
International Journal of Computer Vision (2020) 128:2325–2343
https://doi.org/10.1007/s11263-020-01326-x

Product Quantization Network for Fast Visual Search

Tan Yu 1 · Jingjing Meng2 · Chen Fang3 · Hailin Jin3 · Junsong Yuan2

Received: 8 March 2019 / Accepted: 30 March 2020 / Published online: 23 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Product quantization has been widely used in fast image retrieval due to its effectiveness of coding high-dimensional visual
features. By constructing the approximation function, we extend the hard-assignment quantization to soft-assignment quan-
tization. Thanks to the differentiable property of the soft-assignment quantization, the product quantization operation can
be integrated as a layer in a convolutional neural network, constructing the proposed product quantization network (PQN).
Meanwhile, by extending the triplet loss to the asymmetric triplet loss, we directly optimize the retrieval accuracy of the
learned representation based on asymmetric similarity measurement. Utilizing PQN, we can learn a discriminative and com-
pact image representation in an end-to-end manner, which further enables a fast and accurate image retrieval. By revisiting
residual quantization, we further extend the proposed PQN to residual product quantization network (RPQN). Benefited
from the residual learning triggered by residual quantization, RPQN achieves a higher accuracy than PQN using the same
computation cost. Moreover, we extend PQN to temporal product quantization network (TPQN) by exploiting temporal con-
sistency in videos to speed up the video retrieval. It integrates frame-wise feature learning, frame-wise features aggregation
and video-level feature quantization in a single neural network. Comprehensive experiments conducted on multiple public
benchmark datasets demonstrate the state-of-the-art performance of the proposed PQN, RPQN and TPQN in fast image and
video retrieval.

Keywords Product quantization · Image retrieval · Deep learning · Video retrieval

1 Introduction

Visual search has been a fundamental research topic in com-
puter vision. Given a query (an image or a video), it aims

Communicated by Li Liu, Matti Pietikäinen, Jie Qin, Jie Chen, Wanli
Ouyang, Luc Van Gool.

B Tan Yu
tyu008@e.ntu.edu.sg

Jingjing Meng
jmeng2@buffalo.edu

Chen Fang
cfang@adobe.com

Hailin Jin
hljin@adobe.com

Junsong Yuan
jsyuan@buffalo.edu

1 Cognitive Computing Lab, Baidu Research, Seattle, USA

2 Computer Science and Engineering Department, University at
Buffalo, State University of New York, New York, USA

3 Adobe Research, San Jose, USA

to retrieve the query’s relevant items from a database. Accu-
racy and efficiency are two key aspects for a retrieval system.
These two aspects drive the research on visual search to
progress in two directions.

The first direction focuses on representation designing or
learning for a higher search accuracy (Philbin et al. 2007;
Perronnin et al. 2010; Jégou et al. 2010; Babenko et al. 2014;
Babenko and Lempitsky 2015; Ng et al. 2015; Gordo et al.
2016; Yu et al. 2017c; Bai et al. 2018, 2017). A good repre-
sentation maintains a large distance between irrelevant items
in feature space and a close distance between relevant ones.
Traditional retrieval systems first extract hand-crafted local
features like SIFT and then aggregate local features into a
global feature (Philbin et al. 2007; Perronnin et al. 2010;
Jégou et al. 2010). With the progress of deep learning, the
convolutional neural network provides an effective represen-
tation (Babenko et al. 2014; Babenko and Lempitsky 2015;
Ng et al. 2015; Yu et al. 2017a, d), which is trained by the
semantic information and thus is robust to low-level image
transformations.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01326-x&domain=pdf

2326 International Journal of Computer Vision (2020) 128:2325–2343

The second direction aims to boost the retrieval speed,
especially when dealing with a large-scale dataset. In this
circumstance, a compact visual representation is necessary.
Generically speaking, there are two types of schemes to gain
a compact representation, hashing and quantization. Hash-
ing maps the real-value vectors into binary codes, which
enables a faster distance computation and lower memory
cost. One of widely used hashing methods is locality sensi-
tivity hashing (LSH) (Charikar 2002). Nevertheless, LSH is
data-independent, which ignores the data distribution and is
sub-optimal to a specific dataset. To further improve the per-
formance, some hashingmethods (Salakhutdinov andHinton
2007; Weiss et al. 2009; Gong et al. 2013) learn the projec-
tion from the data, which caters better to a specific dataset
and achieves a higher retrieval precision. Note that tradi-
tional hashing methods are based on a two-step procedure.
To be specific, they first conduct feature extraction and then
carry on Hamming embedding based on the extracted fea-
tures. These two steps are independently conducted and their
mutual influence are ignored. More recently, inspired by the
progress of deep learning, some deep hashing methods (Xia
et al. 2104; Lai et al. 2015; Liu et al. 2016; Li et al. 2017)
are proposed, which simultaneously conduct feature learning
and feature compression through a unified neural network,
achieving much better retrieval performance compared with
methods based on off-the-shelf features.

Nevertheless, hashing methods are only able to produce
a few distinct distances, limiting its discriminative power
in characterizing distances between data points. In parallel
to hashing methods, another widely used data compression
method in visual retrieval is product quantization. It quan-
tizes each feature vector into a Cartesian product of several
codewords and the similarity can be efficiently computed
through looking up cached similarity table. Thanks to the
asymmetric distance calculation mechanism, product quan-
tization enables a more accurate distance calculation than
hashing methods using the same code length. The product
quantization (PQ) (Jegou et al. 2011) and its optimized ver-
sions like OPQ (Ge et al. 2013), CKmeans (Norouzi and
Fleet 2013), APQ (Babenko and Lempitsky 2014) and CQ
(Zhang et al. 2014; Hong et al. 2018) are originally designed
for unsupervised scenarios where no labeled data are pro-
vided. SQ (Wang et al. 2016c) extends product quantization
to supervised scenarios. However, SQ is based on the hand-
crafted features or CNN features from the pretrained model,
therefore it might not be optimal with respect to a specific
dataset.

To jointly optimize feature learning and product quantiza-
tion, Cao et al. (2016) propose a deep quantization network
(DQN) which supports an end-to-end training. It optimizes
a weighted sum of similarity preserving loss and product
quantization loss. It iteratively updates codewords and other
parameters of a neural network. Therefore, in each iteration,

RPQN

RPQN

I

I+

I-

v

v+

v-

q+

q-

Asymmetric
Triplet Loss
AsymmetricAsymmetric
Triplet Loss

Fig. 1 The architecture of the proposed residual product quantization
network (RPQN). It takes triplets as input. Each triplet consists of an
anchor image I , a positive image I+ and a negative image I−. It obtains
real-value feature vectors [v, v+, v−] through backbone and further
generates soft-quantized representations for positive image and neg-
ative image, [q+,q−], by residual product quantization layer (RPQN).
[v,q+,q−] constructs asymmetric triplet loss to train the network

the codewords are directly updated by k-means whereas the
label information is ignored.Recently,Klein andWolf (2017)
propose a deep product quantization (DPQ). They learn a
cascade of two fully-connected layers followed by a soft-
max layer to determine a soft codeword assignment. It is
different from original product quantization as the codeword
assignment is no longer determined by distance between the
original feature and codewords. Nevertheless, the additional
parameters introduced in the cascade of fully-connected lay-
ers make DPQ more prone to over-fitting.

In this paper, we also attempt to incorporate the product
quantization in a neural network and train it in an end-
to-end manner. We construct a soft product quantization
layer through an approximation function f (x, α), which is
differentiable and supports an end-to-end training. The orig-
inal product quantization function q(x) is a special case of
the constructed approximation function when α → +∞.
Different from DPQ, fully-connected layers are no longer
needed for codebook assignment, instead, in our method,
the codeword assignment is determined by the similarity
between features and the codewords. Therefore, we sig-
nificantly reduce the number of parameters to be trained,
making our product quantization network (PQN) less prone
to over-fitting compared with DPQ. Meanwhile, inspired by
the success of the triplet loss inmetric learning and the advan-
tage of the asymmetric similarity measurement in feature
compression, we propose a novel asymmetric triplet loss to
directly optimize the representation’s adaptability to asym-
metric similarity measurement in an end-to-end manner.
Interestingly, our experiments show that product quantiza-
tion not also boosts retrieval efficiency, but also serves as a
regularization approach, which improves the model’s gener-
alizability and improves the retrieval precision.

123

International Journal of Computer Vision (2020) 128:2325–2343 2327

Meanwhile, we revisit the residual quantization and
extendPQNto residual product quantizationnetwork (RPQN).
In general, residual quantization cannot achieve compara-
ble distortion error as product quantization, which limits
its effectiveness in retrieval based on hand-crafted features.
Nevertheless, there are large redundancy in features obtained
from deep neural network and thus the quantization error is
less important. Benefited from residual learning triggered
through residual quantization, the proposed RPQN achieves
a higher accuracy than PQN. Figure 1 visualizes the archi-
tecture of the proposed RPQN. It takes a triplet consisting
of an achor image, a positive image and a negative image
[I , I+, I−] as input. The backbone network, e.g., AlexNet,
obtains the images’ real-value feature vectors [v, v+, v−].
The feature vectors of the positve image and negative image
are further feed in the proposed residual product quantization
layer (RPQL) to generate their quantized features [q+,q−].
The anchor image’s real-value feature and the quantized fea-
tures of the negative image and the positive image constitutes
a triplet [v,q+,q−] to compute the assymetric loss which
aims to enlarge the distance between v and q−, and decrease
the distance between v and q+.

Moreover, we extend PQN to temporal product quantiza-
tion network (TPQN) by exploiting the temporal consistency
inherited in videos through a temporal pyramid pooling. The
temporal pyramid pooling not only enhances the discrimi-
nativeness of the video representation but also provides a
natural feature partition for product quantization. It integrates
frame feature learning, frame features aggregation and video
feature product quantization in a single neural network.

This paper is an extension of our conference paper (Yu
et al. 2018). New contributions are summarized as follows:

• We give a deeper insight into making the quantization
differentiable. We propose to construct a function to
approximate the hard quantization to achieve the func-
tionality of the quantization. The softmax function used
in the original conference paper (Yu et al. 2018) is a spe-
cial case of the proposed approximation function in this
paper. We give a more detailed derivation for the gradi-
ent back-propagation and conduct amore comprehensive
ablation study.

• We extend the proposed product quantization network
(PQN) in the conference paper to residual product
quantization network (RPQN) by revisiting the residual
quantization. The residual quantization not only brings a
finer feature space partition but also triggers the residual
learning, enhancing the representation’s discriminability.
We conduct comprehensive experiments on RPQN and
demonstrate that it achieves higher accuracies than the
PQN proposed in our conference paper.

