (2018) propose three adversarial attacks
tailored forVAE (KingmaandWelling 2014) andVAE-GAN.
Arnab et al. (2018) perform the first large-scale evaluation of
adversarial attacks on semantic segmentation models.

Our core goal consists in constraining the model’s out-
put. Aside from deep learning approaches, such constraints
in manifolds were typically tackled with component analy-
sis. Canonical correlation analysis (Hotelling 1936) has been
extensively used for finding common subspaces that maxi-
mally correlate the data (Panagakis et al. 2016). The recent
work of Murdock et al. (2018) combines the expressiveness
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of neural networks with the theoretical guarantees of classic
component analysis.

1.1 Conditional GAN

Conditional signal generation leverages a conditioning label,
e.g. a prior shape (Tran et al. 2019) or an embedded repre-
sentation (Mirza and Osindero 2014), to produce the target
signal. In this work, we focus on the latter setting, i.e. we
assume a dense regression task with the conditioning label
being an image.

Conditional image generation is a popular task in com-
puter vision, dominated by approaches similar to the original
cGAN paper (Mirza and Osindero 2014). The improvements
to the original cGAN can be divided into three categories:
changes in the (a) architecture of the generator (b) in the
architecture of the discriminator, (c) regularization and/or
loss terms. The resulting cGAN architectures and their vari-
ants have successfully been applied to a host of different
tasks, e.g. inpainting (Iizuka et al. 2017; Yu et al. 2018),
super-resolution (Ledig et al. 2017). In this paper, our work
focuses on improving any cGAN model; we refer to the
reader to more targeted applications for a thorough review
of specific applications, e.g. super-resolution (Agustsson and
Timofte 2017) or inpainting (Wu et al. 2017).

The majority of the architectures in the generator follow
the influential work of Isola et al. (2017), widely known as
‘pix2pix’, that includes lateral skip connections between the
encoder and the decoder of the generator. Similarly to lat-
eral connections, residual blocks are often utilized (Ledig
et al. 2017; Chrysos et al. 2019a). An additional engineering
improvement is to include multiscale generation introduced
by Yang et al. (2017). Coarse-to-fine architectures often
emerge by training more generators, e.g. in Huang et al.
(2017) and Ma et al. (2017) they utilize one generator for
the global structure and one for the fine-grained result.

The discriminator in Mirza and Osindero (2014) accepts
a generated signal and the corresponding target signal. Isola
et al. (2017) make two core modifications in the discrimina-
tor (applicable to image-to-image translations): (a) it accepts
pairs of source/gt and source/model output images, (b) the
discriminator extracts patches instead of the whole image.
Miyato and Koyama (2018) replace the inputs to the discrim-
inator with a dot product of the source/gt and source/model
output images. In Iizuka et al. (2017), they include two dis-
criminators, one for the global structure and one for the local
patches (block inpainting task).

The goal of the aforementioned improvements is to
improve the performance or stabilize the training; none of
these techniques’ aim is to make cGANmore robust to noise.
Therefore, our work is perpendicular to all such architecture
changes and can be combinedwith any of the aforementioned
architectures.

On the other hand, adding regularization terms in the loss
function can impose stronger supervision, thus restricting the
output. A variety of additional loss terms have been proposed
for regularizing cGAN. The feature matching loss (Salimans
et al. 2016) was proposed for stabilizing the training of the
discriminator; it measures the discrepancy of the representa-
tions (in some layer) of the discriminator. Themotivation lies
in matching the low-dimensional distributions created by the
discriminator layers. Isola et al. (2017) propose a content loss
(implemented as �1 loss) for measuring the per pixel discrep-
ancy of the generated versus the target signal. The perceptual
loss is used in Ledig et al. (2017) and Johnson et al. (2016)
instead of a per pixel loss. The perceptual loss denotes the
difference between the representations5 of the target and the
generated signal. Frequently, task-specific losses are utilized,
such as identity preservation or symmetry loss in Huang et al.
(2017).

The aforementioned regularization terms provide implicit
supervision in the generator’s output through similarity with
the target signal. However, this supervision does not restrict
the generated signals to lie in the target manifold.

2 Method

In this section, we elucidate our proposed RoCGAN. In the
following paragraphs, we develop the problem statement
(Sect. 2.1), we review the original conditional GAN model
(Sect. 2.2), and introduce RoCGAN (Sect. 2.3). Sequentially,
we study a special case of generators, i.e. the generators
that include lateral skip connections from the encoder to the
decoder, and we pose the modifications required (Sect. 2.4).
In Sect. 2.5, we prove that RoCGAN share the same prop-
erties as the original GAN (Goodfellow et al. 2014) and in
Sect. 2.6 the intuition behind the model is assessed with syn-
thetic data.

2.1 Problem Statement

The task of conditional signal generation is posed as gener-
ating signals given an input label6 s. We assume the label
s ∈ S, where S is the domain of labels, follows a differ-
ent distribution from the target signals y ∈ Y , where Y is the
domain of target signals. Also, we frequently want to include
some stochasticity in the mapping; we include a latent vari-
able z ∈ Z where Z is a known distribution, e.g. Gaussian.

5 Typically those representations are extracted from a pretrained net-
work, e.g. VGG19.
6 In this work, we will interchangeably refer to this as the
input/conditioning label or source signal.
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Mathematically, if G denotes the mapping we want to
learn, then:

G : S × Z −→ Y (1)

To learn G, we assume we have access to a database of N
pairs D = {(s(1), y(1)), . . . , (s(n), y(n)), . . . , (s(N ), y(N ))}
with n ∈ [1, N ]. In the following paragraphs we drop the
index, i.e. we denote s(n) as s, to avoid cluttering the notation.

Conditional GAN, which we develop below, have been
dominating in the literature for learning such mappings G.
However, our interest lies in studying the case that during
inference time the source signal is s + f (s, G) instead of s,
i.e. there is some unwanted noise in our source signal. We
argue that such noise is of both theoretical and practical value
for commercial applications.

Notation A bold letter represents a vector/tensor; a plain
letter designates a scalar number. Unless explicitly men-
tioned otherwise || · || will declare an �1 norm. The symbols
L∗ define loss terms, while λ∗ denote regularization hyper-
parameters optimized on the validation set. For a matrix M,
diag(M) denotes its diagonal elements.

