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Abstract
The essential matrix incorporates relative rotation and translation parameters of two calibrated cameras. The well-known
algebraic characterization of essential matrices, i.e. necessary and sufficient conditions under which an arbitrary matrix (of
rank two) becomes essential, consists of a single matrix equation of degree three. Based on this equation, a number of efficient
algorithmic solutions to different relative pose estimation problems have been proposed in the last two decades. In three views,
a possible way to describe the geometry of three calibrated cameras comes from considering compatible triplets of essential
matrices. The compatibility is meant the correspondence of a triplet to a certain configuration of calibrated cameras. The main
goal of this paper is to give an algebraic characterization of compatible triplets of essential matrices. Specifically, we propose
necessary and sufficient polynomial constraints on a triplet of real rank-two essential matrices that ensure its compatibility.
The constraints are given in the form of six cubic matrix equations, one quartic and one sextic scalar equations. An important
advantage of the proposed constraints is their sufficiency even in the case of cameras with collinear centers. The applications
of the constraints may include relative camera pose estimation in three and more views, averaging of essential matrices for
incremental structure from motion, multiview camera auto-calibration, etc.
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1 Introduction

In multiview geometry, the essential matrix describes the
relative orientation of two calibrated cameras. It was first
introduced by Longuet-Higgins (1981), where the essential
matrix was used for the scene reconstruction from point cor-
respondences in two views. Later, the algebraic properties of
essentialmatrices have been investigated in detail in Faugeras
and Maybank (1990), Horn (1990), Huang and Faugeras
(1989). The well-known characterization of the algebraic
variety of essential matrices, which is the closure of the set of
essentialmatrices in the corresponding projective space, con-
sists of a unique matrix equation of degree three (Demazure
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1988; Maybank 1993). Based on this equation, a number of
efficient algorithmic solutions to different relative pose esti-
mation problems have been proposed in the last two decades,
e.g. Nistér (2004), Stewénius et al. (2006, 2008), Kukelova
and Pajdla (2007).

The relative orientation of three calibrated cameras can
be naturally described by the so-called calibrated trifocal
tensor. It first appeared in Spetsakis and Aloimonos (1990),
Weng et al. (1992) as a tool of scene reconstruction from line
correspondences. The algebraic properties of calibrated trifo-
cal tensors were recently investigated in Martyushev (2017),
where some necessary and sufficient polynomial constraints
on a real calibrated trifocal tensor have been derived. A
3-view analog of the variety of essential matrices—the cali-
brated trifocal variety—has been introduced inKileel (2017),
where it was used to compute algebraic degrees of various 3-
view relative pose problems. The complete characterization
of the calibrated trifocal variety is an open and challeng-
ing problem. For the uncalibrated case such characterization
consists of 10 cubic, 81 quintic, and 1980 sextic polynomial
equations (Aholt and Oeding 2014).
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Another way to describe the geometry of three calibrated
cameras comes from considering the compatible triplets of
essential matrices. The compatibility means that a triplet
must correspond to a certain configuration of three cali-
brated cameras. In the recent paper (Kasten et al. 2019a), the
authors considered compatible n-view multiplets of essen-
tial matrices, which are the natural n-view generalization of
the triplets, and proposed their algebraic characterization
in terms of the spectral (or singular value) decomposition of
a symmetric 3n × 3n matrix constructed from the multiplet.

On the other hand, the polynomial constraints on compat-
ible triplets of essential matrices have not previously been
studied. The present paper is a step in this direction. Its
main contribution is a set of polynomial constraints such
that any triplet of real and rank-two essential matrices that
fulfils these constraints is guaranteed to be compatible. An
important advantage of the introduced constraints is their suf-
ficiency even in the case of cameras with collinear centers.
The results of the paper may be applied to different computer
vision problems including relative camera pose estimation
from three and more views, averaging of essential matri-
ces for incremental structure frommotion, multiview camera
auto-calibration, etc.

The rest of the paper is organized as follows. In Sect. 2,
we recall some definitions and results frommultiview geom-
etry. In Sect. 3, we propose our necessary and sufficient
constraints on compatible triplets of essential matrices. The
constraints have the form of 82 cubic, one quartic, and one
sextic homogeneous polynomial equations in the entries of
essential matrices. Section 4 outlines two possible applica-
tions of the proposed constraints. In Sect. 5, we discuss the
results of the paper and make conclusions. The “Appendix”
includes some auxiliary lemmas that we used throughout the
proof of our main Theorem 5.

2 Preliminaries

2.1 Notation

We preferably use α, β, . . . for scalars, a, b, . . . for column
3-vectors or polynomials, and A, B, . . . both for matrices
and column 4-vectors. For a matrix A, the entries are (A)i j ,
the transpose is A�, and the adjugate (i.e. the transposed
matrix of cofactors) is A∗. The determinant of A is det A
and the trace is tr A. For two 3-vectors a and b, the cross
product is a × b. For a vector a, the entries are (a)i . The
notation [a]× stands for the skew-symmetric matrix such
that [a]×b = a×b for any vector b. We use I for the identity
matrix and ‖ · ‖ for the Frobenius norm.

2.2 Fundamental Matrix

We briefly recall some definitions and results from multi-
view geometry, see Faugeras (1993), Faugeras andMaybank
(1990), Hartley and Zisserman (2003), Maybank (1993) for
details.

Amatrix P = [
A a

]
, where A is an invertible 3×3matrix

and a is a 3-vector, is called the finite projective camera. A
camera P represents a perspective projection of 3-space onto
the image plane, which is the image of P , through the camera
center, which is the right null vector of P .

Let P1 = [
A1 a1

]
and P2 = [

A2 a2
]
be finite projec-

tive cameras. Let Q be a point in 3-space represented by
its homogeneous coordinates and q j be its j th perspective
image. Then,

q j ∼ Pj Q, (1)

where∼means an equality up to a non-zero scale. The epipo-
lar constraint for a pair (q1, q2) says

q�
2 F21q1 = 0, (2)

where Sengupta et al. (2017), Kasten et al. (2019a)

F21 = (A∗
2)

�[A−1
2 a2 − A−1

1 a1]×A∗
1 (3)

is called the fundamental matrix. By definition, F21 must be
of rank two. The left and right null vectors of F21, that is the
vectors

e21 = A2A
−1
1 a1 − a2 and e12 = A1A

−1
2 a2 − a1 (4)

respectively, are called the epipoles. Geometrically, ei j is the
perspective projection of the j th camera center onto the i th
image plane.