• We tackle a new task, video retrieval. By exploiting the
temporal consistency inherited in videos, we extend the
PQN proposed in our conference paper to temporal prod-
uct quantization (TPQN). The proposed TPQN integrates
frame feature learning, frame features pooling and video
feature compression in a single network.We conduct sys-
tematic experiments based on the proposed TPQN and
achieve state-of-the-art performance in video retrieval
task.

The remainder of the paper is organized as follows: Related
work for Hashing, quantization and fast video retrieval are
discussed in Sect. 2. Product quantization network (PQN)
is introduced in Sect. 3. The proposed residual product
quantization network (RPQN) is introduced in Sect. 4 and
temporal product quantizationnetwork (TPQN) is introduced
in Sect. 5. Sections 6 and 7 provide experimental results in
fast image retrieval and video retrieval, respectively.

2 RelatedWork

2.1 Hashing

Hashing (Charikar 2002; Salakhutdinov and Hinton 2007;
Weiss et al. 2009; Gong et al. 2013; Xia et al. 2104; Lai
et al. 2015; Liu et al. 2016; Li et al. 2017; Hong et al. 2017;
Hong and Yuan 2018; Hong et al. 2018; Yu et al. 2017b)
aims to map a feature vector into a short code consisting
of a sequence of bits, which enables fast distance computa-
tion as well as small memory cost. One of traditional hashing
methods, locality sensitivity hashing (LSH) (Charikar 2002),
directly utilizes random projection tomap the real-value vec-
tors into binary codes. Since the random projection in LSH
is independent with data distribution, it might not be optimal
for a specific dataset. To optimize the projection for a specific
dataset, spetral hashing (SH) (Weiss et al. 2009) and iterative
quantization (ITQ) (Gong et al. 2013) learn the projection
by minimizing the distortion errors in an unsupervised man-
ner. They achieve better performance than LSH. To further
exploit the supervision information, some supervised hash-
ing methods (Liu et al. 2012; Norouzi et al. 2012; Shen et al.
2015) are proposed, achieving better performance than their
unsupervised counterpart such as ITQ and SH.

Nevertheless, the above-mentioned hashing methods all
adopt a two-step procedure. They first obtain real-value
image features and then compress the features into binary
codes. In that case, the representation learning and feature
compression are conducted separately and the mutual influ-
ence between them is ignored. Recently, motivated by the
success of deep learning, some works (Xia et al. 2104; Lai
et al. 2015; Liu et al. 2016; Li et al. 2017) propose deep hash-

123

2328 International Journal of Computer Vision (2020) 128:2325–2343

ing methods by incorporating hashing as a layer into a deep
neural network. The end-to-end training mechanism of deep
hashing simultaneously optimizes the representation learn-
ing and feature compression, achieving better performance
than traditional hashing methods based on the two-step pro-
cedure.

2.2 Product Quantization

Since the hashing methods are only able to produce a
few distinct distances, it has limited capability of describ-
ing the distance between data points. Parallelly, another
scheme termed product quantization (PQ) (Jegou et al.
2011) possesses a more powerful representation capability.
It decomposes the space into a Cartesian product of sub-
spaces and quantizes each subspace individually. Thanks to
the product settings, it could partition the feature space into
a huge number of fine cells. By utilizing the asymmetric
similarity measurement, it only causes quantization error in
reference images’ features and uses the original feature of the
query without any distortion. Meanwhile, through looking
up tables, it achieves comparable search speed as Hashing
methods. Some following work (Ge et al. 2013; Babenko
and Lempitsky 2014; Zhang et al. 2014) further optimize
the product quantization through reducing the distortion and
achieve higher retrieval precision and recall. Note that, pro-
duction quantization and its optimized versions such as OPQ
(Ge et al. 2013), AQ (Babenko and Lempitsky 2014) and CQ
(Zhang et al. 2014) are designed for unsupervised scenarios
where no supervision is provided, limiting their effectiveness
in the supervised scenario.

To exploit the labels provided in the supervised scenario,
Wang et al. (2016c) propose supervised quantization (SQ).
Nevertheless, SQ conducts feature extraction and quantiza-
tion individually, whereas the interaction between these two
steps are ignored. To simultaneously learn image represen-
tation and product quantization, deep quantization network
(DQN) (Cao et al. 2016) adds a fully connected bottleneck
layer in the convolutional network. It optimizes a com-
bined loss consisting of a similarity-preserving loss and a
product quantization loss. Nevertheless, the codebook in
DPQ is trained through k-means clustering and thus the
supervision is ignored. Recently, deep product quantiza-
tion (DPQ) (Klein and Wolf 2017) is proposed where the
codebook and network parameters are learned in an end-
to-end manner. Different from original product quantization
which determines the codeword assignment according to dis-
tances between features and codewords, DPQ determines the
codeword assignment through a fully connected layer with
parameters learned from data. Nevertheless, the additional
parameters in the cascade of fully connected layers make the
network more prone to over-fitting.

Our work is also an attempt of incorporating product
quantization in a neural network. We propose a soft prod-
uct quantization layer and build our product quantization
network (PQN), which can be trained in an end-to-end man-
ner. Different from DPQ, our PQN determines the codeword
assignment according to the similarity between features for
coding and codewords, which can be seen as a soft exten-
sion of original product quantization. Unlike DPQ, we do
not need additional fully-connected layers to determine the
codeword assignment and the only parameters in our soft
product quantization layer are codewords. Therefore, ours
is less prone to over-fitting. Besides, we exploit residual
quantization besides product quantization in RPQN. The
residual quantization triggers the residual learning, which
boosts the representation’s discriminabilty. Moreover, we
extend product quantization to temporal product quantiza-
tion for speeding up video retrieval. The temporal pyramid
used in temporal product quantization not only provides a
natural feature partition but also enhances the representa-
tion’s discriminabilty.

2.3 Fast Video Search

Traditional fast video search methods (Cao et al. 2012; Ye
et al. 2013) follow a two-step pipeline by extracting the video
feature (Tu et al. 2018, 2019) followed by the feature com-
pression. Nevertheless, this two-step pipeline ignores the
interaction between two steps, feature learning and com-
pression, and thus the obtained compact video representation
might be sub-optimal. To improve the performance of learned
compact code, Wu et al. (2017b) propose a deep video hash-
ing method which jointly optimize frame feature learning
and hashing. Similarly, Liong et al. (2017) incorporate video
feature learning and hashing function optimization in a sin-
gle neural network. Recently, Liu et al. (2017) propose a
deep video hashing framework as well as a category mask
to increase the discriminativity of hash codes. Different from
these deep hashingmethods, we exploit product quantization
to obtain a compact video representation and incorporate it
in a neural network. Thanks to asymmetric distance mea-
surement, product quantization results in a smaller distortion
error than hashing.Moreover,we exploit the temporal consis-
tency inherited in videos and extend the product quantization
to temporal product quantization, constructing the proposed
temporal product quantization network (TPQN).

3 Product Quantization Network

3.1 Limitation of Product Quantization

Let us denote byv ∈ R
d the feature of a reference image I ,we

divide the feature v into M subvectors [v1, . . . , vm, . . . , vM]

123

International Journal of Computer Vision (2020) 128:2325–2343 2329

in the feature space where vm ∈ R
d/M is a subvector. The

product quantization further approximates v by

q = [q1(v1), . . . , qm(vm), . . . , qM (vM)], (1)

where qm(·) is m-th quantizer defined as

qm(vm) = ck
∗

m , (2)

in which,

k∗ = argmax
k∈[1,K]

〈vm, ckm〉. (3)

In Eq. (3), {c1m, . . . , cKm } are codewords for qm(·). Originally,
the codewords are learned through unsupervised k-means by
minimizing the distortion error between each data point and
its nearest codeword. Nevertheless, only minimizing distor-
tion errors between data points and codewords ignores the
supervision information. To exploit the provided supervision
when incorporated product quantization in a neural network,
we seek to learn the codewords through back-propagation in
a end-to-end manner.

Let us attempt to derive the back-propagation of gra-
dients in product quantization operation. We define L as
the training loss, which we will introduce in Sect. 3.5. Let
us assume we have already obtained ∂L/∂qm(vm), i.e., the
derivative of loss L with respective to the output. The back-
propagation seeks to compute the derivative of loss L with
respective to the codewords, ∂L/∂ck

∗
m , and the derivative

of loss L with respective to the input, ∂L/∂vm . From the
definition, it is straightforward to derive that ∂L/∂ck

∗
m =

∂L/∂qm(vm). Intuitively, it back-propagates the gradients
of the output to the codewords it is assigned to and leave
the other codewords unchanged. Nevertheless, qm(vm) is not
a continuous function of vm , making it infeasible to back-
propagate ∂L/∂qm(vm) to ∂L/∂vm . It drives us to seek other
solutions to make the back-propagation in product quantiza-
tion feasible.

3.2 FromHard Quantization to Soft Quantization

To overcome the non-differentiable problem, we general-
ize the quantization defined in Eq. (2) by constructing a
continuously differential approximation function defined as
fm(vm, α) which satisfies limα→+∞ fm(vm, α) = qm(vm),
where α is a scalar controlling the consistency between
fm(vm, α) and qm(vm). In practice, we can choose a large α

to achieve a good approximation. There are multiple choices
to construct the function fm(vm, α). Below we specify two
instances and the soft quantization function proposed in our
conference paper (Yu et al. 2018) corresponds to the second

one:

f 1m(vm, α) =
K∑

k=1

〈vm, ckm〉α
∑K

k′=1〈vm, ck′
m 〉α c

k
m,

f 2m(vm, α) =
K∑

k=1

eα〈vm ,ckm 〉
∑K

k′=1 e
α〈vm ,ck′m 〉 c

k
m

(4)

Note that, limα→+∞ f 1m(vm, α) = qm(vm) might not be sat-
isfied if 〈vm, ckm〉 < 0. To tackle this issue, we clip 〈vm, ckm〉
to ensure it is non-negative. Below we derive the gradient
back-propagation for f 1m(vm, α) and that of f 2m(vm, α) can
be derived in a similar manner. To facilitate the derivation,
we introduce a series of intermediate variables {akm}M,K

m=1,k=1
defined as

akm = 〈vm, ckm〉α/

K∑

k′=1

〈vm, ck
′

m 〉α. (5)

Meanwhile, let us define qm = f 1m(vm, α) as output of
the approximation function taking vm as input. By plugging
Eq. (5) into Eq. (4), we can obtain

qm =
K∑

k=1

akmc
k
m . (6)

Sinceqm is a function of vm and {ckm}Kk=1, it is straightforward
to obtain

dL =
M∑

m=1

(
dqm

)	 ∂L

∂qm

=
M∑

m=1

(∂qm
∂vm

dvm +
K∑

k=1

∂qm
∂ckm

dckm
)	 ∂L

∂qm
.

