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Abstract
We investigate the problem of learning a probabilistic distribution over three-dimensional shapes given two-dimensional views
of multiple objects taken from unknown viewpoints. Our approach called projective generative adversarial network (PrGAN)
trains a deep generative model of 3D shapes whose projections (or renderings) matches the distribution of the provided 2D
views. The addition of a differentiable projection module allows us to infer the underlying 3D shape distribution without
access to any explicit 3D or viewpoint annotation during the learning phase. We show that our approach produces 3D shapes
of comparable quality to GANs trained directly on 3D data. Experiments also show that the disentangled representation of
2D shapes into geometry and viewpoint leads to a good generative model of 2D shapes. The key advantage of our model is
that it estimates 3D shape, viewpoint, and generates novel views from an input image in a completely unsupervised manner.
We further investigate how the generative models can be improved if additional information such as depth, viewpoint or part
segmentations is available at training time. To this end, we present new differentiable projection operators that can be used to
learn better 3D generative models. Our experiments show that PrGAN can successfully leverage extra visual cues to create
more diverse and accurate shapes.

Keywords 3D generative models · Unsupervised learning · Differentiable rendering · Adversarial networks

1 Introduction

The ability to infer 3D shapes of objects from their 2D views
is one of the central challenges in computer vision. For exam-
ple, when presented with a catalogue of airplane silhouettes
as shown in the top of Fig. 1, one can mentally infer their
3D shapes by simultaneously reasoning about the shape and
viewpoint variability. In this work, we investigate the prob-
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lem of learning a generative model of 3D shapes from a
collection of images of an unknown set of objects within
a category taken from an unknown set of views. The images
can be thought of as generalized projections of 3D shapes into
a 2D space in the form of silhouettes, depth maps, or even
part segmentations. The problem is challenging as one is not
provided with the information about which object instance
was used to generate each image, the viewpoint from which
each image was taken, the parameterization of the under-
lying shape distribution, or even the number of underlying
instances. Hence, traditional techniques based on structure
from motion (Hartley and Zisserman 2003; Blanz and Vetter
1999) or visual hulls (Laurentini 1994), cannot be directly
applied.

We use the framework of generative adversarial networks
(GANs) (Goodfellow et al. 2014) and augment the 3D shape
generator with a projection module, as illustrated in Fig. 2.
The generator produces 3D shapes, the projection module
renders the shape from viewpoint sampled from a viewpoint
distribution, and the adversarial network discriminates real
images from generated ones. The projection module is a dif-
ferentiable renderer that allows us to map 3D shapes to 2D
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Fig. 1 Our algorithm infers a generative model of the underlying 3D
shapes given a collection of unlabeled images rendered as silhouettes,
semantic segmentations or depth maps. To the left, images representing
the input dataset. To the right, shapes generated by the generative model
trained with those images

images, aswell as back-propagate the gradients of 2D images
to 3D shapes. Once trained, themodel can be used to infer 3D
shape distributions from a collection of images (Fig. 1 shows
some samples drawn from the generator), and to infer depth
or viewpoint from a single image, without using any 3D or
viewpoint information during learning.We call our approach
projective generative adversarial network (PrGAN).

While there are several ways of rendering a 3D shape,
we begin with a silhouette representation. The motivation

is that silhouettes can be easily extracted when objects are
photographed against clear backgrounds, such as in catalogue
images, but nevertheless they contain rich shape information.
Real-world images can also be used by removing background
and converting them to binary images. Our generative 3D
model represents shapes using a voxel representation that
indicates the occupancy of a volume in a fixed-resolution 3D
grid. Our projection module is a feed-forward operator that
renders the volume as an image. The feed-forward operator is
differentiable, providing the ability to adjust the 3D volume
based on projections. Finally, we assume that the distribution
over viewpoints is known (assumed to be uniform in our
experiments, but it could be any distribution).

We then extend our analysis first presented in our earlier
work (Gadelha et al. 2017) by incorporating recent advances
in training GANs and designing projection modules to incor-
porate richer supervision. The latter includes the availability
of viewpoint information for each image, depth maps instead
of silhouettes, or semantic segmentations such as part labels
during learning. Such supervision is easier to collect than
acquiring full 3D scans of objects. For example, one can use
a generic object viewpoint estimator (Su et al. 2015) as weak
supervision for our problem. Similarly, semantic parts can
be labeled on images directly and already exist for many
object categories such as airplanes, birds, faces, and people.
We show that such information can be used to improve 3D
reconstruction by using an appropriate projection module.