2.2 Conditional GAN

GAN consist of a generator and a discriminator module
commonly optimized with alternating gradient descent. The
generator’s goal is to model the target distribution pd , while
the discriminator’s to discern the samples synthesized by the
generator and the target (ground-truth) distributions. More
precisely, the generator samples z from a prior distribution
pz , e.g. uniform, and maps that to a sample; the discrimi-
nator D tries to distinguish between the synthesized sample
and one sample from pd .

The idea behind conditional GAN (cGAN) (Mirza and
Osindero 2014) is to provide some additional labels to the
generator. The generator G typically takes the form of an
encoder–decoder network, where the encoder projects the
label into a low-dimensional latent subspace and the decoder
performs the opposite mapping, i.e. from low-dimensional
to high-dimensional subspace. In other words, the generator
performs the regression from the source to the target signal.

The core loss of cGAN is the adversarial loss, which
determines the alternating role of the generator and the dis-
criminator:

Ladv = Es, y∼pd (s, y)[log D( y|s)]
+Es∼pd (s),z∼pz(z)[log(1 − D(G(s, z)|s))] (2)

The loss is optimized through the following min-max
problem:

min
wG

max
wD

Ladv = min
wG

max
wD

Es, y∼pd (s, y)[log D( y|s,wD)]
+Es∼pd (s),z∼pz (z)[log(1 − D(G(s, z|wG)|s,wD))]

wherewG,wD denote the generator’s and the discriminator’s
parameters respectively. To simplify the notation,we drop the
dependencies on the parameters and the noise z in the rest of
the paper. In our experiments, we use a discriminator that is
not conditioned on the input, i.e. D( y); we include a related
ablation study in Sect. 3.4.3.

Aside of the adversarial loss, cGAN models include
auxiliary losses, e.g. task-specific �1 reconstruction or regu-
larization terms for discriminator. Those losses do not affect
the core model nor its adaptation to RoCGAN; we symbolize
with LcGAN the total loss function.

2.3 RoCGAN

Our main goal is to improve robustness to noise in dense
regression tasks. To that end, we introduce our model that
leverages structure in the target space of themodel to enhance
the generator’s regression. Our model shares the same struc-
ture as cGAN, i.e. it consists of a generator that performs the
regression and a discriminator that separates the synthesized
from the target signal. We achieve our goal by constructing
a generator that includes two pathways.

The generator of RoCGAN includes two pathways instead
of the single pathway of the original cGAN. The first path-
way, referred as reg pathway henceforth, performs a similar
regression as its counterpart in cGAN; it accepts a sample
from the source domain and maps it to the target domain. We
introduce an additional unsupervised pathway, named AE
pathway. AE pathway works as an autoencoder in the target
domain. Both pathways consist of similar encoder–decoder
networks.7 By sharing the weights of their decoders, we pro-
mote the regression outputs to span the target manifold and
not induce arbitrarily large errors. A schematic of the gener-
ator is illustrated in Fig. 2. The discriminator can remain the
same as the cGAN: it accepts the reg pathway’s output along
with the corresponding target sample as input.

To simplify the notation below, the superscript ‘AE’ abbre-
viatesmodules of theAE pathway and ‘G’modules of the reg
pathway.We denote G(s) = d(G)(e(G)(s)) the output of the
reg pathway and G(AE)( y) = d(AE)(e(AE)( y)) the output of
the AE pathway; e, d symbolize the encoder and decoder of
a pathway respectively.

The unsupervised module (autoencoder in the target
domain) contributes the following loss term:

7 In principle the encoders’ architectures might differ, e.g. when the
two domains differ in dimensionality.
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Fig. 2 Schematic of the generator of a cGAN versus b our proposed
RoCGAN. The single pathway of the original model is replaced with
two pathways

LAE = E y∼pd ( y)[ f AEd ( y, G(AE)( y))] (3)

where f AEd denotes a function to measure the divergence.8

Despite sharing the weights of the decoders, we cannot
ensure that the latent representations of the two pathways
span the same subspace. To further reduce the distance of the
two representations in the latent space,we introduce the latent
loss termLlat . This termminimizes the distance between the
encoders’ outputs, i.e. the two representations are spatially
close (in the subspace spanned by the encoders). The latent
loss term is:

Llat = Es, y∼pd (s, y)[ f latd (e(G)(s), e(AE)( y))] (4)

where f latd can be any divergence function. In practice, for
bothLlat andLAE we employ ordinary loss functions, e.g. �1
or �2 norms. As a future step we intend to replace the latent
loss term Llat with a kernel-based method (Gretton et al.
2007) or a learnablemetric formatching the distributions (Ma
et al. 2018).

The final loss function of RoCGAN combines the loss
terms of the original cGAN LcGAN with the additional two
terms for the AE pathway:

LRoCGAN = LcGAN + λae · LAE + λl · Llat (5)

2.4 RoCGANwith Skip Connections

The RoCGAN model of Sect. 2.3 describes a family of net-
works and not a predefined set of layers. A special case of
RoCGAN emerges when skip connections from the encoder
to the decoder are included. In this section, skip connections
refer only to the case of lateral skip connections from the
encoder to the decoder. We study below the modifications
required for this case.

Skip connections are frequently used as they enable deeper
layers to capture more abstract representations without the

8 The LAE can also leverage unpaired samples in the target domain.
That is, if we have M samples { y(1)

U , . . . , y(m)
U , . . . , y(M)

U } available, we
can use them to improve the AE pathway.

need of memorizing all the information. The shortcut con-
nection allows a low-level representation from an encoder
layer to be propagated directly to a decoder layer without
passing through the long path, i.e. the network without the
lateral skip connections. An autoencoder (AE) with such a
skip connection can achieve close to zero reconstruction error
by simply propagating the representation through the short-
cut. This shatters the signal in the long path (Rasmus et al.
2015), which is an unwanted behavior.

To achieve training the long path, we explore a number
of regularization methods. Our first approach in our original
work was to include a regularization loss term. In this work,
we propose an additional regularization technique for the
skip case.

In the first approach, we implicitly tackle the issue
by maximizing the variance captured by the longer path
representations. We add a loss term that penalizes the corre-
lations in the representations (of a layer) and thus implicitly
encourage the representations to capture diverse and useful
information. We implement the decov loss (Cogswell et al.
2016):

Ldecov = 1

2

(
||C||2F − ||diag(C)||22

)
(6)

where C is the covariance matrix of the layer’s representa-
tions. The loss is minimized when the covariance matrix is
diagonal, i.e. it imposes a cost to minimize the covariance of
hidden units without restricting the diagonal elements that
include the variance of the hidden representations.