(7)

Meanwhile, according to the definition of qm in Eq. (6),

∂qm
∂vm

=
K∑

k=1

∂qm
∂akm

(∂akm
∂vm

)	 =
K∑

k=1

ckm
(∂akm
∂vm

)	
,

∂qm
∂ckm

=
K∑

k′′=1

∂qm
∂ak′′

m

(∂ak
′′

m

∂ckm

)	 + akm
∂ckm
∂ckm

=
K∑

k′′=1

ck
′′

m

(∂ak
′′

m

∂ckm

)	 + akmI,

(8)

123

2330 International Journal of Computer Vision (2020) 128:2325–2343

where I is an identity matrix. By plugging Eq. (8) into Eq.
(7), we further obtain

dL =
M∑

m=1

{ K∑

k=1

ckm
(∂akm
∂vm

)	
dvm

+
K∑

k=1

[K∑

k′′=1

ck
′′

m

(∂ak
′′

m

∂ckm

)	 + akmI
]
dckm

}	 ∂L

∂qm
.

(9)

Meanwhile, L is the function of vm and ckm , therefore,

dL =
M∑

m=1

[(
dvm

)	 ∂L

∂vm
+

K∑

k=1

(
dckm

)	 ∂L

∂ckm

]
. (10)

Comparing Eq. (10) with Eq. (9), we obtain

∂L

∂vm
=

K∑

k=1

∂akm
∂vm

(
ckm

)	 ∂L

∂qm
,

∂L

∂ckm
=

K∑

k′′=1

∂ak
′′

m

∂ckm

(
ck

′′
m

)	 ∂L

∂qm
+ akm

∂L

∂qm
.

(11)

where

∂akm
∂vm

= α
∑K

k′=1〈vm, ck
′

m 〉α−1〈vm, ckm〉α−1ckm〈vm, ck
′

m 〉
(
∑K

k′=1〈vm, ck′
m 〉α)2

− α
∑K

k′=1〈vm, ck
′

m 〉α−1〈vm, ckm〉α−1ck
′

m 〈vm, ckm〉
(
∑K

k′=1〈vm, ck′
m 〉α)2

,

∂ak
′′

m

∂ckm
= αI(k = k′′)ck′′

m 〈vm, ck
′′

m 〉α−1 ∑K
k′=1〈vm, ck

′
m 〉α

(
∑K

k′=1〈vm, ck′
m 〉α)2

− αckm〈vm, ckm〉α−1〈vm, ck
′′

m 〉α
(
∑K

k′=1〈vm, ck′
m 〉α)2

.

(12)

I(k = k′) = 1 only if k = k′ otherwise 0. In fact, our experi-
ments in Sect. 6.1.1 show that, f 1m(·, α) and f 2m(·, α) achieve
comparable performance. For convenience of implementa-
tion, we select f 2m(·, α) as default approximation function.

3.3 Regularization

Interestingly, the quantizationmechanismworks as a regular-
ization, effectively suppressing over-fitting. Different from
traditional regularization method putting constraints on the
weights of the network such as �1/�2 regularization, quanti-
zation, instead, puts constraints on the activations. We will
show that even though the quantized features can be seen
as an approximation of the original features with inevitable
distortion, it achieves a much better retrieval precision than
that using the original features.

3.4 Initialization

We initialize the parameters of convolutional layers by fine-
tuning a standard convolutional neural network without
quantization, e.g., Alexnet, on the specific dataset. Since we
adopt inner-product similarity, we add an intra-normalization
layer after the fully-connected layer to fine-tune the net-
work to make it compatible with the proposed product
quantization network. After that, we extract the features
from the fine-tuned neural network and conduct k-means
followed by �2-normalization to obtain the initialized code-
words {cmk}K ,M

k=1,m=1 in the soft product quantization layer.

3.5 Asymmetric Triplet Loss

We extend triplet loss originally used in metric learning to
asymmetric triplet loss to boost the performance of learned
representation in asymmetric similarity measurement. We
define (I , I+, I−) as a training triplet, where I+ represents
a relevant (positive) image and I− is an irrelevant (negative)
image with respect to I . We denote by v the feature of I
before soft product quantization and denote by q+ and q−
the features of I+ and I− after soft product quantization. We
define asymmetric similarity between I and I+ as 〈v,q+〉,
where 〈·, ·〉 denotes the inner-product between two vectors.
The proposed asymmetric triplet loss is defined as

LAT L = 〈v,q−〉 − 〈v,q+〉. (13)

Intuitively, it aims to increase the asymmetric similarity
between pairs of relevant images and decrease that of pairs
of irrelevant images. It is a natural extension of the original
triplet loss to asymmetric distance. The difference is that, a
training triplet used in the original triplet loss consists of three
features of the same type, whereas a training triplet used in
the proposed asymmetric triplet loss consists of one feature
without quantization and two features after quantization. In
fact, our experiments in Sect. 6.1.1 show that a better per-
formance is achieved by processing the above loss through
a sigmoid function and a revised loss function is defined as
Eq. (14). The better performance might be attributed to the
fact that the sigmoid function can normalize the original loss
so that the training will not be biased by some samples with
huge loss. By default, the asymmetric triplet loss (ATL) we
mention in this paper is L+

AT L in Eq. (14).

L+
AT L = 1

1 + e〈v,q+〉−〈v,q−〉 . (14)

3.6 Encoding and Retrieval

After training the proposed product quantization network,
the reference images in the database will be encoded by

123

International Journal of Computer Vision (2020) 128:2325–2343 2331

hard product quantization. We define the layer before the
soft product quantization layer as embedding layer. Given
a reference image I , we obtain its feature from embedding
layer v = [v1, . . . , vm, . . . , vM] and then obtain its PQ code
i = [i1, . . . , im, . . . , iM] where im is computed by

im = argmax
k∈[1,K]

〈vm, ckm〉, (15)

where {ckm}M,K
m=1,k=1 are codewords learned from our product

quantization network. In the retrieval phase, we obtain the
query’s feature from the embedding layer vq = [vq1 , . . . , vqm,

. . . , vqM]. The relevance between the query and a refer-
ence image represented by its product quantization code
i = [i1, . . . , im, . . . , iM] is computed by the asymmetric sim-
ilarity s(vq , i) defined as

s(vq , i) =
M∑

m=1

〈vqm, cimm 〉. (16)

Since {〈vqm, ckm〉}Kk=1 is computed only once for all the refer-
ence images in the database and thus obtaining s(vq , i) only
requires to sum up the pre-computed similarity scores in the
look-up table, considerably speeding up the image retrieval
process. Meanwhile, storing the product quantization code i
only requires M log2K bits, which considerably reduces the
memory cost.

3.7 Relation to ExistingMethods

DQN (Cao et al. 2016) is the first attempt of incorporat-
ing product quantization in the neural network. It alternately
optimizes codewords and other parameters of the network.
It is worth noting that when updating codewords, it only
minimizes the quantization errors through k-means and the
supervision information is ignored.

SUBIC (Jain et al. 2017) integrates the one-hot block encod-
ing layer in the deep neural network. It represents each image
by a product of one-hot blocks, following the spirit of prod-
uct quantization. Nevertheless, the sparse property limits its
representation capability, making it perform not as well as
ours as shown in Table 11.

DPQ (Klein and Wolf 2017) is another attempt of incor-
porating product quantization into the neural network. It
determines the codeword assignment through a cascade of
two fully-connected layers. In contrast, our method deter-
mines the codeword assignment according to the similarity
between original features and the codewords. Note that, the
additional parameters from these two fully-connected lay-
ers in DPQ not only increase the computation complexity

in training the neural network, but also make the network
more prone to over-fitting. Our experiments show that our
proposed PQN considerably outperforms DPQ.

4 Residual Product Quantization Network

Different from PQ, residual quantization (RQ) (Chen et al.
2010) performs quantization on the entire feature space,
and then recursively applies vector quantization (VQ) to the
residuals of the previous quantization level. It is a stacked
quantization model. In other words, different from PQ con-
ducting VQ independently on several partitioned sub-spaces,
RQ conducts VQ on multiple levels instead. For the first
level, RQ simply applies VQ to quantize a feature vector v
into one of K centroids through q0(v). The feature vector’s
residual vector r1 can be obtained by subtracting its corre-
sponding centroid as v−q0(v). After than, r1 will be further
quantized into K centroids through q1(r1). By repeatedly
quantizing the residuals Mr −1 times, we can approximate v
by q0(v) + ∑Mr−1

m=1 qm(rm). Through combining codewords
in Mr levels, we obtain a considerably huge codebook con-
sisting of KMr codewords. Generally, residual quantization
cannot achieve comparable distortion error as product quan-
tization, which limits its effectiveness in retrieval based on
off-the-shelf features.

Nevertheless, in a deep learning network, there existing
huge amount of redundancy in activations and the quantiza-
tion error is less important. Meanwhile, we observe that the
residual quantization naturally triggers residual learning (He
et al. 2016), which can boost the features’ discriminability.
Based on the above motivation, we attempt to integrate the
residual quantization in a deep neural network. We demon-
strate the advantage of residual quantization over product
quantization when incorporated into a deep neural network.
In fact, the residual quantization in our framework not only
minimizes the distortion error caused by the quantization, but
more importantly, it triggers residual learning and enhances
the discriminability of the learned compact representation.

4.1 Residual Product Quantization Layer

Figure 2 illustrates the proposed residual product quantiza-
tion layer (RPQL). In this case, we set the residual level
Mr = 2. We denote by v ∈ R

d the input feature vector.
RPQL divides v into Mp sub-vectors:

v → [v1, . . . , vm, . . . , vMp] (17)

For each sub-vector vm , it goes through the following forward
path:

1. q1m ← f (vm, α)

123

2332 International Journal of Computer Vision (2020) 128:2325–2343

Fig. 2 The architecture of the
proposed residue product
quantization layer. It splits the
real-value feature v to
sub-features [v1, v2]. Through
approximation function f (·, α),
each sub-feature vm is quantized
into q1m and then obtains the
first-level residual vector
r1m ← xm − q1m . Each residual
vector r1m is further quantized
into q2m . After that, q

1
m and q2m

are summed up to obtain the qm .
q1 and q2 are concatenated into
q

2. r1m ← vm − q1m
3. q2m ← f (r1m, α)

4. qm ← q1m + q2m

where f (·, α) is the soft function defined in Sect. 3.