To summarize our main contributions are as follows: (i)
we propose PrGAN, a framework to learn probabilistic dis-
tributions over 3D shapes from a collection of 2D views of
objects. We demonstrate its effectiveness on learning shape
categories such as chairs, airplanes, and cars sampled from
online shape repositories (Chang et al. 2015;Wu et al. 2015).
The results are reasonable even when views from multiple

projected image
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viewpoint (θ,φ)

z ∈ R201

KxKxK kernels

{real, fake}

projection
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discriminator

convolutions + upsampling
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Fig. 2 The PrGAN architecture for generating 2D silhouettes of shapes
factorized into a 3D shape generator and viewpoint generator and pro-
jection module. A 3D voxel representation (C×N3) and viewpoint are
independently generated from the input z (201-d vector). The projection
module renders the voxel shape from a given viewpoint (θ, φ) to create

an image. The discriminator consists of 2D convolutional and pooling
layers and aims to classify if the generated image is “real” or “fake”.
The number of channels C in the generated shape is equal to one for an
occupancy-based representation and is equal to the number of parts for
a part-based representation
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categories are combined; (ii) PrGAN generates 3D shapes
of comparable quality to GANs trained directly on 3D data
(Wu et al. 2016); (iii) The learned 3D representation can be
used for unsupervised estimation of 3D shape and viewpoint
given a novel 2D shape, and for interpolation between two
different shapes, (iv) Incorporating additional cues as weak
supervision improves the 3D shapes reconstructions in our
framework.

2 RelatedWork

Estimating 3D shape from image collections. The difficulty
of estimating 3D shape can vary widely based on how the
images are generated and the assumptions one can make
about the underlying shapes. Visual-hull techniques (Lau-
rentini 1994) can be used to infer the shape of an object by
computing the intersection of the projected silhouettes taken
from known viewpoints. When the viewpoint is fixed and the
lighting is known, photometric stereo (Woodham 1980) can
provide accurate geometry estimates for rigid and diffuse sur-
faces. Structure from motion (SfM) (Hartley and Zisserman
2003) can be used to estimate the shape of rigid objects from
their views taken from unknown viewpoints by jointly rea-
soning about point correspondences and camera projections.
Non-rigid SfM can be used to recover shapes from image col-
lections by assuming that the 3D shapes can be represented
using a compact parametric model. An early example is that
of Blanz and Vetter (1999) for estimating 3D shapes of faces
from image collections where each shape is represented as
a linear combination of bases (Eigen shapes). However, 3D
shapes need to be aligned in a consistent manner to estimate
the bases which can be challenging. Recently, non-rigid SfM
has been applied to categories such as cars and airplanes by
manually annotating a fixed set of keypoints across instances
to provide correspondences (Kar et al. 2015). Our work aug-
ments non-rigid SfM using a learned 3D shape generator,
which allows us to generalize the technique to categorieswith
diverse structures without requiring correspondence annota-
tions. Our work is also related to recent work of Kulkarni
et al. (2015) for estimating a disentangled representation of
images into shape, viewpoint, and lighting variables (dubbed
“inverse graphics networks”). However, the shape represen-
tation is not explicit, and the approach requires the ability to
generate training images while varying one factor at a time.

Inferring 3D shape from a single image. Optimization-
based approaches put priors on geometry, material, and light
to estimate all of them by minimizing the reconstruction
error when rendered (Land and McCann 1971; Barrow and
Tenenbaum 1978; Barron and Malik 2015). Our approach
on the other hand exploits implicit priors induced by deep
networks (Gadelha et al. 2019; Cheng et al. 2019) for gener-

ative modeling. Recognition-based methods have been used
to estimate geometry of outdoor scenes (Hoiem et al. 2005;
Saxena et al. 2005), indoor environments (Eigen and Fergus
2015; Schwing and Urtasun 2012), and objects (Andriluka
et al. 2010; Savarese and Fei-Fei 2007). More recently, con-
volutional networks have been trained to generate views
of 3D objects given their attributes and camera parameters
(Dosovitskiy et al. 2015), to generate 3D shape given a 2D
view of the object (Tatarchenko et al. 2016), and to gen-
erate novel views of an object (Zhou et al. 2016). Most of
these approaches are trained in a fully-supervised manner
and require 3D data or multiple views of the same object
during training.

Generativemodels for images and shapes. Our work builds
on the success of GANs for generating images across a wide
range of domains (Goodfellow et al. 2014). Recently, Wu
et al. (2016) learned a generative model of 3D shapes using
GANs equipped with 3D convolutions. However, the model
was trained with aligned 3D shape data. Our work aims
to solve a more difficult question of learning a 3D-GAN
from 2D images. Several recent works are in this direction.
Rezende et al. (2016) show results for 3D shape completion
for simple shapes when views are provided, but require the
viewpoints to be known and the generativemodels are trained
on 3D data. Yan et al. (2016) learn a mapping from an image
to 3D usingmultiple projections of the 3D shape from known
viewpoints and object identification, i.e., which images cor-
respond to the same object. Their approach employs a 3D
volumetric decoder and optimizes a loss that measures the
overlap of the projected volume on the multiple silhouettes
from known viewpoints, similar to a visual-hull reconstruc-
tion. Tulsiani et al. (2017) learn a model to map images
to 3D shape provided with color images or silhouettes of
objects taken from known viewpoints using a “ray consis-
tency” approach similar to our projection module. Kanazawa
et al. (2018) employs additional supervision in the form of
keypoint annotations to generate textured 3D meshes. On
the other hand, our method does not assume known view-
points, object associations of the silhouettes making the
problem considerably harder. If object associations are given
and viewpoints are unknown, a possible solution is to use
multi-view consistency across similar objects, as demon-
strated in Tulsiani et al. (2018). More similar to our setup,
Henderson and Ferrari (2018) propose a method to learn a
generative model of 3D shapes from a set of images without
viewpoint supervision. However, their approach uses a more
constrained shape representation—sets of blocks or defor-
mations in a subdivided cube—and other visual cues such as
lighting configuration and normals.