The following theorem gives an algebraic characterization
of the set of fundamental matrices.

Theorem 1 (Hartley and Zisserman 2003) Any real 3 × 3
matrix of rank two is a fundamental matrix.

2.3 Essential Matrix

The essential matrix E21 is the fundamental matrix for cal-
ibrated cameras P̂1 = [

R1 t1
]
and P̂2 = [

R2 t2
]
, where

R1, R2 ∈ SO(3) and t1, t2 are 3-vectors, that is

E21 = R2[R�
2 t2 − R�

1 t1]×R�
1 . (5)

The proof of formula (5) can be found in Arie-Nachimson
et al. (2012).
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In general, the calibrated and uncalibrated camera matri-
ces are related by

Pj ∼ K j P̂j H , (6)

where K j is an invertible upper-triangular matrix known as
the calibration matrix of the j th camera and H is a certain
invertible 4 × 4 matrix. Then it can be shown that

F21 ∼ K−�
2 E21K

−1
1 . (7)

Hence, the epipolar constraint for the essential matrix
becomes

q̂�
2 E21q̂1 = 0, (8)

where q̂ j = K−1
j q j .

The following theorem gives an algebraic characterization
of the set of essential matrices.

Theorem 2 (Demazure 1988; Faugeras and Maybank 1990;
Maybank 1993) A real 3 × 3 matrix E of rank two is an
essential matrix if and only if E satisfies

E�EE� − 1

2
tr(E�E) E� = 03×3. (9)

2.4 Compatible Triplets of Fundamental Matrices

A triplet of fundamental matrices {F12, F23, F31} is said to
be compatible if there exist matrices B1, B2, B3 ∈ GL(3)
and 3-vectors b1, b2, b3 such that

Fi j = B�
i [bi − b j ]×Bj (10)

for all distinct i, j ∈ {1, 2, 3}. It follows from (10) that Fji =
F�
i j .

Theorem 3 LetF = {F12, F23, F31} be a triplet of real rank-
two fundamental matrices with non-collinear epipoles, i.e.
eki � ek j for all distinct i, j, k ∈ {1, 2, 3}. Then, F is com-
patible if and only if it satisfies

F∗
i j Fik F

∗
jk = 03×3. (11)

Proof By the definition of epipoles, constraints (11) imply
(and are implied by)

e�
i j Fikek j = 0 (12)

for all distinct indices i, j, k ∈ {1, 2, 3}. Geometrically, con-
straints (12) mean that the epipoles ei j and ek j are matched
and correspond to the projections of the j th camera cen-
ter onto the i th and kth image plane respectively. The proof

of compatibility of three fundamental matrices with non-
collinear epipoles satisfying (12) can be found in Hartley
and Zisserman (2003). ��

The main goal of this paper is to propose a generalized
analog of Theorem 3 for a triplet of essential matrices with
possibly collinear epipoles.

3 Compatible Triplets of Essential Matrices

A triplet of essential matrices {E12, E23, E31} is said to be
compatible if there exist matrices R1, R2, R3 ∈ SO(3) and
3-vectors b1, b2, b3 such that

Ei j = Ri [bi − b j ]×R�
j (13)

for all distinct i, j ∈ {1, 2, 3}.
Given a triplet of essential matrices {E12, E23, E31}, let

us denote

E =
⎡

⎣
03×3 E12 E13

E21 03×3 E23

E31 E32 03×3

⎤

⎦ . (14)

The symmetric 9×9matrix E (aswell as its analog for funda-
mental matrices) has been previously introduced in Sengupta
et al. (2017), Kasten et al. (2019a, b) where some of its
spectral properties were investigated. The matrix E is called
compatible if it is constructed from a compatible triplet. In
Kasten et al. (2019a), the authors propose necessary and suf-
ficient conditions on the compatibility of matrix E (more
precisely, of an n-view generalization of matrix E) in terms
of its spectral or singular value decomposition. In particular,
these conditions imply that the characteristic polynomial of
a compatible matrix E must be of the form

pE (λ) = λ3(λ2 − λ21)(λ
2 − λ22)(λ

2 − λ23), (15)

where λ1, λ2, and λ3 are possibly non-zero eigenvalues of E .
Condition (15) induces polynomial constraints on the

entries of matrix E . Namely, the coefficients of pE (λ) in
λ6, λ4, λ2, λ1, and λ0 must vanish. It is clear that these coef-
ficients are polynomials in the entries of matrices E12, E23,
E31 of degree 3, 5, 7, 8, and 9 respectively. For example,
the coefficient in λ6 equals −2 tr(E12E23E31). Below we
propose a set of cubic polynomial equations on matrix E
such that constraint (15) is implied by these equations, see
Eqs. (26)–(28).

Apart from condition (15), there exists an additional
quadratic constraint on the eigenvalues of matrix E . Let
|λ1| > |λ2| and |λ1| > |λ3|. Then, by a straightforward
computation, one verifies that
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λ21 − λ22 − λ23 = 0. (16)

A symmetrized version of Eq. (16), which is independent of
the ordering on the set of eigenvalues, has the form

(λ21 − λ22 − λ23)(λ
2
2 − λ23 − λ21)(λ

2
3 − λ21 − λ22) = 0. (17)

Since the l.h.s. of Eq. (17) is a symmetric function in values
λ21, λ22, and λ23, it can be expanded in terms of the elemen-
tary symmetric functions, which are the coefficients in (15).
On the other hand, these coefficients can be represented as
polynomials in tr(E2k) for k = 1, 2, 3. Thus we obtain
an additional sixth degree scalar equation on matrix E , see
Eq. (30).

Finally, some of our polynomial constraints are easier to
formulate using a specific binary operation on the space of
3× 3 matrices. Let A∗ be the adjugate of a matrix A, i.e. the
transposed matrix of its cofactors. Then for a pair of 3 × 3
matrices A and B we define

A 	 B = (A − B)∗ − A∗ − B∗. (18)

An alternative expression for A 	 B can be derived using the
well-known formula

A∗ = 1

2
(tr2 A − tr A2)I − A tr A + A2. (19)

Thus we get

A 	 B = (tr(AB) − tr A tr B)I + A tr B

+B tr A − AB − BA. (20)

It is straightforward to show that for any 3×3 matrices A, B,
C , D and any scalars β and γ the following identities hold:

A 	 B = B 	 A, (21)

A 	 (βB + γC) = β(A 	 B) + γ (A 	 C), (22)

(A 	 B)� = A� 	 B�, (23)

(CAD) 	 (CBD) = D∗(A 	 B)C∗, (24)

A 	 I = A − tr(A)I . (25)

Now we can formulate our polynomial constraints.