4.2 Indexing and Retrieval

After training the network, in the indexing phase, we encode
each reference image I in the database through hard-
assignment residual product quantization. Let us define the
layer before residual product quantization layer as embed-
ding layer. We denote by v the output of embedding layer
when input is I . v is partitioned into [v1, . . . , vm, . . . , vMp]
and each sub-vector vm is indexed as follows:

1. i1m ← argmax
k∈[1,K]

〈xm, c1,km 〉

2. r1m ← xm − c
1i1m
m

3. i2m ← argmax
k∈[1,K]

〈r1m, c2,km 〉

In the indexing phase, for each reference image I , we
only need to store indices of their corresponding codewords

{i1m}Mp
m=1 and {i2m}Mp

m=1, taking 2Mplog2K bits in total. In the
retrieval phase, we utilize the asymmetric similarity scores
to rank the reference images in the dataset. Let denote by
vq the output of embedding layer when the input is query
image q. Let denote by [i11 , ..., i1Mp

] and [i21 , ..., i2Mp
] indices

in two-level residual product quantization of the reference
image I . The asymmetric similarity is defined as

simasym(q, I) =
Mp∑

m=1

[〈vq , c1,i
1
m

m 〉 + 〈vq , c2,i
2
m

m 〉]. (18)

In this case, for each query, we only need to compute its
similarity with all the codewords for only once and then sim-

ilarity between the query and each reference image can be
efficiently obtained through 2Mp table look-ups.

5 Temporal Product Quantization Network

The proposed PQN and RPQN in the previous section are
designed for fast image retrieval and are not optimal for
video retrieval task. In this section, we introduce our tempo-
ral product quantization network (TPQN) for effective and
efficient video retrieval. The proposed TPQN is an exten-
sion of the proposed product quantization network by further
exploiting the temporal consistency inherited in videos. It
integrates frame-wise feature learning, frame-wise features
aggregation and video-level feature quantization in a single
neural network, and supports an end-to-end training. Fig-
ure 3 visualizes the architecture of the proposed TPQN. In
Sects. 5.1 and 5.2, we will introduce two core modules of
TPQN sequentially. In Sect. 5.3, the indexing and retrieval
strategy will be introduced.

5.1 Convolutional and Pooling Layers

Given a video V , we uniformly sample N frames from it and
define a global set of sampled frames as S = { f1, . . . , fN }.
We feed frames { fi }Ni=1 in parallel into the backbone network
consisting of convolutional and pooling layers and obtain a
set of frame-level features {F(fi)| fi ∈ S}. We uniformly
partition the global set of frames S into T subsets {S t }Tt=1
where S t = { fi |i ∈ [�N/T �(t − 1) + 1, �N/T �t]}. Each
subset S t represents a continuous interval of the video. Fea-
tures of frames in each subset S t are max-pooled into an
interval’s feature:

vt = maxpool({F(f)| f ∈ S t }), t = 1, . . . , T + 1 (19)

where ST+1 = S accounts for the global set containing all
sampled frames. All the interval-level features will be con-
catenated into a global feature v = [v1, . . . , vT+1], which

123

International Journal of Computer Vision (2020) 128:2325–2343 2333

Fig. 3 The architecture of the proposed temporal product quantization
network (TPQN). The input video V is segmented into multiple inter-
vals. An interval’s representation is obtained through convolutional and
pooling layers and the video’s feature is obtained through temporal
pyramid pooling. The temporal product quantization layer takes the
obtained representation of the video as input and further conducts soft
product quantization

is the input of the proposed temporal product quantization
layer. Intuitively, v is a two-level temporal pyramid pooling
feature which exploits the temporal consistency inherited in
the videos. But more importantly, the pyramid structure pro-
vides a natural feature partition for product quantization.

5.2 Temporal Product Quantization Layer

For each interval-level feature vt , following the standard
product quantization, we equally split it into M sub-vectors
as vt = [vt1, . . . , vtM]. Each vtm goes through the following
pipeline consisting of 4 steps:

1. ytm = relu(Wt
mv

t
m + btm)

2. ȳtm = ytm‖ytm‖2
3. ztm = f tm(ȳtm, α)

4. z̄tm = β
ztm‖ztm‖2

where Wt
m and btm in step 1 are parameters of a fully-

connected layer used to further boost the feature’s discrim-
inability. β in step 4 is a scalar to speed up the training and
quantizer f tm(ȳtm, α) is defined as Eq. 4.

5.3 Indexing and Retrieval

After training the neural network, we will use the learned
codewords but adopt hard quantization for indexing. To be

specific, given a reference video V in the database, let vt =
[vt1, . . . , vtm, . . . , vtM] denote the max-pooled feature of the
intervals It where vtm is them-th sub-vector. For each vtm , we
obtain its index i tm by

1. ytm = relu(Wt
mb

t
m + btm)

2. ȳtm = ytm‖ytm‖2
3. i tm = argmax

k∈[1,K]
〈ȳtm, ct,km 〉

where K is the number of codewords used by each quantizer
qtm(·). It takes log2(K) bits to store i tm and (T +1)Mlog2(K)

bits to store all indices {[i t1, . . . , i tM]}T+1
t=1 for the video V .

The advantage of the proposed temporal product quantiza-
tion over the original product quantization is that it exploits
the temporal consistency inherited in the video, significantly
boosting the representation’s discriminability.

In the retrieval phase, given a query video q, we can
directly obtain its concatenated max-pooled feature [v1q,1,

. . . , vT+1
q,M] through the trained backbone network, further

post-process each vtq,m through {Wt
m,btm} followed by �2

normalization and obtain the final feature [ȳ1q,1, . . . , ȳ
T+1
q,M].

Note that we do not conduct quantization on the query’s
feature due to the asymmetric similarity measurement. The
similarity between the query q and a reference video V is
computed by

sim(q, V) =
T+1∑

t=1

M∑

m=1

〈ȳtq,m, c
t,i tm
m 〉. (20)

Computing Eq. (20) is considerably efficient by utilizing
look-up table (Jegou et al. 2011). To be specific, we only
need to compute the similarity between query video’s fea-
ture with each codeword 〈ȳtq,m, ct,km 〉 for one time and then
store the similarity in a look-up table. Computing the sim-
ilarity between the query video q and a reference video V
defined in Eq. (20) only need M × (T + 1) times similarity
table look-ups.

We summarize architectures of PQN, RPQN, and TPQN
in Table 1.

Table 1 Comparisons between PQN, RPQN, and TPQN

Product Residual Temporal

PQN �
RPQN � �
TPQN � �

PQN adopts the product quantization architecture, RPQN exploits the
residual quantization besides the product quantization, and TPQN uti-
lizes the temporal structure besides product quantization

123

2334 International Journal of Computer Vision (2020) 128:2325–2343

6 Experiments on Image Retrieval

We evaluate the performance of our PQN on two public
benchmark datasets, CIFAR-10 and NUS-WIDE. CIFAR-
10 (Krizhevsky 2009) is a dataset containing 60,000 color
images in 10 classes, and each class has 6000 images in size
32×32. Different from CIFAR-10, NUS-WIDE (Chua et al.
2009) is a dataset for evaluating multi-class classification, in
which one sample is assigned to one or multiple labels. We
follow the settings in (Lai et al. 2015; Cao et al. 2016) and
use the subset of 195,834 images that are associated with the
21 most frequent concepts, where each concept consists of
at least 5000 images. We resize all images into 256 × 256.

On the CIFAR-10 dataset, the performance reported by
different baselines are based on different base convolutional
neural networks, making it unfair to directly compare their
reported retrieval accuracy. To make a fair comparison, we
evaluate our method based on two types of convolutional
neural networks. The first convolutional neural network we
use is 3CNet which is also used by SUBIC (Jain et al. 2017)
and DPQ (Klein and Wolf 2017). 3CNet is proposed in Liu
et al. (2016), which consists of L = 3 convolutional layers
with 32, 32 and 64 filters of size 5× 5 respectively, followed
by a fully connected layer with d = 500 nodes. The sec-
ond convolutional neural network we choose is AlexNet. It
is worth noting that the baselines we compare may apply dif-
ferent models. For example, DQN (Cao et al. 2016) adopts
AlexNet whereas other work (Wang et al. 2016b; Li et al.
2017) adopt VGG-F model. These two models are similar in
the architecture. To be specific, both the CNN-F andAlexNet
consist of five convolutional layers and two fully connected
layers.As shown in (Jiang andLi 2018), theCNN-Fgenerally
performs better thanAlexnet in image retrieval, therefore, the
better performance of ours based on AlexNet than existing
state-of-art methods based on CNN-F is not owing to bet-
ter base network. In other words, our method can achieve
better performance even with an inferior base network. On
the NUS-WIDE dataset, we also adopt AlexNet as our base
model. On both datasets, we report the performance of the
proposed method through mAP, which is a standard metric
in evaluating the performance of retrieval algorithms.

6.1 CIFAR-10 Using 3CNet

Following the experimental setup in SUBIC (Jain et al. 2017)
andDPQ (Klein andWolf 2017), the training is conducted on
50K image training set. The test set is split into 9K database
images and 1K query images (100 per class).

6.1.1 Ablation Study on PQN

We first evaluate the influence of the number of subvectors
M and the number of codewords per sub-codebook K on

the retrieval precision of PQN. In experiments, we change
M among {1, 2, 4, 8}, and vary K among {23, 26, 29, 212}.
As shown in Table 2, PQN achieves the best performance
when M = 4. By default, we set M = 4. Note that
when M ∈ {1, 2}, the performance of PQN increases as K
increases. This is expected since the larger K can partition
the feature space into finer cells. Nevertheless, when M = 4,
the performance drops when K increases from 29 to 212.
Meanwhile, when M = 8, there is also a performance drop
when K increases from 26 to 29. The worse performance
might be caused by over-fitting when both M and K are
large. α controls the quantization softness of the soft product
quantization layer.

We further evaluate the performance of our method when
α varies. We test the influence of α by fixing M = 4 and
varying K among {23, 26, 29, 212}. As shown in Table 3,
the performance of the proposed PQN is relatively stable
when α increases from 1 to 80. Note that, when α = 1, the
performance is slightly worse than that when α = 5. The
worse performance is due to the fact a small α will make
the quantization too soft and thus the soft quantization in
training phase differs too much from the hard quantization in
the testing phase.Meanwhile, we also observe a performance
drop when α increases from 5 to 80. This drops might be
caused by the fact that a huge α tends to push the input of
soft-max function to the saturation region and lead to gradient
vanishing. By default, we set α = 5.