Differentiable renderers. Our generative models rely on a
differentiable projection module to incorporate image-based
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supervision. Since our images are rendered as silhouettes,
the process can be approximated using differentiable func-
tions composed of spatial transformations and projections as
described in Sect. 3. However, more sophisticated differen-
tiable renders, such as Kato et al. (2018), Liu et al. (2018),
Li et al. (2018), that take into account shading and material
properties could provide richer supervision or enable learn-
ing from real images. These renderers rely on mesh-based
or surface-based representations which are challenging to
generate due to their unstructured nature. Recent work on
generative models of 3D shapes with point clouds (Lin et al.
2018; Gadelha et al. 2018, 2017; Fan et al. 2017; Groueix
et al. 2018; Achlioptas et al. 2017) or multiview (Lun et al.
2017; Tatarchenko et al. 2016) representations provide a pos-
sible alternative to our voxel based approach that we aim to
investigate in the future.

3 Method

Ourmethod builds uponGANs proposed inGoodfellow et al.
(2014). The goal of aGAN is to train a generativemodel in an
adversarial setup. The model consists of two parts: a gener-
ator and a discriminator. The generator G aims to transform
samples drawn from a simple distribution P that appear to
have been sampled from the original dataset. The discrimina-
tor D aims to distinguish samples generated by the generator
from real samples (drawn from a data distribution D). Both
the generator and the discriminator are trained jointly by opti-
mizing:

min
G

max
D

Ex∼D[log (D(x))] + Ez∼P [log (1 − D(G(z)))].
(1)

Our main task is to train a generative model for 3D
shapes without relying on 3D data itself, instead relying on
2D images from those shapes, without any view or shape
annotation1. In other words, the data distribution consists of
2D images taken from different views and are of different
objects. To address this mismatch we factorize the 2D image
generator into a 3D shape generator (G3D), viewpoint gener-
ator (θ, φ), and a projection module Pθ,φ as seen in Fig. 2.
The challenge is to identify a representation for a diverse set
of shapes and a differentiable projection module to create
final 2D images and enable end-to-end training. We describe
the architecture employed for each of these next.

3D shape generator (G3D). The input to the entire generator
is z ∈ R

201 with each dimension drawn independently from
a uniform distribution U(−1, 1). Our 3D shape generator
G3D transforms the first 200 dimensions of z to a N ×N ×N

1 We later relax this assumption to incorporate extra supervision.

voxel representation of the shape. Each voxel contains a value
v ∈ [0, 1] that represents its occupancy. The architecture of
the 3D shape generator is inspired by the DCGAN (Radford
et al. 2015) and 3D-GAN (Wu et al. 2016) architectures. It
consists of several layers of 3D convolutions, upsampling,
and non-linearities, as shown in Fig. 2. The first layer trans-
forms the 200 dimensional vector to a 256×4×4×4 vector
using a fully-connected layer. Subsequent layers have batch
normalization and ReLU layers between them and use 3D
kernels of size 5 × 5 × 5. At every layer, the spatial dimen-
sionality is increased by a factor of 2 and the number of
channels is decreased by the same factor, except for the last
layer whose output only has one channel (voxel occupancy).
The last layer is succeeded by a sigmoid activation instead
of a ReLU in order to keep the occupancy values in [0, 1].
Viewpoint generator (θ, φ). The viewpoint generator takes
the last dimension of z ∈ U(−1, 1) and transforms it to a
viewpoint vector (θ, φ). The training images are assumed to
have been generated from3Dmodels that are upright oriented
along the y-axis and are centered at the origin.Mostmodels in
online repositories and the real world satisfy this assumption
(e.g., chairs are on horizontal planes). We generate images
by sampling views uniformly at random from one of eight
pre-selected directions evenly spaced around the y-axis (i.e.,
θ = 0 and φ = 0◦, 45◦, 90◦, ..., 315◦), as seen in Fig. 3.
Thus the viewpoint generator picks one of these directions
uniformly at random.