Theorem 4 Let {E12, E23, E31} be a compatible triplet of
essential matrices, matrix E be defined in (14). Then the
following equations hold:

tr(E12E23E31) = 0, (26)

E�
i j Ei j E jk − 1

2
tr(E�

i j Ei j ) E jk + E∗
i j E

�
ki = 03×3, (27)

E�
jk E

∗
i j + E∗

jk E
�
i j + (Ei j E jk) 	 E�

ki = 03×3, (28)

tr2(E2) − 16 tr(E4) + 24
∑

i< j

tr2(E�
i j Ei j ) = 0, (29)

tr3(E2) − 12 tr(E2) tr(E4) + 32 tr(E6) = 0 (30)

for all distinct i, j, k ∈ {1, 2, 3}. There are in total 1+6 ·9+
3 ·9 = 82 linearly independent cubic equations of type (26)–
(28).

Proof Let

Ẽi j = Ui Ei jU
�
j , (31)

where Ui ∈ SO(3). It is clear that E = {E12, E23, E31} is a
compatible triplet if and only if so is Ẽ = {Ẽ12, Ẽ23, Ẽ31}.
Also it can be readily seen that E fulfils Eqs. (26)–(30) if and
only if so does Ẽ .

Given a compatible triplet {E12, E23, E31}, where each
Ei j is represented by (13), we set Ui = R�

i . Then essential
matrices Ẽi j = Ui Ei jU�

j become skew-symmetric and can
be written in form

Ẽi j = [bi − b j ]×, Ẽ jk = [b j − bk]×,

Ẽki = [bk − bi ]×, (32)

where indices i, j, k are intended to be distinct. Denoting
bi −b j = c, b j −bk = d yields bk −bi = −c−d and hence
we can write

Ẽi j = [c]×, Ẽ jk = [d]×, Ẽki = −[c]× − [d]×. (33)

By substituting this into Eqs. (26)–(28), we get

tr(Ẽi j Ẽ jk Ẽki ) = − tr([c]×[d]×[c]× + [c]×[d]×[d]×)

= − tr([c]×(cd� − (d�c)I ) + (cd� − (d�c)I )[d]×)

= (d�c) tr([c + d]×) = 0, (34)

(
Ẽ�
i j Ẽi j − 1

2
tr(Ẽ�

i j Ẽi j )I
)
Ẽ jk + Ẽ∗

i j Ẽ
�
ki

= (−[c]×[c]× + 1

2
tr([c]×[c]×)I

)[d]× + cc�([c]× + [d]×)

= (−cc� + (c�c)I − 1

2
2(c�c)I

)[d]× + cc�[d]×
= −cc�[d]× + cc�[d]× = 03×3, (35)

Ẽ�
jk Ẽ

∗
i j + Ẽ∗

jk Ẽ
�
i j + (Ẽi j Ẽ jk) 	 Ẽ�

ki

= −[d]×cc� − dd�[c]× + (dc� − (c�d)I ) 	 ([c]× + [d]×)

= −[d]×cc� − dd�[c]× + (dc�) 	 [c]× + (dc�) 	 [d]×
−(c�d)([c]× + [d]×) = −[d]×cc� − dd�[c]×
−[c]×dc� − dc�[d]× = 03×3. (36)
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We used that [a]×[b]× = ba� −(a�b)I and ([a]×)∗ = aa�
for arbitrary 3-vectors a and b. Equations (29)–(30) can be
verified in a similar manner, but the computation is more
complicated. Theorem 4 is proved. ��

Remark 1 Constraint (11) for essential matrices is implied
by Eq. (27). Namely, multiplying (27) on the right by E∗

jk
gives (11).

We also note that Eq. (27) is a generalization of Eq. (9).
Setting k = i in (27) and taking into account that Eii = 03×3

gives (9).

Theorem 5 Let E = {E12, E23, E31} be a triplet of real rank-
two essential matrices. Then E is compatible if and only if it
satisfies Eqs. (26)–(30) from Theorem 4.

Proof The “only if” part is by Theorem 4. Let us prove the
“if” part.

First of all, we simplify the triplet E by using trans-
form (31). Each essential matrix from E can be represented
in form Ei j = [bi j ]×Ri j , where Ri j ∈ SO(3) and bi j is a 3-
vector. We set U2 = U1R12 and U3 = U2R23 = U1R12R23.
Then,

Ẽ12 = U1[b12]×R12U
�
2 = [U1b12]×,

Ẽ23 = U2[b23]×R23U
�
3 = [U1R12b23]×,

Ẽ31 = U3[b31]×R31U
�
1 = [U1R12R23b31]×U1RU

�
1 ,

(37)

where R = R12R23R31. The matrix U1 is chosen so that1

U1RU
�
1 =

⎡

⎣
λ μ 0

−μ λ 0
0 0 1

⎤

⎦ , (38)

where λ2 + μ2 = 1 and also (U1R12R23b31)1 = 0. As a
result, it suffices to prove the “if” part for the following triplet:

Ẽ12 =
⎡

⎣
0 −γ1 β1

γ1 0 −α1

−β1 α1 0

⎤

⎦ , Ẽ23 =
⎡

⎣
0 −γ2 β2

γ2 0 −α2

−β2 α2 0

⎤

⎦ ,

Ẽ31 =
⎡

⎣
γ3μ −γ3λ β3

γ3λ γ3μ 0
−β3λ −β3μ 0

⎤

⎦ , (39)

where λ,μ, α1, . . . , γ3 are some scalars. For the purpose of
completeness, we also write down the epipoles correspond-
ing to triplet (39):

1 Here, we use that the essential matrices are real and hence so is matrix
R. In complex case, representation (38) holds if and only if the rotation
axis s of matrix R is subject to s�s 
= 0.

e12 = [
α1 β1 γ1

]�
, e13 = [−β3μ β3λ γ3

]�
,

e21 = [
α1 β1 γ1

]�
, e23 = [

α2 β2 γ2
]�

,

e31 = [
0 β3 γ3

]�
, e32 = [

α2 β2 γ2
]�

.

(40)

Let us define an ideal J ⊂ C[λ,μ, α1, . . . , γ3] generated
by all polynomials from (26)–(30) for triplet {Ẽ12, Ẽ23, Ẽ31}
and also by λ2 + μ2 − 1. The ideal J determines an affine
varietyV(J ) ⊂ C

10. The rest of the proof consists in showing
that each point of V(J ) is either a compatible or degenerate
triplet of essential matrices. By degeneration we mean that
at least one essential matrix from the triplet is a zero matrix.
For the reader’s convenience, the main steps of the further
proof are schematically shown in Fig. 1.