We compare theLAT L in Eq. (13) and its sigmoid-version
L+

AT L in Eq. (14). As shown in Table 4, L+
AT L achieves

slightly better performance than LAT L . The better perfor-
mancemight be attributed to the fact that the sigmoid function
can balance the losses of different samples and thus the net-
work training will not be dominated by samples generating
huge loss.

Table 2 Influence of M and K on PQN

M 1 2 4 8

K = 23 0.539 0.650 0.741 0.708

K = 26 0.696 0.741 0.782 0.724

K = 29 0.712 0.750 0.787 0.713

K = 212 0.735 0.763 0.786 0.737

Bold values indicate the best performance

Table 3 Influence of α on PQN

α 1 5 20 40 80

K = 23 0.731 0.741 0.741 0.732 0.734

K = 26 0.771 0.782 0.782 0.780 0.760

K = 29 0.779 0.787 0.786 0.784 0.780

K = 212 0.785 0.786 0.782 0.782 0.781

Bold values indicate the best performance

123

International Journal of Computer Vision (2020) 128:2325–2343 2335

Table 4 Performance comparisons between LAT L in Eq. (13) and its
sigmoid-version L+

AT L in Eq. (14)

12 bits 24 bits 36 bits 48 bits

LAT L 0.732 0.773 0.781 0.781

L+
AT L 0.741 0.782 0.787 0.786

Bold values indicate the best performance

Table 5 Performance comparisons between f1(·, ·) and f2(·, ·) in Eq.
(4)

12 bits 24 bits 36 bits 48 bits

f1(·, ·) 0.745 0.784 0.785 0.783

f2(·, ·) 0.741 0.782 0.787 0.786

Bold values indicate the best performance

Table 6 Comparisons with PQ and LSQ

8 bits 16 bits 24 bits 32 bits

TL+Full 0.779

TL+PQ 0.621 0.741 0.773 0.780

TL+LSQ 0.720 0.752 0.753 0.763

PQN 0.729 0.778 0.782 0.786

Bold values indicate the best performance

Table 7 Comparisons with other methods in the open-set setting

8 bits 16 bits 24 bits 32 bits

DTSH (Wang et al. 2016b) 0.261 0.269 0.297 0.341

Triplet + PQ 0.282 0.316 0.332 0.341

DPQ 0.329 0.349 0.357 0.356

Bold values indicate the best performance

We compare the performance of two different approxima-
tion function f1(·, ·) and f2(·, ·) in Eq. (4). As shown in Table
5, these two approximation functions achieve comparable
performance. Considering the complexity of implementa-
tion, we select f2(·, ·) as default approximation function.

We compare PQN with unsupervised PQ and LSQ (Mar-
tinez et al. 2016) based on fine-tuned features trained through
triplet loss. As shown in Table 6, ours considerably out-
performs both TL+PQ and TL+LSQ. Meanwhile, we also
show the performance of original features trained through
triplet loss without quantization (TL+Full) in Table 6. Note

that, to make a fair comparison, the triplet loss we used for
full feature without quantization is also the revised one as
Eq. (14). The performance of ours is even better than that of
features without quantization, this is owing to the regulariza-
tion imposed by quantization, which suppresses over-fitting.

We evaluate the proposed PQN in the open-set setting
(Sablayrolles et al. 2017) on CIFAR-10 dataset. In the testing
phase, the query and reference images are of different classes
from that in the training phase. We train the PQN using sam-
ples with labels c ∈ [0, 4] and conduct the retrieval using
samples with labels in c ∈ [5, 9]. In the training data, each
class contains 5000 samples. In the testing data, each class
contains 1000 classes. Among 5000 testing samples, 1000
samples from the testing data are randomly selected as query
and the rest 4000 samples are used as reference images. We
compare with DTSH (Wang et al. 2016b) and Triplet + PQ.
To be specific, Triplet + PQ is implemented by training the
backbone without quantization and then conducted the unsu-
pervised PQ. As shown in Table 7, our method consistently
outperforms the DTSH (Wang et al. 2016b) and Triplet + PQ
in the open-set setting.

We evaluate the proposed PQN using another two back-
bones, ResNet34 and ResNet50. The feature dimension of
ResNet-34 is 512 and that of theResNet-50 is 2048.As shown
inTable 8,whenM ∈ {1, 2}, the best performance is achieved
when K = 64. On the other hand, when M ∈ {4, 8}, the best
performance is achieved when K = 16. Note that, when
K = 256, the performance is worse than that when K = 64.
The worse performance might be caused by over-fitting.

We evaluate the influence of the sampling strategy of the
triplet loss on the proposed PQN. We compare the uniform
sampling, hard negative sampling and distance weighted
sampling (Wu et al. 2017a). As shown in Table 9, the hard
negative sampling is worse than uniform sampling, and the
distance weighted sampling is slightly better than uniform
sampling. Considering the effectiveness and simplicity, we
use uniform sampling as default.

6.1.2 Ablation Study on RPQN

We then evaluate the influence of residual level Mr on the
performance of our RPQN. Note that, when Mr = 1, the
residual product quantization will degenerate to the product
quantization. We compare the case when Mr = 1 and that

Table 8 The influence of M and
K on the ResNet34 and
ResNet50 features

ResNet34 (512-d) ResNet50 (2048-d)

K = 4 K = 16 K = 64 K = 256 K = 4 K = 16 K = 64 K = 256

M = 1 0.353 0.914 0.914 0.908 0.376 0.918 0.919 0.914

M = 2 0.451 0.921 0.924 0.919 0.627 0.928 0.931 0.925

M = 4 0.635 0.935 0.930 0.929 0.797 0.938 0.936 0.933

M = 8 0.773 0.927 0.924 0.922 0.782 0.931 0.930 0.927

123

2336 International Journal of Computer Vision (2020) 128:2325–2343

Table 9 Comparisons among different sampling methods

Method 8 bits 16 bits 24 bits 32 bits

Uniform 0.729 0.778 0.782 0.787

Hard Negative 0.632 0.679 0.692 0.701

Distance Weighted 0.733 0.783 0.786 0.788

Table 10 Influence of Mr . When Mr = 1, the product residual product
quantization degenerates into product quantization

Mr 12 bits 24 bits 36 bits 48 bits

1 0.741 0.782 0.787 0.786

2 0.758 0.799 0.796 0.797

4 0.711 0.762 0.765 0.776

Bold values indicate the best performance

when Mr = 2, 4. Since the code length L = MpMrlog2K ,
to achieve an identical code length, we set Mp = 4 when
Mr = 1, set Mp = 2 when Mr = 2, and set Mp = 1 when
Mr = 4. As shown in Table 10, the performance when Mr =
2 consistently outperforms others. By default, we setMr = 2
on all testing dataset. Meanwhile, the better performance of
Mr = 2 than Mr = 1 verifies the advantage of residual
product quantization over product quantization.

We also evaluate the influence of Mp. In implementation,
we fix Mr = 2, change Mp among {1, 2, 4}. We comprehen-
sively test cases when K varies among {8, 64, 512, 4096}.
As shown in Fig. 4, when Mp = 2, it achieves the highest
mAP on all cases and meanwhile it takes only a half number
of bits of that when Mp = 4. By default, we set Mp = 2.

6.1.3 Compare with State-of-the-Art Methods

We compare the proposed PQN and RPQN with two state-
of-the-art methods (SUBIC and DPQ), which adopt the same
3CNet as well as the same experimental settings. We change
bit length L among {12, 24, 36, 48}. We set M = 4 on PQN,
and set Mr = 2 and Mp = 2 on RPQN. Since SUBIC

adopts cross-entropy loss, it is unfair to directly compare it
with ours using asymmetric triplet loss. Therefore, we report
the performance of our PQN and RPQN based on the cross-
entropy loss (CEL) aswell as the proposed asymmetric triplet
loss (ATL). As shown in Table 11, our PQN and RPQN based
on both CEL and ATL significantly outperform the existing
state-of-the-art methods including SUBIC and DPQ.

6.2 CIFAR-10 Using AlexNet

Following the experimental settings in (Wang et al. 2016b;
Li et al. 2017), we randomly sample 1000 images per class
(10000 images in total) as the testing query images, and the
remaining 50000 images are used as the training set as well
as reference images in the database. We set M = 4 on PQN,
and set Mr = 2 and Mp = 2 on RPQN. We vary K among
{24, 26, 29, 212}, and thus the code length L varies among
{16, 24, 36, 48}.

6.2.1 Comparions with State-of-the-Art Methods

As shown in Table 12, ours consistently outperforms the
existing state-of-the-art methods, especially when the bit
length is small. For instance, when the bit length is 16, our
PQN/RPQN achieves a 0.947/0.950 mAP whereas DSDH
only achieves a 0.935 mAP.

6.2.2 Extremely Short Code Evaluation

As shown in Table 12, the mAP achieved by our method
does not drop when the bit length decreases from 48 to 16.
In contrast, the performance of other methods in Table 12 all
turn worse due to decrease of the bit length. To fully exploit
the potential of the proposed product quantization network
on the CIAFR-10 dataset, we evaluate it by setting the code
length L extremely small. We vary M among 1, 2 and 4,
and meanwhile vary the code length (bit number) L within
{4, 6, 8, 10, 12}. As shown in Table 13, when code length

Fig. 4 The influence of Mp

4 6 8 10 12
log 2 K

0.5

0.55

0.6

0.65

0.7

0.75

0.8

m
A

P

Mp =1

Mp =2

Mp =4

4 6 8 10 12
log 2 K

0

20

40

60

80

100

B
its

Mp =1

Mp =2

Mp =4

(a) mAP (b) code length

123

International Journal of Computer Vision (2020) 128:2325–2343 2337

Table 11 mAP comparisons
with state-of-the-art methods
using 3CNet

Method 12 bits 24 bits 36 bits 48 bits

UBIC (Jain et al. 2017) 0.635 0.672 0.682 0.686

DPQ (Klein and Wolf 2017) 0.673 0.692 0.695 0.693

PQN+CEL 0.737 0.771 0.768 0.762

RPQN+CEL 0.742 0.785 0.784 0.786

PQN+ATL 0.741 0.782 0.787 0.786

RPQN+ATL 0.758 0.799 0.796 0.797

Bold values indicate the best performance

Table 12 mAP comparisons with existing state-of-the-art methods
using AlexNet base model on the CIFAR10 dataset

Method 16 bits 24 bits 36 bits 48 bits

DRSCH (Zhang et al. 2015) 0.615 0.622 0.629 0.631

DSCH (Zhang et al. 2015) 0.609 0.613 0.617 0.686

DSRH (Zhao et al. 2015) 0.608 0.611 0.617 0.618

VDSH (Zhang et al. 2016) 0.845 0.848 0.844 0.845

DPSH (Li et al. 2015) 0.903 0.885 0.915 0.911

DTSH (Wang et al. 2016b) 0.915 0.923 0.925 0.926

DSDH (Li et al. 2017) 0.935 0.940 0.939 0.939

PQN 0.947 0.947 0.946 0.947

RPQN 0.950 0.949 0.949 0.948

Bold values indicate the best performance

Table 13 Evaluation on the extremely short code

L 4 bits 6 bits 8 bits 10 bits 12 bits

M = 1 0.945 0.945 0.946 0.946 0.946

M = 2 0.674 0.882 0.946 0.946 0.947

M = 4 0.672 − 0.947 − 0.947

is extremely small, e.g., L = 4, the performance of PQN
when M = 1 significantly outperforms that when M = 2, 4.
Meanwhile, when M = 1, there is not significant perfor-
mance drop when L decreases from 12 to 4. Note that, when
M = 1, the proposed PQNachieves a 0.945mAPwhen using
only 4 bits per code. It considerably outperforms the exist-
ing state-of-art method DSDH (Li et al. 2017) which only
achieves 0.935 mAP using 16 bits.