Projection module (Pr ). The projection module Pr renders
the 3D shape from the given viewpoint to produce an image.
For example, a silhouette can be rendered in the following
steps. The first step is to rotate the voxel grid to the cor-
responding viewpoint. Let V : Z

3 → [0, 1] ∈ R be the
voxel grid, a function that given an integer 3D coordinate
c = (i, j, k) returns the occupancy of the voxel centered
at c. The rotated version of the voxel grid V (c) is defined
as Vθ,φ = V (�R(c, θ, φ)�), where R(c, θ, φ) is the coor-
dinate obtained by rotating c around the origin according
to the spherical angles (θ, φ).. Notice that R is straightfor-
wardly implemented as a matrix multiplication and can be
extended to model other types of transformations, e.g. per-
spective transformations. Refer to the Appendix A in Yan
et al. (2016) for more details.

The second step is to perform the projection to create an
image from the rotated voxel grid. This is done by applying
the projection operator Pr((i, j), V ) = 1 − e−∑

k V (i, j,k).
Intuitively, the operator sums up the voxel occupancy values
along each line of sight (assuming orthographic projec-
tion), and applies exponential falloff to create a smooth
and differentiable function. When there is no voxel along
the line of sight, the value is 0; as the number of vox-
els increases, the value approaches 1. Combined with the
rotated version of the voxel grid, we define our final pro-
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Fig. 3 The input to our model consists of multiple renderings of dif-
ferent objects taken from different viewpoints. Those image are not
annotated with identification or viewpoint information. Our model is

able to handle images fromobjects rendered as silhouettes (left), seman-
tic segmentation maps (middle) or depth maps (right)

jection module as: Prθ,φ((i, j), V ) = 1 − e−∑
k Vθ,φ(i, j,k).

As seen in Fig. 3 the projection module can well approx-
imate the rendering of a 3D shape as a binary silhouette
image, and is differentiable. Section 5 presents projection
modules that render the shape as a depth image or one
labeled with part segmentations using similar projection
operations, as seen in Fig. 3. Thus the 2D image genera-
tor G2D can be written compositionally as G2D = Pr (θ,φ) ◦
G3D .

Discriminator (D2D). Thediscriminator consists of a sequence
of 2D convolutional layers with batch normalization layer
and LeakyReLU activation (Maas et al. 2013) between them.
Inspired by recent work (Radford et al. 2015; Wu et al.
2016), we employ multiple convolutional layers with stride
2 while increasing the number of channels by 2, except for
the first layer, whose input has 1 channel (image) and output
has 256. Similar to the generator, the last layer of the dis-
criminator is followed by a sigmoid activation instead of a
LeakyReLU.

Training details. The entire architecture is trained by opti-
mizing the objective in Equation 1. Usually, updates to
minimize each one of the losses is applied once at each
iteration. However, in our model, the generator and the
discriminator have a considerably different number of param-
eters, as the generator is trying to create 3D shapes, while the
discriminator is trying to classify 2D images. Tomitigate this
issue, we employ an adaptive training strategy. At each iter-
ation of the training, if the discriminator accuracy is higher
than 75%, we skip its training. We also set different learn-
ing rates for the discriminator and the generator: 10−5 and
0.0025, respectively. Similarly to the DCGAN architecture
(Radford et al. 2015), we use ADAM with β1 = 0.5 for the
optimization.

4 Experiments

This section describes a set of experiments to evaluate our
basic method and several extensions. First, we compare our
model with a traditional GAN for the task of image genera-
tion and a GAN for 3D shapes. We present quantitative and
qualitative results. Second, we demonstrate that our method
is able to induce 3D shapes fromunlabeled images evenwhen
the collection contains only a single view per object. Third,
we present 3D shapes induced by our model from a variety
of categories such as airplanes, cars, chairs, motorbikes, and
vases. Using the same architecture, we show how our model
is able to induce coherent 3D shapes when the training data
contains images mixed from multiple categories. Finally, we
show applications of ourmethod in predicting 3D shape from
a novel 2D shape, and performing shape interpolation.

Input data. We generate training images synthetically using
3D shapes available in the ModelNet (Wu et al. 2015) and
ShapeNet (Chang et al. 2015) databases. Each category con-
tains a few hundred to thousand shapes. We render each
shape from8evenly spaced viewing angleswith orthographic
projection to produce binary images. Hence our assump-
tion is that the viewpoints of the training images (which are
unknown to the network) are uniformly distributed. If we
have prior knowledge about the viewpoint distribution (e.g.
there may be more frontal views than side views), we can
adjust the projection module to incorporate this knowledge.
To reduce aliasing, we render each image at 64 × 64 reso-
lution and downsample to 32 × 32. We have found that this
generally improves the results. Using synthetic data allows
us to easily perform controlled experiments to analyze our
method. It is also possible to use real images downloaded
from a search engine as discussed in Sect. 5.
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PmorfstluseR(a).NAG-D2morfstluseR(a) RGAN.