A similar loss is explored by Valpola (2015), where the
decorrelation loss is applied in every layer. Their loss term
has stronger constraints: (i) it favors an identity covariance
matrix but also (ii) penalizes the smaller eigenvalues of the
covariance more. We have not explored this alternative loss
term, as the decov loss worked in our case without the addi-
tional assumptions of the Valpola (2015).

In this work, we consider an alternative regularization
technique. The approach ismotivated byRasmus et al. (2015)
who include noise in the lateral skip connections. We do
include zero-mean Gaussian noise in the shortcut connec-
tion, i.e. the representation of the encoder is modified by
some additiveGaussian noisewhen skipped to the decoder. In
our experimentation, both approaches can lead to improved
results, we prefer to use the latter in the experiments.

2.5 Theoretical Analysis

In the next few paragraphs, we prove that RoCGAN share
the properties of the original GAN (Goodfellow et al. 2014).
Even though the derivations follow similar steps as the orig-
inal GAN, but are added to make the paper self-contained.
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We derive the optimal discriminator and then compute the
optimal value of Ladv(G, D).

Proposition 1 For a fixed generator G (reg pathway), the
optimal discriminator is:

D∗ = pd(s, y)
pd(s, y) + pg(s, y)

(7)

where pg is the model (generator) distribution.

Proof Since the generator is fixed, the goal of the discrimi-
nator is to maximize the Ladv where:

Ladv(G, D) =
∫

y

∫

s
pd ( y, s) log D( y|s)d yds

+
∫

s

∫

z
pd (s)pz(z) log(1 − D(G(s, z)|s))dsdz

=
∫

y

∫

s
pd (s, y) log D( y|s)d y

+ pg(s, y) log(1 − D( y|s))d yds (8)

To maximize the Ladv , we need to optimize the integrand
above. We note that with respect to D the integrand has the
form f (y) = a · log(y) + b · log(1 − y). The function f
for a, b ∈ (0, 1) as in our case, obtains a global maximum in
a

a+b , so:

Ladv(G, D) ≤
∫

y

∫

s
pd(s, y) log D∗( y|s)d y

+ pg(s, y) log(1 − D∗( y|s))d yds (9)

with

D∗ = pd(s, y)
pd(s, y) + pg(s, y)

(10)

thus Ladv obtains the maximum with D∗. ��
Proposition 2 Given theoptimal discriminator D∗ the global
minimum of Ladv is reached if and only if pg = pd , i.e.
when the model (generator) distribution matches the data
distribution.

Proof From Proposition 1, we have found the optimal dis-
criminator as D∗, i.e. the argmaxDLadv . If we replace the
optimal value we obtain:

max
D

Ladv(G, D)

=
∫

y

∫

s
pd(s, y) log D( y|s)d y

+ pg(s, y) log(1 − D( y|s))d yds

=
∫

y

∫

s
pd(s, y) log

(
pd(s, y)

pd(s, y) + pg(s, y)

)

+ pg(s, y) log
(
1 − pd(s, y)

pd(s, y) + pg(s, y)

)
d yds

=
∫

y

∫

s
pd(s, y) log

(
pd(s, y)

pd(s, y) + pg(s, y)

)

+ pg(s, y) log
(

pg(s, y)

pd(s, y) + pg(s, y)

)
d yds (11)

We add and subtract log(2) from both terms, which after
few math operations provides:

max
D

Ladv(G, D) = −2 · log(2) + K L

(
pd || pd + pg

2

)

+ K L

(
pg|| pd + pg

2

)

where in the last row KL symbolizes the Kullback–Leibler
divergence. The latter one can be rewrittenmore conveniently
with the help of the Jensen–Shannon (JSD) divergence as

max
D

Ladv(G, D) = − log(4) + 2 · J SD(pd ||pg) (12)

The Jensen–Shannon divergence is non-negative and
obtains the zero value only if pd = pg . Equivalently, the
last equation has a global minimum (under the constraint
that the discriminator is optimal) when pd = pg . ��

2.6 Experiment on Synthetic Data

We design an experiment on synthetic data to explore the
differences between the original generator and our two path-
way generator. Specifically, we design a network where each
encoder/decoder consists of two fully connected layers; each
layer followed by a RELU. We optimize the generators only,
to avoid adding extra learned parameters.

The inputs/outputs of this network span a low-dimensional
space, which depends on two independent variables x, y ∈
[−1, 1].We’ve experimentedwith several arbitrary functions
in the input and output vectors and they perform in a similar
way. We exhibit here the case with input vector [x, y, e2x ]
and output vector [x + 2y + 4, ex + 1, x + y + 3, x + 2].
The reg pathway accepts the three inputs, projects it into a
two-dimensional space and the decoder maps it to the target
four-dimensional space.

We train the baseline and the autoencoder modules sep-
arately and use their pre-trained weights to initialize the
two pathway network. The loss function of the two pathway
network consists of the Llat (Eq. 4) and �2 content losses
in the two pathways. The networks are trained either till
convergence or till 100,000 iterations (batch size 128) are
completed.
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Fig. 3 Qualitative results in the synthetic experiment of Sect. 2.6. Each
plot corresponds to the respectivemanifolds in the output vector; the first
and third depend on both x, y (xyz plot), while the rest on x (xz plot).
The green color visualizes the target manifold, the red the baseline and

the blue ours. Even though the two models include the same parameters
during inference, the baseline does not approximate the target manifold
as well as our method (Color figure online)

During testing, 6400 new points are sampled and the over-
laid results are depicted in Fig. 3; the individual figures for
each output can be found in the supplementary. The �1 errors
for the two cases are: 9843 for the baseline and 1520 for the
two pathway generator. We notice that the two pathway gen-
erator approximates the target manifold better with the same
number of parameters during inference.

3 Experiments

In the following paragraphs we initially design and explain
the noise models (Sect. 3.1), we review the implementation
details (Sect. 3.2) and the experimental setup (Sect. 3.3).
Sequentially, we conduct an ablation study and evaluate our
model on real-worlds datasets, including natural scenes and
human faces.

3.1 Noise Models

In this work, we explore two different types of noise with
multiple variants tested in each type. Those two types are
Bernoulli noise and adversarial noise.

Bernoulli noise For an input s, the noise model is rep-
resented by a Bernoulli function �v(s, θ). Specifically, we
have

�v(s, θ)i, j =
{

v with probability θ

si, j with probability 1 − θ
(13)

To provide a practical example, assume that v = 0 and
θ = 0.5, then an image s has half of its pixels converted to
black, which is known as sparse inpainting.