We consider the three main cases: (i) μ = 0, λ = 1; (ii)
μ = 0, λ = −1; (iii) μ 
= 0.

Case I: μ = 0, λ = 1.
First we note that a polynomial ideal and its radical define

the same affine variety, whereas the algebraic structure of
the radical may be much easier. For example, the Gröbner
bases of the ideal J and its radical

√
J w.r.t. the same mono-

mial ordering consist of 217 and 62 polynomials respectively.
Besides, there exist a simple radical membership test allow-
ing to check whether a given polynomial belongs to the
radical or not, see Lemma 1 from the “Appendix”. The above
arguments should explain the use of radicals throughout the
further proof.

Let us define the polynomials

f1 = α1 + α2, g3 = α2β3,

f2 = β1 + β2 + β3, g4 = α2γ3,

f3 = γ1 + γ2 + γ3, g5 = β1γ2 − β2γ1,

g1 = α1β3, g6 = β2γ3 − β3γ2,

g2 = α1γ3, g7 = β1γ3 − β3γ1.

(41)

Then, by the radical membership test, we get

fi g j ∈ √
J + 〈μ, λ − 1〉 (42)

for all indices i and j .
First suppose that fi 
= 0 for a certain i . Then it follows

from (42) that α1β3 = α1γ3 = α2β3 = α2γ3 = 0. If α1 
= 0
or α2 
= 0, then β3 = γ3 = 0 and we get Ẽ31 = 03×3 in
contradiction with the rank-two condition. Therefore α1 =
α2 = 0 and it follows from (42) that

β1γ2 − β2γ1 = β2γ3 − β3γ2 = β1γ3 − β3γ1 = 0. (43)

The variables β3 and γ3 cannot be zero simultaneously.
Without loss of generality, assume that γ3 
= 0 and introduce
parameter δ = β3/γ3. Then Eqs. (43) imply βi = δγi for
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Fig. 1 To the proof of Theorem 5. Every real point of the variety defined by the ideal J is either a compatible triplet or a degenerate triplet with at
least one Ẽi j = 03×3. The dashed arrow means correspondence to a particular case

all i . Using the radical membership test, one verifies that the
variables γi are constrained by

(γ1 + γ2 + γ3)(−γ1 + γ2 + γ3)

(γ1 − γ2 + γ3)(γ1 + γ2 − γ3) = 0, (44)

that is γ3 = ε1γ1+ε2γ2 with εi = ±1. The triplet of essential
matrices has the form (67) and is compatible by Lemma 3.2

Now consider the case f1 = f2 = f3 = 0, that is

α1 + α2 = β1 + β2 + β3 = γ1 + γ2 + γ3 = 0. (45)

The triplet of essential matrices has the form (69) and is
compatible by Lemma 4.

Case II: μ = 0, λ = −1.
Let J ′ = J + 〈μ, λ + 1〉. The ideal

√
J ′ contains the

following polynomials:

2 Here and below in the proof of Theorem 5, we refer to formulas and
lemmas stated in the “Appendix”.

αiβ3γ1, αiβ3(α1 − α2),

αiβ3γ2, αiβ3(β1 − β2 + β3),

αiβ3γ3, αiβ3β1β2(β1β2 + α2
1),

(46)

where i = 1, 2. Supposing that α1β3 
= 0 or α2β3 
= 0 yields

γ1 = γ2 = γ3 = α1 − α2 = β1 − β2 + β3

= β1β2(β1β2 + α2
1) = β1β2(β1β2 + α2

2) = 0. (47)

The case β1 = β2 = 0 contradicts to the rank-two condition,
since leads to Ẽ31 = 03×3. If β1 = 0 and β2 
= 0, then
triplet {Ẽ12, Ẽ23, Ẽ31} has the form (70) and is compatible
by Lemma 4. Similarly, we get compatible triplet (71) in the
case β2 = 0 and β1 
= 0. Finally, if β1β2 
= 0, then it follows
from (47) that β1β2 + α2

1 = 0 and so β2 = −α2
1/β1. The

triplet {Ẽ12, Ẽ23, Ẽ31} has the form (72) and is compatible
by Lemma 4.

Now consider the case α1β3 = α2β3 = 0. There are two
possibilities. If β3 = 0, then ideal

√
J ′ + 〈β3〉 contains the

following polynomials:
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γ3(α1 + α2), α2γ3(γ1 + γ2 − γ3),

γ3(β1 + β2), β2γ3(γ1 + γ2 − γ3).
(48)

The case γ3 = 0 contradicts to the rank-two condition. Thus,
α1 +α2 = β1 +β2 = 0. It follows that, if α2 = β2 = 0, then
α1 = β1 = 0. By the radical membership test, the variables
γ1, γ2, and γ3 are constrained by (44) and hence we get a
particular case (δ = 0) of triplet (67) which is compatible by
Lemma 3. On the other hand, if α2 
= 0 or β2 
= 0, then we
get

α1 + α2 = β1 + β2 = γ1 + γ2 − γ3 = 0. (49)

The triplet {Ẽ12, Ẽ23, Ẽ31} is a particular case (β3 = 0)
of (69) which is compatible by Lemma 4.

The second possibility is β3 
= 0 and α1 = α2 = 0.
Denote J ′′ = J ′ + 〈α1, α2〉 and define the polynomials

h1 = β1β2β3 (β1(β1 + β2 − β3) + γ1(γ1 + γ2 + γ3)),

h2 = β1β2β3 (β2(β1 + β2 + β3) + γ2(γ1 + γ2 + γ3)),

h3 = β1β2β3 (β3(−β1 + β2 + β3) + γ3(γ1 + γ2 + γ3)).

(50)

Then, the radical membership test yields

hi ∈ √
J ′′ (51)

for all i .
Consider the case β1β2 = 0. If β1 = 0, then ideal√
J ′′ + 〈β1〉 contains the polynomials

γ1(β2 + β3), γ1β3(γ1 − γ2 − γ3). (52)

The case γ1 = 0 leads to Ẽ12 = 03×3 and hence contradicts
to the rank-two condition. Therefore we get

α1 = α2 = β1 = β2 + β3 = γ1 − γ2 − γ3 = 0. (53)

The triplet {Ẽ12, Ẽ23, Ẽ31} has the form (73) and is compat-
ible by Lemma 4. Similarly we get compatible triplet (74) if
β2 = 0.