6.3 NUS-WIDE

Following the experiment setup in (Wang et al. 2016b; Li
et al. 2017), we randomly sample 100 images per class (2100
images in total) as the test query set and the remaining images
are used as database images. 500 database images per label
are randomly sampled as training images. The mAP is cal-
culated based on the top 5000 returned neighbors. Due to
multi-label settings, the cross-entropy loss used in SUBIC
(Jain et al. 2017) and the softmax loss inDPQ(Klein andWolf
2017) are no longer feasible, which explains neither SUBIC

(Jain et al. 2017) nor DPQ (Klein and Wolf 2017) conducts
the experiments on the NUS-WIDE dataset. Inspired by the
success of label embedding proposed in Li et al. (2017), we
also adopt a combined loss, which is a weighed sum of our
asymmetric triplet loss and a mean square loss defined as

L = 1

1 + e〈v,q+〉−〈v,q−〉 + β‖Wv − y‖22, (21)

where W represents the weights of an additional fully-
connected layer and y is the label of the sample I . We set
β = 10 by default.

We compare our method with two types of baselines. The
first type extracts the features from CNN and then convert
the extracted features into binary codes. We directly copy
the reported results in Li et al. (2017) which conducts exper-
iments on several traditional hashing methods such as SH
(Salakhutdinov and Hinton 2007), ITQ (Gong et al. 2013),
KSH (Liu et al. 2012), SDH (Shen et al. 2013), etc. The
baselines of the second type are deep hashing/quantization
methods, where the binary codes are learned in an end-to-
end manner. We compare several methods of the second type
such as DQN (Cao et al. 2016), DPSH (Li et al. 2015),
DTSH (Wang et al. 2016b), DSDH (Li et al. 2017), etc.
As shown in Table 14, the proposed PQN consistently out-
performs these two types of baselines when code length L
varies among {12, 24, 36, 48}. The advantage of our PQN
over othermethods ismore obviouswhen the code length L is
short. For instance, when L = 24, our PQN/RPQN achieves
a 0.819/0.822 mAP whereas DSDH (Li et al. 2017) only
achieves a 0.808 mAP.

6.4 ImageNet100

ImageNet100 (Cao et al. 2017) randomly select 130K images
from100 categories of ImageNet.All images in the validation
set as the queries and 100 images per category are selected
from the database as the training points. We conduct experi-
ments based on AlexNet backbone and the evaluation metric
is mAP@100. We compare with three recent state-of-the-
art methods including HashNet (Cao et al. 2017), MIHash
(Cakir et al. 2017) and TALR-AP (He et al. 2018). As shown

123

2338 International Journal of Computer Vision (2020) 128:2325–2343

Table 14 mAP comparisons
with existing state-of-the-art
methods using AlexNet base
model on the NUS-WIDE
dataset

Method 12 bits 24 bits 36 bits 48 bits

SH + CNN (Li et al. 2017) 0.621 0.616 0.615 0.612

ITQ + CNN (Li et al. 2017) 0.719 0.739 0.747 0.756

LFH + CNN (Li et al. 2017) 0.695 0.734 0.739 0.759

KSH + CNN (Li et al. 2017) 0.768 0.786 0.790 0.799

SDH+ CNN (Li et al. 2017) 0.780 0.804 0.815 0.824

FASTH+CNN (Li et al. 2017) 0.779 0.807 0.816 0.825

CNNH (Xia et al. 2104) 0.611 0.618 0.625 0.608

NINH (Lai et al. 2015) 0.674 0.697 0.713 0.715

DHN (Zhu et al. 2016) 0.708 0.735 0.748 0.758

DQN (Cao et al. 2016) 0.768 0.776 0.783 0.792

DPSH (Li et al. 2015) 0.752 0.790 0.794 0.812

DTSH (Wang et al. 2016b) 0.773 0.808 0.812 0.824

DSDH (Li et al. 2017) 0.776 0.808 0.820 0.829

PQN 0.795 0.819 0.823 0.830

RPQN 0.797 0.822 0.829 0.831

The mAP is based on top 5000 nearest neighbors
Bold values indicate the best performance

in Table 15, our PQN and RPQN consistently outperform the
compared methods.

7 Experiments on Video Retrieval

We evaluate our method on two public benchmark datasets:
UCF101 (Soomro et al. 2012) and HMDB51 (Kuehne et al.
2011).UCF101 dataset consists of 101 categories containing
13320 total realistic videos.HMDB51 dataset contains 6766
clips divided into 51 categories, each containing a minimum
of 101 clips. Both UCF101 and HMDB51 provide 3 train-
ing/testing splits. Following (Liu et al. 2017), we use the third
split of UCF101 and first split of the HMDB51. The training
data not only is used for training the network but also serves
as the reference videos in the database for retrieval. The test-
ing data are the query videos. A reference video is related to
the query video if they share the same semantic label.

Backbone network we adopt is an old-fashioned network,
BN-Inception (Ioffe and Szegedy 2015), but we remove its
last fully-connected layer and softmax layer. To suppress

Table 15 Comparisons with state-of-the-art methods on ImageNet100
dataset

16 bits 32 bits 48 bits

HashNet (Cao et al. 2017) 0.506 0.631 0.663

MIHash (Cakir et al. 2017) 0.569 0.661 0.685

TALR-AP (He et al. 2018) 0.589 0.669 0.699

PQN 0.613 0.682 0.707

RPQN 0.624 0.691 0.712

Bold values indicate the best performance

over-fitting, we add a dropout layer with ratio r = 0.8 after
the last layer of the backbone network. Even though there are
many more advanced deep learning architectures available,
we select BN-Inception due to the the limitation of our com-
puting resources. Laterly, we will show that the performance
achieved by ours using BN-Inception is considerably better
than another work (Liu et al. 2017) using a deeper ResNet50
as the backbone. Despite that a temporal stream network tak-
ing optical flow as input can achieve higher performance in
action retrieval, we do not do that since the baselineswe com-
pare only take the RGB frames as input. On both datasets,
we set N , the number of sampled frames per video, as 9. The
batch size is set to be 128. The initial learning rate is 0.001
and the learning rate will be divided by 10 after every 30
epochs and the training process finishes in 120 epochs. We
use SGD as the optimizer and set the momentum as 0.9. The
loss function used in training the model is standard cross-
entropy loss.

7.1 Ablation Study

In this section, we conduct ablation study and evaluate the
influence of T ,M andα on the proposed TPQN, respectively.

7.1.1 Influence of T

We vary T among {1, 2, 3}. Note that when T = 1, it will be
equivalent to a one-level global max-pooling. In this case, the
temporal product quantization network degenerates to prod-
uct quantization network. On both datasets, we fix M = 1
and increase the number of codewords K from 32 to 2048.

123

International Journal of Computer Vision (2020) 128:2325–2343 2339

As shown in Fig. 5, when T = 2, 3, it consistently outper-
form that when T = 1, which validates the advantage of the
proposed temporal product quantization network over prod-
uct quantization network. Nevertheless, a higher T will take
more bits, leading to a higher memory and computation cost.
To balance the precision and efficiency, we set T = 2 by
default on both datasets. Meanwhile, from Fig. 5 we can also
observe that as K increases, the mAP increases in the early
stage and then drops. The increase of mAP is due to that a
higher K is capable of representing richer information. In
contrast, the mAP decreases when K > 128 is caused by
over-fitting. We will show in Sect. 7.2 that the quantization
can serve as a regularization mechanism which suppresses
the over-fitting. How to select K is dependent on the scale of
the dataset. As a rule of thumb, we pick a larger K for a larger
dataset. As shown in Fig. 5, when T varies among {1, 2, 3},
it consistently achieves the best performance when K = 128
on UCF101 dataset and when K = 64 on HMDB51 dataset.

7.1.2 Influence ofM

A largerM brings a richer codebook aswell as a greater com-
plexity. We vary M among {1, 2, 4}. On both datasets, we set
T = 2 and increase K from 32 to 2048. In this scenario, the

number of bits required for representing a video is 3Mlog2K .
As shown in Fig. 6, when K is small, M = 2, 4 achieves
much better performance than M = 1, this is expected since
a small K will have a limited capability of representing and
therefore need a larger M to enrich the codewords. On the
contrary, when K is large, the advantage of M = 2, 4 over
M = 1 is not so obvious. Meanwhile, in consistency with the
previous experimental results shown in Fig. 6, whenM varies
among {1, 2, 4}, it continuously achieves the highest preci-
sion on UCF101 dataset when K = 128 and on HMDB51
when K = 64.