Fig. 4 Comparison between 2D-GAN (Goodfellow et al. 2014) and our PrGAN model for image generation on the chairs dataset. Refer to Fig. 9
third row, left column for samples of the input data

PmorfstluseR(a).NAG-D3morfstluseR(a) RGAN.

Fig. 5 Comparison between 3D-GAN (Wu et al. 2016) and our PrGAN for 3D shape generation. The 3D-GAN is trained on 3D voxel representation
of the chair models, and the PrGAN is trained on images of the chair models (refer to Fig. 9 third row)

4.1 Results

We quantitatively evaluate our model by comparing its
ability to generate 2D and 3D shapes. To do so, we
use 2D image GAN similar to DCGAN (Radford et al.
2015) and a 3D-GAN similar to the one presented in Wu
et al. (2016). At the time of this writing the implemen-
tation of Wu et al. (2016) is not public yet, therefore we
implemented our own version. We will refer to them as
2D-GAN and 3D-GAN, respectively. The 2D-GAN has
the same discriminator architecture as the PrGAN, but the
generator contains a sequence of 2D transposed convolu-
tions instead of 3D ones, and the projection module is
removed. The 3D-GAN has a discriminator with 3D con-
volutions instead of 3D ones. The 3D-GAN generator is
the same as the PrGAN, but without the projection mod-
ule.

The models used in this experiment are chairs fromMod-
elNet dataset (Wu et al. 2015). From those models, we create
two sets of training data: voxel grids and images. The voxel
grids are generated by densely sampling the surface and
inside of each mesh, and binning the sample points into
32 × 32 × 32 grid. A value 1 is assigned to any voxel that
contains at least one sample point, and 0 otherwise. Notice
that the voxel grids are only used to train the 3D-GAN,
while the images are used to train the 2D-GAN and our
PrGAN.

Our quantitative evaluation is done by taking the Max-
imum Mean Discrepancy (MMD) (Gretton et al. 2006)
between the data created by the generative models and the
training data. We use a kernel bandwidth of 10−3 for images
and 10−2 for voxel grids. The training data consists of 989
voxel grids and 7912 images. To compute the MMD, we
draw 128 random data points from each one of the generative
models. The distance metric between the data points is the
hamming distance divided by the dimensionality of the data.
Because the data represents continuous occupancy values,
we binarize them by using a threshold of 0.001 for images
or voxels created by PrGAN, and 0.1 for voxels created by
the 3D-GAN.

Results show that for 2D-GAN, the MMD between the
generated images and the training data is 90.13. For PrGAN,
the MMD is 88.31, which is slightly better quantitatively
than 2D-GAN. Figure 4 shows a qualitative comparison. The
results are visually very similar. For 3D-GAN, the MMD
between the generated voxel grids and the training voxel
grids is 347.55. For PrGAN, the MMD is 442.98, which
is worse compared to 3D-GAN. This is not surprising as
3D-GAN is trained on 3D data, while PrGAN is trained on
the image views only. Figure 5 presents a qualitative com-
parison. In general PrGAN has trouble generating interior
structures because the training images are binary, carry no
shading information, and are taken from a limited set of
viewing angles. Nonetheless, it learns to generate exterior
structures reasonably well.
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Fig. 6 Shapes generated from PrGAN by varying the number of views
per object in the training data. From the top row to the bottom row,
the number of views per object in the training set are 1, 2, 4, and 8
respectively

4.1.1 Varying the Number of Views per Model

In the default setting, our training data is generated by sam-
pling 8 views per object. Note that we do not provide the
association between views and instances to the generator.
Here we study the ability of our method in the more chal-
lenging case where the training data contains fewer number
of views per object. To do so, we generate a new training set
that contains only 1 randomly chosen view per object and
use it to train PrGAN. We then repeat the experiments for
2 randomly chosen views per object, and also 4. The results
are shown in Fig. 6. Notice that the 3D shapes generated
by PrGAN become slightly better as the number of views
increase. An interesting question is what’s the root cause
for such improvements—it may be due to the fact that more
training data is available as the number of views per object
increases; or it could be that the presence ofmultiple views of

the same object lead to better reconstruction. Thus we further
investigate this question by performing an additional experi-
ment, where the training data consists of 8 views per instance,
but only using half of the instances available in the dataset.
In other words, this setup has the same number of images as
the experiment with 4 views of all instances, which makes
them comparable in terms of the total amount of training
data. We observed no qualitative or quantitative difference
in the objects generated in these two scenarios. Quantita-
tive results using the model and metrics described in Sect. 5
are shown in Table 1. Therefore, we believe the improved
quality is most likely a consequence of extra data available
during training. Nevertheless, it is important to highlight that
differently from other approaches that require object corre-
spondence (Yan et al. 2016; Tulsiani et al. 2018) our method
is able to induce reasonable shapes, even in the case of a
single view per object.