Adversarial examples Apart from testing in the face of
additional Bernoulli noise, we explore adversarial attacks in
the context of dense regression. Recent works, e.g. Szegedy
et al. (2014), Yuan et al. (2017), Samangouei et al. (2018)
and Madry et al. (2018), explore the robustness of (deep)
classifiers.

Contrary to classification case, there has not been much
investigation of adversarial attacks in the context of image-
to-image translation or any other dense regression task.
However, since an adversarial example perturbs the source
signal, dense regression tasks can be vulnerable to such
modifications. We conduct a thorough investigation of this
phenomenon by attacking our model with three adversarial
attacks for dense regression. We introduce the adversarial
attacks in the following paragraphs.

The first, and most ubiquitous attack is the fast gradi-
ent sign method (FGSM), introduced by Goodfellow et al.
(2015). It is the simplest attack and the basis for several
variants. In addition, the authors of Dou et al. (2018) mathe-
matically prove the efficacy of this attack in the classification
case. Let us define the auxiliary function:

u(s) = s + εsign (∇sL(s, y)) (14)

with L(s, y) = || y − G(s)||1. Then, each source signal s is
modified as:

s̃ = s + η (15)

The perturbation η is defined as:

η = u(s) (16)

with ε a hyper-parameter, y the target signal andL an appro-
priate loss function.

However, to make the perturbation stronger, we iterate the
gradient computation. The iterative FGSM (IFGSM)method
of Dou et al. (2018)9 is:

s̃(k) = Clip{u(s̃(k−1))} (17)

where k is the kth iteration, s̃(0) = s and Clip function
restricts the outputs in the source signal range.

9 This method is also known as basic iterative method (BIM) Kurakin
et al. (2016).
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The second attack that is selected is the projected gradient
descent method (PGD) of Madry et al. (2018). PGD is an
iterative method which given the source signal s̃(0) = s, it
modifies it as:

s̃(k) = Clip{�su(s̃(k−1))} (18)

Robustness to this attack typically implies robustness to all
first order methods (Madry et al. 2018), making it a particu-
larly interesting case study.

The third adversarial method is the latent attack of Kos
et al. (2018). The loss in this attack is computed in the latent
space, i.e. the output of the encoder e(G)(s).

In the following sections, we model the (I)FGSM attacks
with the tuple (k, ε) that declare the total iterative steps and
the ε hyper-parameter value respectively. In the Bernoulli
case, we use three cases of v, i.e. v = 0 corresponding
to black pixels, v = 1 corresponding to white pixels and
channel-wise v = 0. We abbreviate the three cases with
a triplet (θv=0, θv=1, θv=0,channel) denoting the θ probabil-
ity in each case. For instance, the triplet (50, 0, 0) denotes
Bernoulli noise with v = 0 and probability 50%. Unless
explicitlymentioned otherwise, the default adversarial attack
below is the IFGSM.

3.2 Implementation Details

Conditional GAN model Several cGAN models have been
proposed (see Sect. 1.1). In our experiments, we employ a
simple cGAN model based on the best (experimental) prac-
tices so far Isola et al. (2017), Salimans et al. (2016) and Zhu
et al. (2017).

The works of Salimans et al. (2016) and Isola et al. (2017)
demonstrate that auxiliary loss terms, i.e. feature match-
ing and content loss, improve the final outcome, hence we
consider those as part of the baseline cGAN. The feature
matching loss10 is:

L f = Es, y∼pd (s, y)||π(G(s)) − π( y)|| (19)

where π() extracts the features from the penultimate layer of
the discriminator.

The final loss function for the cGAN is the following:

LcGAN = Ladv + λc · Es, y∼pd (s, y)[||G(s) − y||]︸ ︷︷ ︸
content−loss

+λπ · L f

(20)

where λc, λπ are hyper-parameters to balance the loss terms.
RoCGAN model To fairly compare against the aforemen-

tioned cGAN model, we make only the following three

10 Referred to as projection loss in Chrysos et al. (2019a).

adaptations: (i) we duplicate the encoder/decoder (for the
new AE pathway); (ii) we share the decoder’s weights in the
two pathways; (iii) we augment the loss function with the
additional loss terms. We emphasize that this is only per-
formed for experimental validation; in practice the encoder
of the AE pathway can have a different structure or new task-
specific loss terms can be introduced; we havemade no effort
to optimize furtherRoCGAN.Weuse �1 loss for both theLlat

and LAE .
Training detailsA ‘layer’ refers to a block of three units: a

convolutional unit with a 4×4 kernel size, followed byLeaky
RELU and batch normalization (Ioffe and Szegedy 2015).
The hyper-parameters introduced by our model are: λl = 1,
λae = 100. The values of the common hyper-parameters,
e.g. λc, λπ , are the same between the cGAN/RoCGAN.
A mild data augmentation technique is utilized for train-
ing cGAN/RoCGAN: The training images are reshaped to
75 × 75 and random patches of 64 × 64 are fed into the
network. Each training image is horizontally flipped with
probability 0.5; no other augmentation is used. A constant
learning rate of 2 · 10−4 (same as in Isola et al. 2017) is used
for 3 · 105 iterations with a batch size of 64. During training,
we run validation every 104 iterations and export the best
model, which is used for testing. The discriminator consists
of 3 convolutional layers followed by a fully-connected layer.
The input to the discriminator is either the output of the gen-
erator or the respective target image, i.e. we do not condition
the discriminator on the source image.

Our workhorse for testing is a network denoted ‘5layer’,
because each encoder and decoder consists of 5 layers. In
the following experiments ‘Baseline-5layer’ represents the
cGAN ‘5layer’ case, while ours is indicated as ‘Ours-5layer’.
In the skip case, we add a skip connection from the output of
the third layer of the encoder to the respective decoder layer;
we add a ‘-skip’ in the respective method name.

We train an adversarial autoencoder (AAE) (Makhzani
et al. 2015) as an established method capable of learning
compressed representations as an upper performance bound
baseline. Each module of the AAE shares the same architec-
ture as its cGAN counterpart, while the AAE is trained with
images in the target space. The target images are used as the
input to theAAEand its output, i.e. the reconstruction, is used
for the evaluation. In our experimental setting, AAE can be
thought of as an upper performance limit of RoCGAN/cGAN
for a given capacity (number of parameters).