Finally, letβ1β2 
= 0.The caseγ1+γ2+γ3 = 0 is impossi-
ble, since ideal

√
J ′′ + 〈γ1 + γ2 + γ3〉 containsβ1β2β3 
= 0.

Let us denote δ = −1/(γ1 + γ2 + γ3). Then it follows
from (51) that

γ1 = δβ1(β1 + β2 − β3),

γ2 = δβ2(β1 + β2 + β3),

γ3 = δβ3(−β1 + β2 + β3).

(54)

The triplet {Ẽ12, Ẽ23, Ẽ31} has the form (75) and is compat-
ible by Lemma 4.

Case III: μ 
= 0.
The ideal

√
J contains the following polynomials:

μα2β3γ1, μα2γ3, μα2β3γ2. (55)

Since μ 
= 0, we have α2γ3 = β2γ3 − β3γ2 = 0.
First, supposing that γi 
= 0 for a certain i gives α2β3 = 0.

If α2 
= 0, then β3 = γ3 = 0 and hence Ẽ31 = 03×3 in
contradiction with the rank-two condition. If α2 = 0, then
ideal

√
J + 〈α2〉 contains α1β2 and α1γ2. If α1 
= 0, then

Ẽ23 = 03×3 in contradiction with the rank-two condition.
Continuing this way, one concludes that β1 = β2 = β3 = 0.
The ideal

√
J + 〈α1, α2, β1, β2, β3〉 contains μγ1γ2γ3. The

conditionμ 
= 0 implies that at least oneγi = 0 and so at least
one essential matrix Ẽi j is a zero matrix. This contradicts to
the rank-two condition.

Let γi = 0 for all i . The ideal
√
J + 〈γ1, γ2, γ3〉 contains

β3(α1λ+β1μ+α2). Since β3 
= 0 (otherwise Ẽ31 = 03×3),
we conclude that α1λ + β1μ + α2 = 0. Denote J ′ = J +
〈γ1, γ2, γ3, α1λ + β1μ + α2〉 and define the polynomials

p1 = α1 − α2, q3 = β3λ − β1 + β2,

p2 = β1 − β2 + β3, r1 = μ(α1μ − β1λ − β2 + β3),

p3 = α1μ − β1(λ − 1), r2 = α2β3 + β1α2 − α1β2,

q1 = α2μ − β2(λ − 1), r3 = μ(α2(α1 + α2)

q2 = β3μ + α1 − α2, + β2(β1 + β2 − β3)).

(56)

Then, by the radical membership test, we get

α2β3 piq jrk ∈ √
J ′ (57)

for all indices i , j , and k.
Suppose that α2β3 = 0. Since β3 
= 0 (otherwise Ẽ31 =

03×3), we conclude that α2 = 0. The ideal
√
J ′ + 〈α2〉 con-

tains α1β2. Since β2 
= 0 (otherwise Ẽ23 = 03×3), we
have α1 = 0. The ideal

√
J ′ + 〈α1, α2〉 contains μβ1. Since

μ 
= 0,we haveβ1 = 0 and thus Ẽ12 = 03×3 in contradiction
with the rank-two condition.

Let α2β3 
= 0. Then it follows from (57) that

p1q1r1 = 0. (58)

Each of the three cases p1 = q1 = 0, p1 = r1 = 0, and
q1 = r1 = 0 is impossible, since leads to μα2β3 = 0 in
contradiction with μ 
= 0 and α2β3 
= 0.

Assume that p1 = 0, q1 
= 0, and r1 
= 0. Then it follows
from (57) that pi = 0 for all i . The triplet {Ẽ12, Ẽ23, Ẽ31}
has the form (86) and is compatible by Lemma 5.

Let q1 = 0, p1 
= 0, and r1 
= 0. Then we have q j = 0
for all j . The triplet {Ẽ12, Ẽ23, Ẽ31} has the form (87) and is
compatible by Lemma 5.

123



2788 International Journal of Computer Vision (2020) 128:2781–2793

Finally, if r1 = 0, p1 
= 0, and q1 
= 0, then rk = 0 for
all k. Taking into account that μ 
= 0, after some compu-
tation, we conclude that the triplet {Ẽ12, Ẽ23, Ẽ31} has the
form (88) and is compatible by Lemma 5. We note that the
denominator p3 = α1μ − β1(λ − 1) in (89) does not vanish,
since otherwise

√
J ′ + 〈r1, r2, r3, p3〉 contains μα2β3 
= 0.

To summarize, we have shown that a triplet of real rank-
two essential matrices {Ẽ12, Ẽ23, Ẽ31} that has the form (39)
and fulfilsEqs. (26)–(30) is compatible. Formula (31) implies
that the triplet {E12, E23, E31} is compatible too as required.
Theorem 5 is proved. ��
Remark 2 Although the 82 cubic equations from Theorem 5
are linearly independent, some of them may be algebraically
dependent and therefore redundant for some applications.
It is clear that if an ideal generated by a certain sub-
set of Eqs. (26)–(30) equals the ideal J defined in the
proof, then Theorem 5 remains valid for this subset. The
equality of ideals is readily verified by computing their
reduced Gröbner bases. In this way we found that Eq. (26)
and the 27 equations of type (27) for indices (i, j, k) ∈
{(1, 3, 2), (3, 2, 1), (2, 1, 3)} are redundant andmay be omit-
ted. Theorem 5 holds for the remaining 56 equations.

We also note that Eq. (29) only affects the compatibility of
triplets with collinear epipoles, that is without Eq. (29) The-
orem 5 remains valid for a triplet of real rank-two essential
matrices with non-collinear epipoles.

4 Applications

Among the possible applications of Theorem 5 we outline
the following two ones.

4.1 Incremental Structure fromMotion

In incremental structure frommotion a set of essential matri-
ces arises from independently solved two-view relative pose
estimation problems. Due to the noise in input data, scale
ambiguity, and other factors, the estimated essential matri-
ces are hardly compatible. Their rectification (averaging) is
one of the possible approaches to overcome the incompati-
bility. In Kasten et al. (2019a), the authors proposed a novel
solution to the essential matrix averaging problem based on
their own algebraic characterization of compatible sets of
essential matrices. Although the method from Kasten et al.
(2019a) demonstrates good results outperforming the exist-
ing state-of-the-art solutions both in accuracy and in speed, it
is not applicable to the practically important case of cameras
with collinear centers.