7.1.3 Influence of˛

α controls the consistency between the approximation func-
tion ftm(·, α) and original quantization function qtm(·). We
fix T = 2 and M = 2 and test our TPQN by increasing α

from 2 to 10 and vary K among {32, 64, 128}. As shown in
Fig. 7, the performance, when α is within the range [5, 10],
the performance of TPQN is considerably stable. Neverthe-
less, we can observe a significant performance drop when α

decreases from 5 to 2. This drop is due to the fact that a small
α brings a large inconsistency between the approximation
function ftm(·, α) in the training phase and the hard quanti-

Fig. 5 The influence of T

5 6 7 8 9 10 11
log 2 K

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

T = 1
T = 2
T = 3

5 6 7 8 9 10 11
log 2 K

0.3

0.4

0.5

0.6

m
A

P

T = 1
T = 2
T = 3

UCF101 HMDB51(a) (b)

Fig. 6 The influence of M

5 6 7 8 9 10 11
log 2 K

0.8

0.85

0.9

0.95

m
A

P

M = 1
M = 2
M = 4

UCF101

5 6 7 8 9 10 11
log 2 K

0.4

0.45

0.5

0.55

0.6

0.65

0.7

m
A

P

M = 1
M = 2
M = 4

HMDB51(a) (b)

123

2340 International Journal of Computer Vision (2020) 128:2325–2343

Fig. 7 The influence of α

2 4 6 8 10
0.7

0.75

0.8

0.85

0.9

0.95

m
A

P

K = 32
K = 64
K = 128

(a) UCF101

2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

m
A

P

K = 32
K = 64
K = 128

(b) HMDB51

zation in the indexing phase. Meanwhile, on the HMDB51
dataset, we also observe a slight performance drop when α

increases from 7 to 10. This performance drop is caused by
the fact that a large α will tend to make the training unstable.
By default, we set α = 5 on both datasets.

7.1.4 Action Recognition

We also evaluate the performance of the proposed TPQN
for action recognition. To be specific, we also the nearest
neighbor classifier for recognition. We compare with TSN
(Wang et al. 2016a), using the same backbone network,
BN-Inception (Ioffe and Szegedy 2015). Tomake a fair com-
parison, both ours and TSN only take RGB frames as input
and do not use optical flows. As shown in Table 19, benefited
from temporal pyramid pooling, our TPQNconsiderably out-
performs TSN in the action recognition.

7.2 Complexity Analysis and Regularization

In this section, we analyze the complexity reduction brought
by quantization and also show the regularization functional-
ity of the quantization. We will show that our TPQN not only
significantly boosts the efficiency but also serves as a reg-
ularization mechanism, improving the precision. To make
a fair comparison, we compare with a baseline by directly
removing the quantization operation, i.e., the third step in
temporal product quantization layer and keep other parts of
TPQN fixed. As for our TPQN, we set M = 2 and K = 64
on both datasets.

Without quantization, the video features are high-dimen-
sion real-value vectors. For instance,when T = 2, the feature
dimension is D(T + 1) = 1024 × 3 = 3072 and it takes
3072 × 4 = 12288 bytes to store the feature in a float-type
array. In contrast, using the quantization, it only takes (T +
1)M�log2K/8� = 6 bytes, achieving an approximate 2000×
memory reduction.

Table 16 Regularization
function of the product
quantization structure

UCF101 HMDB51

Quantization? T = 1 T = 2 T = 3 T = 1 T = 2 T = 3

NO 0.8547 0.8642 0.8622 0.4628 0.4927 0.4945

YES 0.8639 0.9035 0.9023 0.5352 0.6012 0.5801

Table 17 Comparison with
existing hashing methods

UCF101 HMDB

6 bits 12 bits 18 bits 36 bits 6 bits 12 bits 18 bits 36 bits

LSH 0.090 0.220 0.326 0.521 0.068 0.116 0.149 0.231

SH 0.234 0.448 0.613 0.777 0.155 0.255 0.344 0.440

ITQ 0.282 0.588 0.728 0.828 0.206 0.360 0.449 0.521

SPBE 0.266 0.532 0.717 0.805 0.209 0.327 0.408 0.512

KSH 0.450 0.752 0.842 0.878 0.325 0.436 0.532 0.572

DSH 0.513 0.807 0.856 0.882 0.331 0.457 0.546 0.586

Unsupervised PQ 0.562 0.831 0.862 0.891 0.485 0.533 0.568 0.582

Ours 0.626 0.864 0.888 0.904 0.535 0.563 0.591 0.601

123

International Journal of Computer Vision (2020) 128:2325–2343 2341

Table 18 Comparison with
deep video hashing methods

SUBIC (Jain et al. 2017) DHCM (Liu et al. 2017) TPQN (Ours)

64 128 256 64 128 256 12 18 36

UCF101 0.324 0.432 0.449 0.759 0.817 0.843 0.864 0.888 0.904

HMDB51 0.192 0.247 0.298 0.356 0.367 0.368 0.563 0.591 0.601

Table 19 The performance in action recognition

UCF101 HMDB51

TSN (Wang et al. 2016a) 85.3 51.0

Ours 90.9 62.3

Meanwhile, we find the quantization also significantly
improves the retrieval precision as shown in Table 16. This
is due to the regularization mechanism brought by the
quantization, which suppresses overfitting and improves the
generalization capability of the trained model. For instance,
when T = 2, our TPQN achieves 0.9035 mAP on UCF101
dataset and 0.6012 mAP on HMDB51 dataset. In contrast,
after removing the quantization, it only achieves 0.8642mAP
on UCF101 dataset and 0.4927 mAP on HMDB51 dataset.

7.3 Comparison with State-of-the-Art Methods

To further demonstrate the effectiveness of the proposed
TPQN, we compare it with the state-of-the-art methods. The
compared methods can be categorized into two types. The
first type of methods are based on a two-step process: video
feature extraction followed by hashing. To make a fair com-
parison, we directly use the features without quantization
used in Table 16 for hashing. We implement multiple hash-
ing methods including LSH (Datar et al. 2004), SH (Weiss
et al. 2009) , ITQ (Gong et al. 2013), SPBE (Xia et al. 2015),
KSH (Liu et al. 2012), SDH (Shen et al. 2015). Among them,
LSH (Datar et al. 2004), SH (Weiss et al. 2009) , ITQ (Gong
et al. 2013) and SPBE (Xia et al. 2015) are unsupervised
hashing methods, whereas KSH (Liu et al. 2012) and SDH
(Shen et al. 2015) are supervised hashing methods. Mean-
while, we also compare with unsupervised PQ. As show in
Table 17, ourmethod consistently outperformsothermethods
on both UCF101 and HMDB51 datasets, especially when bit
length is small. For instance, on UCF101 dataset, our method
achieves a 0.864 mAP when bit length is only 12 whereas
the second best DSH only achieves a 0.807 mAP using the
same bit length. On HMDB51 dataset, our method achieves
a 0.535 mAP when bit length is only 12 whereas the second
best DSH only achieves a 0.331 mAP.

The second type of methods is deep video hashing. We
mainly compare with twomost recent methods, SUBIC (Jain
et al. 2017) and Deep Hashing with CategoryMask (DHCM)

(Liu et al. 2017). Note that even if SUBIC and DHCM are
basedon adeeperResNet50backbone, our result consistently
outperforms both of them using a shallower backbone BN-
Inception as show in Table 18. To be specific, on the UCF101
dataset, we achieve a 0.904 mAP using only 36 bits, whereas
DHCM only achieves a 0.843 using 256 bits. Meanwhile, on
the HMDB51 dataset, we achieve a 0.563 mAP using only
12 bits, whereas DHCM only achieves a 0.368 using 256 bits
(Table 19).

8 Conclusion

In this paper, by constructing an approximate function, we
make the product quantization differentiable and feasible to
be incorporated in a neural network. Product quantization
nework (PQN) is introduced, which learns a discriminative
and compact image representation in an end-to-end man-
ner. Asymmetric triplet loss extended from triplet loss is
introduced, which directly optimizes the representation’s
adaptability to retrieval based on asymmetric distance. By
revisiting residual quantization, we extend PQN to resid-
ual product quantization (RPQN) which triggers the residual
learning and further improves the discriminativeness of the
representation. Moreover, by exploiting the temporal con-
sistency inherited in videos, we extend PQN to temporal
product quantization network (TPQN) for fast video retrieval.
Interestingly, our experiments show that the product quan-
tization not only improves the retrieval efficiency but also
improves the model’s generalizability and retrieval accuracy.
Systematic experiments conducted on benchmark datasets
demonstrate state-of-the-art performance of the proposed
PQN, RPQN and TPQN in fast image and video retrieval.

Acknowledgements This work is supported in part by a gift grant from
Adobe and startup funds from University at Buffalo.

References

Babenko,A.,&Lempitsky,V. (2014).Additive quantization for extreme
vector compression. In CVPR (pp. 931–938).

Babenko, A., & Lempitsky, V. (2015). Aggregating local deep features
for image retrieval. In ICCV (pp. 1269–1277).

Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neu-
ral codes for image retrieval. In ECCV (pp. 584–599). Berlin:
Springer.

123

2342 International Journal of Computer Vision (2020) 128:2325–2343

Bai, S., Bai, X., Tian, Q., & Latecki, L. J. (2018). Regularized diffusion
process on bidirectional context for object retrieval. TPAMI.

Bai, S., Zhou, Z., Wang, J., Bai, X., Latecki, L. J., & Tian, Q. (2017).
Ensemble diffusion for retrieval.

Cakir, F., He, K., Bargal, S. A., & Sclaroff, S. (2017). Mihash: Online
hashing with mutual information. In ICCV.

Cao, L., Li, Z., Mu, Y., & Chang, S. F. (2012). Submodular video hash-
ing: a unified framework towards video pooling and indexing. In
Proceedings of the 20th ACM international conference on Multi-
media (pp. 299–308). ACM.

Cao, Y., Long, M., Wang, J., Zhu, H., & Wen, Q. (2016). Deep quanti-
zation network for efficient image retrieval. In AAAI.

Cao, Z., Long, M.,Wang, J., & Yu, P. S. (2017). Hashnet: Deep learning
to hash by continuation. In ICCV.

Charikar, M. S. (2002). Similarity estimation techniques from rounding
algorithms. In Proceedings of the 34th annual ACM symposium on
theory of computing (pp. 380–388).

Chen, Y., Guan, T., & Wang, C. (2010). Approximate nearest neighbor
search by residual vector quantization. Sensors, 10(12), 11259–
11273.

Chua, T. S., Tang, J., Hong, R., Li, H., Luo, Z., &Zheng, Y. (2009). Nus-
wide: a real-world web image database from national university
of singapore. In Proceedings of the ACM international conference
on image and video retrieval (p 48).

Datar, M., Immorlica, N., Indyk, P., Mirrokni, V. S. (2004). Locality-
sensitive hashing scheme based on p-stable distributions. In
Proceedings of the twentieth annual symposium on Computational
geometry (pp. 253–262).

Ge, T., He, K., Ke, Q., & Sun, J. (2013). Optimized product quan-
tization for approximate nearest neighbor search. In CVPR (pp.
2946–2953). IEEE.