The task selected for our testing is super-resolution by
4×. That is, we downsample an image 4 times; we upsam-
ple it with bilinear interpolation and use this interpolated as
the corrupted image. In the supplementary, we include an
experiment with sparse inpainting.
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3.3 Experimental Setup

Datasets In addition to validating our model on synthetic
data, we utilize a variety of real-world datasets:

– MS-Celeb (Guo 2016) is introduced for large scale
face recognition. It contains approximately 10 million
facial images from 1 million celebrities. The dataset was
collected semi-automatically, while the noise was not
manually removed from the training images.We export 3
million samples for training and use 100 thousand images
for validation.

– CelebFaces attributes dataset (Celeb-A) (Liu et al.
2015) consists a popular benchmark for large-scale face
attribute classification. Each image is annotated with 40
binary attributes. Celeb-A is used in conjunction with
MS-Celeb in this work, where the latter is used for train-
ing and the former is used for testing. All the 202,500
samples of Celeb-A are used for testing. This combina-
tion is the main focus for our experiments; specifically it
is used in Sects. 3.4, 3.5, 3.6 and 3.8.

– 300 Videos in the Wild (300VW) (Shen et al. 2015) is
a benchmark for face tracking; it includes a sparse set
of points annotated per frame. It includes three cate-
gories of videos with increasing difficulty; in this work
we use as testset the most challenging category (categ
3) that includes over 27,000 frames. We use 300VW in
Sect. 3.7 for assessing the performance of RoCGAN in
video datasets.

– ImageNet (Deng et al. 2009) is a large image database
with 1000 different objects. An average of over five
hundred images per objects exist. In the experiment for
natural scenes, we utilize the training set of Imagenet
which consists of 1, 2 million images and its testset that
includes 98 thousand images (Sect. 3.5).

The two categories of images, i.e. faces and natural scenes,
are extensively used in computer vision and machine learn-
ing both for their commercial value as well as for their online
availability. For the experiments with faces, Ms-Celeb con-
sists the training set, while for the natural scenes ImageNet.

Error metrics In the comparisons of RoCGAN against
cGAN the following metrics are used:

– Structural similarity (SSIM) (Wang et al. 2004): Ametric
used to quantify the perceived image quality of an image.
We use it to compare every output image with respect to
the reference (ground-truth) image; it ranges from [0, 1]
with higher values demonstrating better quality.

– Frechet inception distance (FID) Heusel et al. (2017):
A measure for the quality of the generated images,
frequently used with GAN. It extracts second order

information from a pretrained classifier11 applied to
the images. FID assumes that the two distributions p1
and p2 are multivariate Gaussian, i.e. N (μ1,C1) and
N (μ2,C2). Then:

F I D(p1, p2) = ||μ1 − μ2||22 + Tr(C1 + C2 − 2(C1C2)
1
2 )

(21)

In our work p1 is the distribution of the ground-truth
images, while p2 is the distribution of the generated
images from each method. FID is lower bounded (by 0)
in the case that p2 matches p1; a lower FID score trans-
lates to the distributions being ‘closer’. We compute the
FID score using the Inception network (in Chainer).

3.4 Ablation Study

In the following paragraphs we conduct an ablation study to
assess RoCGAN in different cases; specifically we evaluate
the sensitivity in a hyper-parameter range and different ini-
tialization options. We also summarize different options for
loss functions and other architecture-related choices.

Unless mentioned otherwise, ‘5layer’ network is used; the
task selected is face super-resolution while SSIM is reported
as a metric in this part. The options selected in the ablation
study are used in the following experiments and comparisons
against cGAN.

3.4.1 Initialization of RoCGAN

We conduct an experiment to evaluate different initialization
options for RoCGAN. The motivation for the different ini-
tializations is to assess the necessity of the pretrained models
as used in Chrysos et al. (2019b). The options are:

– Random initialization for all modules.
– Initializing the e(AE) to the pretrained weights of the

respective AAE encoder and the rest modules from the
pretrained cGAN.

– Initializing only the unsupervised pathway from the
respective pretrained generator of AAE. The rest mod-
ules are initialized randomly.

The results in Table 1 demonstrate that the initializations
are not crucial for the final performance, however the second
option performs slightly worse. We postulate that the pre-
trained cGAN makes RoCGAN get stuck ‘near’ the cGAN
optimum. In the remaining experiments, we use the third
option, i.e. we initialize the unsupervised pathway from the

11 Typically the features from the last layer of the pretrained Inception
CNN are used.
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Table 1 Quantitative results evaluating the different initialization
options (Sect. 3.4.1)

Initialization RI PRETR AE

SSIM 0.830 0.812 0.830

FID 58.2 51.2 57.4

The abbreviations ‘RI’, ‘PRETR’, ‘AE’ stand for the three options of
(i) random initialization, (ii) pretrained models, (iii) only pretrained AE
pathway. Note that all RI and AE initializations are equivalent in terms
of SSIM, while the PRETR is worse. Therefore, we can select either RI
or AE for initializing RoCGAN

Table 2 Validation of λl hyper-parameter in the ‘5layer’ network

λl 0.1 1 5 10 20 50 100

SSIM 0.825 0.830 0.830 0.829 0.829 0.828 0.828

FID 58.9 57.4 55.5 56.1 56.2 56.4 56.1

The final SSIM values do not vary much for λl in a wide range, which
indicates that our model is robust to λl choices

respective AAE generator while the rest modules are initial-
ized randomly.

3.4.2 Hyper-Parameter Range

Our model introduces two new loss terms, i.e.Llat andLAE ,
that need to be validated. Below, we scrutinize one hyper-
parameter every time, while we keep the rest in their selected
value. During our experimentation, we observed that the
optimal values of these hyper-parameters might differ per
case/network, however unless we mention it explicitly in an
experiment the hyper-parameters remain the same as afore-
mentioned.

The search space for each term is decided from its theoret-
ical properties and our intuition. In more details, λae would
have a value at most equal to λc.12 The latent loss encourages
the two pathways’ latent representations to be similar, how-
ever since the final evaluation is performed in the pixel space,
we postulate that a value smaller than λc is appropriate.

In Table 2, different values for the λl are presented. The
optimal values emerge in the interval [1, 10), however even
for the rest choices the SSIM values are similar. In our exper-
imentation, RoCGAN is more resilient to changes in λl than
other hyper-parameters.

Different values of λae are considered in Table 3. RoC-
GAN are robust to a wide range of values and both the visual
and the quantitative results remain similar. In the following
experiments we use λae = λc = 100 because of the semantic
similarity with the content loss; further improvements can be
obtained by the best validation values.