The introduced polynomial constraints (26)–(30) can also
be used to solve the rectification problem. In the simplest
form it can be stated as follows: given a triplet of essential

matrices Ê = {Ê12, Ê23, Ê31}, find a compatible triplet E
and scale factors � = {λ12, λ23, λ31} so that ‖�‖2 = 1 and
E is the closest to Ê� = {λ12 Ê12, λ23 Ê23, λ31 Ê31} w.r.t. the
Frobenius norm. Thus, we arrive at the following polynomial
optimization problem:

min
�,E

‖E − Ê�‖2

subject to E ∈ V(J ), ‖�‖2 = 1,
(59)

where J is the homogeneous ideal generated by all forms
from (9), (26)–(30) and V(J ) is the corresponding projec-
tive variety. Problem (59) can be further solved by using
iterative methods for constrained optimization, e.g. sequen-
tial quadratic programming (SQP), augmented Lagrangian
method, etc.

To confirm the proposed approach, we modeled a scene
consisting of six points viewed by three fully calibrated
cameras with collinear centers. The scene and camera con-
figuration is detailed in the following table:

Distance to the scene 1
Scene depth 0.5
Baseline length 0.2
Image dimensions 752 × 480
Field of view 60◦

Here, the baseline length is the distance between the first
and third camera centers. The second camera center varies
randomly around the baselinemiddle pointwith an amplitude
of 0.02. To each imagewe added a zero-meanGaussian noise
of standard deviation varying from 0 to 1 pixels.

First, the standard 5-point algorithm (Stewénius et al.
2006) was applied to each image pair to estimate the triplet
of essential matrices Ê . The sixth point was used to resolve
the multiplicity. Each essential matrix from Ê was normal-
ized to the unit Frobenius norm. Then, problem (59) was
solved by the SQP resulting in a compatible triplet E and a
set of scale factors � = {λi j }. The results for 103 trials per
each noise level are shown in Fig. 2. Note that the estimated
essential matrices for the noise-free case are guaranteed to
have collinear epipoles as they differ from the ground truth
only by scales. As it can be seen, the algorithm handles the
collinear case without a modification.

4.2 Three-View Auto-Calibration

Let {F12, F23, F31} be a compatible triplet of fundamental
matrices and Ki be the calibration matrix of the i th camera.
Then we can write λiλ j Ei j = K�

i Fi j K j for certain scalars
λ1, λ2, and λ3, cf. (7). Substituting this into Eqs. (26)–(30),
we get by a straightforward computation the following equa-
tions:
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Fig. 2 Left: residuals ‖E − Ê�‖ at varying levels of Gaussian image
noise. Here, Ê� is the triplet of pairwise estimated essential matrices
each of which is scaled with respective λi j ∈ �, E is the averaged com-
patible triplet. Both triplets are normalized to the unit Frobenius norm.
For each noise level, the box shows values from lower to upper quartile,
the line inside indicates themedian, the whiskers show data within 1.5×

interquartile range, and the dots outside the whiskers are outliers. Right:
average rotational and translational errors againstGaussian image noise.
Each point on the diagram is a median of 103 trials. The absolute rota-
tions Ri and translations ti , with R1 = I and t1 = 03×1, are recovered
from the compatible triplet E . The rotational and translational errors are
averaged over the 2nd and 3rd views

tr(C1F12C2F23C3F31) = 0, (60)

F�
i j Ci Fi jC j Fjk − 1

2
tr(C j F

�
i j Ci Fi j ) Fjk

+ C∗
j F

∗
i j F

�
ki = 03×3, (61)

CkF
�
jk F

∗
i j + F∗

jk F
�
i j Ci + (Fi jC j Fjk) 	 F�

ki = 03×3, (62)

tr3((CF)2) − 12 tr((CF)2) tr((CF)4)

+ 32 tr((CF)6) = 0, (63)

where Ci = λi (det Ki )
−1(Ki K�

i ), C = diag(C1,C2,C3),
and F is the symmetric 9 × 9 matrix constructed from F12,
F23, and F31 similarly as in formula (14). It is clear that
Ki K�

i = Ci/(Ci )33 and therefore the calibration matrix can
be estimated from Ci by the Cholesky factorization.

Given F12, F23, and F31, only matricesCi are constrained
by Eqs. (60)–(63) and hence these equations can be used
to solve the camera auto-calibration problem in three and
more views. We note that Eq. (63) is sextic, Eq. (60) is cubic,
Eq. (61) is quadratic, and Eq. (62) is linear in the entries of
matrix C . The auto-calibration constraint corresponding to
Eq. (29) is of degree 10 in the entries of C . We do not write
it here.

5 Discussion

In this paper we propose new necessary and sufficient con-
ditions on the compatibility of three real rank-two essential
matrices (Theorems 4 and 5 ). By compatibility we mean the
correspondence of the essential matrices to a certain configu-
ration of three calibrated cameras. The conditions have form
of 82 cubic, one quartic, and one sextic homogeneous poly-
nomial equations. We would like to emphasize that (i) these
equations relate to the calibrated case only and in general do
not hold for compatible triplets of fundamental matrices; (ii)

the sufficiency of the equations covers the case of cameras
with collinear centers.

The possible applications of the constraints may include
multiview relative pose estimation, essential matrix aver-
aging for incremental structure from motion, multiview
auto-calibration, etc. Regarding the auto-calibration, it is
worth mentioning that some of our equations [Eq. (62)] turn
out to be linear in the entries of matrix incorporating the cal-
ibration parameters. This unexpected result could be useful
in developing novel auto-calibration solutions.

Appendix

We collect here several technical lemmas that we used in the
proof of Theorem 5.

Recall that the radical of an ideal J , denoted
√
J , is given

by the set of polynomials which have a power belonging to
J : OR to the ideal J :

√
J = {p | pk ∈ J for some integer k ≥ 1}.

It is known that
√
J is an ideal and the affine varieties of J

and
√
J coincide. The following lemma gives a convenient

tool to check whether a given polynomial is in the radical or
not.

Lemma 1 (Cox et al. 2007) Let J = 〈p1, . . . , ps〉 ⊂
C[ξ1, . . . , ξn] be an ideal. Then a polynomial p ∈ √

J if and
only if 1 ∈ J̃ = 〈p1, . . . , ps, 1 − τ p〉 ⊂ C[ξ1, . . . , ξn, τ ].