4.1.2 Shape Interpolation

Once the generator is trained, any encoding z supposedly
generates a plausible 3D shape, hence z represents a 3D
shape manifold. Similar to previous work, we can interpolate
between 3D shapes by linearly interpolating their z codes.
Figure 7 shows the interpolation results for two airplanemod-
els and two chair models.

4.1.3 Unsupervised Shape and Viewpoint Prediction

Our method is also able to handle unsupervised prediction of
shapes in 2D images. Once trained, the 3D shape generator is
capable of creating shapes from a set of encodings z ∈ R

201.
One application is to predict the encoding of the underlying
3D object given a single view image of the object. We do so
by using the PrGAN’s generator to produce a large number
of encoding-image pairs, then use the data to train a neural
network (called encoding network). In other words, we cre-

Table 1 Quantitative
comparison between models
trained with different projection
operators

Model Supervision D → G(z) G(z) → D Avg.

PrGAN∗ Silhouette 0.431 0.391 0.411

PrGAN† Silhouette 0.429 0.391 0.410

PrGAN Silhouette 0.442 0.400 0.421

PrGAN Silhouette + View 0.439 0.431 0.435

PrGAN Depth 0.497 0.448 0.472

PrGAN Part Segmentation 0.496 0.507 0.502

3D-GAN Volumetric 0.538 0.530 0.534

The Chamfer similarity under the volumetric intersection over union (IoU) is shown for PrGAN trained
with varying amounts of supervision and a 3D-GAN trained with volumetric supervision. The metric (higher
the better) indicates that PrGAN with richer supervision are better and approaches the quality of 3D-GAN.
PrGAN∗ is trained using only 4 out of 8 views per object. PrGAN† is trained using all 8 views but for half
of the objects
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Fig. 7 Shape interpolation by linearly interpolating the encodings of
the starting shape and ending shape

ate a training set that consists of images synthesized by the
PrGAN and the encodings that generated them. The encod-
ing network is fully connected, with 2 hidden layers, each
with 512 neurons. The input of the network is an image and
the output is an encoding. The last dimension of z describes
the view, and the first 200 dimensions describe the code of the
shape, which allows us to further reconstruct the 3D shape as
a 323 voxel grid. With the encoding network, we can present
to it a single view image, and it outputs the shape code along
with the viewing angle. Experimental results are shown in
in Fig. 8. This whole process constitutes a completely unsu-
pervised approach to creating a model that infers a 3D shape
from a single image.

4.1.4 Visualizations Across Categories

Our method is able to generate 3D shapes for a wide range
of categories. Figure 9 show a gallery of results, including
airplanes, car, chairs, vases, motorbikes. For each category
we show 64 randomly sampled training images, 64 gener-
ated images from PrGAN, and renderings of 128 generated
3D shapes (produced by randomly sampling the 200-d input
vector of the generator). One remarkable property is that the
generator produces 3D shapes in a consistent horizontal and
vertical axes, even though the training data is only consis-
tently oriented along the vertical axis. Our hypothesis for this
is that the generator finds it more efficient to generate shapes
in a consistent manner by sharing parts across models. Fig-
ure 10 shows selected examples fromFig. 9 that demonstrates
the quality and diversity of the generated shapes.

The last row in Fig. 9 shows an example of a “mixed” cate-
gory, where the training images combine the three categories
of airplane, car, and motorbike. The same PrGAN network
is used to learn the shape distributions. Results show that
PrGAN learns to represent all three categories well, without
any additional supervision.

4.2 Failure Cases

Compared to 3D-GANs, the proposed PrGAN models can-
not discover structures that are hidden due to occlusions from

Fig. 8 At top 3 rows, the four images are different views of the same
chair, with predicted viewpoint on the top. Shapes are different but
plausible given the single view. In the bottom row, shape inferred (right)
by a single view image (left) using the encoding network. Input images
were segmented, binarized and resized to match the network input

all views. For example, it fails to discover that some chairs
have concave interiors and the generator simply fills these
since it does not change the silhouette from any view as we
can see at Fig. 11. However, this is a natural drawback of
view-based approaches since some 3D ambiguities cannot
be resolved (e.g., Necker cubes) without relying on other
cues. Despite this, one advantage over 3D-GAN is that our
model does not require consistently aligned 3D shapes since
it reasons over viewpoints.