12 To fairly compare with baseline cGAN, we use the same value as in
Isola et al. (2017).

Table 3 Validation of λae values (hyper-parameter choices) in the
‘5layer’ network

λae 1 5 10 50 100 150 200

SSIM 0.834 0.834 0.834 0.832 0.830 0.829 0.828

FID 52.8 54.2 53.5 58.3 57.4 59.5 59.8

The network remains robust for a wide range of values of the hyper-
parameterλae. The best performance is obtained for lower values ofλae ,
i.e. λae < 50, however in our evaluation we use λae = λc = 100 for
the semantic meaning. For further improvements one of the rest values
or even further search might result in better hyper-parameter values

Table 4 Quantitative results on the discriminator variants (see
Sect. 3.4.3)

Discriminator options Default Concat Proj

SSIM 0.830 0.829 0.827

FID 57.4 59.2 60.1

The ‘Concat’ abbreviates the concatenation of Isola et al. (2017), while
‘Proj’ abbreviates the projective discriminator of Miyato and Koyama
(2018). All three discriminators result in a similar performance, with
the projective discriminator resulting in a marginal deterioration in the
score. However, we believe that for larger networks, there might be
indeed difference in the performance

3.4.3 Robustness on Discriminator Variants

Since the advent of cGAN, several discriminator architec-
tures have been used. In the original paper, the discriminator
accepts as input only the output of the generator or a sample
from the target distribution. By contrast, Isola et al. (2017),
propose to instead concatenate the source and the target
images. Miyato and Koyama (2018) argue that instead of
concatenation, the inner product of the source and the target
image should be computed.

We assess the robustness of RoCGAN under these dif-
ferent discriminators. As a reminder, we consider the dis-
criminator of Mirza and Osindero (2014) as the default; to
implement the variants of Isola et al. (2017) and Miyato and
Koyama (2018), we do not change the number of depth of
the layers, but only perform the respective concatenation,
projection respectively.

In Table 4 the evaluation demonstrates that all three discr-
minators perform similarly. There is a marginal performance
drop in the case of the projective discriminator, but this could
be mitigated with a stronger generator for example. This
experiment demonstrates that the proposed RoCGAN is not
tied to a single discriminator, but rather can work with a
number of discriminator architectures.

3.4.4 Other Training Options

We evaluate two more options for training our model: (a)
whether the improvement can be obtained without batch nor-
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Table 5 Quantitative results evaluating training options (Sect. 3.4.4)

Training options Default �2 No BN

SSIM 0.830 0.831 0.830

FID 57.4 58.6 55.0

The two options (along withe the ‘Default’) are (a) to use an �2 loss for
Llat and (b) to remove batch normalization from the generator path-
ways. In both cases the performance remains the same

Table 6 Quantitative comparison of cGAN/RoCGAN (Sect. 3.5)

Experiment Faces Scenes

Method SSIM FID SSIM FID

Baseline-5layer 0.791 67.7 0.539 156.1

Ours-5layer 0.830 57.4 0.552 128.9

AAE 0.903 29.0 0.723 68.0

In both scenes and faces datasets RoCGAN verifies our intuition and
outperforms the baseline

Table 7 Quantitative comparison of cGAN/RoCGAN for the case of
skip connections (Sect. 3.5)

Metric SSIM FID
Method

Baseline-5layer-skip 0.843 50.0

Ours-5layer-skip 0.857 47.3

The task is face super-resolution and the results are similar to the net-
works without skip connections

malization, (b) a different latent loss function (�2). In Table 5
we add the two options along with the default options from
above. The results indicate that (i) batch normalization does
not seem to contribute in RoCGAN’s performance in this
network, (ii) our choice of �1 can be replaced from another
function with similar results. In the rest of the experiments,
we use batch normalization and �1 for Llat .

3.5 Testing on Static Images

Our first evaluation against baseline cGAN is on testingwith-
out any additional noise (other than the implicit biases of the
datasets). The task for both the faces and the scenes is super-
resolution in the respective domain. The training images are
fromMs-Celeb and ImageNet respectively, while the testing
images from Celeb-A and ImageNet testset. The numerical
results in Table 6 dictate that in both cases andwith bothmet-
rics, RoCGAN outperform cGAN. We also experiment with
the ‘5layer-skip’ networks to assess the performance in the
skip case. The results in Table 7 illustrate similar behavior to
the previous case, i.e. our model outperforms the baseline.

3.6 Testing Under Additional Noise

We conduct a dedicated experiment to evaluate the resilience
of the models to noise. The idea is to artificially corrupt the
source signal s with the noise models of Sect. 3.1, i.e. feed
as input s + f (s, G) for some corruption function f .

We use the ‘5layer’ networks in the face super-resolution
task and corrupt them with (a) adversarial and (b) Bernoulli
noise.

Bernoulli noise As a reminder the noise in this exper-
iment is used exclusively during testing. All three cases
of (1, 0, 0), (0, 1, 0), (0, 0, 1) are assessed13, along with
mixed cases. The quantitative results for Bernoulli noise are
reported Table 8. Ourmodel is consistently better with a rela-
tive performance gain of up to 9.9%. Indicative visual results
are depicted in Fig. 4.

Adversarial noise The performance under the three differ-
ent adversarial attacks is assessed. For IFGSM, we initially
start with a small value of ε, i.e. ε = 0.01, and progressively
increase either the steps or the hyper-parameter’s value. As
expected, the results in Table 9 highlight that increasing val-
ues of either the steps or ε deteriorate the performance of the
networks. However, the performance of cGAN decline with
a faster pace when compared to our proposed RoCGAN. The
relative performance difference (in SSIM) is 4.9% in the orig-
inal testing, while it progressively grows up to 24.3% in the
(1, 0.1) noise. The effect of the steps in IFGSM is further
explored in Fig. 5. We fix ε = 0.01 and study the evolution
in performance as we vary number of steps. Note that the
curve of cGAN is much steeper than that of RoCGAN as the
number of steps increase. Beyond 10 steps, the performance
of cGAN drops below 0.5 and can essentially be considered
as noise. We perform the same experiment with the PGD
attack; the effect of the increasing steps are visualized in
Fig. 6. We note that after 10 steps there is substantial differ-
ence between the two models. This difference is maintained
and increased if we increase the steps to 30.We also compare
the two models under the latent attack in Fig. 7. For 1 or 2
iteration of the latent attack, the curves are similar to the pre-
vious two, however for more steps the curves become steeper
than in previous attacks, while the performance gap grows
faster in this attack. The efficiency of the three attacks dif-
fers when it comes to the number of steps required, with the
latent attack being the most successful. Remarkably though,
all three attacks have similar effects in the twomodels, i.e. the
performance gap increases as the number of steps increase.
By implementing three adversarial attacks, we illustrate that
empirically the proposed model is more robust in the face of
noise against the baseline.