By Lemma 1, a polynomial p ∈ √
J if and only if the

(reduced) Gröbner basis of J̃ is {1}. In the proof of The-
orem 5, we used the computer algebra system Macaulay2
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(Grayson and Stillman 2002) to compute the Gröbner bases.
The computation time did not exceed 3 seconds per basis.

Lemma 2 Let essential matrices E12, E23, E31 be repre-
sented in form Ei j = [bi j ]×Ri j . If the matrices Ri j and
vectors bi j are constrained by

R12R23R31 = I , (64)

R�
12b12 + R23b31 + b23 = 0, (65)

then the triplet {E12, E23, E31} is compatible.
Proof Let Ri j and bi j satisfy Eqs. (64)–(65). Then Eq. (13)
has the following possible solution for Ri and bi :

R1 = I , b1 = 0,

R2 = R�
12, b2 = −b12,

R3 = R31, b3 = R�
31b31.

(66)

It follows that the triplet {E12, E23, E31} is compatible.
Lemma 2 is proved. ��
Lemma 3 The following triplet of essential matrices with
collinear epipoles is compatible:

E12 = γ1[s]×, E23 = γ2[s]×, E31 = (ε1γ1 + ε2γ2)[s]×,

(67)

where εi = ±1, s = [
0 δ 1

]�
, and δ is an arbitrary param-

eter.

Proof We denote R0 =
⎡

⎣
−1 0 0
0 − cosψ0 sinψ0

0 sinψ0 cosψ0

⎤

⎦, where

cosψ0 = 1−δ2

1+δ2
and sinψ0 = 2δ

1+δ2
. The essential matrices

from triplet (67) can be written in form Ei j = [bi j ]×Ri j ,
where matrices Ri j and vectors bi j are defined as follows

b12 = −ε2γ1s, R12 =
{
R0, ε2 = 1

I , otherwise
,

b23 = −ε1γ2s, R23 =
{
R0, ε1 = 1

I , otherwise
,

b31 = (ε2γ1 + ε1γ2)s, R31 =
{
R0, ε1ε2 = −1

I , otherwise
.

(68)

It is straightforward to verify that constraints (64)–(65) hold.
By Lemma 2, triplet (67) is compatible. Lemma 3 is proved.

��
Lemma 4 The following triplets of essential matrices are
compatible:

1.

E12 =
⎡

⎣
0 −γ1 β1

γ1 0 −α1

−β1 α1 0

⎤

⎦ , E23 =
⎡

⎣
0 −γ2 β2

γ2 0 α1

−β2 −α1 0

⎤

⎦ ,

E31 =
⎡

⎣
0 γ1 + γ2 −β1 − β2

−γ1 − γ2 0 0
β1 + β2 0 0

⎤

⎦ ; (69)

2.

E12 =
⎡

⎣
0 0 0
0 0 −α1

0 α1 0

⎤

⎦ ,

E23 =
⎡

⎣
0 0 β2

0 0 −α1

−β2 α1 0

⎤

⎦ , E31 =
⎡

⎣
0 0 β2

0 0 0
β2 0 0

⎤

⎦ ; (70)

3.

E12 =
⎡

⎣
0 0 β1

0 0 −α1

−β1 α1 0

⎤

⎦ , E23 =
⎡

⎣
0 0 0
0 0 −α1

0 α1 0

⎤

⎦ ,

E31 =
⎡

⎣
0 0 −β1

0 0 0
−β1 0 0

⎤

⎦ ; (71)

4.

E12 =
⎡

⎣
0 0 β1

0 0 −α1

−β1 α1 0

⎤

⎦ , E23 =

⎡

⎢⎢
⎣

0 0 −α2
1

β1

0 0 −α1
α2
1

β1
α1 0

⎤

⎥⎥
⎦ ,

E31 =

⎡

⎢⎢
⎣

0 0 −α2
1+β2

1
β1

0 0 0

−α2
1+β2

1
β1

0 0

⎤

⎥⎥
⎦ ; (72)

5.

E12 =
⎡

⎣
0 −γ2 − γ3 0

γ2 + γ3 0 0
0 0 0

⎤

⎦ , E23=
⎡

⎣
0 −γ2 β2
γ2 0 0

−β2 0 0

⎤

⎦ ,

E31 =
⎡

⎣
0 γ3 −β2

−γ3 0 0
−β2 0 0

⎤

⎦ ; (73)

6.

E12 =
⎡

⎣
0 −γ1 β1
γ1 0 0

−β1 0 0

⎤

⎦ , E23 =
⎡

⎣
0 −γ1 − γ3 0

γ1 + γ3 0 0
0 0 0

⎤

⎦ ,

E31 =
⎡

⎣
0 γ3 β1

−γ3 0 0
β1 0 0

⎤

⎦ ; (74)
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7.

E12 =
⎡

⎣
0 −γ1 β1

γ1 0 0
−β1 0 0

⎤

⎦ , E23 =
⎡

⎣
0 −γ2 β2

γ2 0 0
−β2 0 0

⎤

⎦ ,

E31 =
⎡

⎣
0 γ3 β3

−γ3 0 0
β3 0 0

⎤

⎦ , (75)

where

γ1 = δβ1(β1 + β2 − β3),

γ2 = δβ2(β1 + β2 + β3),

γ3 = δβ3(−β1 + β2 + β3),

(76)

and parameter δ is subject to

δ(γ1 + γ2 + γ3) = −1. (77)

Proof Triplets (69)–(71), (73), and (74) are compatible by
definition as the corresponding essential matrices can be rep-
resented in form (13). Namely,

1. for triplet (69):

E12 = I [b1 − 0]× I , E23 = I [0 − b3]× I ,

E31 = I [b3 − b1]× I , (78)

where b1 = [
α1 β1 γ1

]�
, b3 = [

α1 −β2 −γ2
]�

;
2. for triplet (70):

E12 = D1[0 − b2]× I , E23 = I [b2 − b3]× I ,

E31 = I [b3 − 0]×D1, (79)

where D1 = diag(1,−1,−1), b2 = [
α1 0 0

]�
, b3 =

[
0 −β2 0

]�
;

3. for triplet (71):

E12 = I [b1 − b2]× I , E23 = I [b2 − 0]×D1,

E31 = D1[0 − b1]× I , (80)

where b1 = [
0 β1 0

]�
, b2 = [−α1 0 0

]�
;

4. for triplet (73):

E12 = D3[b1 − b2]× I , E23 = I [b2 − 0]× I ,

E31 = I [0 − b1]×D3, (81)

where D3 = diag(−1,−1, 1), b1 = [
0 β2 −γ3

]�
, b2 =

[
0 β2 γ2

]�
;

5. for triplet (74):

E12 = I [0 − b2]× I , E23 = I [b2 − b3]×D3,

E31 = D3[b3 − 0]× I , (82)

where b2 = [
0 −β1 −γ1

]�
, b3 = [

0 −β1 γ3
]�

.