Gong, Y., Lazebnik, S., Gordo, A., & Perronnin, F. (2013). Iterative
quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE T-PAMI, 35(12), 2916–2929.

Gordo, A., Almazán, J., Revaud, J., & Larlus, D. (2016). Deep image
retrieval: Learning global representations for image search. In
ECCV (pp. 241–257). Springer.

He, K., Cakir, F., Bargal, S. A., & Sclaroff, S. (2018). Hashing as tie-
aware learning to rank. In CVPR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 770–778).

Hong, W., Meng, J., & Yuan, J. (2018). Distributed composite quanti-
zation. In AAAI.

Hong, W., Meng, J., & Yuan, J. (2018). Tensorized projection for high-
dimensional binary embedding. In AAAI.

Hong, W., & Yuan, J. (2018). Fried binary embedding: From high-
dimensional visual features to high-dimensional binary codes.
IEEE Transactions on Image Processing, 27(10), 1.

Hong, W., Yuan, J., & Bhattacharjee, S. D. (2017). Fried binary embed-
ding for high-dimensional visual features. CVPR, 11, 18.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Interna-
tional conference on machine learning (pp. 448–456).

Jain, H., Zepeda, J., Perez, P., & Gribonval, R. (2017). Subic: A super-
vised, structured binary code for image search. In ICCV (pp.
833–842).

Jegou, H., Douze, M., & Schmid, C. (2011). Product quantization for
nearest neighbor search. IEEE T-PAMI, 33(1), 117–128.

Jégou, H., Douze, M., Schmid, C., & Pérez, P. (2010). Aggregating
local descriptors into a compact image representation. In: CVPR
(pp. 3304–3311).

Jiang, Q. Y., & Li, W. J. (2018). Asymmetric deep supervised hashing.
AAAI.

Klein, B., & Wolf, L. (2017). In defense of product quantization. arXiv
preprint arXiv:1711.08589.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny
images.

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., & Serre, T. (2011).
Hmdb: a large video database for human motion recognition. In
IEEE International Conference on Computer Vision (ICCV), 2011
(pp. 2556–2563). IEEE.

Lai, H., Pan, Y., Liu, Y., & Yan, S. (2015). Simultaneous feature learn-
ing and hash coding with deep neural networks. arXiv preprint
arXiv:1504.03410.

Li, Q., Sun, Z., He, R., & Tan, T. (2017). Deep supervised discrete
hashing. In NIPS (pp. 2479–2488).

Li, W. J., Wang, S., & Kang, W. C. (2015). Feature learning based
deep supervised hashing with pairwise labels. arXiv preprint
arXiv:1511.03855

Liong, V. E., Lu, J., Tan, Y. P., & Zhou, J. (2017). Deep video hashing.
IEEE Transactions on Multimedia, 19(6), 1209–1219.

Liu,H.,Wang,R., Shan, S.,&Chen,X. (2016).Deep supervisedhashing
for fast image retrieval. In CVPR (pp. 2064–2072).

Liu, W., Wang, J., Ji, R., Jiang, Y. G., & Chang, S. F. (2012). Super-
vised hashingwith kernels. In 2012 IEEEConference onComputer
Vision and Pattern Recognition (pp. 2074–2081). IEEE.

Liu, X., Zhao, L., Ding, D., & Dong, Y. (2017). Deep hashing with
category mask for fast video retrieval. CoRR arXiv:1712.08315.

Martinez, J., Clement, J., Hoos, H. H., & Little, J. J. (2016). Revisit-
ing additive quantization. In European Conference on Computer
Vision (pp. 137–153). Springer.

Ng, J.Y.H., Yang, F., Davis, L. S. (2015). Exploiting local fea-
tures from deep networks for image retrieval. arXiv preprint
arXiv:1504.05133.

Norouzi, M., & Fleet, D. J. (2013). Cartesian k-means. In CVPR (pp.
3017–3024).

Norouzi, M., Fleet, D. J., & Salakhutdinov, R. R. (2012). Hamming
distance metric learning. In Advances in neural information pro-
cessing systems (pp. 1061–1069).

Perronnin, F., Liu, Y., Sánchez, J., & Poirier, H. (2010). Large-scale
image retrieval with compressed fisher vectors. In CVPR (pp.
3384–3391).

Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2007).
Object retrieval with large vocabularies and fast spatial matching.
In CVPR (pp. 1–8).

Sablayrolles, A., Douze, M., Jégou, H., & Usunier, N. (2017). How
should we evaluate supervised hashing? In ICASSP.

Salakhutdinov, R., & Hinton, G. (2007). Semantic hashing. RBM,
500(3), 500.

Shen, F., Shen, C., Liu, W., & Shen, H. T. (2013). Supervised discrete
hashing. IEEE T-PAMI, 35(12), 2916–2929.

Shen, F., Shen, C., Liu, W., & Shen, H. T. (2015). Supervised discrete
hashing. In: CVPR (Vol. 2, p. 5).

Soomro, K., Zamir, A. R., & Shah, M. (2012). Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402.

Tu, Z., Li, H., Zhang, D., Dauwels, J., Li, B., & Yuan, J. (2019).
Action-stage emphasized spatio-temporal VLAD for video action
recognition. IEEE Transactions on Image Processing.

Tu, Z., Xie,W.,Qin,Q., Veltkamp, R. C., Li, B.,&Yuan, J.Multi-stream
cnn: Learning representations based on human-related regions for
action recognition. Pattern Recognition.

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., & Van Gool,
L. (2016a). Temporal segment networks: Towards good practices
for deep action recognition. In European Conference on Computer
Vision (pp. 20–36). Springer.

Wang, X., Shi, Y., & Kitani, K. M. (2016b). Deep supervised hashing
with triplet labels. In ACCV (pp. 70–84). Springer.

Wang, X., Zhang, T., Qi, G.J., Tang, J., &Wang, J. (2016c). Supervised
quantization for similarity search. In CVPR (pp. 2018–2026).

123

http://arxiv.org/abs/1711.08589
http://arxiv.org/abs/1504.03410
http://arxiv.org/abs/1511.03855
http://arxiv.org/abs/1712.08315
http://arxiv.org/abs/1504.05133
http://arxiv.org/abs/1212.0402

International Journal of Computer Vision (2020) 128:2325–2343 2343

Weiss, Y., Torralba, A., & Fergus, R. (2009). Spectral hashing. In NIPS
(pp. 1753–1760).

Wu, C.Y., Manmatha, R., Smola, A. J., & Krähenbühl, P. (2017a). Sam-
pling matters in deep embedding learning. In ICCV.

Wu, G., Liu, L., Guo, Y., Ding, G., Han, J., Shen, J., & Shao, L. (2017b).
Unsupervised deep video hashingwith balanced rotation. In IJCAI.

Xia, R., Pan, Y., Lai, H., Liu, C., & Yan, S. (2014). Supervised hashing
for image retrieval via image representation learning. In AAAI (pp.
2156–2162). AAAI Press.

Xia, Y., He, K., Kohli, P., & Sun, J. (2015). Sparse projections for high-
dimensional binary codes. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 3332–3339).

Ye, G., Liu, D.,Wang, J., &Chang, S. F. (2013). Large-scale video hash-
ing via structure learning. In Proceedings of the IEEE International
Conference on Computer Vision (pp. 2272–2279).

Yu, T., Meng, J., & Yuan, J. (2017a). Is my object in this video?
reconstruction-based object search in videos. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence
(pp. 4551–4557). AAAI Press.

Yu, T., Wang, Z., & Yuan, J. (2017b). Compressive quantization for fast
object instance search in videos. In ICCV (pp. 833–842).

Yu, T., Wu, Y., Bhattacharjee, S. D., &Yuan, J. (2017c). Efficient object
instance search using fuzzy objects matching. In AAAI.

Yu, T., Wu, Y., & Yuan, J. (2017d). Hope: Hierarchical object prototype
encoding for efficient object instance search in videos. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2424–2433).

Yu, T., Yuan, J., Fang, C., Jin, H. (2018). Product quantization network
for fast image retrieval. InProceedings of theEuropeanConference
on Computer Vision (ECCV) (pp. 186–201).

Zhang, R., Lin, L., Zhang, R., Zuo, W., & Zhang, L. (2015). Bit-
scalable deep hashing with regularized similarity learning for
image retrieval and person re-identification. IEEE TIP, 24(12),
4766–4779.

Zhang, T., Du, C., & Wang, J. (2014). Composite quantization for
approximate nearest neighbor search. In ICML, 2 (pp. 838–846).

Zhang, Z., Chen, Y., & Saligrama, V. (2016). Efficient training of very
deep neural networks for supervised hashing. In CVPR (pp. 1487–
1495).

Zhao, F., Huang, Y.,Wang, L., & Tan, T. (2015). Deep semantic ranking
based hashing for multi-label image retrieval. InCVPR (pp. 1556–
1564).

Zhu, H., Long, M., Wang, J., & Cao, Y. (2016). Deep hashing network
for efficient similarity retrieval. In AAAI.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Product Quantization Network for Fast Visual Search
	Abstract
	1 Introduction
	2 Related Work
	2.1 Hashing
	2.2 Product Quantization
	2.3 Fast Video Search

	3 Product Quantization Network
	3.1 Limitation of Product Quantization
	3.2 From Hard Quantization to Soft Quantization
	3.3 Regularization
	3.4 Initialization
	3.5 Asymmetric Triplet Loss
	3.6 Encoding and Retrieval
	3.7 Relation to Existing Methods

	4 Residual Product Quantization Network
	4.1 Residual Product Quantization Layer
	4.2 Indexing and Retrieval

	5 Temporal Product Quantization Network
	5.1 Convolutional and Pooling Layers
	5.2 Temporal Product Quantization Layer
	5.3 Indexing and Retrieval

	6 Experiments on Image Retrieval
	6.1 CIFAR-10 Using 3CNet
	6.1.1 Ablation Study on PQN
	6.1.2 Ablation Study on RPQN
	6.1.3 Compare with State-of-the-Art Methods

	6.2 CIFAR-10 Using AlexNet
	6.2.1 Comparions with State-of-the-Art Methods
	6.2.2 Extremely Short Code Evaluation

	6.3 NUS-WIDE
	6.4 ImageNet100

	7 Experiments on Video Retrieval
	7.1 Ablation Study
	7.1.1 Influence of T
	7.1.2 Influence of M
	7.1.3 Influence of α
	7.1.4 Action Recognition

	7.2 Complexity Analysis and Regularization
	7.3 Comparison with State-of-the-Art Methods

	8 Conclusion
	Acknowledgements
	References