13 As a reminder (a, b, c) means that with probability a% a pixel is
converted to black; with probability b% converted to white and with
probability c% converted channel-wise to black.

123



International Journal of Computer Vision (2020) 128:2665–2683 2677

Table 8 Quantitative evaluation of the ‘5layer’ network under Bernoulli noise (face super-resolution; Sect. 3.6)

Noise type Bernoulli

Method (1, 0, 0) (5, 0, 0) (0, 1, 0) (0, 0, 1) (0, 0, 5) (1, 1, 1)

SSIM FID SSIM FID SSIM FID SSIM FID SSIM FID SSIM FID

Baseline-5layer 0.756 83.8 0.646 155.5 0.709 125.5 0.768 90.9 0.692 132.2 0.658 173.4

Ours-5layer 0.800 71.3 0.709 119.7 0.767 102.0 0.812 74.0 0.752 108.9 0.723 144.2

RoCGAN exhibit improved performance when compared to the baseline in every case; this intensifies as the noise increases

(a)GT (b)Corr-
(1,0,0)

(c) cGAN-
(1,0,0)

(d)RoCGAN-
(1,0,0)

(e)Corr-
(0,1,0)

(f) cGAN-
(0,1,0)

(g)RoCGAN-
(0,1,0)

(h)Corr-
(1,1,1)

(i) cGAN-
(1,1,1)

(j)RoCGAN-
(1,1,1)

Fig. 4 Visual results depicting Bernoulli noise. Similarly to Fig. 10
different samples are visualized per row. The corrupted images are visu-
alized in the original size to make the additional noise more visible. The

compared methods have to perform denoising in addition to the trans-
lation they are trained on

Table 9 Quantitative evaluation of the ‘5layer’ network under adversarial noise (face super-resolution; Sect. 3.6)

Noise type No noise Adversarial

Method (1, 0.01) (2, 0.01) (5, 0.01) (1, 0.05) (1, 0.10)

SSIM FID SSIM FID SSIM FID SSIM FID SSIM FID SSIM FID

Baseline-5layer 0.791 67.7 0.785 70.8 0.773 76.4 0.705 97.2 0.679 107.8 0.555 190.3

Ours-5layer 0.830 57.4 0.828 58.8 0.822 61.0 0.800 69.3 0.781 74.5 0.690 101.8

AAE 0.903 29.0 0.902 28.8 0.901 28.6 0.891 28.0 0.890 28.0 0.862 27.6

The no-noise refers to original testing, while the rest columns from left to right include progressively increasing amount of noise. It is noticeable
that the difference in performance between cGAN and RoCGAN is increasing in both metrics
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Fig. 5 Performance of cGAN/RoCGAN with respect to the number of
steps in the IFGSM noise (mean SSIM on the left, FID score on the
right). We emphasize that a higher SSIM (or a lower FID) indicates
better performance. The number of steps vary from 1 to 10, while the
highlighted region denotes the variance (left). The cGANmodel exhibits
steeper curve over RoCGAN

Fig. 6 Performance of cGAN/RoCGAN with respect to the number of
steps in the PGD noise (mean SSIM on the left, FID score on the right).
In contrast to the IFGSM noise, we plot every 5 steps, since more steps
are required in this case. Similarly to the IFGSM in Fig. 5, the baseline
(cGAN) exhibits steeper curve over RoCGAN

Fig. 7 Performance of cGAN/RoCGAN with respect to the number of
steps in the latent attack (mean SSIM on the left, FID score on the right).
The performance drop of cGAN model is steeper than the RoCGAN,
however notice that this attack is more successful

To further analyze the differences between the twomodels,
we create a histogram plot based on the SSIM values. The
interval of [0.5, 0.95] that the SSIMvalues lie is divided in 20
bins, while the vertical axis depicts the frequency of each bin.
A histogram with values concentrated to the right (towards
1) signifies superior performance. The histograms comparing
‘5layer’ cGAN/RoCGAN under IFGSM (adversarial noise)
are plotted in Fig. 8 (respectively for the Bernoulli noise, the
histograms are in Fig. 9). We note that there is an increasing
difference between the original histogram (no noise) and the
increasing steps of IFGSM, e.g. Fig. 8a versus Fig. 8d. The
same difference is observed as ε increases; in the extreme
case of ε = 0.1 there is only minor overlap between the
two methods. In Fig. 10, qualitative results demonstrating
the adversarial noise are depicted.

(a) Original (b) (1, 0.01)

(c) (2, 0.01) (d) (5, 0.01)

(e) (1, 0.05) (f) (1, 0.1)

Fig. 8 Histogram plots for the SSIM under adversarial noise (Sect.
3.6). The two distributions differ in the original testing, however the
difference increases dramatically for more intense noise

3.7 Testing on aVideo Sequence

Aside of the experiment with the static testset, we use the
300VW (Shen et al. 2015) video dataset to assess RoCGAN.
The videos include non-linear corruptions, e.g. compres-
sion, blurriness, rapidmotion; such corruptionsmake a video
dataset the perfect testbed for our evaluation.

InTable 10weadd the results of the experiment.14 Theper-
formance of cGAN is slightly worse than the related exper-
iment in Celeb-A, while RoCGAN’s performance remains
similar to the static case. The difference in the performance

14 The most challenging Category3 is selected for the experiment; the
other two categories include almost semi-frontal videos as mentioned
in Chrysos and Zafeiriou (2017).

123



International Journal of Computer Vision (2020) 128:2665–2683 2679

(a) (1, 0, 0) (b) (5, 0, 0)

(c) (0, 1, 0) (d) (0, 0, 1)

(e) (0, 0, 5) (f) (1, 1, 1)

Fig. 9 Histogram plots for the SSIM under Bernoulli noise (Sect. 3.6)

increases in the additional noise cases. The FID perfor-
mance differs from the respective static experiment, since
the mean and covariance for the empirical target distribution
are extracted fromCeleb-A in both cases.We provide a video
of the results in https://youtu.be/RvoW4AYnzQU.