Further, let

cosϕi = α2
i − β2

i

α2
i + β2

i

, sin ϕi = 2αiβi

α2
i + β2

i

,

cosψi = β2
i − γ 2

i

β2
i + γ 2

i

, sinψi = 2βiγi
β2
i + γ 2

i

.

(83)

The essential matrices from triplets (72) and (75) admit the
representation Ei j = [bi j ]×Ri j , where the matrices Ri j and
vectors bi j are defined below in (84) and (85) respectively:

1.

b12 =
⎡

⎣
−α1

−β1

0

⎤

⎦ , R12 =
⎡

⎣
cosϕ1 sin ϕ1 0
sin ϕ1 − cosϕ1 0
0 0 −1

⎤

⎦ ,

b23 =
⎡

⎢
⎣

−α1
α2
1

β1

0

⎤

⎥
⎦ , R23 =

⎡

⎣
− cosϕ1 − sin ϕ1 0
− sin ϕ1 cosϕ1 0

0 0 −1

⎤

⎦ ,

b31 =
⎡

⎢
⎣

0

−α2
1+β2

1
β1

0

⎤

⎥
⎦ , R31 =

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦ . (84)

2.

b12 = −
⎡

⎣
0
β1

γ1

⎤

⎦ , R12 =
⎡

⎣
−1 0 0
0 cosψ1 sinψ1

0 sinψ1 − cosψ1

⎤

⎦ ,

b23 = −
⎡

⎣
0
β2

γ2

⎤

⎦ , R23 =
⎡

⎣
−1 0 0
0 cosψ2 sinψ2

0 sinψ2 − cosψ2

⎤

⎦ ,

b31 = −
⎡

⎣
0
β3

γ3

⎤

⎦ , R31 =
⎡

⎣
1 0 0
0 − cosψ3 sinψ3

0 − sinψ3 − cosψ3

⎤

⎦ .

(85)

It is straightforward to verify that constraints (64)–(65) hold
for both cases. By Lemma 2, triplets (72) and (75) are com-
patible. Lemma 4 is proved. ��

Lemma 5 The following triplets of essential matrices are
compatible provided that λ2 + μ2 = 1:
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1.

E12 = β1

⎡

⎢
⎣

0 0 1
0 0 −λ−1

μ

−1 λ−1
μ

0

⎤

⎥
⎦ ,

E23 =
⎡

⎢
⎣

0 0 β1 + β3

0 0 −β1
λ−1
μ

−β1 − β3 β1
λ−1
μ

0

⎤

⎥
⎦ ,

E31 = β3

⎡

⎣
0 0 1
0 0 0

−λ −μ 0

⎤

⎦ ; (86)

2.

E12 =
⎡

⎣
0 0 β2 + β3λ

0 0 −α1

−β2 − β3λ α1 0

⎤

⎦ ,

E23 = β2

⎡

⎢
⎣

0 0 1
0 0 −λ−1

μ

−1 λ−1
μ

0

⎤

⎥
⎦ ,

E31 = β3

⎡

⎣
0 0 1
0 0 0

−λ −μ 0

⎤

⎦ , (87)

where α1 = (β2 + β3(λ + 1)) λ−1
μ

;
3.

E12 =
⎡

⎣
0 0 β1

0 0 −α1

−β1 α1 0

⎤

⎦ ,

E23 =
⎡

⎣
0 0 β2

0 0 α1λ + β1μ

−β2 −α1λ − β1μ 0

⎤

⎦ ,

E31 = β3

⎡

⎣
0 0 1
0 0 0

−λ −μ 0

⎤

⎦ , (88)

where

β2 = − (α1(λ − 1) + β1μ)(α1λ + β1μ)

α1μ − β1(λ − 1)
,

β3 = (α2
1 + β2

1 )(λ − 1)

α1μ − β1(λ − 1)
.

(89)

Proof Throughout the proof, cosϕi = α2
i −β2

i
α2
i +β2

i
and sin ϕi =

2αiβi
α2
i +β2

i
. The essential matrices from triplets (86), (87),

and (88) can be written in form Ei j = [bi j ]×Ri j , where
the matrices Ri j and vectors bi j are defined below in (90),
(91), and (92) respectively:

1.

b12 = −
⎡

⎣
α1

β1

0

⎤

⎦ , R12 =
⎡

⎣
cosϕ1 sin ϕ1 0
sin ϕ1 − cosϕ1 0
0 0 −1

⎤

⎦ ,

b23 =
⎡

⎣
α1

β1 + β3

0

⎤

⎦ , R23 = I ,

b31 = −
⎡

⎣
0
β3

0

⎤

⎦ , R31 = R12, (90)

where α1 = β1
λ−1
μ

;
2.

b12 =
⎡

⎣
α1

β2 + β3λ

0

⎤

⎦ , R12 = I ,

b23 = −
⎡

⎣
α2

β2

0

⎤

⎦ , R23 =
⎡

⎣
cosϕ2 sin ϕ2 0
sin ϕ2 − cosϕ2 0
0 0 −1

⎤

⎦ ,

b31 = −
⎡

⎣
0
β3

0

⎤

⎦ , R31 = R23, (91)

where α1 = (β2 + β3(λ + 1)) λ−1
μ

, α2 = β2
λ−1
μ

;
3.

b12 = −
⎡

⎣
α1

β1

0

⎤

⎦ , R12 =
⎡

⎣
cosϕ1 sin ϕ1 0
sin ϕ1 − cosϕ1 0
0 0 −1

⎤

⎦ ,

b23 = −
⎡

⎣
α2

β2

0

⎤

⎦ , R23 =
⎡

⎣
cosϕ2 sin ϕ2 0
sin ϕ2 − cosϕ2 0
0 0 −1

⎤

⎦ ,

b31 =
⎡

⎣
0
β3

0

⎤

⎦ , R31 = (R12R23)
� =

⎡

⎣
λ μ 0

−μ λ 0
0 0 1

⎤

⎦ ,

(92)

where β2 and β3 are defined in (89).

By direct computation, constraints (64)–(65) hold for all
three cases. By Lemma 2, triplets (86)–(88) are compatible.
Lemma 5 is proved. ��
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