5 Improving PRGAN with Richer
Supervision

This section shows how the generative models can be
improved to support higher resolution 3D shapes and by
incorporating richer forms of view-based supervision.
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sepahsdetareneGsegamidetareneGtupnI

Fig. 9 Results for 3D shape induction using PrGANs. From top to
bottom we show results for airplane, car, chair, vase, motorbike, and
a ’mixed’ category obtained by combining training images from air-
plane, car, and motorbike. In each row, we show on the left 64 randomly
sampled images from the input data to the algorithm, on the right 128

sampled 3D shapes from PrGAN, and in the middle 64 sampled images
after the projection module is applied to the generated 3D shapes. The
model is able to induce a rich 3D shape distribution for each category.
The mixed-category produces reasonable 3D shapes across all three
combined categories. Zoom in to see details
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Fig. 10 A variety of 3D shapes generated by PrGAN trained on 2D views of (from the top row to the bottom row) airplanes, cars, vases, and bikes.
These examples are chosen from the gallery in Fig. 9 and demonstrate the quality and diversity of the generated shapes

Fig. 11 Our method is unable to capture the concave interior structures
in this chair shape. The pink shapes show the original shape used to
generate the projected training data, shown by the three binary images
on the top (in high resolution). The blue voxel representation is the
inferred shape by our model. Notice the lack of internal structure

5.1 Higher-ResolutionModels

We extend the vanilla PrGAN model to handle higher res-
olution volumes. There are two key modifications. First, we
replace the transposed convolutions in the generator by tri-
linear upsampling followed by a 3D convolutional layer. In
our experiments, we noticed that this modification led to
smoother shapes with less artifacts. This fact was also ver-
ified for image generators (Odena et al. 2016). Second, we
add a featurematching component to the generator objective.
This component acts by minimizing the difference between
features computed by the discriminator from real and fake
images. More precisely, the feature matching loss can be
defined as:

LFM (G, D)= ∥
∥Ex∼D[Dk(x)] − Ez∼N (0,I )[Dk(G(z))]∥∥22

(2)

where Dk(x) are the features from the kth layer of the dis-
criminator when given an input x . In our experiments we
define k to be the last convolutional layer of the discrimi-
nator. We empirically verified that this component promotes
diversity in the generated samples and makes the training
more stable.

5.2 UsingMultiple Cues for Shape Reasoning

So far our approach only relies on binary silhouettes for
estimating the shape, which contributes to the lack of geo-
metric details. One strategy is replace the projection module
with a differentiable function, e.g., a convolutional net-
work, to approximate a sophisticated rendering pipeline, like
the one presented in Nguyen-Phuoc et al. (2018), Nalbach
et al. (2016). Such a neural renderer could be a plug-in
replacement for the projection module in the PrGAN frame-
work. This would provide the ability to use collections of
realistically-shaded images for inferring probabilistic mod-
els of 3D shapes and other properties.

We explore an alternate direction using differentiable pro-
jection operators that do not rely on training procedures. This
choice fits well in the PrGAN formulation as it does not rely
on 3D supervision for training any part of the model. In this
section, we present differentiable operators to render depth
images and semantic segmentation maps. We demonstrate
that the extra supervision enables generating more accurate
3D shapes and allows relaxing the prior assumption on view-
point distribution.

Learning from depth images. Our framework can be
adapted to learn from depth images instead of binary images.
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Fig. 12 Shapes generated using new part segmentations and depth
maps. From top to bottom, results using depth images, images with part
segmentation, silhouettes and silhouettes annotated with viewpoints.
Models trained with images containing additional visual cues are able

to generatedmore accurate shapes. Similarly, viewpoint annotation also
helps. Notice that shapes generated from images with part annotation
are able to generate part-annotated 3D shapes, highlighted by different
colors

This is done by replacing the binary projection operator Pr to
one that can be used to generate depth images. We follow an
approach inspired by the binary projection. First, we define
an accessibility function A(V , φ, c) that describes whether
a given voxel c inside the grid V is visible, when seen from
a view φ:

A(V , φ, i, j, k) = exp

{

− τ

k−1∑

l=1

Vφ(i, j, l)

}

. (3)

Intuitively, we are incrementally accumulating the occu-
pancy (from the first voxel on the line of sight) as we traverse

the voxel grid instead of summing all voxels on the entire the
line of sight. If voxels on the path from the first to the current
voxel are all empty, the value of A is 1 (indicating the current
voxel is “accessible” to the view φ). If there is at least one
non-empty voxel on the path, the value of A will be close to
0 (indicating this voxel is inaccessible). A similar approach
was used in our earlier work (Gadelha et al. 2019).

Using A, we can define the depth value of a pixel in the
projected image as the line integral of A along the line of
sight: Pr Dφ (i, j, V ) = ∑

k A(V , φ, i, j, k). This operation
computes the number of accessible voxels from a particular
direction φ, which corresponds to the distance of the surface
seen in (i, j) to the camera. Finally, we apply a smooth map
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to the previous operation in order to have depth values in the
range [0, 1]. Thus, the projection module is defined as:

Pr Dφ ((i, j), V ) = 1 − exp

{

−
∑

k

A(V , φ, i, j, k)

}

. (4)

Learning from part segmentations. We also explore learn-
ing 3D shapes from sets of images with dense semantic
annotation. Similarly to the depth projection, we modify our
projection operator to enable generation of images whose
pixels correspond to the label of particular class (or none if
there is no object). In this case, the output of the generator is
multi-channel voxel grid V : Z3×C → [0, 1] ∈ R, whereC
is the number of parts present in a particular object category.