3.8 Cross-Noise Experiments

A reasonable question is whether data augmentation can
be used to make the model robust. In our particular setup,
we scrutinize this assumption below: we augment the
training samples with noise and assess the testing per-
formance. Specifically, we scrutinize the performance of
cGAN/RoCGAN with cross-noise experiments, i.e. we train
with one type of noise and test with a different type of noise.
For a fair comparison with the aforementioned experiments,
we keep the same architectures as above, i.e. the ‘5layer’
network, while the task is face super-resolution.

Thefirst experiment is conductedby trainingwithBernoulli
noise;while during testing, adversarial perturbations (IFGSM)
are used. The Bernoulli noise (during training) is (5, 0, 0);
the variants (10, 0, 0) and (θ, 0, 0) with θ uniformly sam-
pled in each iteration from [0, 10] were tried but resulted in
similar outcomes. The effect of IFGSM for different steps is
plotted in Fig. 11; both models exhibit a small improvement
with respect to their counterparts trained without noise in
Sect. 3.6. Nevertheless, the RoCGAN outperform substan-
tially the cGAN baseline in the face of increasing IFGSM
steps.

An additional experiment is conducted with a completely
new type of noise, Gaussian noise, i.e. a type of noise that has
not been used previously in any of our models. Each training
sample is perturbed with additive Gaussian noise. In every
iteration a dense noisemask is sampled online fromN (0, 10)
(for pixels in the [0, 255] range). The perturbed input for each
method is s +N (0, 10); see Fig. 12 for a visual illustration.
The results when trained with adversarial noise (IFGSM)
are visualized in Fig. 13, while the comparison with both
Bernoulli and adversarial noise is reported in Table 11. The
patterns of previous sections (e.g. Sect. 3.6) emerge under
Bernoulli noise, i.e. the more intense the noise the larger
the performance gap. For instance, the original difference of
0.041 is converted into a difference of 0.069 with 1% white
pixels; this intensifies to 0.073 under the (1, 1, 1) case. The
performance of both methods improves when trained with
Gaussian noise in under both Bernoulli and adversarial noise
during testing. However, the performance gap between the
baseline and our model remains similar when we increase
the number of steps (IFGSM); see Fig. 13.

4 Conclusion

In this work we study the robustness of conditional GANs
in the face of noise. Despite their notorious sensitivity to
noise, the topic has so far been relatively under-
studied. In this paper, we introduced the robust conditional
gan (RoCGAN) model, a new conditional GAN capable of
leveraging unsupervised data to learn better latent represen-
tations. RoCGAN modify the generator into a two-pathway
generator. The first pathway (reg pathway), performs the
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(a) GT (b) Corr (c) cGAN (d) RoCGAN (e) cGAN-
(5,0.01)

(f) RoCGAN-
(5,0.01)

(g) cGAN-
(1,0.05)

(h) RoCGAN-
(1,0.05)

Fig. 10 Visual results for testing with adversarial noise (IFGSM). The
columns correspond to a the target images, b the original corrupted (i.e.
downsampled) images, c, d the outputs of the no-noise (i.e. images of
b), e-h pairs of cGAN/RoCGAN outputs with adversarial noise (see

Sect. 3.1 for the encoding). It is noticeable that as the noise increases
cGAN outputs deteriorate fast in contrast to their RoCGAN outputs.
Notice the ample differences for intense noise; for instance, in columns
(e) versus (f) where cGAN includes unnatural lines in all cases

Table 10 Quantitative results for the video sequence testing (Sect. 3.7)

Method Noise type

No noise Bernoulli Adversarial

(0, 0, 1) (1, 1, 1) (2, 0.01) (1, 0.05) (2, 0.05)

SSIM FID SSIM FID SSIM FID SSIM FID SSIM FID SSIM FID

Baseline-5layer 0.785 192.1 0.770 189.8 0.627 175.7 0.768 189.2 0.676 159.3 0.546 167.9

Ours-5layer 0.848 191.0 0.839 188.1 0.722 150.0 0.843 180.2 0.800 153.1 0.727 155.7

The relative gain (of RoCGAN in SSIM) in the video sequence is 8% (original testset), while it grows up to 33% (intense noise)
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Fig. 11 Performance of a cGAN/RoCGAN (mean SSIM) trained with
Bernoulli noise. The x-axis depicts an increasing number of iterations of
the IFGSM from 1 to 10. The highlighted region in each curve denotes
the variance

Fig. 12 Visual example of the training with Gaussian noise (see
Sect. 3.8). The ground-truth image is downsampled for the ‘Corr’ ver-
sion; Gaussian noise (‘GNoise’) is sampled and added to the corrupted
image; the ‘Corr+GNoise’ consists the training image for each method

Fig. 13 Performance of cGAN/RoCGAN (mean SSIM) when trained
with Gaussian noise. Both models are more robust when trained with
Gaussian noise; it requires 15 adversarial steps instead of 10 to achieve
the same degradation. Nevertheless, the same pattern with increasing
performance gap emerges in the Gaussian noise

regression from the source to the target domain. The new,
added pathway (AE pathway) is an autoencoder in the target
domain. By addingweight sharing between the two decoders,
we implicitly constrain the reg pathway to output signals that
span the target manifold. We prove that our model shares
similar convergence properties with generative adversarial
networks. We demonstrated through large scale experiments
on images, for both natural scenes and faces, that RoCGAN
outperform existing, state-of-the-art conditional GAN mod-
els, especially in the face of intense noise. Our model can be
used with any form of data and has successfully been applied
to sparse inpainting/denoising in Chrysos et al. (2019b) as
well as super-resolution. We hope that our work can pave the
way towards more robust conditional GANs. Going forward,
we aim to study how to merge different types of noise and
how to achieve foolproof robustness in a dense regression
setting. Additionally, we aim to study how to combine the
polynomial networks (Chrysos et al. 2020) with RoCGAN.
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Table 11 Quantitative evaluation (mean SSIM) of the ‘5layer’ network when trained with Gaussian noise (Sect. 3.8)

Method Noise type

No noise Bernoulli Adversarial

(1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 1) (1, 0.01) (2, 0.01) (5, 0.01) (10, 0.01)

Baseline-5layer 0.782 0.760 0.713 0.772 0.676 0.778 0.772 0.746 0.662

Ours-5layer 0.823 0.803 0.782 0.815 0.749 0.820 0.817 0.801 0.764

The initial difference of 0.041 is converted into a difference of 0.069 with 1% white pixels; that is RoCGAN increases the performance gap under
unseen noise. The same trend is observed in the adversarial (IFGSM) noise
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