Let G to be the aggregated occupancy grid defined as
G = ∑C

c=1 V (i, j, k, c). The semantic projection operator
Pr Sφ ((i, j, c), V ) is defined as:

Pr Sφ ((i, j, c), V ) = 1 − exp

{∑

k

Vφ(i, j, k, c)A(Gφ, i, j, k)

}

,

(5)

where A is the accessibility operator defined previously. Intu-
itively, A(G, φ) encodes if a particular voxel is visible from
a viewpoint φ. When we multiply the visibility computed
with the aggregated occupancy grid by the value of a specific
channel c in V , we generate a volume that contains visibility
information per part. Finally, we take the line integral along
the line of sight to generate the final image. Examples of
images and shapes generated by this operator can be seen in
Fig. 12.

Learning with viewpoint annotation. We also experiment
with the less challenging setup where our model has access
to viewpoint information for every training image. Notice
that this problem is different from Kato et al. (2018), Yan
et al. (2016), since we still do not know which images cor-
respond to the same object. Thus, multi-view losses are not
a viable alternative. Our model is able to leverage viewpoint
annotation by using conditional discriminators. The condi-
tional discriminator has the same architecture as the vanilla
discriminator but the input image is modified to contain its
corresponding viewpoint annotation. This annotation is rep-
resented by an one-hot encoding concatenated to every pixel
in the image. For example, if a binary image from a dataset
with shapes rendered from 8 viewpoints will be represented
as a 9-channel image. This procedure is done for images gen-
erated by our generator and images coming from the dataset.

5.3 Experiments

Setup. We generate training images using airplanes from
the ShapeNet part segmentation dataset (Chang et al. 2015).

Those shapes have their surface densely annotated as belong-
ing to one of four parts: body, wing, tail or engine. We
render those shapes using the same viewpoint configuration
described in Sect. 4. However, in this scenario we use 64×64
images instead of 32×32. Themodels are rendered as binary
silhouettes, depth maps and part segmentation masks. We
train a high resolution PrGAN model for every set of ren-
dered images using the corresponding projection operator.
Each model is trained for 50 epochs and trained with the
Adam optimizer. We use a learning rate of 2.5×10−3 for the
generator and 2 × 10−5 for the discriminator.

Evaluation. The models trained with different visual clues
are evaluated through the following metric:

1

|D|
∑

x∈D
min
g∈G

I oU (x, g) + 1

|G|
∑

g∈G
min
x∈D

I oU (x, g) (6)

where I oU corresponds to intersection over union, G is a
set of generated shapes and D is a set of shapes from the
training data. In our setup, both G andD contain 512 shapes.
Shapes in D are randomly sampled from the same dataset
that originated the images, whereas shapes in G are gen-
erated through G(z). Noticeably, the shapes generated by
PrGAN do not have the same orientation as the shapes in
D but are consistently oriented among themselves. Thus,
before computing Equation 6, we select one of 8 possible
transformations that minimizes I oU—there are 8 rendering
viewpoints in the training set. Additionally, the components
in Equation 6 indicate two different aspects: the first term
(D → G(z)) indicates how the variety in the dataset is cov-
ered whereas the second term (G(z) → D) indicates how
accurate the generated shapes are. A comparison between
models trainedwith different projection operators canbe seen
in Table 1. The model trained with part segmentation clues
yields the best results. As expected, using only silhouettes
leads to worse results in both metrics and adding viewpoint
supervision improves upon this baseline. Interestingly, depth
and part segmentation supervision clues lead to models that
generate shapes with similar variety (similar D → G(z)).
However, shapes generated from models using part segmen-
tation clues are more similar to the ones in the dataset (higher
G(z) → D).

6 Conclusion and FutureWork

We proposed a framework for inferring 3D shape distribu-
tions from 2D shape collections by augmenting a convnet-
based 3D shape generator with a projection module. This
complements existing approaches for non-rigid SfM since
these models can be trained without prior knowledge about
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the shape family, and can generalize to categories with vari-
able structure. We showed that our models can infer 3D
shapes for a wide range of categories, and can be used to
infer shape and viewpoint from a silhouettes in a completely
unsupervised manner. We believe that the idea of using a
differentiable render to infer distributions over unobserved
scene properties from images can be applied to other prob-
lems.

A limitation is that our approach cannot directly learn from
real-world images, as they usually have background pixels,
and contain complex shading. In the future, our method can
be extended to accommodate real images using semantic seg-
mentation to extract foreground object from the background.
In addition, it is possible to incorporate photorealistic dif-
ferentiable rendering modules capable of handling richer
surface colors, materials, and camera parameters. One could
also incorporate other forms of supervision, such as view-
point or coarse shape estimates, to improve the 3D shape
inference. For example, camera parameters can be estimated
using a generic viewpoint estimator (Tulsiani et al. 2015; Su
et al. 2015).
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